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ABSTRACT

Large language models (LLMs) suffer from high inference latency due to the
auto-regressive decoding process. Speculative decoding accelerates inference by
generating multiple draft tokens using a lightweight model and verifying them
in parallel. However, existing verification methods rely heavily on distributional
consistency while overlooking semantic correctness, thereby limiting the potential
speedup of speculative decoding. While some methods employ additional models
for relaxed verification of draft tokens, they often fail to generalize effectively to
more diverse or open-domain settings. In this work, we propose Reflective Verifi-
cation, a training-free and semantics-aware approach that achieves a better trade-
off between correctness and efficiency. Specifically, we leverage the inherent re-
flective capacity of LLMs to semantically assess the correctness of draft tokens in
parallel during verification. Using prompt-based probing, we obtain both the orig-
inal and reflective distributions of draft tokens in a single forward pass. The fusion
of these distributions enables semantic-level verification of draft tokens that in-
corporates both consistency and correctness. Experiments across multiple domain
benchmarks and model scales demonstrate that our method significantly increases
the acceptance length of draft tokens without compromising model performance.
Furthermore, we find that the proposed Reflective Verification is orthogonal to
existing statistical verification methods, and their combination yields additional
5~15% improvements in decoding speed.

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT (Achiam et al., [2023) and Deepseek (Liu et al.,
2024a)), have demonstrated remarkable performance across a wide range of domains. However, they
also face numerous challenges (Zhou et al., [2024b)) during the deployment phase. One major con-
tributor to the high inference latency of LLMs is the auto-regressive decoding mechanism inherent
in decoder-only architectures. To mitigate the memory access bottlenecks associated with token-
by-token generation, speculative decoding (Xia et al., [2024) has recently emerged as a promising
approach for inference acceleration. This technique employs a lightweight draft model to propose
multiple candidate tokens, which are then simultaneously verified by the target model.

Compared to the drafting stage, the primary objective of the verification stage is to determine
whether the current candidate tokens are accepted. Using exact match as the verification criterion
(Xia et al.,[2023; [Santilli et al., 2023)) can indeed ensure the losslessness of the acceleration method.
But it is often constrained in scenarios with high sampling temperatures. In order to further enhance
the acceleration effectiveness of speculative decoding, several recent efforts (Kim et al.|[2023) have
focused on developing more relaxed verification strategies that increase the acceptance length of can-
didate tokens while preserving output correctness. Various statistical metrics have been employed
to enhance the reliability of verification strategies. Speculative sampling (Leviathan et al. 2023}
Chen et al., 2023)) proposes an unbiased decoding strategy with respect to the original distribution
of the target LLM, allowing flexible adjustment of the output based on the alignment between the
draft and target distributions. In addition, several studies have explored the use of neural networks to
decide whether candidate drafts should be accepted. Judge Decoding (Bachmann et al., 2025)) trains
a classifier on human-annotated data to achieve longer acceptance lengths without compromising
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downstream task performance. |[Liao et al.|(2025) introduces an auxiliary reward model to evaluate
drafts, allowing for step-level discrimination of candidate tokens.

While the above methods improve the performance of speculative decoding during verification, two
key challenges remain unresolved. (1) The lack of semantic guidance. Current mainstream ap-
proaches primarily perform verification using statistical information between the draft and target
distributions, which provides limited information. There is a need for a more efficient verification
mechanism guided by semantic-level information, where acceptance decisions are made based on
semantic correctness rather than distributional consistency. (2) Limited generalization. Although
some existing methods leverage deep models for verification, they typically require additional hu-
man annotations and training procedures. Moreover, many of these methods are tailored specifically
for reasoning tasks with step-level responses, and thus struggle to generalize to more general sce-
narios.

In this paper, we propose Reflective Verification, a training-free draft verification method that op-
erates at the semantic level to address the aforementioned challenges. Inspired by the observation
in Figure[I] that self-reflection can effectively identify the semantic correctness of draft tokens, we
leverage prompt-based probing to explicitly trigger reflection of the model within a single forward
pass. The outcome of this reflection is then used to guide the verification of candidate draft tokens.
Specifically, we exploit the unidirectional attention mechanism of LLMs by appending a reflection
prompt and a copy of the draft tokens after original draft tokens during verification. This allows
us to obtain the reflective judgment of target models on the current candidate tokens during the
verification process. By integrating the original output representing consistency with the reflective
output ensuring correctness, Reflective Verification can significantly extend the acceptance length
of drafts while maintaining correctness, thereby improving the speedup of speculative decoding. In
addition, the proposed method primarily calibrates the original output probabilities using reflective
probabilities, which is orthogonal to existing statistical-based verification mechanisms. We con-
duct experiments across multiple configurations on benchmarks from various domains. The results
demonstrate that the proposed method can bring orthogonal improvements to a wide range of ex-
isting verification strategies, achieving faster decoding without compromising task performance.
Moreover, under low-quality draft settings, Reflective Verification helps mitigate the performance
degradation of lossy verification methods and can even lead to overall performance improvements.

