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ABSTRACT

Large language models (LLMs) are increasingly used to examine tabular datasets
and aid decision-making in critical sectors such as clinical medicine. Standard
fairness metrics, which were largely designed to evaluate supervised learning
models, are not well suited to this setting. This paper proposes a novel dichotomy
between intrinsic and behavioral fairness, and details a comprehensive framework
for evaluating both in LLMs. The former is encoded in a language model’s em-
beddings through procedures like pre-training, preference fine-tuning, etc. The
latter reflects the application of LLMs in real-world scenarios. Though current
works largely prioritize intrinsic over behavioral fairness, we argue that the lat-
ter is much more important in practice. We illustrate the gap between these two
concepts in a series of experiments on a semi-synthetic dataset inspired by a large
scale study of racial bias in health algorithms. Our results suggest a new direction
for fairness research in LLMs, as well as some practical guidelines to mitigate
harmful outcomes.

1 INTRODUCTION

Tabular datasets are an important area of study for machine learning practitioners Shwartz-Ziv &
Armon (2022). While many classic learning algorithms were originally designed for this setting,
researchers are increasingly turning to large language models (LLMs) to analyze tabular data and
even build predictive models Bellamy et al. (2018). The focus on tabular data is a simple byproduct
of its ubiquity—such datasets are the norm in many real-life applications, from economics to politics
to healthcare Abdulhai et al.. However, this can lead to severe outcomes when a decision goes wrong
Barocas et al. (2019); Diakopoulos (2016). Studies have found that an algorithm used by several US
states inflated recidivism risk scores for black defendants, resulting in false positive rates nearly
twice as high as those for white defendants Angwin et al. (2016); Chouldechova (2017). Amazon’s
internal hiring system was found to discriminate against female candidates, particularly for software
development and technical positions Dastin (2022). Google’s ad-targeting algorithm systematically
proposed higher-paying executive jobs for men over women Datta et al. (2014); Simonite (2015).
These lines of evidence have led to growing interest in the machine learning literature on defining,
evaluating, and improving fairness in machine learning algorithms Berk et al. (2021); Chouldechova
& Roth (2018); Friedler et al. (2019); Holstein et al. (2019). See Pessach & Shmueli (2022) for
a more detailed overview of the machine learning fairness literature. Relatively few studies have
focused on fairness in LLMs using tabular data, and methodological approaches to date have been
fairly narrow, mostly limited to directly prompting the LLM for model predictions Hegselmann et al.
(2023); Liu et al. (2023); Wang et al. (2023).

Our focus in this paper is to comprehensively examine fairness in LLMs with tabular datasets, specif-
ically by broadening the evaluation frameworks beyond simply evaluating the fairness of model pre-
dictions. LLMs, through many training processes, develop an intrinsic understanding of fairness.
This is also the type of fairness evaluated in prior works by prompting model predictions on tabular
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datasets. On the other hand, what human stakeholders are most interested in is whether and how this
intrinsic understanding can be operationalized. In real life, operationalizing fairness could involve
guiding humans to think correctly about the fairness task, instructing machine learning engineers
to integrate fairness into their models, and so on. Inspired by this insight, the contributions of this
paper are summarized below:

• We define two notions of fairness in LLMs. (1) Intrinsic fairness refers to the model’s la-
tent representations of sensitive attributes and their relationship to (un)desirable outcomes.
Most prior works evaluate intrinsic fairness by directly asking the LLM to issue predictions
on tabular datasets. (2) Behavioral fairness, by contrast, emerges through human-machine
interaction. An LLM is deemed behaviorally fair when it can effectively operationalize
its understanding of fairness in real-world scenarios. This can take the form of utilizing
various tools or instructing humans on how to use these tools to address tasks with fairness
concerns.

• Building on our definitions, we propose a comprehensive framework to evaluate fairness
in LLMs. As we show later in the paper, prior works can all be seen as evaluating in-
trinsic fairness, whereas we propose partially and fully automated pipelines for evaluating
behavioral fairness in LLMs.

