
Published as a conference paper at ICLR 2024

ORBIT-EQUIVARIANT GRAPH NEURAL NETWORKS

Matthew Morris, Bernardo Cuenca Grau, & Ian Horrocks
Department of Computer Science
University of Oxford
{matthew.morris,bernardo.grau,ian.horrocks}@cs.ox.ac.uk

ABSTRACT

Equivariance is an important structural property that is captured by architectures
such as graph neural networks (GNNs). However, equivariant graph functions
cannot produce different outputs for similar nodes, which may be undesirable
when the function is trying to optimize some global graph property. In this paper,
we define orbit-equivariance, a relaxation of equivariance which allows for such
functions whilst retaining important structural inductive biases. We situate the
property in the hierarchy of graph functions, define a taxonomy of orbit-equivariant
functions, and provide four different ways to achieve non-equivariant GNNs. For
each, we analyze their expressivity with respect to orbit-equivariance and evaluate
them on two novel datasets, one of which stems from a real-world use-case of
designing optimal bioisosteres.

1 INTRODUCTION

Graph neural networks (Gilmer et al., 2017; Gori et al., 2005; Wu et al., 2020) are a class of neural
models designed for learning functions on graphs which have been successfully applied across a wide
range of domains, including chemistry (Li et al., 2018), computer vision (Wang et al., 2019), traffic
(Yao et al., 2018), recommender systems (Ying et al., 2018), combinatorial optimization (Bengio
et al., 2021), and NLP (Marcheggiani et al., 2018). GNNs leverage local message-passing operations
that are invariant to permutations so that the resulting output does not fundamentally depend on how
the input graph is reordered. This strong inductive bias enables GNNs to effectively and efficiently
learn functions combining local and global graph labels (Battaglia et al., 2018; Bronstein et al., 2021).

It is well known that common GNNs are equivalent to the Weisfeiler-Leman (1-WL) graph coloring
algorithm and are thus limited in the classes of non-isomorphic graphs they can distinguish (Morris
et al., 2019; Xu et al., 2019). Different models have been proposed to address these limitations,
including appending unique IDs (Dasoulas et al., 2020; Loukas, 2020; Morris et al., 2022) or random
noise (Abboud et al., 2021; Sato et al., 2021) to node labels, random dropouts (Papp et al., 2021),
and augmenting node features or message passing using graph-distance features (Li et al., 2020).
Srinivasan & Ribeiro (2019) relate structural representations obtained by GNNs and node embed-
dings. Zhang et al. (2021) introduce the ‘labeling trick’ framework to learn maximally expressive
representations for sets of nodes (e.g. for link prediction). Although significant advancements
have been achieved, all these models are still designed with the primary objective of enhancing the
expressiveness of GNNs in the context of permutation-equivariant or permutation-invariant functions.

As pointed out by Morris et al. (2022), even GNNs with universal expressivity for equivariant
functions cannot solve certain types of symmetry breaking graph problems. Equivariant functions
cannot yield different outputs for similar nodes (i.e., structurally identical nodes with the same
label). This presents problems in multi-agent scenarios (Morris et al., 2022) where similar agents in a
communication graph might need to take different actions to solve a task (e.g., drones that need to split
up to find a target). Similarly, if GNNs are used to transform molecules so as to optimize a molecular
property, equivariant functions cannot transform similar atoms in different ways. An example of such
a property is lipophilicity: the ability of a chemical compound to dissolve in fats, oils, and similar
solvents. This is an important factor in drug design (Arnott & Planey, 2012; Broccatelli et al., 2018;
Waring, 2010), as high lipophilicity often leads to undesirable effects (Hopkins et al., 2014; Obach
et al., 2008). Figure 1 illustrates how optimizing the lipophilicity of a fluroxene molecule requires
two out of three similar fluorine atoms to be replaced with chlorine and bromine atoms.
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Figure 1: Non-equivariant molecular transformation that increases lipophilicity (LogP), where the
nodes are labelled with the atom type, without positional information.

To tackle symmetry-breaking problems, we advocate the adoption of functions that generate a multiset
of output labels for each equivalence class, called an orbit, formed by the node similarity relation; for
instance, in Figure 1, the orbit of three fluorine atoms is replaced by a multiset of three new atoms.
The assignment of labels to specific nodes should be considered arbitrary because all nodes are
fundamentally identical within the same orbit. Thus, a more permissive property than equivariance is
necessary, which we define as orbit-equivariance. This property stipulates that irrespective of how
the input graph is reordered, the multiset of outputs for each distinct orbit should remain identical.
This approach enables us to address symmetry-breaking problems while preserving the valuable
inductive bias that "the manner in which the graph is rearranged should not impact the outcome".

Our contributions in this paper are as follows. We define orbit-equivariance and place it in the
hierarchy of node-labelling functions as strictly in-between equivariant and universal node-labelling
functions. We introduce a property called max-orbit, which allows for further refinement of
orbit-equivariant functions. We establish a connection between the 1-WL graph isomorphism test
and the identification of orbits, using it to assess the capacity of GNNs to differentiate between the
orbits within a graph. We exploit these insights to examine four distinct GNN architectures, two of
them novel, which are capable of learning non-equivariant functions and examine the theoretical
expressivity of each architecture. Additionally, we define a custom loss function designed to facilitate
the training of orbit-equivariant GNNs. To evaluate the performance of our models, we conduct
empirical assessments on two novel datasets: Bioisostere and Alchemy-Max-Orbit. The former
stems from a real-world scenario involving the optimization of drug effectiveness. Neither of these
tasks can be fully addressed using equivariant functions, but both can be tackled with the aid of an
orbit-equivariant function. Full proofs for all our technical results are given in Appendix A.

2 BACKGROUND

Graphs A labelled graph G is a triple (V,E, λ), where V (G) is a finite set of nodes, E(G) ⊆
{(v, w) | v, w ∈ V (G)} is a set of directed edges, and λ : V (G) → L is an assignment of labels from
the codomain L to each node. For v ∈ V (G), λ(v) is the label (also known as an attribute, or feature)
of v. For ease of notation, we let V (G) = {1, 2, ..., n} for G with n nodes and denote λ(v) as Gv . A
graph is undirected if E(G) is symmetric.1 A permutation on a set X is a bijection σ : X → X . A
permutation σ on a tuple (x1, ..., xn) yields the tuple (σ(x1), ..., σ(xn)). A permutation σ on a graph
G yields the graph H := σ ·G, where V (H) = V (G), E(H) = {(σ(v), σ(w)) | (v, w) ∈ E(G)},
and Gv = Hσ(v) for each v ∈ V (G). An automorphism of G is a permutation σ on G satisfying
σ ·G = G. Nodes v, w ∈ V (G) are similar if there is an automorphism σ of G such that σ(v) = w.
Node similarity induces an equivalence relation on V (G), where each equivalence class is an orbit.
The set R(G) of orbits of G forms a partition of V (G). Figure 2 depicts an example of graph orbits.

Equivariance Permutation equivariance is an important property for models realising functions on
graphs (Battaglia et al., 2018; Bronstein et al., 2021). Intuitively, if the function has an output for each
node, then permuting the nodes of the input should be equivalent to applying the same permutation
to the output values (see Figure 3). A node-labelling function f maps each G = (V,E, λ) in its
domain with V (G) = {1, 2, ..., n} to an assignment f(G) ∈ Ln of the nodes of G to values from the

1Although in this paper we focus on node labels only, we anticipate that our definitions and results will
extend seamlessly to graphs with edge and global labels.
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Figure 2: Graph with nodes colored by orbit.
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Figure 3: Example of an equivariant function f .

codomain L. Node-labelling function f on a domain D closed under permutation is equivariant if
f(σ ·G) = σ · f(G) holds for all G ∈ D and permutations σ on V (G).

Graph Neural Networks GNNs such as GCNs (Kipf & Welling, 2016), GraphSAGE (Hamilton
et al., 2017), and GATs (Veličković et al., 2018) are commonly defined within the Message Passing
framework (Gilmer et al., 2017). A GNN consists of multiple local message-passing layers that can
include global readouts (Barceló et al., 2020). For layer m and node v with label λλλm

v , the new label
λλλm+1
v is computed as λλλm+1

v := fθm
update(λλλ

m
v , f

θ′
m

aggr({{λλλm
w | w ∈ N(v)}}), fθ′′

m

read({{λλλm
w | w ∈ V (G)}})),

where N(v) is all nodes with edges connecting to v and θm, θ′m, θ′′m are the sets of parameters of the
update, aggregation, and readout functions for layer m. Parameters may be shared between layers,
e.g. θ0 = θ1. The functions fθ′

m
aggr, f

θ′′
m

read are permutation invariant. This definition can be extended
to incorporate graphs with global and edge labels (Battaglia et al., 2018). Importantly, GNNs are
equivariant node-labelling functions for graphs labelled with real vectors (Hamilton, 2020).

3 ORBIT-EQUIVARIANCE

As discussed in Section 1, equivariance may be too restrictive in applications where optimizing
some graph-level property (such as lipophilicity) requires similar nodes to be differentiated. Indeed,
equivariant functions will always produce the same output for nodes within the same graph orbit.

Proposition 1. Let f be an equivariant node-labelling function and let G be a labelled graph in its
domain. If v, w ∈ V (G) are similar, then f(G)v = f(G)w.

We next introduce orbit-equivariance as a suitable relaxation of equivariance that still retains its
critical structural inductive biases (Battaglia et al., 2018; Bronstein et al., 2021) while extending
the range of problems that can solved. This is accomplished by mandating that, regardless of the
permutation applied to the input graph, the multiset of outputs associated with each distinct graph
orbit should not change.

Definition 1. A node-labelling function f on domain D closed under permutation is orbit-equivariant
if, for all labelled graphs G ∈ D, permutations σ on V (G), and orbits r ∈ R(G), it holds that
{{f(σ ·G)σ(v) | v ∈ r}} = {{f(G)v | v ∈ r}}.

We now position orbit-equivariance within the hierarchy of node-labelling functions. We begin by
demonstrating that not all node-labelling functions are orbit-equivariant. In the following example,
we define graphs with the vertex set V (G) = {1, 2, 3}. Node colors represent their Boolean labels,
where white represents 0 and gray signifies 1. While visually represented as a graph, the output of
each function corresponds to a 3-tuple of node labels. Consider a node-labelling function f that
exhibits the following behavior for distinct graphs G1, G2, G3 and assigns all other graphs G to 0|G|.
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This function is not orbit-equivariant. Consider permutation σ = {(1, 2), (2, 1), (3, 3)}, for which
σ ·G1 = G2, and consider orbit r = {1} of G1. Then {{f(σ ·G1)σ(v) | v ∈ r}} = {{f(G2)2}} = {{0}}
and {{f(G1)v | v ∈ r}} = {{f(G1)1}} = {{1}}. So there exists an orbit r ∈ R(G1) and permutation σ
such that {{f(σ ·G1)σ(v) | v ∈ r}} ̸= {{f(G1)v | v ∈ r}}.