Our main contributions are as follows:

* We present a plug-and-play speculative decoding verification approach that incorporates se-
mantic correctness by leveraging the reflective abilities of LLMs.

* By fusing the original and reflective outputs, the proposed method can be adapted to nearly all
existing draft models and verification strategies, demonstrating strong generalization capability.

* Extensive results show that the proposed method can significantly extend draft acceptance
length without degrading model performance, yielding a 5~15% orthogonal improvement in
end-to-end throughput.

2 OBSERVATIONS

In this section, we present several phenomena related to the verification of draft tokens that we
have observed during the speculative decoding phase. Motivated by these observations, we further
propose the Reflective Verification method.

2.1 NoOT ALL REJECTED DRAFTS ARE INCORRECT

As discussed above, an effective verification mechanism requires a careful trade-off between cor-
rectness and inference efficiency. With the continuous advancement of small language models (Xiao
et al.,|2024), the quality of their draft tokens increases accordingly. Relying solely on strict consis-
tency for draft verification can significantly limit the upper bound of speedup achievable by specu-
lative decoding. In order to investigate potential improvements in verification strategies, we conduct
an analysis of the draft tokens rejected by the standard speculative decoding verification process.

Figure [I] presents several examples of rejected draft tokens identified by the standard verification
mechanism. We observe that some of these tokens, despite distributional inconsistencies, are se-
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Standard Verification

Prefix: To find out how much Janet makes every day at the
farmers' market,

Prefix: three pairs of pants at $42, each = 3 x $42 = $126; three
pairs of shoes at $22.5, each=3 x $22.5=§

[ Draft: let's break down the steps:

[ Draft: 56.5; three pairs of shorts at $16 /j

Q) @
Verification: fet's-brealdeownthe-steps: we need to follow Verification: 56-5+-three-pairs-ofsherts-at-$+6 67.50;
these steps: three pairs of shorts at $16
Unjustified Draft Rejection Justified Draft Rejection

Reflective Verification

Prefix: To find out how much Janet makes every day at the Prefix: three pairs of pants at $42, each = 3 x $42 = $126; three
farmers' market, let's break down the steps: Let me correct pairs of shoes at $22.5, each = 3 x $22.5 = $56.5; three pairs of
myself, the right response is: farmers' market, shorts at $16 Let me correct myself, the right response is: each
=3x$225=$ )
7). ).
Generation: let's break down the steps: ... ... Janet makes $18 Generation: 56-5-three-pairs-ofshorts-at-$+6 67.50; ... ... spent]
every day at the farmers' market. (Correct answer.) Q $243 on all the clothing items. (Correct answer.) Q
Semantic Acceptance via Self-Reflection Semantic Rejection via Self-Reflection

Figure 1: An illustration of draft tokens rejected by standard speculative decoding. Self-reflection
enables the acceptance of semantically correct drafts that would otherwise be rejected.

mantically equivalent to the correct outputs. Accepting such tokens would not compromise the
overall correctness of the response but can significantly improve the decoding speed. For example,
in the case of unjustified draft rejection shown in the figure, although the token-level edit distance
between the draft and the ground-truth output is large, the two sentences convey the same mean-
ing. An effective verification strategy should accept such semantically correct drafts, thereby further
improving the upper bound of speculative decoding.

Given this observation, we believe that current draft verification strategies remain suboptimal and
will play an increasingly important role with the ongoing development of draft models. Developing
a more relaxed and principled verification method is of great significance to the field of speculative
decoding. In this paper, we explore how to leverage the reflection of LLMs to achieve semantic-level
correctness rather than mere distributional consistency.

2.2  SELF-REFLECTION ENABLES CORRECTNESS VERIFICATION

Although humans can naturally assess the correctness of draft tokens, verification mechanisms that
depend only on statistical information from the draft and target model distributions often find it dif-
ficult to produce reliable decisions. Recent efforts (Bachmann et al., 2025) have aimed to achieve
semantic-level speculative decoding by training classifiers using manually annotated draft accep-
tance labels. This approach typically requires additional annotation and training, and is difficult to
quickly adapt to texts from other domains. Accordingly, we seek to explore training-free approaches
that utilize the inherent capabilities of LLMs for semantic-level similarity verification.