• Finally, we benchmark the performance of various popular LLM architectures for a large
scale study of racial bias in healthcare, showing that different LLMs should be used in
different application scenarios where differing fairness metrics are deemed important. To
the best of our knowledge, we are also the first to evaluate the change in model fairness as
we fine-tune on a preference dataset.

2 INTRINSIC AND BEHAVIORAL FAIRNESS

In this section, we provide a detailed description of intrinsic vs. behavioral fairness in LLMs and
explain why we believe it is important to distinguish between the two. We conclude by outlining
evaluation strategies for both.

2.1 PRIOR WORK HAS FOCUSED ON INTRINSIC FAIRNESS

By intrinsic fairness we refer to an LLM’s knowledge —or representation—of the notion of fair-
ness. It can be evaluated by inspecting the model’s internal embeddings—typically either latent
representations or model outputs (representation in the last layer). This intrinsic fairness can be
learnt during all stages of LLM training, from pre-training to preference fine-tuning. Even before
the era of LLMs, many pre-trained language models have been shown to exhibit gender and racial
biases in word embeddings Bolukbasi et al. (2016); Caliskan et al. (2017), and similar biases have
been observed in the latent representations and outputs of GPT models Abid et al. (2021); Basta
et al. (2019); Askell et al. (2021); Ganguli et al. (2022). The interest in investigating the fairness
of language models has recently culminated in several papers Liu et al. (2023); Wang et al. (2023),
which have directly prompted a variety of LLMs for predictions on tabular datasets. However, these
evaluations lack the context of applications and realistic use cases built around LLMs operating on
tabular datasets.

2.2 WHY DO WE NEED BEHAVIORAL FAIRNESS?

By behavioral fairness we refer to how the intrinsic fairness of an LLM is operationalized, i.e.
whether in real-world use cases and applications built around LLMs the outcomes are fair. The
reason why intrinsic fairness is not sufficient is that intrinsic fairness does not represent how we use
LLMs in real life: rarely would human decision making rely on zero-shot predictions made by the
LLM, but rather the LLM acts as a tool to aid the human in making decisions. To list a few examples,
increasingly companies use LLMs as agents behind natural language interfaces for data exploration,
enabling non-technical users to ask questions about their tabular data in plain language, or execute
queries on databases and produce visualizations. LLMs can also be used as assistants to automate
the process of feature engineering for tabular datasets by generating new features or enhancing
existing ones based on natural language descriptions or by utilizing contextual embeddings Caliskan
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et al. (2017). Customer support agents can extract relevant information from databases or provide
personalized recommendations based on available tabular data Shaalan et al. (2022). When it comes
to the focus of this paper, healthcare, doctors would be deemed unprofessional if their decision of
whether to treat the patient is wholly reliant on LLM predictions on patient data. It is much more
sensible for doctors to ask LLMs to generate potential diseases and outcomes, and make a decision
based on their best judgement Yang et al. (2022). While we could in principle measure intrinsic
fairness for all real-life scenarios described above, this is an imperfect proxy for our true target:
behavioral fairness. What we need is an understanding of whether—and if so, how—the intrinsic
fairness of LLMs translates to outcomes for stakeholders where they are used in real-world use
cases. As we will show in the experiments section, an LLM with a given notion of intrinsic fairness
(e.g. demographic parity) does not necessarily lead to outcomes that comply with this same notion.

