
Under review as a conference paper at ICLR 2023

EXPLICITLY MAINTAINING DIVERSE PLAYING STYLES
IN SELF-PLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-play has proven to be an effective training schema to obtain a high-level
agent in complex games through iteratively playing against an opponent from its
historical versions. However, its training process may prevent it from generating a
well-generalised policy since the trained agent rarely encounters diversely-behaving
opponents along its own historical path. In this paper, we aim to improve the
generalisation of the policy by maintaining a population of agents with diverse
playing styles and high skill levels throughout the training process. Specifically, we
propose a bi-objective optimisation model to simultaneously optimise the agents’
skill level and playing style. A feature of this model is that we do not regard
the skill level and playing style as two objectives to maximise directly since they
are not equally important (i.e., agents with diverse playing styles but low skill
levels are meaningless). Instead, we create a meta bi-objective model to enable
high-level agents with diverse playing styles more likely to be incomparable (i.e.
Pareto non-dominated), thereby playing against each other through the training
process. We then present an evolutionary algorithm working with the proposed
model. Experiments in a classic table tennis game Pong and a commercial role-
playing game Justice Online show that our algorithm can learn a well generalised
policy and at the same time is able to provide a set of high-level policies with
various playing styles.

1 INTRODUCTION

Recent years have witnessed impressive results of self-play for Deep Reinforcement Learning (DRL)
in sophisticated game environments such as various board (Silver et al., 2016; 2017a; Jiang et al.,
2019) and video games (Jaderberg et al., 2019; Vinyals et al., 2019; Berner et al., 2019). The idea
behind self-play is using a randomly initialised DRL agent to bootstrap itself to high-level intelligence
by iteratively playing against an opponent from its historical versions (Silver et al., 2016). However,
the training process of self-play may prevent it from obtaining a well-generalised policy since the
trained agent rarely encounters diversely-behaving opponents along its own historical path. This
can easily be taken advantage of by human players. Taking OpenAI Five (Berner et al., 2019) as
an example, it has a win rate of 99.4% in more than 7000 Dota 2 open matches1, but the replay
shows that 8 of the top 9 teams that defeated the OpenAI Five are the same team and the policies
they use in each game are very similar. This indicates that despite the remarkable high performance,
the OpenAI Five agent is still not fully comfortable in some circumstances, which can be found and
further exploited by human players (e.g., through meta-policies).

Generally, an agent can be identified from two aspects, skill levels and playing styles (Mouret &
Clune, 2015). These two aspects are crucial for learning a high-level agent in the self-play training
process because only playing against opponents with diverse playing styles and appropriate skill
levels (i.e., not too low) can maximise the gains of the learning. If one only considers opponents’
skill levels, there can be a catastrophic forgetting problem in which the agent “forgets” how to play
against a wide variety of opponents (Hernandez et al., 2019). On the other hand, if one only considers
playing styles, there will be a lot of meaningless games that the agent learns very little from its far
inferior opponents (Laterre et al., 2018).

1https://arena.openai.com/#/results

1

https://arena.openai.com/#/results

Under review as a conference paper at ICLR 2023

Unfortunately, it is intrinsically challenging to strike a good balance between skill levels and playing
styles in self-play. During the training process, the network weights of the DRL agent are usually
optimised by a gradient-based method, which progresses along a single path that relies on the
random seed of the network and the environment. At each iteration, the incumbent agent is the
only response-policy for its historical versions. Such single-path optimisation is very unlikely to
experience sufficiently diverse opponents, especially within a sophisticated environment. This may
make common self-play algorithms, which use a probability function to decide which opponents to
consider (e.g., the latest opponent or the past versions (Berner et al., 2019; Oh et al., 2019)), unable
to generalise their policies, i.e., struggle to cope with opponents that are very different from which
they have encountered before.

A viable way to introduce diverse playing styles in self-play is to consider the population-based
approach, where a population of agents/opponents are maintained during the training process, with
each potentially representing one play style. The population-based approach has already been
frequently used in DRL (Jung et al., 2020; Carroll et al., 2019; Parker-Holder et al., 2020; Zhao
et al., 2021). For example, Population-Based Training (PBT) (Jaderberg et al., 2017; 2019; Li et al.,
2019; Liu et al., 2019) optimises a population of networks at the same time, allowing for the optimal
hyperparameters and model to be quickly found. Neuroevolution (Heidrich-Meisner & Igel, 2009;
Such et al., 2017; Salimans et al., 2017; Stanley et al., 2019) uses population-based evolutionary
search (e.g., genetic algorithm and evolution strategy) to generate the agents’ network parameters
and topology.

