
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PHYSICS-INFORMED NEURAL NETWORKS WITH TRUST-
REGION SEQUENTIAL QUADRATIC PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) represent a significant advancement in
Scientific Machine Learning (SciML), which integrate physical domain knowledge
into an empirical loss function as soft constraints and apply existing machine learn-
ing methods to train the model. However, recent research has noted that PINNs may
fail to learn relatively complex Partial Differential Equations (PDEs). This paper
addresses the failure modes of PINNs by introducing a novel, hard-constrained deep
learning method — trust-region Sequential Quadratic Programming (trSQP-PINN).
In contrast to directly training the penalized soft-constrained loss as in PINNs, our
method performs a linear-quadratic approximation of the hard-constrained loss,
while leveraging the soft-constrained loss to adaptively adjust the trust-region radius.
We only trust our model approximations and make updates within the trust region,
and such an updating manner can overcome the ill-conditioning issue of PINNs.
We also address the computational bottleneck of second-order SQP methods by
employing quasi-Newton updates for second-order information, and importantly,
we introduce a simple pretraining step to further enhance training efficiency of our
method. We demonstrate the effectiveness of trSQP-PINN through extensive ex-
periments. Compared to existing hard-constrained methods for PINNs, such as
penalty methods and augmented Lagrangian methods, trSQP-PINN significantly
improves the accuracy of the learned PDE solutions, achieving up to 1-3 orders of
magnitude lower errors. Additionally, our pretraining step is generally effective for
other hard-constrained methods, and experiments have shown the robustness of our
method against both problem-specific parameters and algorithm tuning parameters.

1 INTRODUCTION

Partial Differential Equations (PDEs) are essential mathematical tools used to model a variety of phys-
ical phenomena, including heat transfer, fluid dynamics, general relativity, and quantum mechanics.
These equations are often derived from fundamental principles, such as the conservation of mass and
energy, and describe how physical quantities change over space and time. However, deriving analytical
solutions of PDEs in real-world applications is usually infeasible. Numerical methods like finite differ-
ence methods (Thomas, 1995), finite element methods (Zienkiewicz et al., 2013), and pseudo-spectral
methods (Fornberg, 1996) are commonly employed to approximate solutions. These methods, though
effective, require finer meshing of the domain and can be computationally intensive. With the advent
of machine learning (ML), there has been a growing interest recently in applying ML methods to
solve PDEs. Deep neural networks, known for their large capacity and expressivity, are particularly
useful in learning nonlinear mappings between inputs (e.g., spatial/temporal coordinates) and outputs
(e.g., measurements of physical quantities), thus leading the way in such applications. This emerging
field, called Scientific Machine Learning (SciML), combines data-driven approaches (mostly neural
network training) with traditional scientific modeling (i.e., PDEs/ODEs) to address the computational
challenges of classical numerical methods and enhance solution accuracy (von Rueden et al., 2021;
Willard et al., 2020; Huang et al., 2022).

The Physics-Informed Neural Network (PINN) is a recent development that integrates domain-driven
principles with data-driven ML methods for learning PDE solutions (Cuomo et al., 2022; Hao et al.,
2022; Raissi et al., 2019). The idea behind PINN is simple: it incorporates PDEs into an empirical
loss function as soft constraints, and then optimizes the soft-constrained loss towards zero using

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

classical (unconstrained) ML methods (e.g., Adam and L-BFGS). PINN is generally applied within a
supervised-learning framework, utilizing paired labeled datasets to define the loss. Unlike classical
PDE solvers that require meshing, PINN is mesh-free, making it well-suited for large-scale problems
with irregular domains. PINN has been successfully employed to various SciML applications, includ-
ing nano-optics materials (Chen et al., 2020), biomedicine (Sahli Costabal et al., 2020), fluid mechan-
ics (Raissi et al., 2020), optimal control (Mowlavi & Nabi, 2023; Barry-Straume et al., 2022), and
inverse design (Lu et al., 2021; Wiecha et al., 2021).

However, recent research has observed some negative results of PINN: it can fail to learn relatively
complex PDEs despite employing deep neural network architectures with ample expressivity power
(Krishnapriyan et al., 2021). This issue is largely attributed to optimization challenges, including ill-
conditioning issue and complex loss landscape, stemming from the presence of differential operators
in soft penalty terms within the loss function of PINN (Krishnapriyan et al., 2021; Rathore et al., 2024;
Basir, 2022). An imbalance between the empirical loss and the soft penalties can skew training, favor-
ing certain constraints, and thus reducing the accuracy and generalizability of PINN. The nonconvex
loss landscape also makes PINN difficult for gradient-based methods to find the optimal solution.
Additionally, the complexity of neural network models and their sensitivity to variations in PDEs, cou-
pled with the reliance on fine tuning of hyperparameters, can lead to poor convergence and physically
infeasible solutions when applying PINN in practice.

To address the failure modes of PINNs, multiple strategies have recently been proposed, the majority
of which attempt to alleviate the ill-conditioning issue and/or improve the loss landscape. For example,
Krishnapriyan et al. (2021) proposed two resolutions. In one approach, the authors suggested using
curriculum regularization, where the penalty term starts from a simple PDE regularization and be-
comes progressively more complex as neural network gets trained. Another approach is to pose the
problem as a sequence-to-sequence learning task (via spatio-temporal decomposition), rather than
learning to predict the entire domain at once. Liu et al. (2024) incorporated a preconditioner into the
loss function to mitigate the condition number. Subramanian et al. (2022) introduced an adaptive
collection scheme that progressively collects more data points in the regions of high errors. Wang et al.
(2021; 2022a;b) reformulated the loss function by reweighting or resampling to balance different reg-
ularization components in the loss. Rathore et al. (2024) developed a hybrid optimization method by
integrating Newton-CG with Adam and L-BFGS to better adapt to PINN’s landscape. While the afore-
mentioned literature has demonstrated the effectiveness of their strategies in learning various PDEs
under favorable conditions, they still primarily revolve around regularized, soft-constrained loss func-
tions, which may not yield feasible solutions regardless of how we assign weight to the penalty term.
There exist simple examples that, for any finite weight, the soft-constrained loss cannot recover the
solution to the hard-constrained problem1.

Motivated by this concern, another series of literature aims to impose PDEs as hard constraints and ap-
ply constrained optimization methods to train the model. For example, Nandwani et al. (2019) con-
verted soft-constrained PINN problems into alternating min-max problems and applied gradient
descent ascent methods to solve them. Dener et al. (2020) applied (stochastic) augmented Lagrangian
methods to approximate the Fokker-Planck-Landau collision operator, using stochastic gradient de-
scent to solve inner unconstrained minimization subproblems. Subsequently, Lu et al. (2021) proposed
using penalty methods and augmented Lagrangian methods within the PINN framework for inverse
design problems. In contrast to dealing with the PINN loss directly, the above literature reverts the
soft-constrained regularizations back to hard constraints (aligning with our original goals of solving
PDEs), and primarily applies either penalty methods2 or augmented Lagrangian methods to solve the
resulting hard-constrained problems.

Although existing hard-constrained methods based on penalty methods and augmented Lagrangian
methods have shown significant improvements over PINNs, these two methods have largely been sup-
planted by Sequential Quadratic Programming (SQP) methods in the numerical optimization literature,
which typically exhibit superior convergence properties (Gill et al., 2005; Nocedal & Wright, 2006).
Compared to penalty methods, SQP does not regularize the loss in the search direction computation,
so it preserves the problem structure (especially important for PDE and control problems) and does
not suffer from ill-conditioning issues. Compared to augmented Lagrangian methods, SQP is more

1Consider minx, s.t. x = 0. The soft penalized loss x+ µx2 leads to the solution x? = −0.5/µ, which
cannot equal 0 for any finite µ > 0.

