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Abstract

Existing deep multi-view clustering methods have
demonstrated excellent performance, which ad-
dressing issues such as missing views and view
noise. However, almost all existing methods are
within a static framework, which assumes that
all views have already been collected. Neverthe-
less, in practical scenarios, new views are con-
tinuously collected over time, which forms the
stream of views. Additionally, there exists the
data imbalance of distribution between different
view streams, i.e., concept drift problem. To
this end, we propose a novel Deep Streaming
View Clustering (DSVC) method, which miti-
gates the impact of concept drift on streaming
view clustering (SVC). Specifically, DSVC con-
sists of a knowledge base and three core mod-
ules. Through the knowledge aggregation learn-
ing module, DSVC extracts representative fea-
tures and prototype knowledge from the new view.
Subsequently, the distribution consistency learn-
ing module aligns the prototype knowledge from
the current view with the historical knowledge dis-
tribution to mitigate the impact of concept drift.
Then, the knowledge guidance learning module
leverages the prototype knowledge to guide the
data distribution and enhance the clustering struc-
ture. Finally, the prototype knowledge from the
current view is updated in the knowledge base to
guide the learning of subsequent views. Extensive
experiments demonstrate that DSVC significantly
outperforms state-of-the-art methods.
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1. Introduction

With the advancement of information technology, data can
often be obtained from multiple sources and views, which
results in multi-view data. As a popular direction of unsuper-
vised learning, multi-view clustering (MVC) aims to group
data into distinct clusters by integrating information from
different views, thereby uncovering shared clustering prop-
erties of multi-view data (Qin et al., 2024; Sun et al., 2024b;
Xu et al., 2022; Song et al., 2025; Sun et al., 2024d; Wong
et al., 2023; Sun et al., 2024a). In contrast to single-view
clustering, MVC can capture data information from mul-
tiple perspectives, which provides a more comprehensive
understanding.
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Figure 1. The illustration of the concept drift problem on the Hand-
written dataset. (a) is the clustering performance of each view.
Due to distribution imbalance across different views, which leads
to different views exhibiting varying performance. This indicates
the presence of concept drift across different views. (b) is the
experiment of view streaming increases. Due to concept drift prob-
lem among different views, the clustering performance of LSVC
exhibits continuous fluctuations as more views are incrementally
collected. It shows that existing lifelong learning methods (LSVC)
are unable to address the concept drift problem in SVC tasks.

Over the last decade, researchers have proposed a signifi-
cant number of MVC methods. Traditional MVC methods
can generally be classified into four main types, i.e., non-
negative matrix factorization (NMF) (Feng et al., 2024; Li
et al., 2023b), graph-based learning (Du et al., 2023; Liang
et al., 2024; Liu et al., 2023; Li et al., 2025), multi-kernel-
based (Xu et al., 2024b; Li et al., 2022), and subspace-based
methods (Li et al., 2024a; Sun et al., 2021). Thanks to the
powerful nonlinear representation capabilities of deep learn-
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ing, a large number of deep multi-view clustering (DMVC)
(Bian et al., 2024; Chen et al., 2024; Yuan et al., 2024; Fu
et al., 2025a; Yuan et al., 2025) methods have been proposed
in recent years, which have gradually emerged as a main-
stream research direction. Although existing MVC methods
have demonstrated excellent clustering performance within
static frameworks, they often overlook the treatment of real-
time data. In dynamic task environments, the new view
will continuously accumulate over time, i.e., streaming view
data. In this context, the model should be updated and
trained on new data promptly, rather than waiting for the
complete collection of all view data before training. This
limitation poses a significant challenge to the processing of
streaming view data.

To tackle this challenge, LSVC (Li et al., 2024b) employs
the lifelong learning paradigm, which utilizes a consensus
bipartite graph to align the current view knowledge with the
historical knowledge, and fuse the current view knowledge
into the historical knowledge, thereby enabling streaming
view clustering (SVC). However, since data from different
views originate from distinct sensors or angles, there ex-
ists an imbalance situation in the distribution of the data
across view streams, such situation is known as concept
drift (Sharief et al., 2024; Jiao et al., 2022), as shown in
Fig.1(a). Due to the issue of concept drift, the outdated
model struggles to adapt to the training of new view data,
thereby leading to a significant decline in clustering perfor-
mance. Specifically, as illustrated in Fig.1(b), LSVC places
excessive emphasis on preserving historical knowledge, in
which outdated information can mislead model training,
making it difficult to adapt to and effectively process new
view data. Therefore, it is essential to overcome concept
drift and ensure the collected data exhibits a unified feature
representation and distribution.

In this paper, we propose a novel deep streaming view clus-
tering (DSVC) method, as illustrated in Fig.2. DSVC con-
sists of a knowledge base and three core modules: the knowl-
edge aggregation learning module (KAL), the distribution
consistency learning module (DCL), and the knowledge
guidance learning module (KGL). Specifically, when a new
view arrives, we utilize the KAL module to aggregate repre-
sentative prototype knowledge and feature representations
from the current view. Then, the DCL module employs
distribution consistency learning loss to align prototype
knowledge of the current view with historical knowledge,
which promotes distribution consistency of collected data.
Subsequently, the KGL module leverages prototype knowl-
edge to enhance the clustering structure of the features. In
general, the main contributions of our work are as follows:

* We propose a novel deep streaming multi-view cluster-
ing framework named Deep Streaming View Cluster-
ing (DSVC). To the best of our knowledge, our DSVC

could be the first work to reveal and study the issue of
concept drift in the context of streaming view cluster-
ing.