In these population-based methods, an interesting idea to promote diversity of the agents’ behaviours is
to proactively search for “novel” behaviours. This can be very useful since maintaining a population of
behaviours does not necessarily mean diversifying them over the search space (Jaderberg et al., 2019).
This is particularly true in sparse/deceptive reward problems (Salimans et al., 2017; Conti et al., 2018)
where the reward function may provide useless/misleading feedback leading to the agent to get stuck
and fail to learn properly (Lehman & Stanley, 2011; Ecoffet et al., 2019). Such proactive-novelty-
search techniques include novelty search (Conti et al., 2018; Lehman & Stanley, 2011), intrinsic
motivation (Bellemare et al., 2016), count-based exploration (Ostrovski et al., 2017; Tang et al., 2017),
variational information maximisation (Houthooft et al., 2016), curiosity-driven learning (Baranes
& Oudeyer, 2013; Forestier et al., 2017), multi-behaviour search (Mouret & Doncieux, 2009; Shen
et al., 2020) and quality-diversity (Cully & Demiris, 2018). They, based on the history information
in the environment, motivate the agent to visit unexplored states in order to accumulate higher
rewards (Conti et al., 2018; Ecoffet et al., 2019; Guo & Brunskill, 2019). For example, the quality-
diversity algorithms use domain dependent behaviour characterisations to abstractly describe the
agent’s behaviour trajectory and encourage the agent to uncover as many diverse behaviour niches
as possible, with each niche being represented by its highest-level agent (Mouret & Clune, 2015;
Pugh et al., 2016). However, such proactive novelty search may not always be promising since
novel behaviours that we search for do not always come with high skill levels. When it comes to
population-based self-play, a game could be meaningless when the difference of agents’ skill levels
is too big, albeit their playing styles being very different. Indeed, what we need effectively is a
population of high-level and diverse-style agents which play against each other through the training
process.

To this end, this paper proposes a novel Bi-Objective (BiO) optimisation model to optimise skill
levels and playing styles. One feature of this model is that we do not regard these two aspects
as objectives to maximise directly, but rather we create a meta bi-objective model to enable high-
level agents with diverse playing styles more likely incomparable (i.e. Pareto nondominated to
each other), thus being always kept in the training process. Specifically, in BiO each objective is
composed of two components. The first component is related to skill level of the agent, same for
the two objectives, while the second component is related to playing style of the agent, we making
it completely conflicting for the two objectives. As such, the Pareto optimal solutions in BiO are
typically those far away from each other in playing styles but all with reasonably good skill levels
(this will be explained in details in Section 3).

We propose an evolutionary algorithm to work with the proposed model. We follow the basic
framework of multi-objective evolutionary algorithms, but with customized components for self-play.

2

Under review as a conference paper at ICLR 2023

We evaluate our algorithm in a classic table tennis game Pong and a commercial online role-playing
game Justice Online 2.

It is worth mentioning that the problem here we are dealing with is different from multiobjective
optimisation-related RL (Yang et al., 2019; Liu & Qian, 2021; Xue et al., 2022), such as those in
the Multi-Objective Reinforcement Learning (MORL) (Moffaert & Nowé, 2014; Mossalam et al.,
2016). MORL is a generalisation of standard reinforcement learning where the scalar reward signal
is extended to multiple feedback signals, whereas our problem is to simultaneously optimise the skill
levels and playing styles of the players.