For an example of an orbit-equivariant function that is not equivariant, consider the node-labelling
function f that maps input graphs G1, G2, G3 as shown, and maps each other graph G to {0}|G|.
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We first show that orbit-equivariance holds for G1. There are two orbits of G1, r1 := {1}, r2 = {2, 3}.
Consider the permutation σ = {(1, 2), (2, 1), (3, 3)}. Note that σ · G1 = G2 and σ · G2 = G1.
For r1, we have {{f(σ · G1)σ(v) | v ∈ r1}} = {{f(G1)v | v ∈ r1}} = {{0}}, and for r2, we have
{{f(σ · G1)σ(v) | v ∈ r2}} = {{f(G1)v | v ∈ r2}} = {{0, 1}}. A similar argument holds for the
other graphs and permutations. Thus, f is orbit-equivariant. However, it is not equivariant. For the
same permutation σ, f(σ · G1) = f(G2) = (0, 0, 1) and σ · f(G1) = σ · (0, 1, 0) = (1, 0, 0). So
f(σ ·G1) ̸= σ · f(G1). Furthermore we can show that each equivariant function is orbit-equivariant.

Proposition 2. All equivariant functions are orbit-equivariant, but not vice-versa. There exist
node-labelling functions which are not orbit-equivariant.

We proceed to establish a taxonomy of orbit-equivariant functions, categorizing them according to
the count of distinct values in the output for each orbit. This refined definition offers a more granular
characterization of orbit-equivariant functions, facilitating the identification of functions that might
be empirically challenging to learn and aiding in the development of tools, particularly GNNs, for
approximating such functions.

Definition 2. For a node-labelling function f on domain D, we define max-orbit(f) to be the
maximum across all G ∈ D and orbits r ∈ R(G) of the cardinality of the set {f(G)v | v ∈ r}.

For any equivariant function f , max-orbit(f) = 1 as a direct consequence of Proposition 1. For
any m ∈ Z+, there is an orbit-equivariant function f such that max-orbit(f) = m, since there
are graphs (e.g. cycle graphs) with arbitrarily large orbits.

Proposition 3. If f is orbit-equivariant and max-orbit(f) = 1, then f is equivariant.

The proposition above illustrates that the only restriction lost when moving from equivariant to
orbit-equivariant functions is the limitation of having a single value in the output of each orbit, which
aligns with the intuition motivating orbit-equivariance. The example below of a function f shows why
max-orbit(f) = 1 alone is not sufficient to obtain equivariance. Function f maps input graphs
G1, G2, G3 as shown, and maps each other graph G to {0}|G|. Certainly max-orbit(f) = 1,
but the function is not equivariant, since for permutation σ = {(1, 2), (2, 1), (3, 3)}, f(σ · G1) =
f(G2) = (0, 0, 0) and σ · f(G1) = σ · (0, 1, 1) = (1, 0, 1), so f(σ ·G1) ̸= σ · f(G1).
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4 NON-EQUIVARIANT GNN ARCHITECTURES

In this section, we discuss four GNN architectures for solving orbit-equivariant problems which
extend standard equivariant GNNs in a way that is independent from the specific details of the GNN.
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Figure 4: Architecture for constructing orbit-equivariant GNNs.

For each of these extensions, we provide a classification of their expressivity and in Appendix C.1 we
analyze their computational complexity.

Before delving into the details of these architectures, we first argue that the 1-WL graph coloring
algorithm (Morris et al., 2021; Weisfeiler & Leman, 1968) for isomorphism testing can also be used
to compute graph orbits. This is achieved by computing iterative recolorings in the usual way, and
then using the final stable colorings to partition the nodes into their orbits (instead of comparing
them to another histogram of colors as in the standard isomorphism testing use case). When 1-WL is
used in this manner, we refer to it as orbit-1-WL. Theorems 1 and 2 of Morris et al. (2019) prove
that GNNs and 1-WL respectively model each other’s computation, which implies that GNNs can
distinguish between orbits if and only if orbit-1-WL can. That is: for nodes v, w ∈ V (G), there
exists a GNN f such that f(v) ̸= f(w) if and only if the final colors of v and w are different when
orbit-1-WL is applied to G. Orbit-1-WL is sound but not complete: there exists a graph G and nodes
v, w ∈ G such that orbit-1-WL assigns the same colorings to v and w, but v and w are not similar.
Such graphs are shown in Appendix B.3.
Theorem 1. If orbit-1-WL assigns different colorings to u, v ∈ V (G), then u, v are not similar.

Analogously to 1-WL (Morris et al., 2019), there is a strict hierarchy of orbit-k-WL algorithms
such that for all k ≥ 3 there are graphs for which orbit-k-WL correctly identifies the orbits but
orbit-(k-1)-WL does not. This is proved in Appendix B.4.

We are now ready discuss and analyze four distinct GNN architectures that are able to capture
non-equivariant functions. The first two have been proposed in prior work.

(1) Unique-ID-GNN (Dasoulas et al., 2020; Loukas, 2020; Morris et al., 2022): this extension
deterministically appends a unique ID to the label of each node before the GNN is applied to the
input graph.

(2) RNI-GNN (Abboud et al., 2021; Sato et al., 2021): some independently sampled random noise is
appended to the label of each node before the GNN is applied to the input graph; max pooling is used
for the global readout fread in each GNN layer.

The remaining two architectures are novel and can be viewed as instantiations of the general approach
illustrated in Figure 4, where we first apply a standard GNN to the input graph, then compute the
orbits using orbit-1-WL, and finally devise a mechanism for assigning labels to nodes within the
identified orbits.

(3) Orbit-Indiv-GNN: in this extension, the GNN is first applied to the input graph G as usual to
yield fGNN(G). Orbit-1-WL is subsequently used to identify the orbits of G; then, for each orbit, a
unique ID from {1, ...,m} is appended to each of the node labels, where m is the orbit size, yielding
an updated labelled graph forbit_indiv(fGNN(G))). A single MLP is finally applied to every extended
node label in parallel and hence the overall function is defined as fmlp(forbit_indiv(fGNN(G))).

(4) m-Orbit-Transform-GNN: this is a more advanced extension, and we illustrate its formal
description with an example depicted in Figure 5; in our description, we use (*number) to refer to
markers in the example. A GNN (*1) is first applied to the input G to yield fGNN(G) and the orbits
are computed using orbit-1-WL; in the example, we demonstrate the model primarily using the orbit
highlighted in blue. Each vector fGNN(G)v has m · (o+ 1) components, where o is the number of
final output channels (often categories) and m ≥ 2 is a parameter of the model; as a result, we can

5



Published as a conference paper at ICLR 2024

7

3

4

5

1

2

6GNN

([0, 1, 0], [1, 0, 0], [0, 0, 0])

([0, 1, 0], [1, 0, 0], [0, 0, 0])

([1, 0, 0], [0, 0, 0], [0, 0, 0])

([1, 0, 0], [0, 1, 9], [0, 1, 0])

([1, 0, 0], [0, 1, 9], [0, 1, 0])

([1, 0, 0], [0, 1, 9], [0, 1, 0])

([1, 0, 0], [0, 1, 9], [0, 1, 0])

7

3

4

5

1

2

6

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

(1, 0)

For each
p ∈ {2, 3}:

1 4

2 3

Orbit r

(1, 0)

(1, 0)

(1, 0)

(1, 0)

p = 2:
The argmax of

partition 2 is o, so do
not change the label

of node 2

fGNN(G)v = ([1, 0, 0], [0, 1, 9], [0, 1, 0])

partition 1: (1, 0, 0)

partition 2: (0, 1, 9)

partition 3: (0, 1, 0)

1 4

2 3

(1, 0)

(1, 0)

(1, 0)

(1, 0)

p = 3:
The argmax of

partition 3 is not
o, so update the label

of node 3

1 4

2 3

(1, 0)

(1, 0)

(1, 0)

(0, 1)

Do the same for other
orbits, {5, 7} and {6}

7

3

4

5 1

2
6

(1, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

Blue nodes
denote orbit r

Final model
output

[] brackets
denote

partitions

Step 1

(*1)

(*2) (*3)

(*4)

(*4)

(*5)

(*6) (*6)
(*7)

(*8)

(*9) (*10) (*10)
(*11)

o + 1 = 3

Figure 5: The transform operation of a 3-Orbit-Transform-GNN with o = 2.

define m partitions fGNN(G)1v, ..., fGNN(G)mv in the output of fGNN(G)v , each of them of size (o+1)
(*2). Then we apply ftransform to fGNN(G), as follows.

1. Iterate through each v ∈ V (G), and set Gv := fGNN(G)1v[0 : o − 1], where [0 : o − 1]
denotes the vector slice from 0 to o− 1 (inclusive). This a vector of size o (*3).

2. Iterate through each orbit r ∈ R(G) (*4) and each partition p ∈ {2, 3, ...,min(m, |r|)} (*5).
Select the p-th node v (*6) in orbit r, where r is sorted by ascending order of node index.
Then, if argmax(fGNN(G)pv) ̸= o, set Gv := fGNN(G)pv[0 : o− 1] (*7).

This yields a final model output of ftransform(fGNN(G)) (*8). Since fGNN is equivariant, for each orbit
r ∈ R(G) and for all nodes v, w ∈ r, fGNN(G)v = fGNN(G)w. Thus, the transformed output for an
entire orbit r is essentially contained in the output of fGNN(G)v for any v ∈ r. Intuitively, the first
partition fGNN(G)1v (*9) contains the default value for the orbit and each remaining partition value
fGNN(G)pv (*10) represents that the label of a single node v in the orbit r should be swapped from the
default to the given value. If the final channel of the partition (with index o) is the largest (*11), this
represents that the default should not be swapped out for the value in this partition. The motivation
for this is that it aids the model in learning functions which are “nearly equivariant”: i.e. ones in
which within most orbits, most of the target labels within each orbit are the same.
Theorem 2. The expressivity of our proposed models is as follows, where for a class of models X ,
the claim “X is not equivariant” means that “there exists f ∈ X such that f is not equivariant”:

1. Unique-ID-GNNs are not orbit-equivariant and, for any fixed n, can approximate any
node-labelling function f : Gn → Rn, where Gn is the set of graphs with ≤ n nodes.

2. RNI-GNNs are equivariant in expectation and, for any fixed n, can approximate any equiv-
ariant function f : Gn → Rn with probability arbitrarily close to 1 (Abboud et al., 2021;
Morris et al., 2022). They can approximate some non-equivariant and orbit-equivariant
functions with probability arbitrarily close to 1, but there exist RNI-GNNs which, with
probability arbitrarily close to 1, are not orbit-equivariant.

3. Orbit-Indiv-GNNs are not equivariant but are orbit-equivariant on graphs whose orbits
are distinguishable by orbit-1-WL. For any m ∈ Z+, there exist Orbit-Indiv-GNNs f with
max-orbit(f) > m.