 To mitigate the effect of concept drift, we propose a dis-
tributional consistency learning module that aligns the
prototype knowledge of the current view with histori-
cal knowledge distribution, with the aim of improving
the consistency of the collected data distribution.

* We propose a knowledge guidance learning module,
which leverages prototype knowledge to guide data
distribution and enhance the clustering structure of the
feature representation.

» Experimental results on eight datasets demonstrate that
our proposed DSVC significantly outperforms 13 state-
of-the-art MVC methods, highlighting its effectiveness
in real-world streaming view scenarios.

2. Related Work
2.1. Deep Multi-view Clustering

Due to the powerful nonlinear representation capabilities
of deep neural networks, many deep multi-view clustering
(DMVC) algorithms (Fu et al., 2025b; Cui et al., 2024; Sun
et al., 2024c) have been proposed in recent years. Existing
DMVC methods primarily address three key challenges: the
partial view misalignment problem, the partial view miss-
ing problem, and the noisy view problem. Specifically, to
address the issue of misaligned views in multi-view data,
DealMVC (Yang et al., 2023) introduces a dual-contrast
alignment network, which promotes consistency between
paired view features by integrating both global and local
alignment losses. SURE (Yang et al., 2022) introduces a
noise-robust contrastive loss, which effectively mitigates
the effect of false negatives due to random sampling. To ad-
dress the problem of missing partial views, Prolmp (Li et al.,
2023a) and CPSPAN (Jin et al., 2023) leverage the relation-
ship between prototypes and samples to infer missing data.
To address the challenge of noisy data in the views, MVCAN
(Xu et al., 2024a) mitigates the side effects of noisy views,
which by supporting the non-shared parameters for multiple
views and inconsistent clustering predictions. RMCNC (Sun
et al., 2024c¢) introduces a noise-tolerance multi-view con-
trastive loss that avoids overemphasizing noisy data, thereby
alleviating issues associated with data noise. However, in
practical scenarios, multi-view data is often collected in the
form of streaming views. Existing deep learning methods
fail to account for this dynamic setting. To address this
limitation, we propose a deep streaming view clustering
(DSVC) method tailored for dynamic clustering tasks in
real-world applications.
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Figure 2. The framework of the proposed DSVC. We employ the knowledge aggregation learning module to extract prototype knowledge
and feature representations from the current view. The distribution consistency learning module is utilized to align the knowledge
distribution of the current view with that of the historical knowledge, thereby mitigating the influence of concept drift. Furthermore, the
knowledge guidance learning module is introduced to utilize prototype knowledge to guide data distribution and strengthen the clustering
structure. Finally, the prototype knowledge from the current view is updated into the knowledge base, which guides the training of

subsequent views.

2.2. Stream Learning

Streaming learning (also called continual learning or incre-
mental learning) is a machine learning paradigm, which
aims to process data points or data blocks that arrive se-
quentially over time. Existing streaming learning scenarios
include task-stream learning, domain-stream learning, and
class-stream learning. Specifically, task-stream learning
(Oren & Wolf, 2021; Jiang & Celiktutan, 2023; Li et al.,
2024c) aims to process new tasks that arrive sequentially,
where the new tasks significantly differ from the histori-
cal ones. In domain-stream learning (Wang et al., 2024;
Shi & Wang, 2023; Pei et al., 2024), the sample categories
across different domains remain the same, but the input
distributions are different. In class-stream learning (Zhou
et al., 2024b;a; Huang et al., 2024), the model is required
to continuously distinguish between newly arrived classes
and previously learned classes. Overall, existing streaming
learning methods overlook the following issues: (1) With
the development of multi-view learning, data is often contin-
uously accumulated in the form of view streams. However,
existing methods rarely take this scenario into account. (2)
Due to the fact that data from different views originate from
different sensors or views, there is a situation of imbalance
and instability in the distribution of data across view streams
(i.e., concept drift), which presents a new challenge for the
adaptability ability of the model to deal with the new view
data. For those, we propose a novel DSVC method to enable
streaming view clustering and mitigate the effect of concept
drift on model performance.

3. Method
3.1. Notation

We assume that the dataset {Xi}:/=1 € RN*P" consists of
V' views, with the dimensionality of DV and N samples.
During training, the V' views arrive sequentially, and data
from views where 7 < v is not accessible to the model dur-
ing the training of the v-th view XV = {z},z%,..., 2%} €
RN*DP" 7 ¢ RNV*d denotes the feature representation,
where d is the feature dimensionality. H” € RY*9 repre-
sents the reconstructed feature representation. PV € R% x4
refers to the prototype knowledge of view v in X", and K
indicates the number of prototype knowledge.