2 PRELIMINARIES AND RELATED WORK

Each iteration of self-play can be considered as a Multi-agent Markov Decision Process defined by a
tuple ⟨N ,S, {Ai}i∈N ,P, {ri}i∈N , γ⟩, where N = {1, · · · , N} is the set of N > 1 agents, S is the
state space observed by all the agents, andAi is the action space of agent i. LetA := A1×· · ·×AN ,
then P : S ×A×S → [0, 1] is the transition probability from any state s ∈ S to any state s′ ∈ S for
any joint action a ∈ A. ri : S ×A× S → R is the reward function that determines the immediate
reward received by agent i for a transition from (s, a) to s′. γ ∈ (0, 1] is the discount factor. At step t,
each agent i ∈ N executes an action ait, according to the system state st. The system then transitions
to state st+1, and rewards each agent i by ri(st, at, st+1). The goal for agent i is to maximise its
own long-term reward Ji(π) = Eπ

[∑
t=0 γ

tri(st, at, st+1)
]
, by finding the policy ait ∼ πi(·|st).

PROXIMAL POLICY OPTIMISATION (PPO). PPO (Schulman et al., 2017) is a popular deep policy
gradient method where policy updates are computed by a surrogate objective regularised by the
clipped probability ratios. Inspired by a trust region method, the algorithm updates the policy
within a close neighbourhood around the previous-iteration policy each time to guarantee monotonic
performance improvement. As shown in a clipped surrogate objective LCLIP

πold
(π):

LCLIP
πold

(π) = E
[
min

(
π(a | s)

πold(a | s)
Aπold(s, a), clip

(
π(a | s)

πold(a | s)
, 1− ε, 1 + ε

)
Aπold(s, a)

)]
,

(1)

where clip(·) removes the incentive of the probability ratio π(a|s)
πold(a|s) outside the interval [1− ε, 1 + ε]

(ε = 0.2). PPO can sample data from the stable previous-iteration policy πold, and incrementally
refines the policy using multiple steps of stochastic gradient ascent before sampling new data.

MULTI-OBJECTIVE OPTIMIZATION. Multi-objective optimisation (Matthias, 2006) is an optimisa-
tion scenario that considers multiple objectives/criteria simultaneously. Without loss of generality,
let us consider a maximisation scenario. Formally, a multi-objective optimisation problem can be
expressed as:

maximise F (x) = (f1(x), · · · , fm(x))T , (2)

where m is the number of objectives. In the context of multi-objective optimisation, a solution x1

is said better than x2, if and only if x1 is not worse than x2 for all the objectives and better for at
least one objective. We call this “better” relation as Pareto dominance, i.e., x1 (Pareto) dominates x2.
Two solutions being incomparable means that they are non-dominated to each other. For a solution
x ∈ X , if there is no solution in the solution set X dominating x, then x is called a Pareto optimal
solution in X .

RELATED WORK. Diversifying playing styles of opponents that the agent encounters in the training
process is an important topic in self-play. Interesting attempts include using diverse expert data as
opponents to enrich the agent’s experiences (Silver et al., 2016; Vinyals et al., 2019; Lowe et al.,
2020), learning diverse sub-policies and combining them into an ensemble model (Xu et al., 2018),
using reward shaping to create a series of different playing styles (Oh et al., 2019), and exploring
unseen playing styles by domain randomisation (Jaderberg et al., 2019; Berner et al., 2019). However,
striking a good balance between playing styles and skill levels is a challenging task; some of these
methods need extra resources (e.g. expert data (Silver et al., 2017b)) or human hand engineering

2https://mmos.com/review/justice.

3

https://mmos.com/review/justice

Under review as a conference paper at ICLR 2023

(e.g. manual tuning of the reward weights (Oh et al., 2019)), and some may degrade in sophisticated
environments (Xu et al., 2018).

Another way to maintain diverse opponents in self-play is to consider the population-based training
(PBT) (Jaderberg et al., 2019; Vinyals et al., 2019; Hernandez et al., 2019), where the playing style of
each agent in the population is controlled by its own hyperparameters and reward weights. In such
methods, PBT is to meta-optimise the internal rewards and hyperparameters of the agents. Since each
agent in the population learns from the experience generated by playing against opponents sampled
from the population, more generalised policies can be learned (Bansal et al., 2018; Zhao et al., 2021).
However, maintaining an agent population does not necessarily mean maintaining diverse playing
styles; thus it would be beneficial for this model to proactively explore novel playing styles and then
properly maintain them during the training process. We will compare our model with PBT in the
experimental studies.