2Penalty methods differ from vanilla PINN in that they gradually increase the penalty coefficient as needed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

robust to dual initialization, exhibits much faster convergence (quadratic/superlinear for SQP while
linear for augmented Lagrangian), and produces solutions with fewer objective function and gradient
evaluations (Curtis et al., 2014; Dener et al., 2020; Hong et al., 2023). These promising advantages
motivate our study in this paper — design an SQP-based method to leverage recent developments of
PINNs for learning PDEs.

In particular, we develop a trust-region SQP method called trSQP-PINN. Following the literature
Nandwani et al. (2019); Dener et al. (2020); Lu et al. (2021), we first formulate the PDE problem as a
hard-constrained problem, where we minimize the empirical loss subject to nonlinear PDE constraints.
Then, we apply a trust-region SQP method to impose hard constraints. At each step, we perform a
quadratic approximation to the empirical loss and a linear approximation to the constraints. Inspired
by the local natural of the approximation, we additionally introduce a trust-region constraint to the
parameters. We only trust the approximation and make updates within the trust region. Another critical
element of the method is the merit function, which is a scalar-valued function that indicates whether a
new iterate is better or worse than the current iterate, in the sense of reducing optimality and feasibility
errors. We employ the soft-constrained loss as our merit function. The trust-region radius selection and
the step rejection mechanism are both based on the ratio between the actual reduction and the predicted
reduction in the soft-constrained loss. If the ratio is large, indicating that our approximation is reliable,
we accept the step and enlarge the radius; otherwise, we reject the step and reduce the radius.

A major difference of trSQP-PINN compared to existing penalty and augmented Lagrangian methods
is that the trust-region, linear-quadratic subproblem does not rely on any penalty coefficient, effectively
avoiding the ill-conditioning issue. The soft-penalized loss is only used to determine whether or not
accept the new update. Two potential computational bottlenecks when applying our method are (i)
solving the trust-region subproblem, and (ii) obtaining the Hessian information of neural network
models. For (i), we do not solve the trust-region subproblem exactly (which is still much easier than
the ones in penalty and augmented Lagrangian methods), but instead obtain a point that is better than
gradient descent (i.e. satisfying the Cauchy reduction). For (ii), we employ quasi-Newton updates
such as SR1 and (damped) BFGS to approximate the Hessian information.

To further enhance training efficiency and reduce data intensity, we introduce a simple pretraining
step focused solely on minimizing the feasibility error. Throughout extensive experiments, we demon-
strate that trSQP-PINN significantly outperforms existing hard-constrained methods, improving the
accuracy of learned PDE solutions by 1-3 orders of magnitude. Moreover, the improvement of our
method is robust against both problem-specific parameters and algorithm tuning parameters, while
our pretraining step is broadly effective for other methods as well.

2 FROM PINN METHODS TO HARD-CONSTRAINED METHODS

In this section, we first introduce the PDE problem setup and the soft-constrained PINN method. Then,
we provide a brief overview of two hard-constrained methods: penalty method and augmented La-
grangian method, and illustrate the motivation of designing a trust-region SQP method.

Problem setup and PINN method. We consider an abstraction of the PDE problem with boundary
conditions (BCs) and initial conditions (ICs) as follows:

F(u(x, t)) = 0, (x, t) ∈ Ω× T ⊆ Rd × R+, (1a)
B(u(x, t)) = 0, (x, t) ∈ ∂Ω× T , (1b)
I(u(x, 0)) = 0, x ∈ Ω. (1c)

Here, (x, t) denotes spatial-temporal coordinates with domain Ω×T ,F denotes a differential operator
that can include multiple PDEs {F1, . . . ,Fn}, B is a general form of a boundary-condition operator,
and I is an initial-condition operator. In the context of PDEs, F may be classified into parabolic, hy-
perbolic, or elliptic differential operator, and its solution u(x, t) models the change in physical quanti-
ties over space and time. For many problems, the analytical solution is not accessible, and solving (1)
relies on classical numerical solvers such as finite differences or finite elements.

The recent data-driven approach, PINN, has become popular due to its mesh-free nature and powerful
automatic differentiation techniques. In PINN, we apply neural networks to parameterize the solution

uθ(x, t) = u(x, t),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where (x, t) are the NN inputs and uθ(x, t) is the output, with θ ∈ Rp representing the NN parameters.
Let us denote the labeled observations as {(xi, ti, ui)}Ni=1, so that we can define the empirical loss:

`(θ) =
1

N

N∑
i=1

(ui − uθ(xi, ti))2
. (2)

To enforce constraints (1), we also randomly sample three sets of unlabeled points in the spatiotempo-
ral domain Ω× T : {(xpde

i , tpde
i)}Mpde

i=1 for PDE constraints (1a), {(xBC
i , tBC

i)}MBC
i=1 for BC constraints

(1b), and {(xIC
i , 0)}MIC

i=1 for IC constraints (1c). Then, we define the constraint function as

c(θ) =
(
{F(uθ(x

pde
i , tpde

i))}i; {B(uθ(x
BC
i , tBC

i))}i; {I(uθ(x
IC
i , 0))}i

)
∈ RMpde+MBC+MIC=:M . (3)

With the above setup, PINN solves Problem (1) by incorporating (3) into (2) as soft constraints:

min
θ

: `(θ) + µ‖c(θ)‖2, (4)

and applies (unconstrained) gradient-based methods to obtain the solution. Here, µ > 0 is the penalty
coefficient that balances between the empirical loss and the constraints. When µ is large, we penalize
the constraint violations severely, thereby ensuring the feasibility of the solution. However, µ→∞
also makes the optimization problem (4) ill-conditioned and difficult to converge to a minimum
(Krishnapriyan et al., 2021). On the other hand, if µ is small, then the obtained solution will not satisfy
the considered PDEs, making it invalid and less useful in general. Our findings suggest that PINN
struggles with PDEs with high coefficients. See Appendix C for experimental results. It is worth
mentioning that a more flexible formulation is to use different penalty coefficients for PDEs F , BCs
B, and ICs I, while for simplicity, we unify them as µ in this paper.

Hard-constrained methods. As introduced in Section 1, researchers have developed different hard-
constrained methods to address the failure modes of PINNs, including penalty methods and augmented
Lagrangian methods (Nandwani et al., 2019; Dener et al., 2020; Lu et al., 2021). For this type of
methods, we formulate Problem (1) as a constrained nonlinear optimization problem

min
θ

`(θ) s.t. c(θ) = 0, (5)

and have the following updating schemes (The pseudocodes are provided in Appendix A).

• Penalty methods. Given (θk, µk), we solve θk+1 = arg minθ `(θ) + µk‖c(θ)‖2 with warm ini-
tialization at θk, and then update µk+1 = ρµk with a scalar ρ > 1. Unlike the approach of PINN,
penalty methods increase the penalty coefficient µ gradually and solve the subproblem with warm ini-
tializations. However, similar to PINNs, a large µ leads to an ill-conditioned subproblem and slow
convergence, and the gradient-based methods may get stuck at poor local minima. This phenomenon is
observed in our experiments in Section 4 as well as in Lu et al. (2021).

• Augmented Lagrangian methods. Given a triple (θk, λk, µk), we solve θk+1 = arg minθ `(θ) +
λTk c(θ)+µk‖c(θ)‖2 with warm initialization at θk, and then update λk+1 = λk+µkc(θk) and µk+1 ≥
µk. Compared to penalty methods, µk here is not necessarily increased to infinity to converge to a
feasible solution. We can determine whether to increase µk based on the feasibility error ‖c(θk)‖. For
example, we let µk+1 = ρµk if the reduction in ‖c(θk)‖ is insufficient.