4. m-Orbit-Transform-GNNs f are not equivariant but are orbit-equivariant on graphs whose
orbits are distinguishable by orbit-1-WL. They have max-orbit(f) ≤ m and there exist
m-Orbit-Transform-GNNs f with max-orbit(f) = m.
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5 EXPERIMENTS

Loss We focus on categorical outputs in our experiments, so we adopt cross-entropy loss as our
baseline. For the loss to be representative of the model performance for orbit-equivariant problems,
however, we need to account for the fact that we now support a multiset of outputs for each orbit,
and that treating multisets as vectors may lead to sub-optimal performance. Welleck et al. (2018)
investigate loss functions for multiset prediction, but purely in the context of the multiset being a
collection of sequential decisions made by a policy. Similarly to the method of Probst (2018), we
use a deterministic algorithm to greedily pair up outputs and targets and then compute cross-entropy
between them. Specifically, for each orbit, we sort the model outputs and target outputs by fixing
some a-priori order upon the output categories, and then pair outputs and targets based on where
they appear in the sorted lists. Computationally, this is O(n log n), so computing the loss is feasible
even for large orbits. We refer to this method as orbit-sorting cross-entropy loss. For the m-Orbit-
Transform-GNN models, loss is computed before the transform takes place, since the transform
operation is not parameterised and does not require training. To obtain targets for the loss, we invert
the transform operation on the ground truth outputs for the training set. This means that standard
cross-entropy can be used, since the model is equivariant before the transform is applied. Full details
on our novel loss function are given in Appendix C.4. We note that there are many other ways ((Zhu
et al., 2016), for example) in which this problem could be approached, and leave it as future work.
We focus on evaluating different models in our experiments, rather than different loss functions.

Datasets We propose a new dataset (Bioisostere) capturing a real-world use-case and a new suite
of synthetic datasets (Alchemy-Max-Orbit) designed to test the ability of models to learn functions
with different max-orbit values. Although synthetic, Alchemy-Max-Orbit datasets consist of graphs
obtained from real-world organic molecule data.

The task in Bioisostere is, given an input molecule as a graph, output a label for each node which
represents either keeping the atom or swapping it out for some other particular atom, in such a
way that the final resulting molecule has minimal lipophilicity; as discussed in Section 1, this is an
important factor in drug design. Solving this task requires a non-equivariant function when an atom
being swapped out comes from an orbit of size ≥ 2. To construct this dataset, we retrieved 961 small
drug molecules from ChEMBL (Mendez et al., 2019) and then used MMPDB (RDKit, 2023a) to
compute many different bioisosteres for each molecule that each differ by at most one atom from the
original molecule. Using RDKit (RDKit, 2023b), we computed the lipophilicity of each bioisostere
and selected the one that yielded the lowest value as the target for each molecule. Of these molecules,
only 588 actually require some swapping out of an atom to achieve minimal lipophilicity, and only
156 require a non-equivariant function. The function f required to solve the task is orbit-equivariant
with max-orbit(f) = 2.

An Alchemy-Max-Orbit-m dataset is constructed using Alchemy (Chen et al., 2019; Morris et al.,
2020), a large dataset of organic molecules. All graphs without an orbit of size ≥ m are removed
and the dataset is then extended by augmenting the existing graphs, if it is not already large enough.
Details on this process are in Appendix C.2. The task in the dataset is to identify the largest orbit(s)
in the graph and, for each largest orbit, distribute the labels T := {{1, 1, ..., 1, 1, 2, ...,m}} at random
without replacement amongst the orbit’s nodes, such that |T | coincides with the number of nodes
in the orbit. Every node not part of a largest orbit should be assigned the label of 0. Equivariant
functions such as GNNs cannot solve any of the examples in the dataset. The function f required to
solve the task is orbit-equivariant with max-orbit(f) = m.

Methodology We perform our experiments on the Bioisostere, Alchemy-Max-Orbit-2, and
Alchemy-Max-Orbit-6 datasets. We adopt GCNs (Kipf & Welling, 2016) as our baseline GNN
to be augmented, since they are simple, effective, and still competitive in contemporary work (Frasca
et al., 2022; Hou et al., 2022; Li et al., 2022; Rampášek et al., 2022). For each experiment, we
train and test the following models: Unique-ID-GCN, RNI-GCN, Orbit-Indiv-GCN, and m-Orbit-
Transform-GCN. Pure GCNs are equivariant and thus cannot achieve a better graph accuracy than
0 on the Alchemy-Max-Orbit datasets. However, they can still solve some subset of the examples
in Bioisostere, so we include it as a baseline to see how an equivariant model performs. Every
experiment is run 10 times, with different seeds, and 10% of the data is randomly left out of training
to be used as a test dataset. We report the mean and standard deviation across all seeds. We run
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Table 1: Mean and standard deviation of final model accuracy percentage on the test datasets.
Dataset Model Graph Accuracy Orbit Accuracy Node Accuracy

Bioisostere GCN 52.4± 6.37 92.9± 1.14 94.4± 0.79
(cross-entropy Unique-ID-GCN 66.1± 5.13 94.5± 0.97 95.6± 0.62
loss) RNI-GCN 63.6± 4.29 93.9± 0.86 95.1± 0.76

Orbit-Indiv-GCN 69.9± 4.6869.9± 4.6869.9± 4.68 95.4± 0.6395.4± 0.6395.4± 0.63 96.3± 0.4996.3± 0.4996.3± 0.49
2-Orbit-Transform 57.1± 6.43 93± 0.99 94.1± 0.79

Alchemy- Unique-ID-GCN 20± 4.57 79.9± 2.01 77± 1.52
Max-Orbit-2 RNI-GCN 0± 0 74.5± 1.7 75.2± 1.66
(orbit-sorting Orbit-Indiv-GCN 51.9± 4.3851.9± 4.3851.9± 4.38 87.5± 1.7887.5± 1.7887.5± 1.78 90.6± 1.1290.6± 1.1290.6± 1.12
cross-entropy) 2-Orbit-Transform 47.9± 6.45 86.8± 1.53 85.1± 1.66

Alchemy- Unique-ID-GCN 66.8± 7.15 84.8± 2.97 95.4± 1.07
Max-Orbit-6 RNI-GCN 44.9± 7.19 78.5± 3.39 91.4± 1.47
(orbit-sorting Orbit-Indiv-GCN 83.4± 4.2283.4± 4.2283.4± 4.22 88.9± 2.7188.9± 2.7188.9± 2.71 97.1± 1.4697.1± 1.4697.1± 1.46
cross-entropy) 6-Orbit-Transform 10.6± 4.14 71.2± 2.47 87.6± 1.08

each experiment with standard cross-entropy loss and with orbit-sorting cross-entropy loss. Full
hyperparameters for our experiments can be found in Appendix C.3. Accuracy is measured and
reported in 3 ways: the average proportion of nodes for which the correct output was predicted (node
accuracy), the average proportion of orbits which have entirely correct predictions (orbit accuracy),
and the proportion of graphs which were entirely solved (graph accuracy). Since we are dealing with
orbit-equivariant functions, accuracy is calculated by collecting the orbits of the graph and computing
the multiset intersections of model and target outputs for each orbit.

Results Our main results are shown in Table 1 and full results are shown in Appendix C.5. In
the plots, “max_orbit_gcn” refers to m-Orbit-Transform-GCN. Since we found that slightly better
results were obtained for Bioisostere when standard cross-entropy is used, those results are shown,
with orbit-sorting cross-entropy used for the other two datasets. Across all 3 datasets and metrics,
Orbit-Indiv-GCNs consistently and definitively exhibited the best performance. GCNs exhibited
the worst performance on Bioisostere and would have achieved an accuracy of 0 on the Alchemy-
Max-Orbit datasets, highlighting the need for models that go beyond equivariance. Unique-ID-GCNs
consistently outperformed RNI-GCNs, which aligns with the experiments of Morris et al. (2022)
on non-equivariant problems. It is also interesting to note that, whilst RNI-GCNs achieved the 3rd
highest test accuracy on Bioisostere, they had the highest accuracy on the training set, suggesting that
the model is more inclined to overfit.

On the Alchemy-Max-Orbit-2 dataset, 2-Orbit-Transform-GCNs achieved comparable performance
to Orbit-Indiv-GCNs, whilst the other two models performed poorly. This suggests that the transfor-
mation model can be useful on certain tasks, when the max-orbit of the function is low. In contrast, on
the Alchemy-Max-Orbit-6 dataset, 6-Orbit-Transform-GCNs had by far the worst performance among
all the models, demonstrating that the transformation becomes infeasible for large max-orbit sizes.
This is expected, since the number of output channels required for the transformation is linear in the
max-orbit. Overall, whilst Alchemy-Max-Orbit-2 has smaller max-orbits than Alchemy-Max-Orbit-6,
the models tend to perform better on the latter dataset because there are fewer graphs in Alchemy that
possess a maximum orbit of 6 than those that possess a maximum orbit of 2, meaning that similar
structures appear repeatedly when the Max-Orbit-6 graphs are augmented to extend the dataset.

Model performance on the test datasets during training are shown in Figure 6 for the experiments
using cross-entropy loss, and in Figure 7 for those using orbit-sorting cross-entropy loss. In addition
to Orbit-Indiv-GCNs performing the best out of all the models, they also converge by far the fastest.
We attribute this to their strong structural inductive bias: they are exactly orbit-equivariant whilst not
deviating much from the provenly effective architecture of GCNs. Abboud et al. (2021); Morris et al.
(2022) found that RNI-GCNs can be slow to converge, but on Bioisostere, we find them to converge
comparatively swiftly. A comparison between Figures 6 and 7 highlights the importance of using
orbit-sorting cross-entropy loss. The performance of Orbit-Transform-GCNs is mostly unaffected,
since they are trained as equivariant models: this is an advantage unique to Orbit-Transform-GCNs.
The models also do not show improvement on Bioisostere when using orbit-sorting cross-entropy,
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Figure 6: Graph accuracy with standard error on the test datasets across all models using cross-entropy
loss: Bioisostere (left), Alchemy-Max-Orbit-2 (center), and Alchemy-Max-Orbit-6 (right).

Figure 7: Graph accuracy with standard error on the test datasets across all models using orbit-sorting
cross-entropy: Bioisostere (left), Alchemy-Max-Orbit-2 (center), and Alchemy-Max-Orbit-6 (right).

which is probably because each node from an orbit that is to be swapped out is chosen deterministically
to be the one with the lowest index. This is not the case for the Max-Orbit datasets.

6 CONCLUSION

We show the limits of equivariant functions when it comes to producing different outputs for similar
nodes. We define a less restrictive property, orbit-equivariance, to address this issue while still
retaining a strong structural inductive bias and show where it lies in the hierarchy of node-labelling
functions. We also provide a brief taxonomy of orbit-equivariant functions using a further property,
max-orbit. We present four different ways to extend GNNs to solve non-equivariant problems
and analyze their expressivity. We evaluate these models on both real-world and synthetic datasets,
finding that one of our novel models (Orbit-Indiv-GNN) exhibits the best performance in all scenarios.
We also find that the use of a specialist loss function can be necessary for the models to train.

The novelty of orbit-equivariance as a property provides considerable scope for future work in this
area. Firstly, the idea of orbit-equivariance can be generalized to other data structures besides graphs
(Bronstein et al., 2021) and related to node embeddings (Srinivasan & Ribeiro, 2019). GNNs have
also proven to be useful for aiding in designing optimal bioisosteres, but this is a complex task and
deserves further investigation. Moreover, the establishment of orbit-equivariance as a formal property
could lead to the identification of other problems that require non-equivariant and orbit-equivariant
models to solve. Finally, there may be ways to design better, specially tailored orbit-equivariant
GNNs to solve such problems.