3.2. The Objective Function

The overall architecture of our proposed method is illus-
trated in Fig.2. When collecting the first view data, the
knowledge aggregation learning (KAL) module preserves
as much view information as possible through reconstruc-
tion loss. It then leverages an attention mechanism to re-
construct features and prototype knowledge. However, at
this stage, the knowledge base is empty and cannot be used
to constrain the knowledge distribution of the current view.
To ensure that the reconstructed features remain aligned
with the original data distribution, we employ the distri-
bution consistency learning (DCL) module. This module
promotes distribution consistency between the latent fea-
tures and the reconstructed features, thereby enhancing the
representativeness of the prototype knowledge learned from
the first view. In addition, we leverage the knowledge guid-
ance learning (KGL) module to guide the data distribution,
thereby strengthening the clustering structure. Finally, the
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prototype knowledge from the first view is updated into the
knowledge base. Consequently, the total loss for the first
view is formulated as:

L=aLl,+Ly+ BL,. (1)

‘When the number of collected views exceeds one, we con-
tinue to utilize the KAL module to extract feature repre-
sentations and prototype knowledge. However, because of
concept drift exists between view streams, which makes
it difficult for previous models to adapt to the training re-
quirements of subsequent views, as shown in Fig.1(b). To
address this issue, the distribution consistency learning mod-
ule aligns the prototype knowledge of the current view with
the knowledge base, which mitigates the effect of concept
drift. Additionally, we leverage the KGL module to enhance
the clustering structure. Finally, the prototype knowledge
of the current view is updated into the knowledge base to
guide the training of subsequent views. Overall, the total
loss is defined as:

E == Oé;cr + /:rd + 6‘697 (2)

where L, represents the reconstruction loss, £, represents
the distribution consistency learning loss, and £, represents
the knowledge guidance learning loss. « and 3 are trade-off
parameters.

3.3. Knowledge Aggregation Learning

The collected data often contains substantial redundant infor-
mation. To obtain cluster-friendly feature representations,
we employ the autoencoder to extract the latent feature
representations of the data. Specifically, we employ the
encoder fg, to extract features Z¥ € RV*< from the data
Xv € RVXDP" Then, the decoder g;,, reconstructs the data

Xv € RV*D" from the features Z°. Mathematically, the
reconstruction loss is defined as:

L= X" — g (S5 (X)) 3)

where 6V and ¢" represent the network parameters of the
encoder and decoder, respectively. To capture the com-
monalities among the data and the unique characteristics
between classes, we first utilize MLP to derive K prototype
knowledge U? = W(Z?) € RV*K from latent features
Z, where Wrepresents the linear layer of the MLP network,
K = M « C with M € Ny is a hyper-parameter and C'
indicates the number of classes. However, the capability of
the MLP depends on its depth and width, which makes it
challenging to extract high-quality shared knowledge from
complex latent representations. Therefore, we employ the
cross-attention mechanism to adjust the distribution among
the data using prototype knowledge, and aggregate more dis-
criminative prototype knowledge from the features. Specifi-

cally, the cross-attention A" is calculated as follows:
A" = Softmax ((W;(Z’U)ngw“) /\/&) . @

where W and W; represent the linear layers for the la-
tent features and prototype knowledge in the v-th view,
respectively. Subsequently, we use the attention A" to re-
aggregate prototype knowledge PV € RY*X from the la-
tent features, and reconstruct the features H? € RVxd
from the prototype knowledge. Mathematically, it can be
expressed as follows:

PY=U"+ A"W'Y,Z7, 5)
H" =Z"+ AW’} U,
where W’ p and W’ 5 represent additional linear layers for
the prototype knowledge and latent features, respectively.

3.4. Distribution Consistency Learning

During the data collection process, there exists the concept
drift between the stream views. To this end, we propose
a distribution consistency learning strategy that aligns the
knowledge of the current view with historical knowledge
B = {by,by,...,bg} € REX? thereby promoting the
consistency of the collected data distribution. Specifically,
we use cosine similarity to evaluate the correlation between
current view knowledge and historical knowledge. The
formula is defined as follows:

pz (b)T
o3 16511

where p? represents the i-th prototype knowledge of the
current view, and b; denotes the j-th knowledge of the
historical view. Thus, the probability that the two types of
knowledge belong to the same class in the historical view is
given by:

S(pi,bs) = (6)

exp (S(bi, pi)/T)
K K )
> =1 €xp (S(bi, p)/7) + 3252 exp (S(pis pj)/7)
(N
where 7 represents the temperature parameter, which is
set to 1. Additionally, we normalize Q° to ensure that
ZiKzl QY = 1. To mitigate concept drift and promote con-
sistency in sample distributions in different view streams,
we propose the distribution consistency learning loss, which
is defined as follows:

@zlwmﬂw@%+mm@w@n

Q! =

o ®)
o
where Dy represents the Kullback-Leibler divergence.
The goal of £, is to maximally align the knowledge dis-
tribution between the current view and the historical view,

K
Z [Q° 1og —|— Q¥ log
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thereby unifying the data distribution. Moreover, when
the first view is collected, the knowledge base is empty,
therefore it cannot be used to constrain the knowledge distri-
bution of the current view. To ensure that the reconstructed
features do not deviate from the original data distribution,
we utilize the loss defined in Eq.(8), which aims to promote
consistency between the latent and reconstructed features.
This helps to make the prototype knowledge learned from
the first view more representative.