•Motivation of Sequential Quadratic Programming (SQP) methods. The above hard-constrained
methods, though effective for some cases, have a few limitations. First, they have complex nonlinear
subproblems involving differential operators, and their quadratic term ‖c(θ)‖2 can destroy the problem
structure if any. Second, their convergence is slow. Augmented Lagrangian methods are faster than
penalty methods, but only exhibit local linear convergence (Rockafellar, 2022). In addition, it is ob-
served that augmented Lagrangian methods require a significant number of steps to get into the local
region and are sensitive to dual initialization (Curtis et al., 2014). In contrast, SQP is one of the most
effective methods for both small and large constrained problems. The subproblem of SQP is an
inequality-constrained linear-quadratic program, which can be efficiently solved by numerous solvers
(notably, we only have to solve it approximately). The convergence rate of SQP matches that of New-
ton method, and is superlinear if the Hessian is approximated by quasi-Newton update and quadratic if
the Hessian is exact (Nocedal & Wright, 2006, Chapters 17 and 18). Most importantly, recent ML tech-
niques, such as randomization, sketching, and subsampling, have been introduced into SQP schemes,
enabling further reduction of the computational cost of this method (Hong et al., 2023; Na et al.,
2022; Berahas et al., 2021), and making it attractive to investigate in modern SciML problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING–PINN

In this section, we introduce trSQP-PINN, the first SQP-based method designed for solving PDE prob-
lems in machine learning. The method has three steps: (i) obtain a linear-quadratic approximation, (ii)
incorporate a trust-region constraint, and (iii) update the iterate and trust-region radius. We also intro-
duce a pretraining step to further enhance the training efficiency that is also effective for other methods.

Step 1: linear-quadratic approximation of Problem (5). Let us define the Lagrangian function of (5)
as L(θ, λ) = `(θ) + λT c(θ). Given a primal-dual pair (θk, λk), we denote ∇Lk = ∇L(θk, λk) and
ck = c(θk) (similar for ∇ck, ∇`k, etc.). Then, we construct a linear-quadratic approximation of the
nonlinear problem (5) at (θk, λk) as:

min
∆θk∈Rp

∇`Tk ∆θk +
1

2
∆θTkHk∆θk, (6a)

s.t. ck +∇ck∆θk = 0, (6b)
where (6a) is a quadratic approximation of the empirical loss `(θ) and (6b) is a linear approximation of
PDE constraints c(θ). By using second-order methods, it is not surprising that the Hessian information
in Hk enables more significant per-iteration progress compared to first-order methods and better es-
cape from stationary points. Furthermore, the computation (6) does not involve any penalty coefficient,
thereby avoiding ill-conditioning issues.

However, when applied to PDE problems, the major concern is obtaining the Hessian matrix Hk. In
SQP methods, Hk corresponds to the Lagrangian Hessian ∇2

θLk, instead of the objective Hessian
∇2`k, to leverage curvature information of constraints. This even complicates the computation of Hk

due to the differential operators in PDE constraints. To get rid of second-order quantities and boil down
to first-order information, we perform quasi-Newton updates for Hk. We consider two schemes.

• Damped BFGS. Let sk := θk − θk−1 and yk := ∇θLk − ∇θLk−1. Both vanilla and limited-
memory BFGS methods require a critical curvature condition sTk yk > 0, which cannot hold in our
case due to the saddle structure of the Lagrangian function. Thus, we consider a damped version of
BFGS. In particular, for a scalar δ ∈ (0, 1), we define

rk = γkyk + (1− γk)Hk−1sk with γk =

1 if sTk yk ≥ δsTkHk−1sk,
(1−δ)sTkHk−1sk
sTkHk−1sk−sTk yk

otherwise.

Then, we compute Hk as

Hk = Hk−1 −
Hk−1sks

T
kHk−1

sTkHk−1sk
+
rkr

T
k

sTk rk
.

When γk = 1, the above updating scheme reduces to vanilla BFGS. When γk = 0, Hk = Hk−1. We
note that even if the curvature condition sTk yk > 0 may not hold, we ensure sTk rk ≥ δsTkHk−1sk > 0,
providedHk−1 is positive definite (usually,H0 = I). Common choices of δ in numerical optimization
include δ = 0.2 (Powell, 1978; Goldfarb et al., 2020) and δ = 0.25 (Wang et al., 2017).

• SR1. Despite ensuring a modified curvature condition sTk rk > 0, the fatal drawback of Damped
BFGS is that it essentially employs a positive definite Hessian approximation (Hk−1 � 0⇒ Hk � 0).
However, the exact Hessian∇2

θLk cannot be positive definite when training deep neural networks,
leading to inaccuracies in approximation. Thus, we also perform the SR1 method, which is preferred
when ∇2

θLk lacks positive definiteness, as validated by our experiments in Appendix F. We have

Hk = Hk−1 +
(yk −Hk−1sk)(yk −Hk−1sk)T

(yk −Hk−1sk)T sk
.

The above scheme does not lead to Hk � 0 when sTk yk < sTkHk−1sk.

Step 2: trust-region constraint. The linear-quadratic approximation (6) is intended to be of only local
interest. This motivates us to restrict θk + ∆θk to remain within a trust region centered at θk; that is,
we incorporate the constraint (6b) along with an additional trust-region constraint (∆k is radius)

‖∆θk‖ ≤ ∆k. (7)

Constraint (7) offers several advantages. First, without (7), the subproblem (6) is well-defined only if
Hk is positive definite in the null space Null(∇ck). This requires further regularizations of the quasi-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Newton updates that cannot preserve the curvature information. Such regularizations are suppressed
by (7). Second, (7) serves as a hard regularization on parameters to prevent θk from moving to a
worse point. As seen in Step 3, we may even skip updating θk if the new point is worse. Additionally,
in PDE problems, the Jacobian ∇ck tends to be singular since different (especially close) data points
carry overlapping local information of PDE solutions. (7) confines the step within a small, reliable
area, preventing excessive deviations from local information and mitigating singularity in Jacobians.

However, constraint (7) may conflict with constraint (6b) and lead to
{∆θk : ck +∇ck∆θk = 0} ∩ {∆θk : ‖∆θk‖ ≤ ∆k} = ∅.

To resolve this conflict, we employ the relaxation technique originally proposed in Omojokun (1989).
In particular, for a scalar ν ∈ (0, 1), we adjust (6) in two steps:

min
∆̃θk∈Rp

‖ck +∇ck∆̃θk‖2,

s.t. ‖∆̃θk‖ ≤ ν∆k,

then

min
∆θk∈Rp

∇`Tk ∆θk +
1

2
∆θTkHk∆θk,

s.t. ∇ck∆θk = ∇ck∆̃θk,

‖∆θk‖ ≤ ∆k.

Intuitively, the solution of the left subproblem ∆̃θk ∈ Span(∇cTk) aims to satisfy the linearized con-
straint (6b) as much as possible within a shrunk radius of ν∆k, while the remaining radius is used to
further reduce the quadratic loss (6a) by solving the right subproblem. Although closed-form solutions
of these subproblems may be computable via matrix decomposition (cf. Omojokun (1989), (2.1.9)), we
only need approximate solutions that are not worse than the Cauchy step, i.e., the steepest descent step
satisfying constraint (7) (cf. Nocedal & Wright (2006), Chapter 4). To achieve this, we employ the dog-
leg method and projected conjugate gradient method to approximately solve the two subproblems.

Step 3: iterate and radius update. With ∆θk, we then decide whether to accept the new iterate θk +
∆θk, depending on how accurate the model problem (6) approximates the original problem (5) and
how much progress the new iterate has made towards a (local) solution of (5). To do this, we leverage
a non-smooth, soft-constrained loss, called the merit function:

φµ(θ) = `(θ) + µ‖c(θ)‖. (8)
Note that the empirical loss `(θ) alone is not suitable to justify the approximation quality since a step
that decreases ` may severely violate the constraint c. We define the local model of φµ(θ) at θk as

qkµ(∆θ) = `k +∇`Tk ∆θ +
1

2
∆θTHk∆θ + µ‖ck +∇ck∆θ‖.