Limitations Our work considers only graphs where the nodes are not individualized; this does
not account for application domains where the nodes have noisy features that are almost identical,
but not precisely. Our theorems focus on property satisfaction and there are open questions as to
how expressive the new proposed models are. The scope of our experiments is restricted to datasets
where non-equivariant functions are required. Furthermore, the Bioisostere dataset does not capture
all aspects of actual drug design, since we only optimize for a single molecular property instead of
many, and do not consider biological effects.
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use human subjects and did not need IRB approval. All papers and repositories have been cited and
licenses explicitly mentioned for the software used.

8 REPRODUCIBILITY STATEMENT

Code, data, and instructions for how to reproduce our experimental results are given in the supple-
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Important training details are given in section 5 of the main paper, and full details are given in the
appendices. Full details on the amount and type of compute used are given in the appendix. All
terminology and symbols are explicitly defined, and the assumptions are clearly stated across the
paper, particularly in sections 3 and 4. Complete proofs are given in the appendices and intuitions
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A PROOFS

A.1 PROPOSITION 1

Proposition. Let f be an equivariant node-labelling function and let G be a labelled graph in its
domain. If v, w ∈ V (G) are similar, then f(G)v = f(G)w.

Proof. Define σ to be a permutation that maps v → w, and maps other nodes such that σ is an
automorphism of G. Such a permutation exists since v and w are similar. Since σ is an automorphism,
σ ·G = G. So we prove:

f(G)v = (σ−1 · σ · f(G))v (identity permutation)

= (σ−1 · f(σ ·G))v (equivariance)

= f(σ ·G)w (σ−1 maps w → v)
= f(G)w (σ is an automorphism)

A.2 PROPOSITION 2

Proposition. All equivariant functions are orbit-equivariant, but not vice-versa. There exist node-
labelling functions which are not orbit-equivariant.

Proof. We prove the three claims of this proposition separately.

All equivariant functions are orbit-equivariant.

Let a node-labelling function f on domain D be equivariant. Then for all labelled graphs G and
permutations σ on V (G), f(σ ·G) = σ · f(G). To prove that f is orbit-equivariant, choose arbitrary
labelled graph G ∈ D, permutation σ on V (G), and let r ∈ R(G) be any orbit of G. Then,

{{f(σ ·G)σ(v) | v ∈ r}} = {{(σ−1 · f(σ ·G))v | v ∈ r}} (permute vector)

= {{(σ−1 · σ · f(G))v | v ∈ r}} (equivariance)
= {{f(G)v | v ∈ r}} (inverse permutation)

Thus, f is orbit-equivariant.

There are orbit-equivariant functions which are not equivariant.

For an example of an orbit-equivariant function that is not equivariant, consider the node-labelling
function f , defined on the set of all labelled graphs, that maps input graphs G1, G2, G3 as shown,
and maps each other graph G to {0}|G|.

G1:

1

2

3 7−→

1

2

3
G2:

2

1

3 7−→

2

1

3
G3:

3

1

2 7−→

3

1

2

This function is orbit-equivariant. There are two orbits of G1, r1 := {1}, r2 = {2, 3}. Consider
the permutation σ = {(1, 2), (2, 1), (3, 3)}. Note that σ · G1 = G2 and σ · G2 = G1. For
r1, we have {{f(σ · G1)σ(v) | v ∈ r1}} = {{f(G1)v | v ∈ r1}} = {{0}}, and for r2, we have
{{f(σ ·G1)σ(v) | v ∈ r2}} = {{f(G1)v | v ∈ r2}} = {{0, 1}}.

15



Published as a conference paper at ICLR 2024

Any permutation on a graph in D = {G1, G2, G3} yields a graph in D, and the only graphs that
permute to a graph in D are the graphs in D. In other words, D and G \D are both closed under
permutation, where G is the set of all labelled graphs. Each graph G ∈ D has two orbits r1, r2, of
size 1 and 2 respectively, with {{f(G)v | v ∈ r1}} = {{0}} and {{f(G)v | v ∈ r2}} = {{0, 1}}. For
G1, r1 = {1}, r2 = {2, 3}, for G2, r1 = {2}, r2 = {1, 3}, and for G3, r1 = {3}, r2 = {1, 2}.

Thus, following the same unfolding of the definition as above, we see that ∀G ∈ D, ∀ permutations
σ on V (G), for the corresponding orbit r1 of G, we have {{f(σ ·G)σ(v) | v ∈ r1}} = {{f(G)v | v ∈
r1}} = {{0}}, and for r2, we have {{f(σ ·G)σ(v) | v ∈ r2}} = {{f(G)v | v ∈ r2}} = {{0, 1}}.

Furthermore, each graph G ∈ G \D has f(G) = {0}|V (G)|, and for any permutation σ on V (G), σ ·
G ∈ G \D, so f(σ ·G) = {0}|V (G)|. Thus, ∀G ∈ G \D, ∀ permutations σ on V (G), ∀r ∈ R(G),
we have {{f(σ ·G)σ(v) | v ∈ r}} = {{f(G)v | v ∈ r}} = {{0}}|r|.

Thus, f is orbit-equivariant, since the definition holds ∀G ∈ D and ∀G ∈ G \D.

However, f is not equivariant. For the same permutation σ = {(1, 2), (2, 1), (3, 3)}, f(σ · G1) =
f(G2) = (0, 0, 1) and σ · f(G1) = σ · (0, 1, 0) = (1, 0, 0). So f(σ ·G1) ̸= σ · f(G1).

There exist node-labelling functions which are not orbit-equivariant.

Consider a node-labelling function f that exhibits the following behavior for distinct graphs
G1, G2, G3 and assigns all other graphs G to {0}|G|.

G1:

1

2

3 7−→

1

2

3
G2:

2

1

3 7−→

2

1

3
G3:

3

1

2 7−→

3

1

2

This function is not orbit-equivariant. Consider permutation σ = {(1, 2), (2, 1), (3, 3)}, for which
σ ·G1 = G2, and consider orbit r = {1} of G1. Then {{f(σ ·G1)σ(v) | v ∈ r}} = {{f(G2)2}} = {{0}}
and {{f(G1)v | v ∈ r}} = {{f(G1)1}} = {{1}}. So there exists an orbit r ∈ R(G1) and permutation σ
such that {{f(σ ·G1)σ(v) | v ∈ r}} ̸= {{f(G1)v | v ∈ r}}.
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A.3 PROPOSITION 3

Proposition. If f is orbit-equivariant and max-orbit(f) = 1, then f is equivariant.

Proof. Let G be a labelled graph in the domain D of f and σ a permutation on V (G). RTP:
f(σ ·G) = σ · f(G).

Since max-orbit(f) = 1, the maximum across all orbits r ∈ R(G) of the number of unique values
in {{f(G)v | v ∈ r}} is 1. Thus, ∀r ∈ R(G), ∀v, w ∈ r, f(G)v = f(G)w.

Since f is orbit-equivariant:

∀ orbits r ∈ R(G), {{f(σ ·G)σ(v) | v ∈ r}} = {{f(G)v | v ∈ r}}
⇒ ∀ orbits r ∈ R(G), ∀v ∈ r, f(σ ·G)σ(v) = f(G)v (RHS multiset all equal)

⇒ ∀v ∈ V (G), f(σ ·G)σ(v) = f(G)v (all orbits = all nodes)

⇒ ∀v ∈ V (G), (σ−1 · f(σ ·G))v = f(G)v (permute vector)

⇒ ∀v ∈ V (G), (σ · σ−1 · f(σ ·G))v = (σ · f(G))v

⇒ ∀v ∈ V (G), f(σ ·G)v = (σ · f(G))v (inverse permutation)
⇒ f(σ ·G) = σ · f(G)
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A.4 THEOREM 1

Theorem. If orbit-1-WL assigns different colourings to u, v ∈ V (G), then u, v are not similar.

Proof. We prove this by induction on n, the number of iterations the orbit-1-WL algorithm has taken.
The orbit-1-WL algorithm is given formally in Appendix B.1. The stated theorem thus becomes:
“if orbit-1-WL assigns different colourings to nodes u, v ∈ G after n iterations, then they are not
similar”.

Base case: n=0

If u, v have different colourings after no iterations of orbit-1-WL, then they have different labels
in the original graph. This implies that u and v are not similar, since any automorphism must be
label-preserving.

Inductive step: assume true for n

Let Cn : V (G) → C be the colouring of G after n iterations of orbit-1-WL and similarly Cn+1 after
n+ 1 iterations. We have nodes u, v ∈ G s.t. Cn+1(u) ̸= Cn+1(v), and aim to prove that u and v
are not similar.

Case 1: Cn(u) ̸= Cn(v)

Then as assumed in the inductive step, u and v are not similar.

Case 2: Cn(u) = Cn(v)

Cn+1(u) is computed by Cn+1(u) := h(Cn(u), {Cn(w) | w ∈ N(u)}), where h is the WL hash
function. But then since Cn(u) = Cn(v) and Cn+1(u) ̸= Cn+1(v), {Cn(w) | w ∈ N(u)} ≠
{Cn(w) | w ∈ N(v)}.

If |N(u)| ≠ |N(v)|, then u and v are trivially not similar, since any automorphism must be edge-
preserving. So assume that |N(u)| = |N(v)|. The above set inequality thus implies that there does
not exist a bijection π : N(u) → N(v) such that ∀w ∈ N(u), Cn(w) = Cn(π(w)).

Assume to the contrary that u and v are similar.

Then there exists an automorphism σ : G → G such that σ(u) = v. This implies that ∀w1 ∈
N(u) ∃w2 ∈ N(v) such that σ(w1) = w2, otherwise σ is not edge-preserving. So we have
|N(u)| pairs (w1, w2) of similar nodes, where each w1 ∈ N(u), w2 ∈ N(v). Define Vσ :=
{(w1, w2) | w1 ∈ N(u), w2 := σ(w1)} to be the set containing those pairs.

If for some (w1, w2) ∈ Vσ , Cn(w1) ̸= Cn(w2), then w1 and w2 are not similar by assumption in the
inductive step, which creates a contradiction.

So instead assume that ∀(w1, w2) ∈ Vσ, Cn(w1) = Cn(w2). This implies that ∀w ∈
N(u), Cn(w) = Cn(σ(w)). Thus, when restricted to N(u), σ induces a bijection π : N(u) → N(v)
such that ∀w ∈ N(u), Cn(w) = Cn(π(w)). But this is a contradiction, since it was shown above
that no such bijection can exist.

Conclusion

Thus, either way, by contradiction, we can conclude that u and v are not similar. This completes the
inductive step, as we have shown that the hypothesis holds for Cn+1. Thus, the theorem is true ∀n by
induction.
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A.5 THEOREM 2

Theorem. The expressivity of our proposed models is as follows, where for a class of models X , the
claim “X is not equivariant” means that “there exists f ∈ X such that f is not equivariant”:

1. Unique-ID-GNNs are not orbit-equivariant and, for any fixed n, can approximate any
node-labelling function f : Gn → Rn, where Gn is the set of graphs with ≤ n nodes.