It is necessary to note that multi-objective optimisation models, despite not designed for self-play,
have been used to diversify agents’ behaviours in games (Agapitos et al., 2008; Mouret & Doncieux,
2009; Shen et al., 2020; Pierrot et al., 2022b). They created one or several behaviour-related objectives
for the algorithm to optimise directly. For example, the novelty of the agents’ behaviour is considered
as an auxiliary objective in Mouret & Doncieux (2009), and opposite behaviours (i.e., aggressive and
defensive) of the agents are considered as two objectives in Shen et al. (2020). One main issue of
such models is that an agent with a different behaviour from the rest will always be considered Pareto
optimal no matter how poor its skill level is (since no other agent performs better in the corresponding
behaviour objective). This may easily lead to the population to have diverse playing-style agents, but
their skill levels can be highly variable. We will compare our model with one recent representative of
such models in the experimental studies.

Lastly, it is worth mentioning that some recent studies formalised skills and styles with differentiable
functions and leveraged gradient information to efficiently improve the skill level of agents from
different stylistic directions (Fontaine & Nikolaidis, 2021; Pierrot et al., 2022a; Tjanaka et al., 2022),
although they are not implemented in the self-play paradigm.

3 PROPOSED MODEL

Our bi-objective (BiO) optimisation model is designed to optimise skill levels of the agents and at
the same time to diversify their playing styles. To do so, each objective is constructed to consist
of two components. The first is the agent’s skill level, which is shared by the two objectives. The
second component is concerned with the agent’s playing style, which we design to be opposite in the
two objectives in order to make diverse style agents likely incomparable (thus as the Pareto optimal
agents kept during the search). Formally, the BiO model for an agent π with the skill level g(π) and
the playing style h(π) is expressed as follows:

maximise
{
f1(π) = g(π) + κh(π)

f2(π) = g(π)− κh(π)
(3)

where κ is a coefficient to make g(π) and h(π) commensurable. g(π) is an indicator to reflect the
agent’s skill level, and it can be represented by win rate (Chen et al., 2018), Elo score (Jaderberg
et al., 2019), etc. h(π) is an indicator to reflect the agent’s playing style, and its calculation will be
explained later. The difference between two agents in h(π) indicates how differently they behave,
e.g., aggressively versus defensively.

Figure 1 gives an example to illustrate the proposed model, where Figure 1(a) presents six agents
in the original skill-style space and Figure 1(b) presents them in the proposed bi-objective space.
To help understand the characteristics of the BiO, we provide the following remarks, which can be
derived from the figure as well as Equation 3.

• A higher skill-level agent will not be dominated by a lower level one in the proposed model.
This can be derived from Equation 3 — if g is higher for the agent π1 than π2, then whatever
their playing styles h(π1) and h(π2) are, π2 will not be better than π1 on both objectives f1
and f2; in the best case for π2, they are non-dominated to each other (e.g., the agents A and
B in Figure 1).

• Similar playing style agents tend to be comparable (i.e., dominating or being dominated)
even if their skill levels are close. For example, in Figure 1 the agent E’s playing style

4

Under review as a conference paper at ICLR 2023

0.4

0.2

0
Sk
ill
 le
ve
ls

Defensive

0.4

0.6

0.8

1

0 0.80.2 0.6 1.0

Aggressive

Playing styles

A
B
C

D

E
F

1.2

0

‐0.2

Sk
ill
 le
ve
ls
 –

 P
la
y
st
yl
es

0.2

0.4

0.6

0.8

0.8 1.61.0 1.4 1.8

Skill levels + Playing styles

A

B
C

D
E

F

0.6

(a) The original skill-style space (b) The proposed BiO space

Figure 1: An illustration that the proposed bi-objective model makes diverse style agents with fairly good skill
level more likely to be Pareto optimal (i.e., A, B, E). As implemented in this paper, the skill level and playing
style are normalized and the coefficient κ = 1. (a) The six agents in the skill-style space. (b) The six agents in
the proposed BiO space where the two meta-objectives are to be maximised. As can be seen in Figure 1(a), the
agents B and C have the same playing style, while B has a higher skill level than C. The agents E and F have
similar styles, while E has a higher skill level than F. A’s style is dissimilar from the others’ and the same for
D, while A’s skill level is significantly better than D’s. Therefore, if one would like to choose three diverse
style agents with good skill levels as an opponent population for an agent to play against, the agents A, B and E
can be the best choices. This, as shown in Figure 1(b), is in line with the proposed model, where these three
agents are Pareto optimal in the bi-objective space.

is similar to F’s and their skill levels are fairly close, but E dominates F in the proposed
model. In the special case that two agents have the same style, the higher skill level agent
always dominates the lower one (e.g. the agents B and C in the figure).