3 PARTIALLY AUTOMATED AND FULLY AUTOMATED BEHAVIORAL
FAIRNESS

3.1 CASE STUDY: HOW DO WE MEASURE INTRINSIC FAIRNESS?

Prior works have considered a wide range of model outputs, ranging from latent representations (e.g.
word embeddings) learned by the model to multiple choice answers given by the LLM Bolukbasi
et al. (2016); Caliskan et al. (2017). Here, we measure intrinsic fairness by prompting the model to
issue predictions on a tabular dataset, using algorithmic fairness metrics, in accordance with recent
work Liu et al. (2023); Wang et al. (2023). We formalize intrinsic fairness evaluation as follows:

i Preprocessing: we rely on serialization to translate tabular data into inputs that the LLM
will accept Hegselmann et al. (2023). For example, if the dataset contains an individual of

Age Sex Race
62 Male White

we convert this information into a natural language string to input into the LLM

ii Prediction/Action: we obtain a model prediction with respect to the input string.

iii Fairness evaluation: we calculate fairness metrics of interest on the model predictions.

3.2 FULLY AUTOMATED BEHAVIORAL FAIRNESS AND HUMAN-IN-THE-LOOP

To compare intrinsic fairness and behavioral fairness, we assess behavioral fairness in a simplified
setting, emulating a real-world use case in healthcare as follows:

Fully automated behavioral fairness is evaluated from an agent producing executable code to train a
prediction algorithm on the tabular dataset and perform a prediction.

Human-in-the-loop behavioral fairness changes step (2) to request input from a human on some or
all of the involved steps. For example, the LLM presents the human with a step-by-step plan, and
the human can intervene through prompting, re-writing code, and so on. To automate evaluation,
here we use GPT-4 in lieu of a human-in-the-loop.

4 RESULTS

4.1 DATASET

In this paper, we will present a case study using the ”bias” medical dataset Obermeyer et al. (2019).
Prior work using this dataset found evidence of racial bias in a widely used algorithm, where black
patients assigned the same level of risk were sicker than white patients. The authors estimated that
this racial bias reduces the number of black patients identified for extra care by more than half. We
test the fairness metrics of LLMs making predictions on this dataset.
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Figure 1: For intrinsic fairness, GPT models tend to achieve better fairness in terms of DEO, while
open-source models (e.g. Llama) tend to do better in DP. On the other hand, GPT-3.5 achieves
better behavioral fairness than intrinsic fairness, highlighting the importance of measuring fairness
in a use-case relevant setting.

4.2 EVALUATING INTRINSIC FAIRNESS AND BEHAVIORAL FAIRNESS

In this section, we evaluate both intrinsic fairness and behavioral fairness. Firstly, we compare the
intrinsic fairness (similar to experiments in prior works) across models Llama-7B, Llama-13B, and
GPT-3.5. Then, we use our behavioral fairness methods to compare the behavioural fairness of
GPT-3.5 with its intrinsic fairness in Fig. 1.

The following thought experiment demonstrates that intrinsic fairness does not necessarily transfer
to behavioral fairness: assume we have an application scenario where DEO is the most important
fairness metric. Based on measurement of intrinsic fairness, it seems like GPT-3.5 is a good fit for
the fairness task. However, when measuring behavioural fairness, we might find that it has high
DP fairness, but low DEO fairness due to the differences in what is being evaluated under the two
scenarios. on DP. Thus, if GPT-3.5 is used in a behavioural fairness scenario, it may not be fair
under the relevant fairness metric (DEO).

4.3 CAN WE IMPROVE INTRINSIC FAIRNESS OR BEHAVIORAL FAIRNESS?

We conclude the experiments section with a discussion on whether we can improve the fairness
understanding of LLMs. Intuitively, we assume that preference fine-tuning improves intrinsic fair-
ness by reinforcing human fairness preferences (taken to be ground truth fair). To evaluate this
hypothesis, we first perform preference fine-tuning on the model using a human-labeled preference
dataset (Anthropic-hh). Then, we present results of intrinsic fairness and behavioral fairness exper-
iments, carried out over various model checkpoints throughout the fine-tuning process. We choose
to preference fine-tune on the Llama-7B model in this section in Fig. 2.