Recently, self-reflection (Madaan et al., 2023; |Ye et al., 2024; |Chen et al., 2025) has garnered sig-
nificant attention as a key property of LLMs. This behavior involves refining initially generated
outputs by prompting the model itself through in-context learning (ICL). Motivated by this insight,
we attempt to leverage the reflective behavior of LLMs to verify the semantic-level correctness of
draft candidates. Specifically, we employ carefully designed prompts to induce the LLM to perform
reflection and regeneration on the two rejected drafts discussed in Section

As shown in Figure[I] we are surprised to find that, with reflective prompting, the LLM is capable of
effectively distinguishing between draft candidates at the semantic level. In addition, unlike direct
generation, the reflection process resembles an error-correction procedure applied to the original
draft candidates, which aims to eliminate incorrect parts while preserving the original distribution
as much as possible. This property of reflection makes it particularly suitable for use in speculative
decoding verification, as it allows for the acceptance of a greater number of draft tokens while main-
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Figure 2: Overall structural diagram of Reflective Verification. Compared to vanilla speculative
decoding using only base outputs (yellow), we fuse them with reflective outputs (purple) as the final
distribution.

taining semantic correctness. Inspired by the above observations, we attempt to utilize the reflective
output as auxiliary guidance to aid the original distribution in making more reliable verification
decisions.

3 REFLECTIVE VERIFICATION

3.1 EXTRACTION OF REFLECTIVE LOGITS

The core of reflective verification lies in efficiently obtaining the reflection results of LLMs on draft
candidates. While standard self-reflection is capable of evaluating the draft tokens, the reflection
process itself still follows an auto-regressive decoding paradigm, making it impossible for direct
application in speculative decoding. To address this, the proposed method employs prompt probing
techniques to obtain two output distributions over the draft tokens in a single forward pass.

As shown in Figure [2] we apply a specialized design to the original draft tokens during the verifi-
cation stage. Instead of directly feeding the draft tokens, we maintain two identical copies of the
draft, with a reflective prompt probe inserted in between to explicitly trigger the reflection of LLMs.
Benefiting from the unidirectional attention mechanism, the subsequent template leaves the verifi-
cation of the initial draft tokens unaffected. The second draft tokens, informed by the context of
probe, yields a reflection-based output that encodes semantic correctness verification. Specifically,
the draft sequence constructed at each step of speculative decoding can be formulated as:

Draftana = Concat(Draftey: ||Promptrefiection || Prefixposition || Draftor ) (D

where Draft,,; denotes the candidate tokens generated by the draft model, Prompt,cfection 1S @ probe
designed to prompt the model to reflect, and Prefixp,osition refers to the tokens preceding the current
draft candidate within the context, serving to help the model locate the position for regeneration.

By feeding the constructed prompt into a single forward pass, we can efficiently obtain two distinct
distributions over the draft candidate. Given the memory access bottlenecks during the decoding
stage, the additional input does not significantly increase the forward latency. It is important to
note that, except for the first draft segment, the KV-cache entries associated with other parts do not
participate in subsequent computations. They are pruned after each forward pass, serving solely as
a source of semantic-level verification signals.

3.2 FUSION OF ORIGINAL AND REFLECTIVE LOGITS

Despite sharing the same draft candidate tokens, the logits produced by the LLM for each draft
segment carry different interpretations. The output of the first draft segment aligns with that of
traditional speculative decoding and represents the distribution at the consistency level. By contrast,
the second draft segment yields an output informed by the reflection of target LLM on the original
draft, capturing the distribution corresponding to semantic correctness. To balance consistency with
the original distribution and improved semantic correctness in the verification process, we fuse the
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Algorithm 1 Speculative Sampling with Reflective Verification

Inputs: M,, My, prefiz,template, .
for i = 1to v do
gi(x) + My(prefiz + [z1,...,2:-1])

z; ~ qi()
end for
> Prepare the reflective draft template.
reflective_draft < [x1,..., T, template, z1,...,T]
m <y + |template| + 1
> Obtain the original logits 01.~41 (:1') and reflective 10gits 0y:1m 4~ (1) in parallel.

01(x)y ..., 0041(T), 0m (), . .., Omay(x) < Mp(prefiz),..., My(prefixz + reflective_draft)
> Fuse the two logits to obtain the final distribution p; ().