Then, we compute the predicted reduction and actual reduction as follows:
Predk := qkµ(0)− qkµ(∆θk) and Aredk := φµ(θk)− φµ(θk + ∆θk).

Finally, we calculate the ratio ηk := Aredk
Predk

. For two thresholds 0 < ηlow < ηupp < 1, if ηk ≥ ηupp, then
it suggests that our approximation is very accurate; we perform θk+1 = θk + ∆θk, ∆k+1 = ρ∆k for
ρ > 1, and λk+1 = arg minλ ‖∇`k+1 +∇cTk+1λ‖2. If ηlow ≤ ηk < ηupp, then our approximation is
moderately accurate; we update (θk, λk) but preserve the radius ∆k+1 = ∆k. If ηk < ηlow, we reject
the update and let θk+1 = θk, λk+1 = λk, and ∆k+1 = ∆k/ρ.

Remark 1. We note that the soft-constrained loss (8) is only used in Step 3 to decide whether to accept
the update, while it does not affect the step computation in Step 2; thus, effectively overcomes the ill-
conditioning issues in penalty and augmented Lagrangian methods. In fact, the coefficient µ can be se-
lected adaptively, instead of fine tuning it as a parameter. See Conn et al. (2000) for more details.

Step 0: a pretraining technique. Unlike typical ML problems, we restrict our NN parameters to satisfy
PDE constraints. Random initializations often fall away from the constraint manifold, complicating
training and the search for the optimal solution of the hard-constrained problem. To address this, we
develop a simple but effective pretraining step to first train the network using only the physical domain
information, allowing it to initialize closer to the feasible region. We apply L-BFGS to solve

θinit := argminθ ‖c(θ)‖2. (9)
The pretraining step addresses the scalability concern of SQP. As observed in our experiments, we can
use a different set of unlabeled data in the pretraining step (i.e., construct a different constraint function
c̃). Then, θinit will significantly reduce the number of PDE constraints required in the trSQP-PINN
training. Using (9) for initialization is also beneficial for other hard-constrained methods.

We provide the pseudocode for trSQP-PINN in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

We implement trSQP-PINN on three PDE systems: transport equation, reaction equation, and reaction-
diffusion equation. These systems may have simple analytical solutions or be solved by Fast Fourier
Transform method. However, when increasing system coefficients, solving these systems becomes nu-
merically challenging (see Krishnapriyan et al. (2021)). We compare our trSQP method with two pop-
ular hard-constrained methods: penalty method and augmented Lagrangian method, to demonstrate
the superiority of trSQP. We also vary algorithm tuning parameters to illustrate the robustness of the
trSQP improvement. Detailed experiment setups are provided in Appendix B. The results of penalty
and augmented Lagrangian methods presented here are the ones coupled with the pretraining step,
which significantly improve the ones without pretraining as presented in Appendix D.

4.1 TRANSPORT EQUATION

We first consider a linear PDE called transport equation. This equation is commonly used to model phe-
nomena in fluid dynamics and wave mechanics, and is applicable to scenarios like pollutant dispersion
in rivers or air:

∂u

∂t
+ β

∂u

∂x
= 0, u(0, t) = u(2π, t), u(x, 0) = sin(x), (x, t) ∈ Ω× T .

Here, β ∈ R is the transport coefficient. The second equation is a periodic boundary condition, and the
third equation is an initial condition. The analytical solution is given by u(x, t) = sin(x− βt).

We vary the coefficient β across a wide range of values in {±1,±10,±20,±30,±40,±50}. While
previous experiments in Krishnapriyan et al. (2021) have varied small β ranging from 10−4 to 10−1,
we are particularly interested in large β where PINN fails. This exploration allows us to distinguish
the performance of different hard-constrained methods in learning numerically challenging PDEs
and resolving failure modes of PINN. All three methods (as well as PINN) can precisely learn the
solution for |β| ≤ 0.1 (cf. Krishnapriyan et al. (2021), Figure 1a).

We plot the absolute errors and relative errors of the three hard-constrained methods in Figure 1a. From
the figure, we observe that although penalty and augmented Lagrangian methods achieve low enough
errors when |β| is small, trSQP-PINN still decreases the errors by 0.5 to one orders of magnitude. Fur-
thermore, trSQP-PINN distinctly outperforms the penalty and augmented Lagrangian methods when
|β| ≥ 20. The performance gap becomes even more pronounced with the increasing problem difficulty,
where the latter two methods tend to have high errors while trSQP-PINN improves their errors by as
much as one to two orders of magnitude for |β| ≥ 30.

Let us examine β = 30 more closely. We present the solution heatmaps for the three methods in Figure
2a. From the figure, we clearly see that both the penalty and augmented Lagrangian methods fail to
capture the complete solution features, while trSQP-PINN successfully learns the periodic dynamics.
More precisely, trSQP-PINN achieves an absolute error of 0.72%, which is almost two orders of
magnitude lower than the augmented Lagrangian method at 48.21% and penalty method at 51.57%.

The above results of trSQP-PINN highlight its effectiveness in navigating through complex loss land-
scapes to reach local optima and in mitigating notorious ill-conditioning issues. Its unique feature, the
incorporation of trust-region constraints and second-order approximation, significantly enhances the
performance compared to other hard-constrained methods.

4.2 REACTION EQUATION

We now consider a semi-linear PDE called reaction equation. This equation is used to describe the tem-
poral dynamics of chemical reaction concentrations and is applicable to pharmacokinetics, such as
modeling the concentration of drugs in the bloodstream over time:

∂u

∂t
− αu(1− u) = 0, u(0, t) = u(2π, t), u(x, 0) = e−ζ(x−π)2 , (x, t) ∈ Ω× T .

Here, α ∈ R is the reaction coefficient and ζ ∈ R is the initial condition coefficient. The analytical so-
lution is highly nonlinear and given by u(x, t) = u(x, 0)eαt/ {u(x, 0)eαt + 1− u(x, 0)}.
Following the transport equation setup, we fix ζ = 2 and vary the reaction coefficient α in the set {±1,
± 10,±20,±30,±40,±50}. We plot the absolute and relative errors of the three hard-constrained

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Transport equation (b) Reaction equation

(c) Reaction-diffusion equation

Figure 1: Absolute and relative errors of three hard-constrained methods for learning PDEs. All
three methods can learn PDE solutions well when the PDE coefficients |β| and |α| are small, with
trSQP-PINN yielding the lowest errors in solving transport and reaction-diffusion equations. However,
as the coefficients increase and the problems become more challenging, trSQP-PINN significantly
outperforms the other methods.

methods in Figure 1b. While all three methods maintain low errors at small values of |α|, as the prob-
lem difficulty increases with |α| ≥ 20, the advantage of trSQP-PINN grows significantly, exhibiting er-
rors that are one to two orders of magnitude lower compared to the other methods. We should mention
that the error gaps between trSQP-PINN and the other methods at α = −50 to −20 are narrower than
those at α = 20 to 50. Nevertheless, as displayed in Appendix E, the learned trSQP-PINN solutions
are still remarkably superior to the others, and the small error differences are largely attributed to the
solution’s unique sharp corner point pattern — there is an extreme value at and only at x ≈ π and t ≈
0 (meaning most areas in the domain region cannot distinguish between different methods, and only
near the point (x ≈ π, t ≈ 0) can the methods be truly tested for their effectiveness).

We take α = 30 as an illustrative example and draw the solution heatmaps for the three methods in Fig-
ure 2b. From the figure, we see that trSQP-PINN excels in solving the reaction equation with high re-
action coefficients. The method precisely captures the initial condition features, periodic boundary fea-
tures, as well as the sharp transition patterns. In terms of errors, trSQP-PINN achieves a relative error
of only 2.52%, which is nearly two orders of magnitude lower than that of the penalty method and
augmented Lagrangian method, which have relative errors of 62.62% and 58.32%, respectively.