Without preference fine-tuning, intrinsic fairness and behavioral fairness follow the same in-
crease/decrease trend, but we see a difference in fairness metrics for intrinsic fairness vs behavioral
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Figure 2: Zero-shot models tend to perform well in DEO and DP but not in GC. As we fine-tune
the model, however, the performance of DP and GC tends to improve, but the performance of DEO
becomes worse.

fairness across the preference fine-tuning process, see Fig. 2. We believe it merits future work to
elaborate whether the decrease in intrinsic fairness during preference-finetuning at the same time as
in increase in behavioral fairness repeats across other datasets and applications.

5 DISCUSSION

We have argued that intrinsic fairness measures do not reflect the harms we most care about when
using LLMs in sensitive domains like healthcare, where an overreliance on LLMs or fully automated
approaches can introduce entirely new and unacceptable risks. The temptation to focus evaluation
on intrinsic measures is understandable, as it builds on years of well-established research in the
supervised setting. However, LLMs are not simple classifiers or regressors. Their interactive nature
raises unique opportunities and challenges that we are only just beginning to confront. We are
hopeful that with proper guidance—i.e., with expert humans in the loop and procedural guardrails
in place—LLMs can help clinicians to make more informed and equitable decisions. This will
require a steadfast commitment to behavioral fairness.

We fully acknowledge that technical proposals cannot resolve injustices arising from complex and
contested social dynamics. Some obvious limitations include: (1) Scope of metrics. Commonly
used metrics, such as disparate impact or equalized odds, might not address more nuanced forms
of bias, such as intersectional bias or cultural biases. (2) Context sensitivity. Fairness is often
context-dependent, and what is considered fair in one context may not be applicable in another,
making it challenging to create universally applicable fairness metrics. (3) Ethical considerations.
Fairness evaluations may not fully capture broader ethical considerations. Issues of transparency
and accountability are not automatically resolved with fairer algorithms, and some machine learning
applications pose moral challenges that are arguably independent of fairness (e.g., advanced weapon
development).
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A FAIRNESS METRICS REVIEW

Formulation
FTU A(Ŷ |X \A)

DP AŶ
EO AY |̂Y

CAL Y A|Ŷ

Table 1: Fairness metrics

A.1 FOUR NOTIONS OF FAIRNESS

Let dX , dY , and dA represent the dimensions of spaces X ⊂ RdX , Y ⊂ RdY , and A ⊂ RdA

respectively, where variables X defined on X denotes features, Y defined on Y denotes targets, and
A defined on A denotes sensitive attributes we would like to protect against (e.g. gender or race).
Note that we could have A ⊂ X .

The main strand of research in fairness definitions is sometimes termed ”algorithmic fairness”,
which is defined as group fairness that requires that protected groups (e.g. black applicants) be
treated similarly to advantaged groups (e.g. white applicants) ?. We highlight here four popular def-
initions and how each quantifies a different aspect of fairness. Fairness through unawareness (FTU)
? is defined as A(Ŷ |X \A), effectively prohibiting the algorithm from explicitly relying on sensitive
attributes in making predictions. While straightforward to implement, this method does not elimi-
nate the effect of covariates that are correlated with A, e.g. “redlining” ?. Demographic parity (DP)
?? solves that problem by requiring statistical independence between attributes and predictions AŶ .
However, this strict notion permits laziness in learning, which can hurt fairness in the long run ?. To
address these concerns, Hardt et al. (2016) introduced equalized odds (EO), requiring that attributes
A and predictions Ŷ are independent given the true outcome Y , i.e. AY |̂Y . The binary version of
EO is a metric known as difference in equal opportunity (DEO):

DEO = |P (Ŷ = 1|A = 1, Y = 1)− P (Ŷ = 1|A = 0, Y = 0)| (1)

A final notion of fairness is calibration (CAL) ?, which ensures that predictions are calibrated be-
tween subgroups, i.e. Y A|Ŷ . It is important to note that there is no universal measure of fairness,
and the correct notion depends on ethical, legal and technical contexts.