PUE), - py21(@)  s0ftmaz((L — a)o1 () + a0m(@), ., (1~ @)0r41(x) + AOm1())

r1 ~U(0,1),...,7 ~U(0,1)

nemin({i—1]1<i<~,r> 2500 {4))

, qi(x)
P'(x) < pnt1(x)

if n < 7y then
p'(z) + norm(maz (0, pnt1(x) — gni1(2)))
end if
t~p'(z)
return prefix + [T1,...,ZTn,t]

original logits and the reflective logits to form the final output distribution of the target LLM. The
final distribution for verification can be formulated as:

Prob,,;.[i] = Softmax((1 — «) % Logits[i] + a * Logits[i + shift_len]) (2

We compute a weighted sum of the logits at position i and its corresponding reflective logits to
obtain the final output distribution. shift_len denotes the number of tokens occupied by the de-
signed prompt and the first draft segment, and « is a hyper-parameter that controls the weight of the
reflective logits.

In essence, the proposed reflective verification mechanism uses the reflective logits as a side product
to selectively align the distribution of target model with the semantically correct distribution pro-
duced by draft model. This method merely produces an output distribution with a higher acceptance
rate and does not involve any specific verification mechanism. Therefore, it is fully orthogonal to
existing statistical verification approaches and can be broadly applied across various draft models
and verification settings.

3.3 SPECULATIVE DECODING WITH REFLECTIVE VERIFICATION

Once the reflective output distribution is obtained, the proposed method can be easily integrated with
existing statistical verification approaches through minor modifications. To further illustrate how
the proposed method can be applied, we take speculative sampling (Leviathan et al.| [2023; (Chen
et al.| 2023)) verification as an example to present the overall algorithmic process. As demonstrated
in Algorithm |1} the parts marked with green annotations denote the primary distinctions between
reflective verification and standard speculative sampling. After obtaining the draft sequence, we
construct the reflective draft for verification, which includes two copies of the draft tokens and a
reflection prompt. By performing a single forward pass to compute the outputs of both copies in
parallel and fusing them, we obtain the probability p;(z) of the target LLM, corresponding to that
in standard method. Subsequently, all operations are identical to those in the standard speculative
sampling verification mechanism.

It is worth noting that reflective process is fully decoupled from the draft generation and verification
stages. This also makes it compatible with nearly all draft generation and verification methods. See
Appendix [B] for details on the integration of Reflective Verification with other statistical methods.
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4 EXPERIMENTS

4.1 SETTING

Benchmarks and metrics. In this paper, we select three commonly used benchmarks for different
domains: MT-Bench (Zheng et al.l 2023)) for dialogue, GSM8K (Cobbe et al.| 2021)) for mathe-
matics, and HumanEval (Chen et al., |2021)) for code. We use the corresponding metrics as task
performance indicators, with mean accepted tokens (#MAT) (Xia et al.,|2024) for each forward pass
and end-to-end throughput serving as speed metrics.

Selected baselines. To demonstrate the generality of the proposed method, we conduct experi-
ments across multiple draft model configurations and verification strategies. For the draft models,
we choose two configurations from Llama3 series (Grattafiori et al. [2024) (1B&8B and 8B&70B)
to investigate the impact of model scale on reflective verification.

As for verification strategies, we select the following three commonly used methods: (1) Specula-
tive Decoding represents the naive lossless verification, in which verification is deemed successful
only when the draft tokens exactly match the sampling of the target model. (2) Speculative Sam-
pling (Leviathan et al.l 2023) uses the probability ratio of candidate tokens under the target and
draft distributions as the criterion, achieving unbiased verification through sampling. (3) Typical
Sampling (Cai et al,, 2024) relaxes the verification criterion by using an entropy-based threshold
derived from the target distribution, significantly improving the acceptance rate of draft tokens.

Generation config. Since all models used in the experiments are instruct versions, we perform
generation in a zero-shot manner across all three datasets. Further details about hyperparameters,
including «, prefix length, and others, can be found in Appendix [C| All experiments are conducted
on a server equipped with two NVIDIA A100 GPUs (80GB each) and Intel(R) Xeon(R) Gold 6348
CPU @ 2.60GHz.

4.2 MAIN RESULTS

The main experiments are conducted across diverse settings, with the detailed results presented in
Table[I] We apply the proposed method (Reflec Verify) to various statistical verification approaches
under two draft model settings, and evaluate its impact on both task performance and acceleration
performance. Overall, Reflective Verification is orthogonal to existing common verification meth-
ods. It can significantly increase the acceptance length of draft candidates, leading to improved
end-to-end inference speed in speculative decoding. Notably, this improvement comes without sig-
nificant task performance degradation, and may even enhance it in some cases.