4.3 REACTION-DIFFUSION EQUATION

Finally, we consider a parabolic semi-linear PDE called reaction-diffusion equation, which adds a
second-order diffusion term to the reaction equation:
∂u

∂t
− τ ∂

2u

∂x2
− αu(1− u) = 0, u(0, t) = u(2π, t), u(x, 0) = e−ζ(x−π)2 , (x, t) ∈ Ω× T .

Here, α ∈ R and τ > 0 are the reaction and diffusion coefficients, and ζ ∈ R is the initial condition co-
efficient. The exact solution is solved by Fast Fourier Transform method (Duhamel & Vetterli, 1990).

We vary the reaction coefficient α in {±1,±10,±20,±30,±40,±50} while fixing τ = 2 and ζ = 2,
and vary the diffusion coefficient τ in {2, 4, 6, 8, 10}while fixing α = 20 and ζ = 2. The absolute and
relative errors of the three methods are plotted in Figure 1c. While all three methods maintain low er-
rors at small values of |α|, trSQP-PINN still achieves lower errors than the other two methods due to its
ability to handle the high nonlinearity of the reaction-diffusion equation. Furthermore, as |α| increases,
trSQP-PINN significantly outperforms the other two methods. Specifically, despite the increased
problem complexity and ill-conditioning issues introduced by the second-order diffusion term, trSQP-
PINN achieves an improvement of one to two orders of magnitude in both absolute and relative errors
for α ≥ 20. For α ≤ −20, trSQP-PINN even reduces the relative error by two to three orders of mag-
nitude. We also observe from Figure 1c that the improvement of trSQP-PINN is robust across different
diffusion coefficients τ . For example, even when τ is as large as 10, only trSQP-PINN achieves both
absolute and relative errors below 10−2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Transport equation (β = 30)

(b) Reaction equation (α = 30)

(c) Reaction-diffusion equation (α = 20, τ = 2)

Figure 2: Solutions of three hard-constrained methods for learning PDEs. TrSQP-PINN can fully
recover PDE solutions at high coefficients, including initial conditions, periodic boundary conditions,
and sharp transition patterns. The other methods fail to capture the complete solution features.

We plot the solution heatmaps for α = 20 and τ = 2 in Figure 2c. We see that only trSQP-PINN cap-
tures the initial condition and periodic boundary features, as well as sharp transition areas. In particu-
lar, trSQP-PINN achieves an absolute error of 0.66%, which is one order of magnitude lower than the
penalty method at 6.84% and the augmented Lagrangian method at 5.54%.

4.4 SENSITIVITY TO TUNING PARAMETERS

We test the sensitivity of trSQP-PINN’s performance to various tuning parameters, including the depth
and width of the neural networks, the number of pretraining and training data points, and the choice of
quasi-Newton updating schemes (damped BFGS v.s. SR1 v.s. identity Hessians). We also implement
penalty and augmented Lagrangian methods for comparison. The results of testing the depth and width
of the neural networks and the number of pretraining data points are deferred to Appendix F, while the
results of testing the number of training data points and the choice of quasi-Newton updates are sum-
marized in Figure 3 and Table 1.

In particular, we vary the number of training data pointsN in the set {100, 200, 500, 1000}. From Fig-
ure 3, we observe that trSQP-PINN consistently outperforms the penalty and augmented Lagrangian
methods by achieving one to two orders of magnitude lower errors. This suggests the robustness of
trSQP-PINN’s superiority across different sizes of training datasets and highlights its ability to extract
more PDE system information from limited data.

We employ either damped BFGS, SR1, or simply the identity matrix to approximate the Lagrangian
Hessian in trSQP-PINN, with results presented in Table 1. This experiment focuses exclusively on
trSQP-PINN as other methods do not involve estimating the Hessian of the Lagrangian function. As ex-
pected in Section 3, SR1 achieves lower errors when learning more complex systems, such as reaction
and reaction-diffusion equations, where the exact Hessian lacks positive definiteness. Moreover, when
using identity Hessians, trSQP-PINN performs worse but still better than the penalty and augmented
Lagrangian methods. This indicates that (i) the use of the trust-region technique can overcome the
ill-conditioning issue and better learn PDE solutions, and (ii) quasi-Newton updates to approximate
second-order information can significantly boost the performance of trSQP-PINN.

Overall, we observe that the superior performance of trSQP-PINN over other methods remains robust
across all tuning parameters. As seen in Appendix F, trSQP-PINN performs reasonably well even with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Different Lagrangian Hessian approximation methods for trSQP-PINN. For each prob-
lem, the smaller error between different updating schemes is bold. TrSQP-PINN with SR1 generally
achieves lower absolute and relative errors than using damped BFGS. Using identity Hessians would
restricts the performance of trSQP-PINN.

Hessian Estimation Method Error (10−1) Transport Reaction Reaction-diffusion

Damped BFGS Abs err 0.043 0.132 0.056
Rel err 0.148 0.257 0.138

SR1 Abs err 0.072 0.121 0.026
Rel err 0.321 0.252 0.066

Identity Abs err 2.312 0.172 0.086
Rel err 5.663 0.323 0.206

Figure 3: Absolute and relative errors of three hard-constrained methods with varying number
of training data points. TrSQP-PINN consistently outperforms the other methods and maintains low
errors even if it is trained on a small dataset.

limited pretraining data (e.g., M = 30), indicating its ability to avoid suboptimal solutions resulting
from poor initialization. Furthermore, even when reducing the depth and/or width of the neural
network, thereby restricting the expressive power of the network, trSQP-PINN still performs robustly.
For example, using a single-layer network with 50 neurons or a 4-layer network with 10 neurons per
layer, only trSQP-PINN successfully learns the considered PDE systems.

5 CONCLUSION AND FUTURE WORK

We designed a direct, hard-constrained deep learning method — trust-region Sequential Quadratic Pro-
gramming (trSQP-PINN) method — to address the failure modes of PINNs for solving PDE problems.
At each step, the method performs a linear-quadratic approximation to the original nonlinear PDE
problem, and incorporates an additional trust-region constraint to respect the local nature of the ap-
proximation. The method employs quasi-Newton updates to approximate second-order information
and leverages a soft-constrained loss to adaptively update the trust-region radius. Compared to popular
hard-constrained methods such as penalty methods and augmented Lagrangian methods, our extensive
experiments have shown that trSQP-PINN robustly exhibits superior performance over a wide range
of PDE coefficients, achieving 1-2 orders of magnitude lower errors. The enhanced performance
stems from leveraging trust-region technique and second-order information, helping trSQP-PINN to
mitigate ill-conditioning issues and navigate through complex loss landscapes efficiently.

Future work includes exploring more numerical techniques for solving SciML problems and applying
SQP-type methods to inverse problems and operators learning problems. For example, we can utilize
Randomized Numerical Linear Algebra techniques (e.g., sketching or subsampling) to approximately
solve trust-region subproblems to further reduce the computational cost of trSQP. Lu et al. (2021) has
demonstrated the effectiveness of penalty and augmented Lagrangian methods for solving inverse
problems. Designing a suitable SQP-type method for such cases is also an important open direction.

Ethics Statement. This paper does not involve human subjects, nor does it present potentially harmful
methodologies or applications that could result in discrimination against different communities.
Reproducibility. The detailed experimental setup is presented in Appendix B, and the source code is
provided in the supplementary material.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jostein Barry-Straume, Arash Sarshar, Andrey A Popov, and Adrian Sandu. Physics-informed neural
networks for pde-constrained optimization and control. arXiv preprint arXiv:2205.03377, 2022.

Shamsulhaq Basir. Investigating and mitigating failure modes in physics-informed neural networks
(pinns). arXiv preprint arXiv:2209.09988, 2022.