• Dissimilar playing style agents tend to be incomparable (i.e., non-dominated to each other)
even if one is fairly inferior to the other in skill level. For example, the agent A in Figure 1,
which has relatively low skill level, is not dominated by any agent since its style is rather
different from the others’. In fact, it can be derived from Equation 3 that the probability of
two agents being incomparable increases linearly with the distance of their playing styles.

• The coefficient κ in the model is a critical parameter which weighs up between agents’ skill
level and playing style. In our implementation, we simply set κ = 1 after normalising them
(i.e. after making g(π) ∈ [0, 1], h(π) ∈ [0, 1]). It is worth mentioning that a different κ
setting may potentially be more suitable for a specific problem.

To sum up, the proposed BiO model enables different style agents with good skill level to be ranked
high. As can be seen in Figure 1, if one would like to choose three out of the six agents as the
population of opponents for an agent to play against, then the agents A, B and E will be chosen
(since they are Pareto optimal). B and E are chosen because they have higher skill levels than their
similar agents (i.e., C and F, respectively). A is chosen because A is far away from the others in
playing style, whereas D is not chosen because despite being far away from the others, but its skill
level is significantly worse than them too. In fact, the model can be seen to identify representative
good agents, but without a need of setting a niche. As such, one can maintain a population of
high-level agents with diverse playing styles who keep playing against each other throughout the
training process.

In BiO, the playing style h(π) of an agent π can be estimated by π playing against all the opponents
in the pool. Formally, it can be calculated as

h(π) =
1

K

K∑
k=1

1

Tk − 1

Tk−1∑
t=1

varπk
(st, st+1) (4)

where K is the size of the opponent pool, Tk is the length of the trajectory produced by π playing
against the opponent πk, and varπk

(st, st+1) denotes the relevant state change (e.g. the position
change of the agent π) between time steps t and t+ 1.

Based on the gameplay of games, the calculation of the state change function can generally be
classified into two categories, opponent-independent mode and opponent-dependent mode. In the

5

Under review as a conference paper at ICLR 2023

opponent-independent mode, the function can directly be estimated by the change of the agent π’s
own states. This mode is for games where the players have their own venues, for example the games
Pong, Tennis and Blobby Volley. In such games, the movement frequency of the agent π is the
main way to reflect its playing style — aggressive players frequently change their positions whereas
conservative players tend to move slowly and steadily.

In the opponent-dependent mode, the state change function is estimated by not only the agent π’s
states but the opponent πk’s. That is, the opponent’s states are used as a reference to estimate
the agent’s playing style. This mode is for games where the agent and its opponent share the
same venue, for example the battle games Justice Online, B&S Arena Battle (Oh et al., 2019) and
Toribash (Kanervisto & Hautamäki, 2019). In such games, the agent’s playing style needs to be
measured by the difference between the agent’s movement trajectory and its opponent’s movement
trajectory — aggressive players like close combat, thus the difference typically small, whereas
defensive players prefer to move around and tend to stay in a certain distance from their opponents,
thus the difference typically large.

4 OPTIMISATION

In this section, we present an evolutionary algorithm working with the Proximal Policy Optimisation
(PPO) (Schulman et al., 2017) to optimise the proposed bi-objective model. Specifically, we use the
framework of the classic multi-objective evolutionary algorithm NSGA-II (Deb et al., 2002), but
with customized components for self-play DRL, e.g., an evaluation population “frozen” for a while
allowing the agents to play against.