Acceleration performance. Initially, Reflective Verification consistently improves acceleration
performance across various existing verification methods. Under a fixed draft length, it yields an
acceptance length increase close to 1, with particularly notable gains in mathematics and code gen-
eration tasks. This leads to a 5~15% orthogonal improvement in end-to-end throughput, achieved
in a training-free and plug-and-play manner. Moreover, the proposed method still brings improve-
ments under typical sampling, which already achieves the highest acceptance length, demonstrating
the broad applicability of our approach.

Task performance. It is worth noting that Reflective Verification also brings certain improvements
in task performance under lossy verification strategies. Although existing lossy verification strate-
gies significantly increase acceptance length, they often introduce degradation in generation quality,
which is particularly pronounced in objective tasks such as mathematics and code generation. The
core issue is that distributional statistics alone cannot ensure the semantic correctness of draft to-
kens, often resulting in the acceptance of incorrect drafts. By leveraging the reflective signals of
target LLMs, the proposed method enables semantic-level acceptance decisions for draft tokens. As
shown in the table, incorporating semantic information not only increases the acceptance length but
also effectively mitigates performance degradation. Moreover, incorporating Reflective Verification
does not affect the overall output tokens length of target model. We further provide case studies in
Appendix [D]to illustrate the semantic consistency brought by the proposed method.
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Table 1: Main results across multiple benchmarks. Underline denotes performance degradation, and
O.T. denotes output tokens length. Bold indicates the best result under each verification strategy.

MT-Bench GSMSK HumanEval Average
Score #MAT Acc. #MAT Pass@1 #MAT  Perf. O.T. Tok./s Speed

Llama3.2-1B-Instruct & Llama3.1-8B-Instruct
Vanilla AR 7.44 1.00 77.63 1.00 65.85 1.00 72.63 477.52 4596 1.00x
Spec Decoding ~ ~ 7.44 343  77.63 612 6585 6.68 72.63 480.88 51.02 I1.11x
+ Reflect Verify 7.37 4.15 77.41 7.02 6890 7.60 73.25 48440 58.84 1.28x
Spec Sampling 751 403 78.09 625 6646 677 73.05 47920 54.13 1.18x
+ Reflect Verify 7.44 4.88 78.09 7.15 69.51 7.65 73.92 472,67 6232 1.36x

Typical Sampling ~ 7.65 482 7657 676 6341 727 71.88 47696 60.19 1.31x
+ Reflect Verify 7.50 518 76.65 750 67.68 793 73.00 48593 64.79 1.41x

Method

Vanilla AR 8.24 1.00 8491 1.00  78.05 1.00 81.74 409.27 9.55 1.00x
Spec Decoding 824 468 8491  7.89 7805 848 81.74 40859 18.09 1.89x
+ Reflect Verify 8.34 593 85.06 933 7866 952 8233 411.63 20.00 2.09x
Spec Sampling 832 582 8557 8O7 7866 865 8243 41539 1986 2.08x
+ Reflect Verify 8.51 748 8575 945 79.27 955 8332 40450 2135 2.24x

Typical Sampling ~ 7.93 724 8552 881 7744 9.00 80.68 410.11 21.44 2.25x
+ Reflect Verify 8.17 7.94 84091 980 8049 986 8235 41755 22.72 2.38x

Performance of Pass@1 and #MAT The Effect of Draft Token Length on #MAT

0.70 — Pass@1 —— w. Reflect Verify(8B)
baseline 7 o. Veri
#MAT eflect Verif
0.68 o, ri
6
0.66

0.58

0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7
a Draft Token Length

8 9 10

Figure 3: Effect of o on task and acceleration per- Figure 4: Impact of draft quality on Reflec-
formance. tive Verification.

Scale analysis. To investigate the impact of reflective capability on the proposed method, we also
conduct experiments under two different draft model configurations. While Reflective Verification
provides improvements across different settings, its impact on performance is particularly significant
in the 70B target model configuration. We attribute this to the fact that larger target LLMs possess
stronger in-context learning and reflective capabilities, enabling them to make more informed judg-
ments based on the provided prompts. This suggests that the proposed method holds great potential,
with its effectiveness expected to improve as the scale and capabilities of LLMs increase.

5 ANALYSIS

5.1 THE TRADE-OFF IMPACT OF ALPHA

As a parameter controlling the weight of the reflective logits fusion, o plays a crucial role in the
performance of the reflective verification process. To investigate how « balances consistency and
semantic correctness in the reflective verification process, we conduct an ablation study on the hyper-
parameter. As shown in Figure[3] a trade-off relationship is observed between the value of o and the
overall performance. When « increases from a low value, the growing influence of reflective logits
leads to consistent and significant improvements in task performance and the number of accepted
tokens. However, fully substituting the output distribution with reflective logits leads to performance
degradation. Since the method is training-free, the reflective ability of LLMs is not reliable enough
to maintain consistency with the original distribution. Based on the ablation results, we set the
hyper-parameter to 0.3 in our experiments.
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Table 2: Robustness of reflective prompts. Underline denotes performance degradation.