A.2 METRICS OF FAIRNESS

In the previous section we have seen the probability metric DEO. Analogously, we adopt previous
definitions and define the metric of demographic parity to be

DP = |P (Ŷ = 1|A = 1)− P (Ŷ = 1|A = 0)| (2)

The demographic parity difference measures the difference between the probability of positive pre-
dictions conditioned on sensitive attribute A = 1 and that conditioned on A = 0. A large difference
in demographic parity means that there is a large prediction gap between the groups with A = 1
and A = 0, indicating the unfairness of the model prediction. Since the demographic parity does
not consider the ground truth label, we also consider the metric DEO to evaluate model prediction
fairness:

DEO = |P (Ŷ = 1|A = 1, Y = 1)− P (Ŷ = 1|A = 0, Y = 0)| (3)

A large equalized odds difference demonstrates a large prediction gap conditioned on different val-
ues of the sensitive attribute, and therefore indicates the unfairness of the model prediction. To
evaluate the demographical balance (fairness) of the data distribution, we adopt the base rate parity
BP :
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BP = |P (Y = 1|A = 1)− P (Y = 1|A = 0)| (4)

Finally, we also take into account the KL divergence between probability distributions. The KL
divergence can be written as

D(p||q) =
∑
x

p(x)logp(x)−
∑
x

p(x)logq(x) (5)

which can be calculated accordingly for all probability distributions defined above.
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B RELATED WORKS

B.1 LARGE LANGUAGE MODELS FOR TABULAR DATA

In order to leverage the natural language capabilities of LLMs, there has been a variety of papers that
serialize tabular data into natural language strings for the LLM to process. Yin et al. (2020) is one
of the first papers to include the column data type in a serialized string. Li et al. (2020) investigate
the ability of language models to perform entity matching on tabular data, i.e., determining if two
rows refer to the same object. Harari & Katz (2022) study data enrichment by generating additional
features using a language model with additional unstructured text (e.g. Wikipedia). Bertsimas et al.
(2022) studied two healthcare datasets and used a language model to generate feature embeddings
that were subsequently fed into classifiers. They also studied different serialization variants. All
these studies use a BERT-style language model Devlin et al. (2018). For other language models,
Narayan et al. (2022) recently assessed in-context learning with the autoregressive GPT-3 architec-
ture for tabular data cleaning tasks. Borisov et al. (2022) introduced an LLM-agnostic method to
generate realistic tabular data. The LIFT method introduced by Dinh et al. (2022) evaluated the
capabilities of fine-tuned GPT-3 and GPT-J models for regression and classification on synthetic,
tabular, and vision data. They also studied the sample efficiency and considered different static
serialization templates assessing the effect of including column names in the input.

B.2 FAIRNESS EVALUATION OF LARGE LANGUAGE MODELS

The evaluation of fairness in LLMs is a multidimensional challenge that involves assessing biases
at various levels, from individual word embeddings to the overarching model behavior. Researchers
have proposed diverse evaluation frameworks and mitigation strategies to address these challenges.
The study done by Mitchell et al. (2018) provides a foundational exploration of bias and fairness in
natural language processing (NLP) models. Aggarwal et al. (2019) proposes an evaluation frame-
work specifically designed to assess the fairness of language models, which takes into account not
only the biases present in the training data but also the model’s ability to abstract information fairly
across different demographic groups. Dixon et al. (2018) focuses on unintended biases in text classi-
fication tasks. Bolukbasi et al. (2016) addresses biases in word embeddings of the language models,
providing insights into improving the fairness of language models at the lexical level. Goyal et al.
(2023) proposes an adversarial testing approach to evaluate the robustness of NLP models against
biased inputs. Schramowski et al. (2022) addresses ethical considerations in deploying pre-trained
LLMs. The study emphasizes the need for transparency and fairness in the fine-tuning process. Shah
et al. (2019) introduces fairness indicators, a tool designed to integrate bias measurement into the
LLM development pipeline. Finally, Lalor et al. (2022) delves into the concept of intersectional bias
in language models, recognizing that biases can be compounded when multiple demographic factors
intersect.
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