3.5. Knowledge Guidance Learning

To optimize the feature distribution and strengthen the clus-
tering structure, we use the aligned prototype knowledge to
guide the data distribution of the current view. Specifically,
we first compute the similarity between the features and the
prototype knowledge. The formula is as follows:

M(h7,p}) = exp(S(hi, pj)), ©

where hy represents the i-th feature of the current view,
and p} denotes the j-th prototype knowledge. Thus, the
probability that the j-th prototype knowledge contains the
i-th feature is given by:

_ exp(S(hy,p}))
S exp(S(hY, b))

where K is the number of prototype knowledge. To opti-
mize the clustering structure of the features, our knowledge
guidance learning loss is defined as follows:

1 K N
L= D> log Gy, (11)

j=1i=1

Gij) ; (10)

where N is the number of features. Finally, we update the
prototype knowledge of the current view into the knowledge
base (i.e., B = P"), to guide the training of the subsequent
views collected.

4. Experiments
4.1. Datasets

We design a series of experiments on eight widely used
datasets, which encompass various data types, to demon-
strate the effectiveness of our DSVC method. Detailed
information for all datasets is provided in Tab.1. Concretely,
ALOI-10 (Geusebroek et al., 2005) contains 1,079 samples
across 10 categories, with each sample having four features,
i.e., HSB, RGB, Colorsim, and Haralick. HandWritten
(LeCun et al., 1989) consists of 2,100 samples, covering 10
categories corresponding to digits 1 - 9. Each sample is char-
acterized by six types of features including Pixel, Fourier,
Profile, Zer, Kar, and Mor. LandUse-21 (Yang & Newsam,
2010) contains 2,100 satellite images across 21 categories. It

includes three views, i.e., GIST, PHOG, and LBP. Scene-15
(Fei-Fei & Perona, 2005) dataset consists of 15 categories,
including scenes such as office, kitchen, living room, and
mountain, with a total of 4,485 samples. Each sample is
represented by three distinct features, i.e., GIST, PHOG,
and LBP. ALOI-100 (Geusebroek et al., 2005) consists of
10,800 object images, belonging to 100 classes. Multi-view
data is constructed by extracting HSB, RGB, Colorsim, and
Haralick features from these images, respectively. St110-fea
(Coates et al., 2011) comprises 13,000 samples spanning 10
categories. Our experiments use its three distinct deep fea-
tures as the different views. YoutubeFace (Wolfet al., 2011)
consists of 101,499 samples across 31 classes. We utilize its
Audio volume, Cuboids histogram, Vision HIST, HOG, and
MISC features for experimental evaluation. ALOI-1000
(Geusebroek et al., 2005) comprises 110,250 object images,
and 1,000 classes. Each sample has four features, i.e., HSB,
RGB, Colorsim, and Haralick.

Table 1. Multi-view datasets in the experiment.

Datasets Samples Clusters Views Dimensionality
ALOI-10 1079 10 4 64/64/77/13
HandWritten| 2000 10 6 216/76/64/6/240/47
LandUse-21 | 2100 21 3 20/59/40
Scene-15 4485 15 3 20/59/40
ALOI-100 | 10800 100 4 77/13/64/125
St110-fea 13000 10 3 1024/512/2048
YoutubeFace| 101499 31 5 64/512/64/647/838
ALOI-1000 | 110250 1000 4 125/77/13/64

4.2. Comparison Methods

We compare DSVC with 12 state-of-the-art DMVC methods
and the sole SVC method to demonstrate its effectiveness.
Specifically, these methods include: COMIC (Peng et al.,
2019), DSRL (Wang et al., 2021), MFLVC (Xu et al., 2022),
DCP (Lin et al., 2022), CVCL (Chen et al., 2023), DealMVC
(Yang et al., 2023), CPSPAN (Jin et al., 2023), DMCE (Zhao
etal., 2023), GDMVC (Bai et al., 2024), MAGA (Bian et al.,
2024), FMCSC (Chen et al., 2024), MVCAN (Xu et al.,
2024a), and LSVC (Li et al., 2024b).

To comprehensively evaluate these comparison methods,
we employ three widely used metrics: Accuracy (ACC),
Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI).

4.3. Experimental Settings

Our DSVC is implemented in PyTorch 2.3.0, and all experi-
ments are performed on a Linux system with an NVIDIA
GPU and 32GB RAM. For our DSVC, the autoencoder con-
sists of a fully connected network. The encoder ( decoder)
network has the architecture of DV —512—1024—512—256
(256 — 512 — 1024 — 512 — D"), where D" represents the
feature dimension of each view stream. In the experiments,
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Table 2. Performance comparison (mean + standard deviation) with four datasets, ’O/M’ represents out-of-memory, **’ represents the
streaming view clustering method, the optimal results are highlighted in bold red and the suboptimal results are shown in bold blue.