Albert S. Berahas, Frank E. Curtis, Daniel Robinson, and Baoyu Zhou. Sequential quadratic optimiza-
tion for nonlinear equality constrained stochastic optimization. SIAM Journal on Optimization, 31
(2):1352–1379, January 2021. ISSN 1095-7189. doi: 10.1137/20m1354556.

Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural networks
for inverse problems in nano-optics and metamaterials. Optics Express, 28(8):11618, April 2020.
ISSN 1094-4087. doi: 10.1364/oe.384875.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region Methods. Society
for Industrial and Applied Mathematics, January 2000. ISBN 9780898719857. doi: 10.1137/1.
9780898719857.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3), July 2022. ISSN 1573-7691.
doi: 10.1007/s10915-022-01939-z.

Frank E. Curtis, Hao Jiang, and Daniel P. Robinson. An adaptive augmented lagrangian method for
large-scale constrained optimization. Mathematical Programming, 152(1–2):201–245, April 2014.
ISSN 1436-4646. doi: 10.1007/s10107-014-0784-y.

Alp Dener, Marco Andres Miller, Randy Michael Churchill, Todd Munson, and Choong-Seock Chang.
Training neural networks under physical constraints using a stochastic augmented lagrangian
approach. arXiv preprint arXiv:2009.07330, 2020.

P. Duhamel and M. Vetterli. Fast fourier transforms: A tutorial review and a state of the art. Signal
Processing, 19(4):259–299, April 1990. ISSN 0165-1684. doi: 10.1016/0165-1684(90)90158-u.

Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University Press, January
1996. ISBN 9780511626357. doi: 10.1017/cbo9780511626357.

Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm for large-scale
constrained optimization. SIAM Review, 47(1):99–131, January 2005. ISSN 1095-7200. doi:
10.1137/s0036144504446096.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064, 2022.

Ilgee Hong, Sen Na, Michael W Mahoney, and Mladen Kolar. Constrained optimization via exact
augmented lagrangian and randomized iterative sketching. In International Conference on Machine
Learning, pp. 13174–13198. PMLR, 2023.

Shudong Huang, Wentao Feng, Chenwei Tang, and Jiancheng Lv. Partial differential equations meet
deep neural networks: A survey. arXiv preprint arXiv:2211.05567, 2022.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Songming Liu, Chang Su, Jiachen Yao, Zhongkai Hao, Hang Su, Youjia Wu, and Jun Zhu. Precondi-
tioning for physics-informed neural networks. arXiv preprint arXiv:2402.00531, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, January 2021. ISSN 1095-7197. doi: 10.1137/
21m1397908.

Saviz Mowlavi and Saleh Nabi. Optimal control of pdes using physics-informed neural networks.
Journal of Computational Physics, 473:111731, January 2023. ISSN 0021-9991. doi: 10.1016/j.
jcp.2022.111731.

Sen Na, Mihai Anitescu, and Mladen Kolar. An adaptive stochastic sequential quadratic programming
with differentiable exact augmented lagrangians. Mathematical Programming, 199(1–2):721–791,
June 2022. ISSN 1436-4646. doi: 10.1007/s10107-022-01846-z.

Yatin Nandwani, Abhishek Pathak, and Parag Singla. A primal dual formulation for deep learning
with constraints. Advances in Neural Information Processing Systems, 32, 2019.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York, New York, NY,
USA, 2006. ISBN 9780387303031. doi: 10.1007/978-0-387-40065-5.

Emmanuel Omotayo Omojokun. Trust region algorithms for optimization with nonlinear equality
and inequality constraints. University of Colorado at Boulder, 1989.

M. J. D. Powell. Algorithms for nonlinear constraints that use lagrangian functions. Mathematical
Programming, 14(1):224–248, December 1978. ISSN 1436-4646. doi: 10.1007/bf01588967.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, February
2020. ISSN 1095-9203. doi: 10.1126/science.aaw4741.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective. arXiv preprint arXiv:2402.01868, abs/2402.01868, 2024.

R. Tyrrell Rockafellar. Convergence of augmented lagrangian methods in extensions beyond nonlinear
programming. Mathematical Programming, 199(1–2):375–420, June 2022. ISSN 1436-4646. doi:
10.1007/s10107-022-01832-5.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E. Hurtado, and Ellen Kuhl. Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics, 8, February 2020.
ISSN 2296-424X. doi: 10.3389/fphy.2020.00042.

Shashank Subramanian, Robert M Kirby, Michael W Mahoney, and Amir Gholami. Adaptive self-
supervision algorithms for physics-informed neural networks. arXiv preprint arXiv:2207.04084,
2022.

J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods. Springer New
York, 1995. ISBN 9781489972781. doi: 10.1007/978-1-4899-7278-1.

Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul
Heese, Birgit Kirsch, Michal Walczak, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy,
Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. Informed machine learning - a
taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2021. ISSN 2326-3865. doi: 10.1109/tkde.2021.
3079836.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
January 2021. ISSN 1095-7197. doi: 10.1137/20m1318043.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022a.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, January 2022b. ISSN 0021-
9991. doi: 10.1016/j.jcp.2021.110768.

Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, January 2017.
ISSN 1095-7189. doi: 10.1137/15m1053141.

Peter R. Wiecha, Arnaud Arbouet, Christian Girard, and Otto L. Muskens. Deep learning in
nano-photonics: inverse design and beyond. Photonics Research, 9(5):B182, April 2021. ISSN
2327-9125. doi: 10.1364/prj.415960.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating physics-
based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919, 1(1):1–34,
2020.

Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and
fundamentals. Elsevier, 2013. ISBN 9781856176330. doi: 10.1016/c2009-0-24909-9.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Supplementary material: Physics-Informed Neural Networks with
Trust-Region Sequential Quadratic Programming

A PSEUDOCODES FOR PENALTY, AUGMENTED LAGRANGIAN, AND TRSQP
METHODS

We define φP
µ(θ) = `(θ)+µ‖c(θ)‖2 to be the soft-constrained loss for penalty method and φAL

µ (θ, λ) =

`(θ)+λT c(θ)+µ‖c(θ)‖2 to be the augmented Lagrangian function. Our stopping criterion for solving
unconstrained subproblems in penalty method, augmented Lagrangian method, and the pretraining
step is set as follows (we replace φP

µ by φAL
µ and c for the latter two subproblems):

‖∇φP
µ(θl)‖∞ ≤ g tol OR ‖θl+1 − θl‖ ≤ f tol OR l ≥ lmax, (A.1)

where g tol and f tol are the convergence tolerances, lmax is the maximum number of iterations, and
l is the inner-loop iteration index for solving the subproblem.

Algorithms 1, 2, and 3 present the pseudocodes for penalty method, augmented Lagrangian method,
and trSQP method. In the case of penalty method and augmented Lagrangian method, we adhere to the
approach outlined in the literature Lu et al. (2021), where we terminate the algorithm when the penalty
coefficient µ exceeds the threshold µmax to alleviate their ill-conditioning issues during training.