Reflection Prompt Pass@1 #MAT
${draft} 6585 639

~ ${draft} Oh! I made a mistake! The correct answer is: ${prefix} ${draft} =~ 69.51  7.63
${draft} Let me correct myself, the right response is: ${prefix} ${draft} 67.68 7.54
${draft} [BACK] ${prefix} ${draft} 67.68 7.61
${draft} ${prefix} ${draft} 64.63 7.45

5.2 IMPACT OF DRAFT QUALITY

As a verification approach, Reflective Verification does not directly enhance the quality of the draft
itself. Instead, it aims to maximize the acceptance rate of semantically correct drafts under a given
set of candidate drafts. Therefore, we conduct speculative decoding experiments using 1B and 8B
draft models to investigate the effectiveness of the proposed method under varying draft quality
conditions. Under the assumption that the 8B model generates higher-quality drafts, we evaluate
the improvements brought by Reflective Verification over traditional methods across different draft
lengths on the MT-Bench dataset.

As shown in Figure 4} the proposed method, by incorporating semantic information, significantly
improves the acceptance rate at a fixed draft length, thereby raising the upper bound of speculative
decoding performance. Notably, for the higher-quality drafts generated by the 8B model, Reflective
Verification yields even greater improvements. This indicates that the verification mechanism does
not merely increase the acceptance rate indiscriminately, but rather makes informed decisions based
on the semantic correctness of the draft. In addition, with the advancement of draft models and
improvements in draft quality, this semantics-level verification approach is expected to exhibit even
greater potential.

5.3 ROBUSTNESS OF THE REFLECTIVE PROMPT

Reflective Verification leverages constructed reflective prompts as probes to elicit reflective capabil-
ities from LLMs. The degree of sensitivity to these prompts directly influences the generalization
capability of the proposed method. To evaluate the robustness of the proposed method to reflective
prompts, we conduct experiments using a variety of alternative reflective prompts, as shown in Table
[} Specifically, the first row corresponds to standard speculative decoding without reflection, while
the last row represents Reflective Verification with an empty reflective prompt.

It can be observed that the proposed method exhibits strong robustness to the reflective prompt.
Whether using a full sentence or a simple token such as [BACK], it consistently outperforms stan-
dard speculative decoding. This demonstrates that the process of obtaining reflective logits by du-
plicating the draft tokens does not rely heavily on prompt engineering, allowing the method to be
easily adapted to other settings.

5.4 COMPARISON WITH TREE-BASED VERIFICATION

As amethod that also leverages additional input

tokens to improve acceptance rates, tree-based  Table 3: A comparison with tree-based verifica-
verification (Miao et al., [2023)) validates mul- (jop.

tiple candidate paths in a single forward pass

by emplloying a sparse attention mask. Under Method Config #Budget #MAT

a fixed input budget, we compare our method _

with the representative approach MCSD (Yang ~ Chain {IxIxIxlx1} 5 3.08

et al,[2024) on the MT-Bench dataset. MCSD {4x2x2x1x1} 60 4.06
Ours {5+3+445} 17 4.92

The experimental results are shown in Table [3]
For MCSD, the configuration denotes the num-
ber of nodes at each tree depth. For Reflective Verification, the configuration indicates the token
counts of the four components in the prompt as defined in Equation[I} The reflective prompt used
is “[BACK]”. Experimental results show that when the draft already yields a fluent output (e.g.,
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3.08 tokens accepted at chain mode.), the performance gains from traditional tree-based decoding
become marginal. Moreover, as the depth increases, the tree structure consumes a larger portion of
the available budget. In contrast, as draft generation models continue to improve, the benefits of
reflective verification are expected to increase, offering greater potential.

6 RELATED WORKS

Drafting methods of speculative decoding. As a core step in speculative decoding, draft gener-
ation has attracted considerable attention from researchers (Xia et al., [2023; [Bae et al.l 2023} [Liu
et al., 2024b; |[Zhou et al., [2024a)). To obtain more consistent information, some methods (Stern
et al., 2018} |Cai et al., [2024) have begun leveraging the hidden states of the target model for draft
prediction. In particular, EAGLE (Li et al.,2024)) demonstrates significant acceleration by training a
standalone single-layer transformer designed to fuse token embeddings and the hidden states of the
target model.