Datasets HandWritten ALOI-10 Landuse-21 Scene-15

Evaluation metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
COMIC(ICML’19)  [63.60+0.43 62.91+0.66 63.91£0.36(56.23+£2.62 60.43+2.40 66.58+2.65 | 21.91+1.25 28.58+0.92 8.93+0.54 | 33.89+0.64 40.55+0.48 24.16+0.91
DSRL(TPAMI'21) [85.78+0.29 88.22+0.48 81.17+0.64|78.76+2.60 65.83+1.84 61.28+4.10 | 28.23+0.75 28.79+0.61 13.06+0.04| 45.53+0.86 40.11+0.54 24.01+0.67
MFLVC(CVPR’22) |83.74+4.09 80.83+2.49 81.95+4.02|63.66£1.01 67.23+2.61 60.27+1.65 | 19.90+0.28 22.33+0.40 7.13+0.21 | 37.73£1.04 37.81£0.91 21.56+1.05
DCP(TPAMI’22) 78.14+0.45 76.86+0.24 68.65+0.52 | 64.50+4.66 63.60+3.51 55.99+4.09|28.29+1.36 32.49+1.20 14.01+0.67 [42.27+3.23 41.05+2.66 23.23+2.06
CVCL(ICCV’23) 84.55+9.43 87.29+3.51 80.96+7.75|82.33+8.47 80.34+6.51 71.94£10.75| 19.20+0.62 21.95£0.23 6.43£0.18 | 36.15+2.73 38.19+1.83 20.69+1.84
DealMVC(MM’23) |80.69+0.48 80.13+0.46 71.79+0.61|71.38+4.49 75.40£1.98 59.86+5.05 |19.01+0.80 16.75£1.24 13.50+0.49| 35.79+0.94 36.59+0.81 21.97+0.83
CPSPAN(CVPR’23) |85.72+4.68 84.52+2.35 75.7743.62|67.84+7.71 81.01£2.96 63.91+7.64 | 25.59+1.55 32.49+1.35 12.00+0.67| 38.78+2.44 37.71£2.23 21.59+2.17
DMCE(23’PR) 94.30+£3.97 91.35+1.77 90.06+3.91|61.33+2.06 71.04£1.01 52.73+1.71 | 20.31£0.70 28.19+0.46 8.47+0.83 | 32.37+2.48 31.67+1.16 15.62+1.24
GDMVC(KBS’24) |84.32+0.34 88.43+0.45 81.78+0.63|85.64+4.08 83.78+1.87 71.87+4.83 | 27.21£1.38 33.46£1.61 12.34+0.45| 38.55+1.16 39.21+0.38 20.33+0.49
MAGA(F’24) 92.22+1.04 84.95+1.42 83.63+2.07|57.44+8.40 62.64+6.61 43.57+8.50 | 19.46£1.01 20.18+0.75 6.31+0.55 | 32.21+0.78 34.50+0.75 17.68+0.58
FMCSC(NeurIPS’24)| 84.35+0.38 74.01+0.22 70.41£0.29 |85.17+3.82 83.98+1.05 77.53+2.29 |21.66+0.36 23.25+0.53 8.20+0.26 | 34.29+2.67 31.57+2.08 18.23+1.95
MVCAN(CVPR’24) |94.12+0.57 88.41+0.59 87.51£1.12|54.51+3.81 63.27+2.51 45.08+3.55 | 22.38+1.21 28.94+1.50 9.45+0.688| 37.76+1.06 39.18+0.93 20.94+0.92
LSVC(TNNLS’24) * | 88.69+0.87 89.45+0.79 81.47+0.77|66.90+4.01 67.81+3.43 60.53+4.12 |24.66+1.44 26..71+0.58 11.13+0.67|40.68+1.26 37.54+1.31 23.98+1.66
DSVC(Ours) * 95.44+0.32 90.26+0.61 90.16+0.68 | 86.69+3.85 85.67+2.94 80.37+3.46 |28.52+1.16 33.09+0.74 14.16+0.83|45.33+0.88 43.13+1.13 27.61+1.10

Table 3. Performance comparison (mean + standard deviation) with four datasets, ’O/M’ represents out-of-memory, ’*’ represents the
streaming view clustering method, the optimal results are highlighted in bold red and the suboptimal results are shown in bold blue.

Datasets St110-fea ALOI-100 YoutubeFace ALOI-1000

Evaluation metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
COMIC(ICML’19) | 20.51+3.52 12.66+3.07 15.33+2.40 |59.19£1.93 59.83+1.44 54.69+0.78 oM oM oM oM oM oM
DSRL(TPAMI'21) O/M O/M O/M oM oM O/M OM O/M O/M oM oM OM
MFLVC(CVPR’22) |35.92+8.47 19.91+9.28 14.89+8.84|66.23£1.50 67.14+1.33 56.77£1.09 | 24.54+1.11 21.62+1.04 4.56+0.58 oM oM OM
DCP(TPAMI'22) 20.41£1.97 14.44+2.81 16.90£1.78 | 60.42+0.52 81.98+0.61 51.12+0.49|21.92+1.61 18.52+1.23 3.84+0.54 |48.12+0.86 66.01+0.72 37.50+0.65
CVCL(ICCV’23) 20.68+0.54 14.84+0.24 22.82+1.56 |60.26+2.54 82.63+0.67 54.67+1.50| 19.74+3.27 19.82+0.91 4.22+0.45 Oo/M oM oM
DealMVC(MM’23) | 12.14£0.33 14.24+0.91 14.41£0.44 [19.66+1.52 58.92+0.51 12.16+0.83| 18.95+0.75 15.64+0.74 3.32£0.50| O/M oM oM
CPSPAN(CVPR’23) |24.46£10.59 15.47+12.59 10.02+9.24 |66.7742.05 83.63+0.95 56.59+2.9920.63+£3.24 18.76+3.19 4.02+1.19 |43.81+2.61 76.12+1.37 30.86+2.82
DMCE(23’PR) 28.14+4.02 19.59+3.54 11.14+3.03 |74.83+0.52 83.82+0.27 62.20+0.50 O/M OM OM oM oM O/M
GDMVC(KBS’24) | 14.33+0.69 14.43+0.65 6.8+1.32 |80.15+0.66 86.82+0.26 64.13+0.85| O/M oM oM oM oM O/M
MAGA(F’24) 56.37+16.12 52.54+15.56 42.03+14.55|52.98+0.91 69.57+0.57 40.45+48 |22.95£1.36 23.68+1.21 3.77+0.37 Oo/M Oo/M Oo/M
FMCSC(NeurIPS’24)( 25.04+£2.63 17.52+3.26 28.95+2.36 [57.06+1.70 65.90+0.64 57.46+0.12|22.46+1.01 21.10+0.89 4.14+0.25 oM oM Oo/M
MVCAN(CVPR’24) 48.57+12.44 52.24+16.34 39.41+13.07|66.23£0.94 82.96+0.42 55.66+0.42|12.76+£0.36 13.65+0.49 2.071+0.14| O/M oM O/M
LSVC(TNNLS’24) * | 47.98+6.31 51.03+6.47 40.90+4.16 |64.11£0.66 74.15+0.48 55.01£1.49 O/M OM OM oM oM O/M
DSVC(Ours) * 63.41£9.96 62.66+9.04 53.58+9.72 |80.53+0.59 89.01+0.18 73.96+0.82|25.09+1.09 24.45+0.85 5.60+0.41 |58.32+0.56 81.20+0.24 44.93+0.49