2. RNI-GNNs are equivariant in expectation and, for any fixed n, can approximate any equiv-
ariant function f : Gn → Rn with probability arbitrarily close to 1 (Abboud et al., 2021;
Morris et al., 2022). They can approximate some non-equivariant and orbit-equivariant
functions with probability arbitrarily close to 1, but there exist RNI-GNNs which, with
probability arbitrarily close to 1, are not orbit-equivariant.

3. Orbit-Indiv-GNNs are not equivariant but are orbit-equivariant on graphs whose orbits
are distinguishable by orbit-1-WL. For any m ∈ Z+, there exist Orbit-Indiv-GNNs f with
max-orbit(f) > m.

4. m-Orbit-Transform-GNNs f are not equivariant but are orbit-equivariant on graphs whose
orbits are distinguishable by orbit-1-WL. They have max-orbit(f) ≤ m and there exist
m-Orbit-Transform-GNNs f with max-orbit(f) = m.

Proof. The theorem follows from the four following Lemmas (1, 2, 3, and 4), each of which proves
the expressivity of one of the models in the Theorem.

Lemma 1. Unique-ID-GNNs are not orbit-equivariant and, for any fixed n, can approximate any
node-labelling function f : Gn → Rn, where Gn is the set of graphs with ≤ n nodes.

Proof. This proof has two sections, one for each of its claims.

Unique-ID-GNNs are not orbit-equivariant.

The following is a trivial example of a Unique-ID-GNN f that is not orbit-equivariant. Let f
be a Unique-ID-GNN defined by f(G) = fGNN(funique(G)), where funique(G)v := (v,Gv) deter-
ministically appends a unique label (the unique label is v itself, since it is already an integer) to
each node v. Define fGNN as a GNN with a single layer, where fσ1

aggr and fσ1

read are arbitrary and
fσ1

update(λλλ
m
v , _, _) := λλλm

v . The GNN does not do any actual message-passing, and simply keeps the
original label. Then, consider the below graphs G1, G2, where the nodes have empty labels.

G1:

1

2

3
G2:

2

1

3

Consider the permutation σ = {(1, 2), (2, 1), (3, 3)}, for which σ · G1 = G2, and consider the
orbit r = {1} of G1. Then {{f(σ · G1)σ(v) | v ∈ r}} = {{f(G2)2}} = {{2}} and {{f(G1)v | v ∈
r}} = {{f(G1)1}} = {{1}}. So there exists an orbit r ∈ R(G1) and permutation σ such that
{{f(σ · G1)σ(v) | v ∈ r}} ̸= {{f(G1)v | v ∈ r}}. Hence, the Unique-ID-GNN f is not orbit-
equivariant.

Unique-ID-GNNs can, for any fixed n, approximate any node-labelling function f : Gn → Rn.

We aim to prove that, for any node-labelling function f : Gn → Rn, there exists a Unique-ID-GNN
that approximates f with arbitrary precision ϵ. For this proof, we rely on Theorem 4 of Morris et al.
(2022), which we state here:
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Let n ≥ 1 and f : Gn → Rn be equivariant. Then ∀ϵ > 0, there exists a GNN with unique node IDs
that ϵ-approximates f .

Note that their definition of a “GNN with unique node IDs” is identical to Unique-ID-GNN. Gn

is defined as the set of all graphs with at most n nodes, so n can be made arbitrarily large so as
to include any particular graph. They also use a codomain of R for each node feature, but note
that the result extends to real vectors of arbitrary size. In their proof, they show that there exists
a Unique-ID-GNN g(funique(G)) that with arbitrary precision yields a final label of λλλv = (uv, rv)
for each node v, where rv uniquely identifies the graph G in Gn (up to isomorphism) and uv is the
original unique ID given to v.

However, this only identifies the graph up to isomorphism. So, we first prove that for any graphs
G,H with V (G) = V (H), funique(G) ≡ funique(H) ⇐⇒ G = H . If G = H , then trivially
funique(G) = funique(H) and thus funique(G) ≡ funique(H). If instead funique(G) ≡ funique(H), then
there exists a permutation σ on V (G) such that σ · funique(G) = funique(H). The permutation maps
each v ∈ V (G) (with unique ID uv) to the vertex w ∈ V (H) with the same unique ID, since
the permutation is label-preserving. But since funique is deterministic, v = w. Thus, ∀v, w ∈
V (G), (v, w) ∈ E(G) ⇐⇒ (σ(v), σ(w)) ∈ E(H) ⇐⇒ (v, w) ∈ E(H), and Gv = Hw. So
G = H . This proves that identifying funique(G) up to isomorphism is equivalent to identifying G up
to equality.

Thus, define a GNN fcopy with a single layer that simply copies the unique label: fσ1
aggr and fσ1

read are
arbitrary and fσ1

update((v,Gv), _, _) := (v, v,Gv),. The GNN does not do any actual message-passing,
and simply copies the unique ID portion of the original label. But then the GNN g(fcopy(funique))
yields a final label of λλλv = (uv, rv) for each node v, where rv uniquely identifies the graph G (up to
isomorphism) and uv is the original unique ID given to v. But since rv identifies funique(G) up to
isomorphism, it identifies G up to equality.

But then we can define a mapping f node such that for each labelled graph G, v ∈ G, f node(uv, rv) =
f(G)v . This mapping can be approximated by an MLP with arbitrary precision and appended onto the
GNN g(fcopy(funique)) as a final update layer. This yields a GNN that approximates f with arbitrary
precision.
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Lemma 2. RNI-GNNs are equivariant in expectation and, for any fixed n, can approximate any
equivariant function f : Gn → Rn with probability arbitrarily close to 1 (Abboud et al., 2021;
Morris et al., 2022). They can approximate some non-equivariant and orbit-equivariant functions
with probability arbitrarily close to 1, but there exist RNI-GNNs which, with probability arbitrarily
close to 1, are not orbit-equivariant.

Proof. This proof has three sections, one for each of its claims.

RNI-GNNs are equivariant in expectation and, for any fixed n, can approximate any
equivariant function f : Gn → Rn with probability arbitrarily close to 1.

Note that since RNI-GNNs are functions that include randomness, we can no longer discuss them
simply approximating functions. Instead, we need to refer to them approximating functions with a
given probability.

To formally define “with probability arbitrarily close to 1”: Abboud et al. (2021) say that a ran-
domized function X that associates with every graph G ∈ Gn a random variable X(G) is an
(ϵ, δ)-approximation of f if for all G ∈ Gn it holds that Pr(|f(G) − X(G)| ≤ ϵ) ≥ 1 − δ. Note
that an RNI-GNN N computes such functions X . If X is computed by N , we say that N (ϵ, δ)-
approximates f . If for all ϵ, δ > 0, there is a RNI-GNN that (ϵ, δ)-approximates f , then we abbreviate
this by saying that the RNI-GNN “approximates f with probability arbitrarily close to 1”.

Abboud et al. (2021) prove that RNI-GNNs are equivariant in expectation and that they can ap-
proximate any invariant graph function with probability arbitrarily close to 1 (in their Theorem 1).
Morris et al. (2022) extend the universality results of Abboud et al. (2021) and prove that they can
approximate any equivariant node-labelling function with probability arbitrarily close to 1 (in their
Theorem 2).

RNI-GNNs can approximate some non-equivariant and orbit-equivariant functions with
probability arbitrarily close to 1.

We provide an example of a non-equivariant and orbit-equivariant function that RNI-GNNs can
approximate with probability arbitrarily close to 1. This is done to demonstrate their ability to go
beyond equivariance and into orbit-equivariance, but it remains an open question as to whether
RNI-GNNs can approximate any orbit-equivariant function.

Define a function f that relabels the nodes of each input graph as follows and returns the relabelled
graph. For a labelled graph G, f(G)v = rG,v, where rG,v is some value that uniquely identifies
the orbit of v in G up to isomorphism. Formally: rG,v = rH,w ⇐⇒ there exists an isomorphism
α : G → H (the graphs containing nodes v and w, respectively) such that α(v) = w. Thus, for any
permutation σ, rG,v = rσ·G,σ(v), since σ is an isomorphism from G to σ ·G.

This function f is equivariant, since for all labelled graphs G, all permutations σ on V (G) and all
nodes v ∈ V (G), we have f(σ ·G)v = rσ·G,v = rG,σ−1(v) = f(G)σ−1(v) = σ · f(G)v. Since f is
equivariant, Theorem 2 of Morris et al. (2022) proves that it can be approximated with probability
arbitrarily close to 1 by an RNI-GNN g.

Now consider another such function fcopy that relabels the nodes of each input graph and returns
the relabelled graph, such that fcopy(G)v = (ηv, rG,v). This is the same as f , except it also copies
the random noise ηv given to node v in the input graph G. fcopy is also equivariant, as a trivial
consequence of f being equivariant, and can be approximating by extending the RNI-GNN g to copy
the random noise for each node.

Now fix some graph H and node w ∈ H such that the orbit of w has size at least 2. Then consider a
node-labelling function fmax, such that fmax(G)v = 1 if rG,v = rH,w and ηv is the maximum of ηu
for all u ∈ V (G) such that rG,u = rH,w. Otherwise, fmax(G)v = 0.

The node-labelling function h defined by h(G) := fmax(fcopy(G)) can be approximated by
extending the previously mentioned RNI-GNN g. Append one final layer to the GNN, de-
fined by fread({{(ηu, rG,u) | u ∈ V (G)}} := max({{ηu | u ∈ V (G) and rG,u = rH,w}}).
This function is permutation-invariant and so is a valid choice for fread. fupdate is defined by
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fupdate((ηv, rG,v), _, ηu) := 1 if rG,v = rH,w and ηv = ηu, and := 0 otherwise. This exten-
sion approximates h with probability arbitrarily close to 1, since a unique value in {{ηu | u ∈
V (G) and rG,u = rH,w}} is maximal with probability arbitrarily close to 1, because the random
values are sampled from a continuous interval.

It now remains to be shown that the node-labelling function h is orbit-equivariant. To prove that h is
orbit-equivariant, let G be a labelled graph, σ be a permutation on V (G), and r ∈ R(G) an orbit.

Case 1: rσ·G,σ(u) = rH,w for some node u ∈ r. Then:

{{h(σ ·G)σ(v) | v ∈ r}} = {{fmax(fcopy(σ ·G))σ(v) | v ∈ r}} = {{1}} ∪ {{0}}|r|−1

Also, since rG,u = rσ·G,σ(u) (proven when f is defined), we can derive that rG,u = rH,w. Thus:

{{h(G)v | v ∈ r}} = {{fmax(fcopy(G))v | v ∈ r}} = {{1}} ∪ {{0}}|r|−1

Case 2: rσ·G,σ(u) ̸= rH,w for every node u ∈ r. Then:

{{h(σ ·G)σ(v) | v ∈ r}} = {{fmax(fcopy(σ ·G))σ(v) | v ∈ r}} = {{0}}|r|

Again, since rG,u = rσ·G,σ(u) for every u ∈ V (G), we can derive that rG,u ̸= rH,w for every u ∈ r.
Thus:

{{h(G)v | v ∈ r}} = {{fmax(fcopy(G))v | v ∈ r}} = {{0}}|r|

Hence, in either case, {{h(σ ·G)σ(v) | v ∈ r}} = {{h(G)v | v ∈ r}}, so h is orbit-equivariant. However,
it is non-equivariant, since {{h(G)v | v ∈ r}} = {{1}} ∪ {{0}}|r|−1 when G = H and w ∈ r (note that
|r| ≥ 2 by the definition of w), which shows that the function produces different values for similar
nodes, violating the property of equivariance proved in Proposition 1.