In contrast to approaches that rely on additional auxiliary models, some methods (Yang et al., 2023;
Fu et al.l 2024} |Ou et al.l 2024} Luo et al., 2024) aim to generate draft tokens more efficiently
through retrieval-based techniques. REST (He et al.,|2024) enables efficient draft tree construction
and verification by building an index over the corpus. In addition, some studies explore parallel
decoding (Santilli et al., 2023) to harness the capabilities of LLMs for self-drafting. CLLMs (Kou
et al.l |2024) improves the parallel decoding capability of LLMs by constructing and training on
Jacobi decoding trajectories. Despite differences in draft generation, acceptance rates consistently
improve with Reflective Verification by leveraging semantic signals.

Verification methods of speculative decoding. In addition to generating more consistent drafts,
numerous studies (Chen et al.,|2023;|Leviathan et al.|[2023)) focus on improving verification methods
to increase acceptance rates. Under lossless acceleration, increasing acceptance rates hinges on the
ability to verify multiple drafts simultaneously. By utilizing sparse attention matrices, SpecInfer
(Miao et al.,|2023) accomplishes the verification of multiple draft paths in one forward computation,
leading to a notable improvement in acceptance length. TR-Jacobi (Wang et al., |2024)) achieves an
orthogonal fusion of model-based and retrieval-based methods by incorporating retrieved paths into
tree-based verification.

For lossy acceleration methods, the core lies in accepting as many inconsistent yet correct tokens
as possible. [Cai et al.[(2024) select plausible candidates for acceptance using an entropy-dependent
threshold. Qin et al.| (2024) propose the multi-token joint decoding (MTJD), which performs verifi-
cation based on the joint probability distribution rather than single token. Although some methods
(Bachmann et al.} 2025} [Liao et al.l 2025)) leverage models with deep representations, they typically
require additional models and training. We achieve a favorable balance between semantic-level
validation and plug-and-play applicability.

7  DISCUSSION

Limitations & Future. This work does not explore Reflective Verification on a wider range of
draft models or larger-scale models (e.g., 405B). While it significantly improves accepted draft
length, it also increases step-wise variance, underscoring the need for dynamic draft length. For
fairness and control, we adopt a fixed draft length in this study, and leave its dynamic adaptation to
future work.

Conclusion. In this paper, we introduce Reflective Verification, a training-free, semantic-level
verification method for speculative decoding. It is widely compatible with mainstream speculative
decoding methods, boosting acceptance rates and enabling 5~15% faster decoding with no perfor-
mance degradation. The proposed method shifts the verification criterion from exact consistency to
semantic correctness, significantly raising the upper bound of speculative decoding and enabling the
use of larger models as draft generators.
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A USAGE OF AI TOOLS

In this paper, Al tools such as ChatGPT are used exclusively for grammar and proofreading of the
final manuscript.

B DETAILS IN THE ALGORITHM

We present the pseudocode of the proposed Reflective Verification integrated with speculative de-
coding and the typical sampling algorithm. As shown in Algorithms |2| and |3} only minimal mod-
ifications are required to integrate Reflective Verification with existing statistics-based verification
methods.

Algorithm 2 Speculative Decoding with Reflective Verification

Inputs: My, My, prefiz,template, .
for i = 1to v do
qi(x) < My(prefixz + [z1,...,2i-1])

zi ~ gi(z)
end for
> Prepare the reflective draft template.
reflective_draft < [x1,...,z~,template, 1, ..., ]

m <y + |template| + 1

> Obtain the original logits 01.4+1(x) and reflective 10gits 0y,:m+~ () in parallel.

01(x)y ..., 0041(T), 0m (), . .., Omary(x) < Mp(prefiz),..., Mp(prefixz + reflective_draft)
> Fuse the two logits to obtain the final distribution p; ().

PA@)s- 1 Pr1 () 4 s0ftmaz((L — )01 (@) + aom (), . (1 — A)0,41(2) + A0 ()

> Use exact match verification.

'fjl Npla"'a‘%’Y Np"/

n+«mn{i—1|1<i<~vy,z; =2} U{y})

t~ Prnt1 (x)

return prefiz + [x1,...,Tn,t]

C HYPERPARAMETER DETAILS

For the main experiments in Table [I] we adopt the following hyperparameter settings. We present
the configurations of speculative decoding and generation settings in Table {i] For different draft
models and datasets, we select the optimal draft length K and temperature.