Algorithm 1 Penalty Method
Inputs: µ0 = 1, ρ = 1.1, µmax = ρ100, g tol = f tol = 10−9, lmax = 2× 104;

1: (Pretrain) θinit ← arg minθ ‖c(θ)‖2: train the model until (A.1) is satisfied;
2: k ← 0 and θ0 ← θinit;
3: repeat
4: θk+1 ← arg minθ φ

P
µk

(θ) with initialization at θk: train the model until (A.1) is satisfied;
5: µk+1 ← ρµk;
6: k ← k + 1;
7: until µk ≥ µmax

Algorithm 2 Augmented Lagrangian Method
Inputs: µ0 = 1, λ0 = 0, ρ = 1.1, µmax = ρ100, g tol = f tol = 10−9, lmax = 2× 104;

1: (Pretrain) θinit ← arg minθ ‖c(θ)‖2: train the model until (A.1) is satisfied;
2: k ← 0 and θ0 ← θinit;
3: repeat
4: θk+1 ← arg minθ φ

AL
µk

(θ, λk) with initialization at θk: train the model until (A.1) is satisfied;
5: λk+1 ← λk + µkck;
6: µk+1 ← ρµk;
7: k ← k + 1;
8: until µk ≥ µmax

B DETAILED EXPERIMENT SETUP

For all three PDE systems (transport, reaction, reaction-diffusion), we define the spatial domain Ω =
[0, 2π] and the temporal domain T = [0, 1]. For learning transport and reaction equations, our training
dataset consists ofN labeled points andM = Mpde+MBC+MIC unlabeled points uniformly sampled
from Ω× T . However, due to the use of the Fast Fourier Transform in obtaining exact solutions of
reaction-diffusion equation, it is time-consuming to generate solutions for each pair (xi, ti) ∈ Ω×T .
Thus, we let Nxgrid and Ntgrid denote the number of evenly distributed points in Ω and T , respectively,
forming an Nxgrid ×Ntgrid grid of points. We then obtain the training dataset for learning reaction-
diffusion equation by uniformly sampling from the grid points while still sampling unlabeled points
from Ω× T . The Nxgrid ×Ntgrid grid is also used for evaluating all the methods. We use M pretrain to
denote the number of unlabeled points for the pretraining phase, which is evenly distributed among
Mpde, MBC, and MIC. Analogously, we use M train points for the training phase.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Trust-Region Sequential Quadratic Programming Method
Inputs: µ−1 = 1, H0 = I , ∆0 = 1, δ = 0.2, ν = 0.8, ηlow = 10−8, ηupp = 0.3, ρ = 2, g tol =
f tol = 10−9, Kmax = lmax = 2× 104;

1: (Pretrain) θinit ← arg minθ ‖c(θ)‖2: train the model until (A.1) is satisfied; . Step 0
2: k ← 0, θ0 ← θinit, λ0 = arg minλ ‖∇`0 +∇cT0 λ‖2;
3: while k ≤ Kmax do
4: Compute quasi-Newton update for Hk via Damped BFGS (with δ) or SR1; . Step 1
5: Solve trust-region subproblem for ∆̃θk and then ∆θk (with ν); . Step 2
6: Compute

µk := max

{
µk−1,

∇`Tk ∆θk + 1
2∆θTkHk∆θk

0.7(‖ck‖ − ‖ck +∇ck∆θk‖)

}
and then ηk :=

Aredk
Predk

;

7: if ηk ≥ ηupp then . Step 3
8: θk+1 ← θk + ∆θk, ∆k+1 ← ρ∆k, λk+1 = arg minλ ‖∇`k+1 +∇cTk+1λ‖2;
9: else if ηlow ≤ ηk < ηupp then

10: θk+1 ← θk + ∆θk, ∆k+1 ← ∆k, λk+1 = arg minλ ‖∇`k+1 +∇cTk+1λ‖2;
11: else
12: θk+1 ← θk, ∆k+1 ← ∆k/ρ, λk+1 ← λk;
13: end if
14: if ηk < ηlow AND (‖θk+1 − θk‖ ≤ f tol OR ‖∇θLk+1‖∞ ≤ g tol) then
15: STOP;
16: end if
17: k ← k + 1;
18: end while

Given a spatial-temporal pair (xi, ti) on the grid, the observation (i.e., label) is constructed as ui =
u(xi, ti) + εi, where u(·, ·) is either an analytical PDE solution (transport, reaction) or a solution
approximation derived by Fast Fourier Transform (reaction-diffusion), and εi is a random noise term
added to enhance generalization. The prediction accuracy is assessed using absolute errors and relative
errors, defined as

Abs err :=
1

Nxgrid ·Ntgrid

Nxgrid∑
i=1

Ntgrid∑
j=1

‖uθ(xi, tj)− u(xi, tj)‖2,

Rel err :=
1

Nxgrid ·Ntgrid

Nxgrid∑
i=1

Ntgrid∑
j=1

‖uθ(xi, tj)− u(xi, tj)‖2
‖u(xi, tj)‖2

.

We employ a 4-layer, fully-connected neural network with 50 neurons in each layer. The activation
function is tanh. The subproblems in penalty and augmented Lagrangian methods are solved by L-
BFGS coupled with backtracking line search. We utilize Flax to build the neural network and Jax
to perform automatic differentiation.

For both penalty method and augmented Lagrangian method, the initial penalty coefficient µ0 is set
to 1 with an increasing factor ρ = 1.1. The initial dual vector is set to λ0 = 0. For trSQP-PINN, the
initial penalty coefficient µ−1 is set to 1 and adaptively selected at each step. The initial trust-region
radius ∆0 is set to 1. We apply SR1 for quasi-Newton update in the method.

We employ a fine grid for evaluation, with Nxgrid = 2560, Ntgrid = 1000, and M pretrain = 150. We set
M train = 12 for transport equation and M train = 7 for both reaction and reaction-diffusion equations.
The use of different numbers of unlabeled points for learning different PDEs is largely due to varying
properties of the PDEs; we prefer fewer unlabeled data points when the PDEs become more complex
and make the loss landscape more tortuous. For all three PDE systems, we set N = 1000. We have
tested the robustness of our method against N and M pretrain in Appendix F.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 2: Absolute and relative errors of PINN method with varying penalty coefficients. PINN
exhibits high prediction errors, which increase as the penalty coefficient µ increases, indicating wors-
ening ill-conditioning issues. The errors in predicting the solutions of the transport equation peak at
µ = 1000, while PINN consistently performs poorly in predicting the solutions of the reaction and
reaction-diffusion equations due to severe ill-conditioning already occurring at µ = 1.

Coefficient Error (10−1) Transport Reaction Reaction-diffusion

µ = 1
Abs err 5.746 7.806 8.954
Rel err 9.403 9.999 9.999

µ = 10
Abs err 5.912 7.806 8.954
Rel err 9.675 10.000 10.000

µ = 100
Abs err 7.655 7.806 8.954
Rel err 13.808 10.000 10.000

µ = 1000
Abs err 11.329 7.806 8.953
Rel err 19.176 9.999 9.999

(a) PINN (µ = 1) (b) PINN (µ = 10) (c) PINN (µ = 100) (d) PINN (µ = 1000)

Figure 4: PINN solutions for learning transport equation. PINN cannot recover the solution of the
transport equation regardless of the penalty coefficient µ (see Figure 2a for exact solution) and the
prediction gets worse as µ increases.

C FAILURE MODES OF PINN METHOD

In this section, we implement vanilla PINN method outlined in Section 2 (see (4)) with varying penalty
coefficient µ. We illustrate that PINN fails to recover the solutions of all three systems with large
system coefficients.

We set β = 30 for transport equation, α = 30 and ζ = 2 for reaction equation, and α = 20, τ = 2,
and ζ = 2 for reaction-diffusion equation. Our results are summarized in Table 2. Comparing this
table with Figure 1, we observe that PINN performs much worse than the three hard-constrained meth-
ods. Moreover, as the coefficient µ increases, the error explodes due to the worsening ill-conditioning
issue. To visualize the error table, we take the transport equation as an example and draw the heatmap
of the PINN solution in Figure 4. The heatmap of the exact solution is shown in Figure 2a. From
these two figures, we clearly see that PINN with varying coefficient µ fails to learn the solution of the
transport equation. We have similar observations for the reaction and reaction-diffusion equations.
This observation is consistent with the recent study (Krishnapriyan et al., 2021).