Table 4. Ablation studies on eight datasets, where ‘/* indicates the used component.

Datasets

ALOI-10

HandWritten

Landuse-21

Scene-15

Stl10-fea

ALOI-100

YoutubeFace

ALOI-1000

Ls L,

ACC

NMI | ACC NMI | ACC

NMI | ACC NMI | ACC

NMI | ACC NMI | ACC

NMI | ACC NMI

< <=k d

L X
L

69.05
74.42
76.92
78.96
86.69

74.90
80.84
80.08
80.25
85.67

81.75 81.94
86.45 78.29
88.33 86.70
90.95 83.44
95.44 90.26

18.00
24.86
24.75
24.62
28.52

28.73
32.23
29.86
31.67
33.09

30.77 33.30
39.60 40.68
40.02 41.50
3572 36.93
45.33 43.13

38.32
52.65
53.75
45.28
63.41

34.48
58.36
52.66
38.53
62.66

58.70 81.27
79.05 88.5

7733 87.16
54.43 71.16
80.53 89.01

18.37
23.50
23.07
18.45
25.09

19.60
23.04
23.04
19.81
24.24

36.71 73.57
54.13  76.35
56.00 79.95
4042 7140
58.32 81.20

we train each collected view for 200 epochs with batch size
256 and learning rate 0.0001. Additionally, we use Adam
optimizer for model optimization and employ ReLU as the

activation function.

uniformly set « and S to 0.1. To comprehensively evaluate
our clustering performance, we tested all methods using
five different random seeds and calculated the mean and

standard deviation as the final results.

In DSVC, which included two adjustable parameters, i.e.,

and 3. For the HandWritten and Scene-15 datasets, we set
«aand S to 1 and 0.1, respectively. For the Stl10-fea dataset,
« and S are set to 0.001 and 1. For all other datasets, we

4.4. Experimental Results Analysis

Tabs.2 and 3 present the clustering results of DSVC com-
pared to 12 state-of-the-art DMVC methods and the sole



Deep Streaming View Clustering

100 20
e-LSVC s-LSVC
95{ —e—Ours d 85{ =e=Ours
90
85

. Q
80 » ‘&)

ACC

75
70 ¢
65] ° ‘ 60

60 1 2 3 5 6 5 1 2 3
Streaming View

(b) ALOI-10

P
Streaming View

(a) HandWritten

a-LSVC a-LSVC
80{ —e—Ours * *=O0urs

75

70
Q
O 65
<

60

55
’

50{

2
Streaming View

(d) Stl10-fea

2 3
Streaming View

(c) ALOI-100

Figure 3. The changes of clustering performance on four datasets,
when view data continue to accumulate.

SVC method across three evaluation metrics on eight dif-
ferent datasets. From the tables, the following observations
can be obtained:

* Obviously, our DSVC demonstrates superior perfor-
mance compared to the other 12 state-of-the-art DMVC
methods and the sole SVC method in nearly all sce-
narios. Specifically, we take the ACC metric as an
example, on the eight datasets (from ALOI-10 to ALOI-
1000), DSVC outperforms the suboptimal method by
improvements of 1.14%, 1.05%, 0.23%, 3.06%, 7.04%,
0.38%, 0.55%, and 10.20%, respectively. This demon-
strates that DSVC can extract representative infor-
mation from the continuously evolving view streams,
thereby uncovering more optimal clustering attributes.

e In addition to achieving superior clustering perfor-
mance, DSVC exhibits greater stability than subopti-
mal methods, as evidenced by the lower standard devia-
tion. This is because our knowledge aggregation learn-
ing (KAL) module effectively extracts representative
prototype knowledge and feature representations from
the current view data. The distribution consistency
learning (DCL) module aligns the prototype knowl-
edge of the current view with the historical knowledge
distribution, thereby mitigating the effect of concept
drift. The knowledge guidance learning (KGL) module
leverages aligned prototype knowledge to constrain the
data distribution of the current view, which enhances
the clustering structure. The three modules work syn-
ergistically to achieve the most stable performance.
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Figure 4. The clustering performance with different sequences of
views streaming on four datasets

* As the scale of datasets continues to grow, LSVC and
some DMVC methods are unable to handle these large-
scale datasets within the constraints of limited computa-
tional resources. For example, the ALOI-1000 dataset
can only be processed by the two DMVC methods (i.e.,
CPSPAN and DCP ) and our DSVC. However, our ap-
proach is not only capable of handling these large-scale
datasets, but also achieves optimal performance. This
is because DSVC is specifically designed to tackle the
challenge of streaming view clustering in real-world
tasks. Therefore, only one view is considered at a
time during each training step instead of training on all
views simultaneously, which significantly reduces the
computational overhead.