D DETAILED CASE STUDY

To further investigate the impact of Reflective Verification on model outputs, we conduct case studies
on three datasets and present several representative examples. As shown in Figures [5] and [6] we
segment semantically similar blocks between the two outputs. Despite variations in phrasing, the
overall output length and semantic content remain consistent.
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Algorithm 3 Typical Sampling with Reflective Verification

Inputs: M, My, prefiz, template, a, €, 6.
for i = 1to v do
qi(x) < Mq(prefiz + [21,. .., i-1])
z; ~ qi()
end for
reflective_draft « [z1,...,zy,template, z1,. .., x]
m < v + [template| + 1
> Obtain the original logits 01:+1(x) and reflective logits 0m:m+~ () in parallel.
01(x)y ...y 0q41(T),0m(T)y . ..y Omary(x)  Mp(prefiz),..., My(prefixz + reflective_draft)
> Fuse the two logits to obtain the final distribution p; ().

P, Py (@)  s0ftmaz((l — a)or() + aom(@), ., (1 @)0r41(2) + AOm1+())
> Use entropy-based threshold verification.

threshold = min (e, § exp (—H (Poriginal (* | 1, %2, , Tntk-1))))

n <« min({i — 1|1 <14 <~,pi(x) > threshold} U {v})

t ~ pni1(x)

return prefix + [z1,. .., Tn,t]

Table 4: Details of the hyperparameters under different experimental settings.

Setting Dataset Assistant K o Temperature Prefix Len
1B&8B MT-Bench 5 0.3 0.8 4
1B&8B GSM8K 8 0.3 0.2 4
1B&8B HumanEval 8 0.3 0.2 4
8B&70B MT-Bench 8 0.3 0.8 4
8B&70B GSMSK 10 0.3 0.2 4
8B&70B HumanEval 10 0.3 0.2 4

Notably, in the code generation domain, we observe that the performance gains from Reflective
Verification primarily stem from improved handling of boundary cases. As shown in Figure [7]
through self-reflection, the model becomes more sensitive to such edge conditions. By integrating
reflective logits, it is able to generate higher-quality code.
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Speculative Decoding

+ Reflection

## Step 1: Calculate the investment in the first year.

## Step 1: Calculate the amount invested in the first year.

years, which is $8000 + $4000 = $12000.

~/
The startup invests $8000 in software development in the first year. ~ The startup invested $8000 in the first year.
## Step 2: Calculate the investment in the second year. ## Step 2: Calculate the amount invested in the second year.
The startup invests half of the first year's amount in the second year, so | The startup invested half of $8000 in the second year, which is $8000 /2
the investment in the second year is $8000 / 2 = $4000. = $4000.
## Step 3: Calculate the total investment over the two years. ## Step 3: Calculate the total amount invested over the two years.
The total investment is the sum of the investments in the first and second| The total amount invested is the sum of the amounts invested in the first

and second years, which is $8000 + $4000 = $12000.

The final answer is: $\boxed{12000}$

| The final answer is: $\boxed {12000} $

Figure 5: An illustration of reflective verification on MT-Bench.

Speculative Decoding

+ Reflection

Let's break it down step by step:

1. Cindy has 4 pets.
2. Marcia has 2 more pets than Cindy, so Marcia has 4 + 2 = 6 pets.

Let's break it down step by step:

1. Cindy has 4 pets.
2. Marcia has 2 more pets than Cindy, so Marcia has 4 + 2 = 6 pets.

3. Jan has 3 times the number of pets as Marcia, so Jan has 3 x 6 = 18

3. Jan has three times the number of pets as Marcia, so Jan has 3 x 6 =

~/
pets. ~ |18 pets.
Now, let's add up the total number of pets:
Cindy: 4 pets & | ber of d th ber of h
Nt (6 i ~ 4. To ll.ld the total num_ er of pets, add the number of pets each person
T 19 Ea has: 4 (Cindy) + 6 (Marcia) + 18 (Jan) = 28.
Total number of pets: 4 + 6 + 18 = 28 pets
So, the three have a total of 28 pets! ~ | Therefore, the three have a total of 28 pets.

Figure 6: An illustration of reflective verification on GSM8K.

Speculative Decoding

+ Reflection

def is_prime(n):
ifn<=1:
return False

defis_prime(n):
ifn<=1:
return False

ifn==2:
return True

for i in range(2, int(n**0.5) + 1):
ifn%i=0:
return False
return True

u

ifn%2==0:
return False
max_divisor = int(n**0.5) + 1
for d in range(3, max_divisor, 2):
ifn % d==0:
return False
return True

Figure 7: An illustration of reflective verification on HumanEval.
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