There exist RNI-GNNs which, with probability arbitrarily close to 1, are not orbit-equivariant.

Consider an RNI-GNN f with a single layer. The readout function f
θ′′
1

read is defined by

f
θ′′
1

read({{(ηw,λλλ0
w) | w ∈ V (G)}}) := max({{ηw | w ∈ V (G)}}), where ηw is the random noise given to

node w. The update function fθ1
update, is defined by fθ1

update((ηv,λλλ
1
v), _, ηmax) := 1 if ηv = ηmax, and 0

otherwise, where ηmax is the output of fθ′′
1

read.

Thus, for a graph G with n nodes, f(G)w = 1 for some w ∈ V (G) (chosen uniformly at random),
and f(G)u = 0 for all u ∈ V (G) such that u ̸= w.

As n becomes large for graphs with small orbit sizes, the probability that f(G)w = 1 and f(G)u = 1
for any w, u ∈ V (G) such that w, u are in the same orbit of G, across two separate applications of f ,
becomes arbitrarily small.

Thus also, the probability that for all labelled graphs G, permutations σ on V (G), and orbits
r ∈ R(G), it holds that {{f(σ ·G)σ(v) | v ∈ r}} = {{f(G)v | v ∈ r}} becomes arbitrarily small. So
the RNI-GNN f is not orbit-equivariant with probability arbitrarily close to 1.
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Lemma 3. Orbit-Indiv-GNNs are not equivariant but are orbit-equivariant on graphs whose or-
bits are distinguishable by orbit-1-WL. For any m ∈ Z+, there exists Orbit-Indiv-GNNs f with
max-orbit(f) > m.

Proof. This proof has four sections, one for each of its claims and one demonstrating the consequences
of having an input graph whose orbits are not distinguishable by orbit-1-WL.

Orbit-Indiv-GNNs are not equivariant.

We provide a simple example of an Orbit-Indiv-GNN f that is not equivariant, defined on a graph
G by f(G) := fmlp(forbit_indiv(fGNN(G))). fGNN is defined by fGNN(G)v := 0. Define fmlp to be the
identity function. Let G be the below graph.

1

2

3

Then f(G) = ((1, 0), (1, 0), (2, 0)). Nodes 2 and 3 are similar in G. But f(G)2 = (1, 0) and
f(G)2 = (2, 0), breaking the property of equivariance proved in Proposition 1. Thus, Orbit-Indiv-
GNN f is not equivariant.

For any m ∈ Z+, there exist Orbit-Indiv-GNNs f with max-orbit(f) > m.

Let m ∈ Z+ and D = {Cn | n ∈ Z+} be the set of all single-cycle graphs. Let f be an Orbit-Indiv-
GNN defined on D by f(G) := fmlp(forbit_indiv(fGNN(G))). fGNN is defined by fGNN(G)v := 0.
Define fmlp to be the identity function.

Then for any G = Cn ∈ D, orbit-1-WL correctly identifies all nodes as belonging to the same
orbit, so f(G) = ((1, 0), (2, 0), ..., (n, 0)). This has n different outputs within the same orbit. But
Cm+1 ∈ D, so max-orbit(f) ≥ m+ 1 > m.

Orbit-Indiv-GNNs are orbit-equivariant on graphs whose orbits are distinguishable by
orbit-1-WL.

Let f be an Orbit-Indiv-GNN defined by f(G) := fmlp(forbit_indiv(fGNN(G))) and D a set of all graphs
whose orbits are distinguishable by orbit-1-WL. Then since ∀r ∈ R(G), v, w ∈ r, fGNN(G)v =
fGNN(G)w, we have, for all labelled graphs G ∈ D, permutations σ on V (G), and orbits r ∈ R(G):

{{f(G)v | v ∈ r}} = {{fmlp((u, fGNN(G)v)) | v ∈ r, u ∈ {1, 2, ..., |r|}}}

Also, ∀r ∈ R(G), v, w ∈ r, fGNN(σ · G)σ(v) = fGNN(σ · G)σ(w), since v, w similar in G implies
that σ(v), σ(w) are similar in σ ·G. So we have, for all labelled graphs G, permutations σ on V (G),
and orbits r ∈ R(G):

{{f(σ ·G)σ(v) | v ∈ r}}
={{fmlp((u, fGNN(σ ·G)σ(v))) | v ∈ r, u ∈ {1, 2, ..., |r|}}} (since fmlp is element-wise)

={{fmlp((u, (σ · fGNN(G))σ(v))) | v ∈ r, u ∈ {1, 2, ..., |r|}}} (since fGNN is equivariant)

={{fmlp((u, fGNN(G)v)) | v ∈ r, u ∈ {1, 2, ..., |r|}}}

Thus, {{f(G)v | v ∈ r}} = {{f(σ ·G)σ(v) | v ∈ r}}, so Orbit-Indiv-GNN f is orbit-equivariant.
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The expressivity of Orbit-Indiv-GNNs for distinguishing nodes into different orbits is limited
by orbit-1-WL.

First, note that fGNN has the same expressive power as orbit-1-WL for distinguishing nodes into
different orbits and that both fGNN and orbit-1-WL are explicitly used in computing the output of an
Orbit-Indiv-GNN. Thus, Orbit-Indiv-GNNs are limited by the expressivity of orbit-1-WL. We will
briefly unpack the consequences of this here.

The contrapositive of Theorem 1 is: if v, w ∈ V (G) are similar, then orbit-1-WL assigns the same
colorings to u, v. Thus, the following statement (used in the above proof that Orbit-Indiv-GNNs are
orbit-equivariant) still holds true, despite the limited expressive power of fGNN: ∀r ∈ R(G), v, w ∈
r, fGNN(G)v = fGNN(G)w.

In the above proof, it was assumed that for every orbit r ∈ R(G), orbit-1-WL correctly identifies the
nodes in r and thus that forbit_indiv distributes the labels {1, 2, ..., |r|} among the nodes of the orbit.
However, consider the following graph for which orbit-1-WL fails to identify the orbits:

1

2 345

6 7

The actual orbits are r1 = {1, 2, 3}, r2 = {4, 5, 6, 7}, but orbit-1-WL incorrectly identifies them
as r3 = {1, 2, 3, 4, 5, 6, 7}. Consider Orbit-Indiv-GNN f , defined on a graph G by f(G) :=
fmlp(forbit_indiv(fGNN(G))). fGNN is defined by fGNN(G)v := 0. Define fmlp to be the identity
function. Then f(G) = ((1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)). Let σ be the permutation
{(1, 7), (7, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. Then σ ·G is the following graph:

7

2 345

6 1

Then {{f(G)v | v ∈ r1}} = {{(1, 0), (2, 0), (3, 0)}}, but since forbit_indiv uses the orbit-1-WL orbits,
{{f(σ ·G)σ(v) | v ∈ r1}} = {{(7, 0), (2, 0), (3, 0)}}. So f is not orbit-equivariant for this graph, due
to the expressivity of Orbit-Indiv-GNNs for distinguishing nodes into different orbits being limited
by orbit-1-WL. The same problem occurs on any input graph where the orbits cannot be correctly
identified by orbit-1-WL. This theoretical issue can be alleviated by using a more expressive (and
likely slower) orbit-identification algorithm than orbit-1-WL, or by only operating on graphs whose
nodes can be distinguished by orbit-1-WL.
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Lemma 4. m-Orbit-Transform-GNNs f are not equivariant but are orbit-equivariant on graphs
whose orbits are distinguishable by orbit-1-WL. They have max-orbit(f) ≤ m and there exist
m-Orbit-Transform-GNNs f with max-orbit(f) = m.

Proof. This proof has four sections, one for each of its claims and one demonstrating the consequences
of having an input graph whose orbits are not distinguishable by orbit-1-WL.

m-Orbit-Transform-GNNs are not equivariant.

We provide a simple example of a 2-Orbit-Transform-GNN f that is not equivariant, defined on a
graph G by f(G) := ftransform(fGNN(G)). In this case, o := 1 (the number of final output channels).
fGNN is defined as stated below for input graphs G1, G2, G3, and maps each other graph G to
{((0, 99), (0, 99))}|G|. In the diagram below, the colors of nodes represent their features, with white
= ((0, 99), (0, 99)) and gray = ((1,−99), (2,−99)). The large final channel (99) represents not
swapping from the default (i.e. if the final channel is the largest, then the default should not be
swapped out for the value in this partition).

G1:

1

2

3 7−→

1

2

3
G2:

2

1

3 7−→

2

1

3
G3:

3

1

2 7−→

3

1

2

Then f(G1) = (0, 1, 2). Nodes 2 and 3 are similar in G1. But f(G1)2 = 1 and f(G1)2 = 2,
breaking the property of equivariance proved in Proposition 1. Thus, 2-Orbit-Transform-GNN f is
not equivariant. A similar example for any m > 2 shows that m-Orbit-Transform-GNNs are not
equivariant.

m-Orbit-Transform-GNNs f have max-orbit(f) ≤ m and there exist
m-Orbit-Transform-GNNs f with max-orbit(f) = m.

Since we aim to convey the max-orbit of an entire class of models instead of just a single function,
we prove that there exist specific m-Orbit-Transform-GNNs f that have max-orbit(f) = m and
that there are no m-Orbit-Transform-GNNs f with max-orbit(f) > m. Note that there do exist
trivial m-Orbit-Transform-GNNs f such that max-orbit(f) < m.

We prove this in two parts. First, we prove that for any m-Orbit-Transform-GNN f ,
max-orbit(f) ≤ m. This follows from there being exactly m partitions in the output of fGNN(G).
For each graph G and orbit r ∈ R(G), step (1) of ftransform gives a single label to all nodes in the
orbit. Then step (2) adds a new label to the orbit at most min(m, |r|)− 1 times, meaning there are at
most m different labels in the orbit after step (2) is finished.

Second, we give an example of an m-Orbit-Transform-GNN f that has max-orbit(f) = m.
fGNN is defined by f(G)v = ((1,−99), (2,−99), ..., (m,−99)) for each node v ∈ V (G). Consider
the cycle graph H := Cm (a single cycle of m nodes). It has a single orbit, r = {1, 2, ...,m},
which is identifiable by orbit-1-WL. Thus, f(H) = (1, 2, ...,m), so there are m unique values in
{{f(H)v | v ∈ r}}.

m-Orbit-Transform-GNNs are orbit-equivariant on graphs whose orbits are distinguishable by
orbit-1-WL.