4.5. View Stream Analysis

To comprehensively analyze the performance of DSVC on
dynamic tasks, we present the clustering results after pro-
cessing new views, as well as its performance across dif-
ferent view streaming sequences. Specifically, as shown
in Fig.3, with the continuous accumulation of new views,
LSVC exhibits unstable performance, while the perfor-
mance of our method is persistent increase. This is at-
tributed to the problem of concept drift across different
view streams, which results in the previous model being
unsuitable for training the next view. In contrast, our DSVC
aligns the prototype knowledge of the current view with
the historical knowledge by DCL, which unifies the data
distribution across different view streams and effectively
mitigates the concept drift problem. Compared to DMVC
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Figure 5. The clustering performance with different prototype
knowledge numbers on four datasets

methods, our DSVC consistently achieves near-optimal per-
formance. This is due to the KGL, which leverages proto-
type knowledge to guide the data distribution and enhance
the clustering structure.

Additionally, as shown in Fig.4, the initial performance
gap is quite significant when processing view streams of
different sequences. However, as the views accumulate,
the performance gap between different sequences gradually
decreases. This is because the initially collected views
exhibit significant differences in data distribution, which
leads to a noticeable performance gap. As more views are
accumulated, our DCL module progressively aligns the data
distribution, while the KGL module continuously enhances
the clustering structure. As a result, the final performance
tends to be stable and consistent. For more experiments on
view flow analysis, please refer to Section B of the appendix.

4.6. Prototype Knowledge Number Analysis

To evaluate the impact of the number of prototype knowl-
edge on the clustering performance of the model, we con-
duct the experiment with prototype knowledge numbers
ranging from K to M x K, where M = 1,2,...,10. As
shown in Fig.5, the clustering performance can be en-
hanced with an appropriate amount of prototype knowledge.
Both excessive and insufficient prototype knowledge nega-
tively impact performance. Specifically, when the prototype
knowledge is too few, the model tends to overly emphasize
the commonalities between data, and neglect the distinc-
tions within clusters. Conversely, an excessive amount of

B I&]

(c) ALOI-100 (d) Stl10-fea

Figure 6. Parameter sensitivity analysis on eight datasets.

prototype knowledge may cause the model to overlook the
cluster-specific information, thereby failing to capture the
commonalities within the same cluster. Based on our experi-
mental results, we set M to 7 for HandWritten dataset, while
for other datasets, we set M to 1. For more experimental
results, please refer to Section C of the appendix.

4.7. Ablation Study

Our DSVC consists of three components: the knowledge
aggregation learning module, the distribution consistency
learning, and the knowledge guidance learning module. To
assess the effectiveness of each component, we performed
ablation studies on four versions of DSVC across eight dif-
ferent datasets. As shown in Tab.4, the removal of any com-
ponent results in suboptimal performance. DSVC achieves
optimal performance only when all three loss functions
are included. The results demonstrate that the L, loss pre-
serves the representative features of the data, maintaining
its integrity and fidelity. The L, loss aligns the prototype
knowledge distribution of the current view with the histori-
cal knowledge distribution, effectively mitigating the impact
of concept drift. The L, loss leverages prototype knowledge
to guide the data distribution of the current view, thereby
enhancing the clustering structure.

4.8. Parameter Sensitivity Analysis

DSVC incorporates two trade-off parameters, « and [3,
which respectively regulate the reconstruction loss and the
knowledge guidance learning loss. To evaluate the effec-
tiveness of the trade-off parameters, we varied their values
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Figure 8. The t-SNE visualization of representations learned by DMCE, MAGA, MVCAN, and our DSVC on the HandWritten dataset.

within the range of 102 to 10~*. The experimental results,
as illustrated in Fig.6, indicate that excessively high or low
parameter values adversely impact clustering performance.
This highlights the importance of balancing three losses
within our model. Based on our experimental results, we
recommend setting the parameter range between 10! to
10~!. For more parameter analysis, see Section D of the
appendix.

4.9. Visualization

To provide a more intuitive demonstration of the effective-
ness of DSVC, we conduct visualization experiments on
the Handwritten dataset. As shown in Fig.7, in the dy-
namic task, with the accumulation of views, the boundaries
between clusters become increasingly distinct, and the intra-
cluster structures become more compact. As illustrated in
Fig.8, even when compared to DMVC methods within a
static framework, our DSVC exhibits superior inter-cluster
separability and intra-cluster compactness. This demon-
strates that DSVC not only tackles the problem of concept
drift between different view streams, but also enhances the
clustering structure by leveraging the prototype knowledge
of the current view to guide the distribution of view data.