D PRETRAINING V.S. NO PRETRAINING

In this section, we demonstrate that our pretraining step is generally beneficial for both penalty method
and augmented Lagrangian method. To this end, we compare the results of these two methods with and
without pretraining. For the methods without pretraining, we employ random initializations. The co-
efficients of the three PDE problems are set as described in Appendix C.

Our results are summarized in Table 3. From the table, it is evident that both penalty and augmented
Lagrangian methods without pretraining perform significantly worse than their pretrained counterparts
when solving reaction and reaction-diffusion equations. While the unpretrained penalty method may
exhibit similar performance to its pretrained counterpart for solving transport equation, we find that the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Absolute and relative errors of penalty and augmented Lagrangian methods with/without
pretraining. For each method, the smaller error between pretraining and unpretraining is bold. The
unpretrained versions of penalty and augmented Lagrangian methods generally perform much worse
than their pretrained counterparts in learning three PDEs. One exception is about the penalty method
for solving transport equation. The pretrained and unpretrained methods show similar results.

PDE Error (10−1) Penalty Augmented Lagrangian
Unpretrained Pretrained Unpretrained Pretrained

Transport Abs err 5.264 5.157 9.860 4.821
Rel err 8.986 8.746 17.313 8.479

Reaction Abs err 8.953 4.339 7.808 3.766
Rel err 9.999 6.262 10.003 5.832

Reaction-diffusion Abs err 8.953 0.364 9.754 0.300
Rel err 9.999 0.684 12.495 0.554

(1a) Unpretrained v.s. Pretrained penalty (1b) Unpretrained v.s. Pretrained ALM

(1) Reaction equation (α = 30)

(2a) Unpretrained v.s. Pretrained penalty (2b) Unpretrained v.s. Pretrained ALM

(2) Reaction-diffusion equation (α = 20, τ = 2)

Figure 5: Solutions of penalty and augmented Lagrangian methods with/without pretraining for
learning reaction and reaction-diffusion equations. For both methods, the predictions without pre-
training (the left panels) are significantly worse than the predictions with pretraining (the right panels).

unpretrained augmented Lagrangian method is markedly less effective than the pretrained one. Overall,
our pretraining step proves to be effective for hard-constrained methods, improving the prediction
error by as much as an order of magnitude.

In Figure 5, we visualize the error table by drawing the solution heatmaps of penalty and augmented
Lagrangian methods for learning reaction and reaction-diffusion equations. From the figure, we ob-
serve that unpretrained methods fail to capture any solution features, while pretrained methods per-
form reasonably better (especially for augmented Lagrangian). Thus, we conclude that our pretrain-
ing phase sets a robust baseline for further optimization and enhances the efficacy of hard-constrained
methods in finding better solutions.

E ADDITIONAL RESULTS FOR REACTION EQUATION

In this section, we present additional solution heatmaps for learning the reaction equation with α ∈
{−20,−30,−40,−50} in Figure 6. As explained in Section 4.2, although the errors among the three
methods are close, Figure 6 reveals significant differences in their learned solutions. Learning the reac-
tion equation with a negative coefficient is extremely difficult near the point (x ≈ π, t ≈ 0), and only

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(1a) Penalty method (1b) ALM (1c) trSQP-PINN (1d) Exact solution

(1) Reaction equation (α = −20)

(2a) Penalty method (2b) ALM (2c) trSQP-PINN (2d) Exact solution

(2) Reaction equation (α = −30)

(3a) Penalty method (3b) ALM (3c) trSQP-PINN (3d) Exact solution

(3) Reaction equation (α = −40)

(4a) Penalty method (4b) ALM (4c) trSQP-PINN (4d) Exact solution

(4) Reaction equation (α = −50)

Figure 6: Solutions of three hard-constrained methods for learning reaction equation. Only
trSQP-PINN can reasonably recover the solution of the reaction equation and performs significantly
better than the other methods at α ≤ −20.

trSQP-PINN can reasonably recover the unique sharp corner point pattern for α ≤ −20. The small dif-
ferences in errors are also attributed to such an unique pattern in the solutions; most areas in the domain
region cannot distinguish between different methods, and only near the point (x ≈ π, t ≈ 0) can the
methods be truly tested for their effectiveness

F ADDITIONAL RESULTS FOR SENSITIVITY EXPERIMENT

In conjunction with the sensitivity experiments described in Section 4.4, we present in this section addi-
tional sensitivity experiments to test the robustness of trSQP-PINN’s performance against some other
tuning parameters, including the depth and width of the neural networks and the number of pretraining
data points. We also include penalty and augmented Lagrangian methods for comparison. For each ex-
periment, only one parameter is altered from the default settings detailed in Appendix B. The problem
coefficients are provided in Appendix C; that is, β = 30 for transport equation, α = 30 and ζ = 2 for
reaction equation, and α = 20, τ = 2, and ζ = 2 for reaction-diffusion equation.

Figure 7 shows the sensitivity results for varying the number of pretraining data points. We vary
M pretrain in the sets {30, 45, 150, 300}. As discussed in Section 3, having fewer pretraining data results

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Absolute and relative errors of three hard-constrained methods with varying number
of pretraining data points. TrSQP-PINN consistently outperforms the other methods and maintains
low errors even if it is initialized far from the feasible region.

in initializations far from the feasible region. The figure demonstrates that trSQP-PINN is significantly
more robust to such initializations compared to the other hard-constrained methods.

Figures 8 and 9 show the sensitivity results for varying the depth and width of the neural networks.
We vary the depth in the set {1, 2, 3, 4} (while fixing the width 50) and vary the width in the set {10,
20, 30, 40, 50} (while fixing the depth 4). Our results suggest that only trSQP-PINN can consistently
learn PDE solutions with relatively small networks. From Figure 8, we see that trSQP-PINN achieves
lowest errors when the depth decreases to one layer across all three problems; however, we also see that
the errors double compared to using 4-layer networks. This increase in errors can be attributed to the
limited expressive power of these shallow networks. From Figure 9, trSQP-PINN also consistently out-
performs the other methods across all neural network widths. However, when solving the transport and
reaction equations, all methods exhibit high errors with only 10 neurons per layer, suggesting low ex-
pressivity of the neural networks. When solving the reaction-diffusion equation, trSQP-PINN is able
to maintain low errors across all neural network widths, while the penalty and augmented Lagrangian
methods are highly unstable, showing very high errors when the neural network width is 20 or 30.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Absolute and relative errors of three hard-constrained methods with varying neural
networks depth. TrSQP-PINN consistently outperforms the other methods and maintains low errors
even when trained on shallower neural networks. However, while trSQP-PINN achieves the lowest
errors on shallow networks, the errors double compared to those on 4-layer networks. This suggests
that sufficient network expressivity is necessary for better learning of PDEs.

Figure 9: Absolute and relative errors of three hard-constrained methods with varying neural
networks width. TrSQP-PINN consistently outperforms the other methods and maintains low errors
even when trained on narrower neural networks. All methods exhibit high errors when learning trans-
port and reaction equations with only 10 neurons per layer, suggesting that the network may lack suffi-
cient expressive power to capture the PDE solution in this case. When learning the reaction-diffusion
equation, the penalty and augmented Lagrangian methods perform comparably to trSQP-PINN at
neural network widths of 10 or 40. However, these methods are highly unstable, exhibiting very high
errors at widths of 20 or 30, whereas trSQP-PINN maintains low errors across all widths.

20

	Introduction
	From PINN Methods to Hard-Constrained Methods
	Trust-Region Sequential Quadratic Programming–PINN
	Experimental Results
	Transport equation
	Reaction equation
	Reaction-diffusion equation
	Sensitivity to Tuning Parameters

	Conclusion and Future Work
	Pseudocodes for Penalty, Augmented Lagrangian, and trSQP Methods
	Detailed Experiment Setup
	Failure Modes of PINN Method
	Pretraining v.s. No Pretraining
	Additional Results for Reaction Equation
	Additional Results for Sensitivity Experiment