Let f be a m-Orbit-Transform-GNN defined by f(G) := ftransform(fGNN(G)) and D a set of all graphs
whose orbits are distinguishable by orbit-1-WL. Then since ∀r ∈ R(G), v, w ∈ r, fGNN(G)v =
fGNN(G)w, we have, for all labelled graphs G ∈ D, permutations σ on V (G), and orbits r ∈ R(G):

{{f(G)v | v ∈ r}} = forbit_transform(fGNN(G)w) (for any w ∈ r)
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where forbit_transform is a function that yields the multiset of outputs of ftransform for the orbit containing
w. These outputs are all set to a single value by step (1) of ftransform, and are then changed by each
iteration of step (2). Also, ∀r ∈ R(G), v, w ∈ r, fGNN(σ ·G)σ(v) = fGNN(σ ·G)σ(w), since v, w
similar in G implies that σ(v), σ(w) are similar in σ · G. So we have, for all labelled graphs G,
permutations σ on V (G), and orbits r ∈ R(G):

{{f(σ ·G)σ(v) | v ∈ r}} = forbit_transform(fGNN(σ ·G)σ(w)) (for any w ∈ r)

= forbit_transform((σ · fGNN(G))σ(w)) (since fGNN is equivariant)

= forbit_transform(fGNN(G)w)

Thus, {{f(G)v | v ∈ r}} = {{f(σ ·G)σ(v) | v ∈ r}}, so m-Orbit-Transform-GNN f is orbit-equivariant.

The expressivity of m-Orbit-Transform-GNNs for distinguishing nodes into different orbits is
limited by orbit-1-WL.

First, note that fGNN has the same expressive power as orbit-1-WL for distinguishing nodes into
different orbits and that both fGNN and orbit-1-WL are explicitly used in computing the output of
a m-Orbit-Transform-GNN. Thus, m-Orbit-Transform-GNNs are limited by the expressivity of
orbit-1-WL. We will briefly unpack the consequences of this here.

The contrapositive of Theorem 1 is: if v, w ∈ V (G) are similar, then orbit-1-WL assigns the
same colorings to u, v. Thus, the following statement (used in the above proof that m-Orbit-
Transform-GNNs are orbit-equivariant) still holds true, despite the limited expressive power of fGNN:
∀r ∈ R(G), v, w ∈ r, fGNN(G)v = fGNN(G)w.

In the above proof, it was assumed that for every orbit r ∈ R(G), orbit-1-WL correctly identifies the
nodes in r and thus that forbit_transform yields the multiset of outputs of ftransform for the orbit containing
w. However, consider the following graph for which orbit-1-WL fails to identify the orbits:

1

2 345

6 7

The actual orbits are r1 = {1, 2, 3}, r2 = {4, 5, 6, 7}, but orbit-1-WL incor-
rectly identifies them as r3 = {1, 2, 3, 4, 5, 6, 7}. Consider 7-Orbit-Transform-GNN
f , defined on a graph G by f(G) := ftransform(fGNN(G)). fGNN is defined by
fGNN(G)v := ((1,−99), (2,−99), (3,−99), (4,−99), (5,−99), (6,−99), (7,−99)). Then f(G) =
(1, 2, 3, 4, 5, 6, 7). Let σ be the permutation {(1, 7), (7, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. Then
σ ·G is the following graph:

7

2 345

6 1

Then {{f(G)v | v ∈ r1}} = {{1, 2, 3}}, but since ftransform uses the orbit-1-WL orbits, {{f(σ ·
G)σ(v) | v ∈ r1}} = {{7, 2, 3}}. So f is not orbit-equivariant for this graph, due to the expres-
sivity of m-Orbit-Transform-GNNs for distinguishing nodes into different orbits being limited by
orbit-1-WL. The same problem occurs on any input graph where the orbits cannot be correctly
identified by orbit-1-WL. This theoretical issue can be alleviated by using a more expressive (and
likely slower) orbit-identification algorithm than orbit-1-WL, or by only operating on graphs whose
nodes can be distinguished by orbit-1-WL.
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B ORBIT-1-WL

B.1 DEFINITION

The 1-WL algorithm (Weisfeiler & Leman, 1968) can be formalized algorithmically as follows:

1. Initialize C0 : V (G) → C by C0(v) = c1 for each node v ∈ V (G), where C is a codomain
of colors and c1 ∈ C. C0 is a node coloring function at iteration 0 of the algorithm.

2. At each iteration n of the algorithm (starting from n = 0), we define a new coloring function
Cn+1. For each node v ∈ V (G), set Cn+1(v) := h(Cn(v), {{Cn(w) | w ∈ N(v)}}), where
h is a hash function and N(v) is the set of all neighbors of v in G.

3. At each iteration n of the algorithm, also compute a partition Pn+1 of V (G), where for any
nodes v, w ∈ V (G), v, w ∈ Q for any Q ∈ P if and only if Cn+1(v) = Cn+1(w). In other
words, the nodes are partitioned by their colors.

4. If at any point, Pn+1 = Pn, the algorithm halts and returns h({{Cn(w) | w ∈ V (G)}}).

Orbit-1-WL operates in the exact same way, except that when the algorithm halts, it returns Pn instead
of h({{Cn(w) | w ∈ V (G)}}). Pn represents a partition of nodes into their orbits by orbit-1-WL.

B.2 SUCCESSFUL EXAMPLES

As an example, here is orbit-1-WL identifying the orbits of a graph:

1 23

4

5

6

7

8

9

1 23

4

5

6

7

8

9

1 23

4

5

6

7

8

9

This yields orbits of {{1}, {2}, {3}, {4, 5}, {6, 7}, {8, 9}}, so orbit-1-WL has correctly identified
the orbits. As another example, consider the following two graphs, G1 and G2:

G1:

1

6 5

2 3

4

G2 :

1

6 5

2 3

4
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Despite 1-WL being unable to distinguish between these two graphs, orbit-1-WL correctly identifies
the orbits for both (all nodes are in the same orbit). This illustrates why it is important to distinguish
between 1-WL and orbit-1-WL, since there are cases where 1-WL fails and orbit-1-WL succeeds,
and conversely there are cases where orbit-1-WL fails and 1-WL succeeds (as will be shown in a
later section).

B.3 COUNTEREXAMPLES FOR COMPLETENESS

Theorem 1 proves the soundness of orbit-1-WL. However, orbit-1-WL is not complete. That is: there
exists a graph G and nodes v, w ∈ G such that orbit-1-WL assigns the same colorings to v and w,
but v and w are not similar. We show several such graphs here.

In the following example, orbit-1-WL colors all the nodes the same (since the graph is 2-regular), so
it identifies all nodes as being in the same orbit. However, the true orbits are {{1, 2, 3}, {4, 5, 6, 7}}.

1

2 345

6 7

The above example can be scaled up into infinitely many other 2-regular graphs for which the same
problem arises, yielding infinitely many counterexamples. It is worth noting as well that if a graph G
contains a graph H as a maximally connected sub-graph (i.e. a collection of components of G), such
that the orbits of H are incorrectly identified by orbit-1-WL, then the orbits of G are also incorrectly
identified by orbit-1-WL. This yields another way to generate infinitely many counterexamples.

Here follows two other non-trivial 3-regular graphs (one planar and one non-planar) for which orbit-
1-WL fails. Orbit-1-WL colors all nodes the same since the graphs are 3-regular. The first has actual
orbits of {{1, 2, 7, 8}, {3, 4, 5, 6}}. The second has actual orbits of {{1, 2, 7, 8, 9, 10}, {3, 4, 5, 6}}.

1

3 4 5

2

6

7 8

1

93 4 5 10

2

6

7 8

Here follows a counterexample (found in the Alchemy dataset (Chen et al., 2019)) which is not a
regular graph. It is colored by orbit-1-WL as shown.
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1

3 4 5

2

6

7 8
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1

3 4 5

2

6

7 8

9 1011

1

3 4 5

2

6

7 8

9 1011

However, the true orbits of the above graph are

{{1, 2}, {3, 4, 5, 6}, {7, 8}, {9, 10}, {11}}

Out of the 202579 graphs in Alchemy (Chen et al., 2019), orbit-1-WL only predicts the incorrect
orbits for 5. We calculated this by comparing the true orbits and orbit-1-WL orbits for every graph in
the dataset.

B.4 ORBIT-K-WL

Similar to classic WL (Morris et al., 2019), there is a strict hierarchy of orbit-WL algorithms: orbit-1-
WL, orbit-3-WL, orbit-4-WL, ..., such that for all k ≥ 3 there are graphs for which orbit-k-WL will
correctly identify the orbits but orbit-(k-1)-WL will not. The below example shows a construction
that proves this:

1

2 345

6 7

Neither orbit-1-WL or orbit-2-WL correctly identifies the orbits of the graph, but orbit-3-WL does.
For any k ≥ 3, the graph consisting of a (k+ 1)-cycle and a k-cycle has its orbits correctly identified
by orbit-k-WL but not by orbit-(k-1)-WL.
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Table 2: Properties of the new datasets proposed in the paper.
Dataset Bioisostere Alchemy-Max-Orbit-2 Alchemy-Max-Orbit-6

Graphs 961 1000 1000
Input Features 43 6 6
Possible Targets per Node 44 2 6

Nodes Average 10.3 10 12.1
Min 2 10 9
Max 15 10 22

Edges Average 10.1 10.4 12.5
Min 1 9 8
Max 17 12 22

C EXPERIMENTS

C.1 COMPUTATIONAL COMPLEXITY

With respect to the computational complexity of our proposed models, Unique-ID-GNNs and RNI-
GNNs have no extra overhead, besides yielding a larger input vector for each label in the GNN.
Orbit-Indiv-GNNs use 1-WL, which is worst-case O(n), where n is the number of nodes in the graph.
Appending unique IDs and the application of the final MLP are also O(n). So overall, the additional
complexity of Orbit-Indiv-GNNs is O(n).

Likewise, for m-Orbit-Transform-GNNs, 1-WL is worst-case O(n). The output size of the GNN
is larger than before: it is now m(o + 1) instead of o, which adds additional computation to the
GNN. Apart from this, there is no additional computational cost during training. When making
predictions, the transform is applied, which is worst-case O(n). So overall, the additional complexity
of m-Orbit-Transform-GNNs when making predictions is O(n).

C.2 DATASETS

In Table 2, we present a summary of the new datasets we propose in this paper. Full details are
provided in the following sections.

C.2.1 BIOISOSTERE

The task in Bioisostere is, given an input molecule as a graph, output a label for each node which
represents either keeping the atom or swapping it out for some other particular atom, in such a
way that the final resulting molecule has minimal lipophilicity; as discussed in Section 1, this is an
important factor in drug design. Solving this task requires a non-equivariant function when an atom
being swapped out comes from an orbit of size ≥ 2.

To construct this dataset, we first retrieved 961 small drug molecules from ChEMBL (Mendez et al.,
2019). The version of ChEMBL we used is CHEMBL32 and the content is licensed under the CC
Attribution-ShareAlike 3.0 Unported license. We filtered to only include drug molecules. From there,
we filtered by “Type” to include only those with the type “Small molecule”, and further filtered by
“Molecular Weight” to only include molecules with a molecular weight ≤ 199. This yielded a CSV
file of molecules, which was cleaned up into chembl.smi a file of SMILES code and molecule
name pairs.