5. Conclusion

In this paper, we propose a deep streaming view clustering
(DSVC) method designed to address the challenges of con-
cept drift and newly incoming view clustering in dynamic
environments. To address these challenges, we employ the
knowledge aggregation learning module to extract represen-

tative features and prototype knowledge from the current
view data. Subsequently, to mitigate the effect of concept
drift, we leverage the distribution consistency learning mod-
ule to align the prototype knowledge of the current view
with the historical knowledge distribution, to enhance the
consistency of the distribution across different view streams.
Furthermore, the knowledge guidance learning module is
introduced to utilize prototype knowledge to guide data dis-
tribution, and strengthen the clustering structure. Finally, the
prototype knowledge from the current view is updated into
the knowledge base, which guides the training of subsequent
views. Extensive experiments demonstrate the superiority
and effectiveness of DSVC.
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This document provides additional details and experimental results to support the main submission. We first provide the
pseudocode for DSVC in Section A. Then, Section B presents the experimental results of the view stream analysis. In
Section C, we present the experiments analyzing the impact of the number of prototype knowledge. In Section D, we
conduct a sensitivity analysis of the loss function parameters. Finally, in Section E, we discuss the limitations of our work.

A. DSVC Training Algorithm

In this section, we present the main algorithmic process of DSVC, as shown in Algorithm 1.

Algorithm 1 The algorithm of DSVC
1: Input: New streaming view data X" with size IV; Batch size S; Training epoch E’; The number of prototype knowledge
is K.
2: Parameter: « and (.
3: if v = 1 then
4:  while epoch < E do

5: for i =1to N/S do

6: Training the network by Eq.(3).

7: Aggregate prototype knowledge P" and features H via Eq. (5).

8: Optimize feature H" distribution via Eq.(8).

9: Leverages prototype knowledge P to guide the feature H" distribution via Eq.(11).
10: end for

11: Update prototype knowledge P into knowledge base B.

12:  end while

13:  Perform K-means algorithm on H".
14: end if

15: if v > 1 then

16:  while epoch < E do

17: for i =1to N/S do

18: Training the network by Eq.(3).

19: Aggregate prototype knowledge P" and features H” via Eq. (5).

20: Align the current view prototype knowledge P with the knowledge base B distribution via Eq. (8).
21: Leverages prototype knowledge P to guide the feature H" distribution via Eq.(11).

22: end for

23: Update prototype knowledge P into knowledge base B.

24:  end while

25:  Concatenate H to H" ™!
26:  Perform K-means algorithm.
27: end if

B. View Stream Analysis

In this section, we present additional experimental results regarding the continuous accumulation of views and the impact
of different view streaming orders on performance, as shown in Figs.9 and 10. We can see from the Fig.9, that LSVC not
only fails to address the concept drift problem but also cannot handle large-scale data. In contrast, our DSVC effectively
mitigates concept drift while supporting the processing of large-scale data. This is achieved through our distribution
consistency learning module, which aligns the knowledge distribution of the current view with historical knowledge, thereby
alleviating the impact of concept drift. Additionally, as shown in Fig.10, the initial performance gap is quite significant
when processing view streams of different sequences. However, as the views accumulate, the performance gap between
different sequences gradually decreases. This is because the initially collected views exhibit significant differences in data
distribution, which leads to a noticeable performance gap. As more views are accumulated, our distribution consistency
learning module progressively aligns the data distribution, while the knowledge guidance learning module continuously
enhances the clustering structure. As a result, the final performance tends to be stable and consistent.
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Figure 9. The changes of clustering performance on four datasets, when view data continue to accumulate.
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Figure 10. The clustering performance with different sequences of views streaming on four datasets

C. Prototype Knowledge Number Analysis

Here are more experimental results on the effect of different numbers of prototype knowledge on the performance of the
model. we conduct the experiment with prototype knowledge numbers ranging from K to M * K, where M = 1,2, ..., 10.
As shown in Fig.11, the clustering performance can be enhanced with an appropriate amount of prototype knowledge. Both
excessive and insufficient prototype knowledge negatively impact performance. Specifically, when the prototype knowledge
is too few, the model tends to overly emphasize the commonalities between data, and neglect the distinctions within clusters.
Conversely, an excessive amount of prototype knowledge may cause the model to overlook the cluster-specific information,
thereby failing to capture the commonalities within the same cluster.
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Figure 11. The clustering performance with different prototype knowledge numbers on four datasets

D. Parameter Sensitivity Analysis

Here are more experimental results on the effect of different parameters. DSVC incorporates two trade-off parameters,
« and 3, which respectively regulate the reconstruction loss and the knowledge guidance learning loss. To evaluate the
effectiveness of the trade-off parameters, we varied their values within the range of 10? to 10~%. The experimental results,
as illustrated in Fig.12, indicate that excessively high or low parameter values adversely impact clustering performance. This
highlights the importance of balancing three losses within our model. Based on our experimental results, we recommend
setting the parameter range between 10! to 1071,
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Figure 12. Parameter sensitivity analysis on eight datasets.

E. Limitations

This paper proposes a deep streaming view clustering (DSVC) method. To the best of our knowledge, DSVC is the first
work to address stream view clustering within the deep learning framework, demonstrating superior performance even
compared to DMVC methods under static frameworks. However, we only consider the scenario where concept drift exists
between view streams, without considering the potential issue of noisy data that may occur in real-world data collection. In
the future, we will focus on addressing and improving this issue.
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