We then used MMPDB (RDKit, 2023a) to compute many different bioisosteres for each molecule that
each differ by at most one atom from the original molecule. mmpdb fragment chembl.smi
-o chembl.fragments --num-cuts 1 was used to compute the fragments of all the
molecules from CHEMBL that can be created by cutting a single non-ring bond. mmpdb index
chembl.fragments -o chembl.mmpdb was then used to group fragments with the same
R-groups into a database. For each molecule with SMILE code “input_smile”, mmpdb transform
--smiles input_smile chembl.mmpdb was used to compute a list of bioisosteres of the
molecule. For each of those bioisosteres (and the original molecule), we used RDKit (RDKit, 2023b)
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to compute the lipophilicity and selected the one that yielded the lowest value as the target for each
molecule. Both MMPDB and RDKit are licensed under the BSD 3-Clause License.

Of these molecules, only 588 actually require some swapping out of an atom to achieve minimal
lipophilicity, and only 156 require a non-equivariant function. All 961 molecules are used in the
dataset. The function f required to solve the task is orbit-equivariant with max-orbit(f) = 2.

C.2.2 ALCHEMY-MAX-ORBIT

An Alchemy-Max-Orbit-m dataset is constructed using Alchemy (Chen et al., 2019; Morris et al.,
2020), a large dataset of organic molecules. The dataset constructor is given m as a hyperparameter.
First, it removes all duplicate graphs from Alchemy using 1-WL as a heuristic. Next, all graphs
without an orbit of size ≥ m are removed, where the orbits are computed using orbit-1-WL.2 If the
number of graphs remaining is larger than the desired size of the constructed dataset (1000 for this
paper), then graphs are dropped from the end of the dataset to make the dataset the desired size.

If the number of graphs remaining is instead smaller than the desired size of the constructed dataset,
then new graphs are added to the dataset using two graph generators. Both generators make small
changes to graphs already in the dataset, broadly preserving the structures whilst adding new non-
isomorphic graphs. The constructor continues to alternate between applying each generator, with the
process immediately halting when the dataset has attained the desired size. Each generator is applied
to every graph that is in the dataset so far. However, before any new graph is added to the dataset, it
is checked using its 1-WL hash to ensure that a graph isomorphic to it is not already in the dataset.
For each graph given to it, the first generator takes every orbit of the graph, and varies all the node
features within the orbit in the same way. The second generator takes every orbit of the input graph
and, for every node v within the orbit, appends a new node w to the graph that is connected to only v.

The task in the dataset is to identify the largest orbit(s) in the graph (where the orbits are computed
by orbit-1-WL) and, for each largest orbit r, distribute the labels T := {{1, 1, ..., 1, 1, 2, ...,m}} at
random without replacement amongst the orbit’s nodes, where |T | = |r|. Thus, T contains the
multiset {{1, 2, ...,m}} and is padded with 1s to ensure that there are the same number of labels in it as
nodes in the orbit. Every node not part of a largest orbit should be assigned the label of 0. Equivariant
functions such as GNNs cannot solve any of the examples in the dataset. The function f required to
solve the task is orbit-equivariant with max-orbit(f) = m.

C.3 HYPERPARAMETERS

Fixed hyperparameters across all experiments are shown in Table 3. The fixed hyperparameters were
chosen by preliminary optimization experiments of GCN on Bioisostere. Hyperparameters for the
experiments on Bioisostere are shown in Table 4. Hyperparameters for the experiments on Alchemy-
Max-Orbit-2 are shown in Table 5. Hyperparameters for the experiments on Alchemy-Max-Orbit-6
are shown in Table 6.

C.4 LOSS

Here follows a full explanation of orbit-sorting cross-entropy loss. Let f be a GNN and D a dataset
of graphs. Let t be a “target function” that yields a category for each node in the input graph. For
each orbit r of the graph G (computed by orbit-1-WL), collect the model outputs (f(G)v | v ∈ r)
and the target outputs (t(G)v | v ∈ r) for the orbit, both as tuples. The category predictions of
the model are (arg_max(f(G)v) | v ∈ r), since each output channel of f(G)v corresponds to a
category. Fix some a-priori order on the output categories and define a function sort that takes in
a tuple of categories c and returns the permutation σ that, when applied to the indices of the tuple,
yields the tuple sorted by category. For example, given the tuple c = (8, 2, 4, 7, 3) of categories,
sort(c) = σ = {(1, 5), (2, 1), (3, 3), (4, 4), (5, 2)}, and σ · c = (2, 3, 4, 7, 8).

2We elected to use orbit-1-WL to compute the orbits when creating the Alchemy-Max-Orbit datasets, because
some of the graphs in the dataset were too large to efficiently compute all automorphisms and thus the orbits.
For consistency, we elected to compute all orbits using orbit-1-WL, rather than exactly computing the orbits of
the graphs that were small enough and using orbit-1-WL for the others.
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Table 3: Fixed model parameters for all experiments
Group Parameter Value Description

Model gnn_layers 4 Number of message-passing layers in the GNN
gnn_hidden_size 40 Size of each hidden layer in the GNN
rni_channels 10 Number of channels of random noise to append
use_cpu True Force use of the CPU over CUDA

Evaluation train_eval_interval 10 Eval on train set interval in epochs
test_eval_interval 10 Eval on test set interval in epochs
loss_log_interval 10 How often to log the model loss in epochs

Dataset train_on_entire_dataset False Whether to tain on the entire dataset
train_split 0.9 Ratio of dataset to use for the train set
bioisostere_only_equivariant False Filter out non-equivariant examples from Bioisostere
shuffle_targets_in_max_orbit True Shuffle targets within orbits of Alchemy-Max-Orbit
shuffle_dataset True Shuffle dataset before splitting into train / test sets

Training learning_rate 0.0001 Adam optimiser learning rate
weight_decay 5e-4 Adam optimiser weight decay
n_epochs 8000 Number of epochs (full training set) to run

Table 4: Model parameters for Bioisostere experiments
Parameter Value Description

dataset bioisostere Dataset
loss [ cross_entropy, Loss function

orbit_sorting_cross_entropy ]
model [ gcn, unique_id_gcn, rni_gcn, Model (max_orbit = Orbit-Transform-GNN)

orbit_indiv_gcn, max_orbit_gcn ]
model_max_orbit 2 Max orbit for Orbit-Transform-GNN
seed [1,2,3,4,5,6,7,8,9,10] Seed for all random generators

Table 5: Model parameters for Alchemy-Max-Orbit-2 experiments
Parameter Value Description

dataset alchemy Base dataset
max_orbit_alchemy 2 Max-orbit size (m) in Alchemy-Max-Orbit-m
loss [ cross_entropy, Loss function

orbit_sorting_cross_entropy ]
model [ unique_id_gcn, rni_gcn, Model (max_orbit = Orbit-Transform-GNN)

orbit_indiv_gcn, max_orbit_gcn ]
model_max_orbit 2 Max orbit for Orbit-Transform-GNN
seed [1,2,3,4,5,6,7,8,9,10] Seed for all random generators

Table 6: Model parameters for Alchemy-Max-Orbit-6 experiments
Parameter Value Description

dataset alchemy Base dataset
max_orbit_alchemy 6 Max-orbit size (m) in Alchemy-Max-Orbit-m
loss [ cross_entropy, Loss function

orbit_sorting_cross_entropy ]
model [ unique_id_gcn, rni_gcn, Model (max_orbit = Orbit-Transform-GNN)

orbit_indiv_gcn, max_orbit_gcn ]
model_max_orbit 6 Max orbit for Orbit-Transform-GNN
seed [1,2,3,4,5,6,7,8,9,10] Seed for all random generators
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For the entire graph, initially set T := t(G). Then, for each orbit r (computed by orbit-1-WL),
we compute σf := sort((arg_max(f(G)v) | v ∈ r)) and σt := sort((t(G)v | v ∈ r)), the
permutations that sort the model category predictions and the targets respectively. We then compute a
re-ordered target T r for the orbit, with T r := σ−1

f · (σt · (t(G)v | v ∈ r)). Then T [r] is set to T r,
where T [r] accesses the indices of T using the nodes in r.

Once all orbits have been iterated through, we compute the cross-entropy between the new targets T
and the model outputs (f(G)v | v ∈ r).

To better illustrate the mechanisms of orbit-sorting cross-entropy loss, here follows an example. For
an input graph G, f(G) (converted to categorical outputs with arg_max, for ease of notation) and
t(G) are shown below, where colors represent node features. White = 0, red = 1, green = 2, and blue
= 3.

f(G) :

1 23

4

5

6

7
t(G) :

1 23

4

5

6

7

The orbits of this graph are r1 = {1}, r2 = {2, 3}, r3 = {4, 5, 6, 7}, as computed correctly by orbit-
1-WL. Set T := t(G) = (0, 0, 2, 3, 2, 0, 1) initially. r1 has size 1, so no re-ordering is possible. For
r2, (arg_max(f(G)v) | v ∈ r2) = (2, 0), so σf = {(1, 2), (2, 1)}. Also, (t(G)v | v ∈ r2) = (0, 2),
so σt = {(1, 1), (2, 2)}. Thus T r2 := σ−1

f · (σt · (t(G)v | v ∈ r2)) = σ−1
f · (σt · (0, 2)) = (2, 0).

T [r2] is then set to T r2 , so T = (0,222,000, 3, 2, 0, 1) (the affected part of the tuple is highlighted in
bold).

For r3, (arg_max(f(G)v) | v ∈ r3) = (0, 2, 1, 3), so σf = {(1, 1), (2, 3), (3, 2), (4, 4)}. Also,
(t(G)v | v ∈ r3) = (3, 2, 0, 1), so σt = {(1, 4), (2, 3), (3, 1), (4, 2)}. Thus T r3 := σ−1

f · (σt ·
(t(G)v | v ∈ r3)) = σ−1

f · (σt · (3, 2, 0, 1)) = (0, 2, 1, 3). T [r3] is then set to T r3 , so T =

(0, 2, 0,000,222,111,333). Cross-entropy in then computed between the new targets T and the model outputs
(f(G)v | v ∈ r) = (0, 2, 0, 0, 2, 1, 3).

For the m-Orbit-Transform-GNN models, loss is computed before the transform takes place. This
method works for this model in particular since the transform component of the function does not
need to be trained. Thus, standard cross-entropy can be used, since the model is equivariant before
the transform is applied.
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C.5 FULL RESULTS

All experiments were run in a distributed manner on an internal university cluster, on exclusively
CPU nodes. In our final experiments, there were 260 individual runs. A total of 88 days of compute
time was used for our final experiments. Across all of our experiments, including failed runs
and preliminary experiments, a total of 219 days of compute time was used. Full results for our
experiments across each of the datasets are shown in the following sections. The mean is shown
along with standard error.

C.5.1 BIOISOSTERE

Cross-Entropy Loss
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Orbit-Sorting Cross-Entropy Loss
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C.5.2 ALCHEMY-MAX-ORBIT-2

Cross-Entropy Loss
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Orbit-Sorting Cross-Entropy Loss

37



Published as a conference paper at ICLR 2024

C.5.3 ALCHEMY-MAX-ORBIT-6

Cross-Entropy Loss
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Orbit-Sorting Cross-Entropy Loss
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