Algorithm 1: Algorithm to solve the bi-
objective model

Input: Evolutionary population
P ← ⟨θ1, ω1⟩, ..., ⟨θK , ωK⟩; Evaluation
population E← P ; Generation gen← 0

1 P ← Evaluation(P,E);
2 P ← FitnessAssignment(P);
3 while termination condition not met do
4 P ′ ← V ariation(P);
5 foreach ⟨θ′, ω′⟩ ∈ P ′ do
6 θ′ ← PPO(θ′, ω′, P);

7 P ′ ← Evaluation(P ′, E);
8 P ′ ← FitnessAssignment(P ′);
9 P ← EnvironmentalSelection(P, P ′);

10 gen← gen+ 1;
11 if gen%freq = 0 then
12 E← P ;
13 P ← Evaluation(P,E);
14 P ← FitnessAssignment(P);

15 return ⟨θ, ω⟩ which has the highest skill level in
P

Algorithm 1 gives the main procedure. The
procedure starts by initialising the evolutionary
population with a set of agents defined by ran-
dom neural networks (θ) with reward weights
(ω). Other hyperparameters of the agents (e.g.
neural architecture, discount factor and learning
rate) are set manually and can be found in Ap-
pendix C. Step 1 in the algorithm is to estimate
the skill level and playing style of the evolution-
ary population. Each of its agents plays against
all the agents of the evaluation population and
obtains the average skill level and playing style.
Then the agents’ fitness (i.e. objective functions)
of the proposed BiO model is calculated in Step
2. After that, the following steps repeat for each
generation of the evolutionary algorithm. Step
4 is to update the population by varying the
agents’ reward weights. Here, we adopt two
basic real-valued variation operators, simulated
binary crossover and polynomial mutation (Deb
et al., 2002) (details can be seen in Appendix B).
After new agents generated, we use PPO to train
their network parameters (Steps 5 and 6), where
each new agent randomly picks one agent in the
parental population to play against and this repeats a few times. Then, the new agent population
are evaluated against the evaluation population (Step 7) and their objective functions of the BiO
model are calculated (Step 8). Next, based on the objective functions, the environmental selection is
performed by using the nondominated sorting and crowding distance in NSGA-II (Deb et al., 2002)
(details are given in Appendix B) to select the K best solutions from the parental and new populations
as the next-generation population (Step 9).

Steps 11 to 14 are to update the evaluation population after a while (i.e. every freq generations).
Introducing an evaluation population that lets the current population play against for estimating
the skill level and playing style plays an important role. Fixing the opponents of the agents from
different generations enables their fitness comparable; playing against different opponents can easily
produce different skill level and playing style even for the same agent. Note that the update frequency

6

Under review as a conference paper at ICLR 2023

parameter freq cannot be set very large/small. A large value may make the skill level of the evaluation
population far lower than the current agents’, while a very small value may make the fitness of the
agents unstable during the evolutionary process.

Finally, after the procedure terminates, the returned agent is the one that has the highest skill in the
evolutionary population (Step 15).

5 EXPERIMENTS

We evaluate our model on the Atari game Pong and the commercial game Justice Online. To
implement the bi-objective model, the skill level in Pong is estimated by the difference of the final
score between the agent and its opponent, and the playing style is done by the move of the agent’s
paddle. In Justice Online, the skill level is estimated by the difference in the final health point between
the agent and its opponent, and the playing style by their average distance in the game. Details about
the two environments and their BiO implementations are given in Appendix A.

We consider four competitors to compare with our proposed model; they are PPO (Schulman
et al., 2017), a DRL strategy based on Population-Based Training (Jaderberg et al., 2017) (denoted
by PBT for simplicity), a DRL strategy considering multiple rewards (Oh et al., 2019) (denoted
by multi-reward), and a DRL strategy based on evolutionary multi-objective optimisation (called
EMOGI) (Shen et al., 2020). Note that all of these competitors except multi-reward were not
designed specifically for self-play; here you used their self-play versions, where the agent is trained
by playing against an opponent from its historical versions. PPO is a baseline DRL method, upon
which the other algorithms (including ours) are based. To alleviate the catastrophic forgetting
problem, in PPO we follow the practice in (Berner et al., 2019) to let the agent to play against
the latest version with a probability of 80% and against past versions with a probability of 20%.
The multi-reward competitor is PPO working with a multi-reward strategy (Oh et al., 2019) where
multiple rewards are used in training to shape different playing styles (aggressive, balanced and
defensive) for generalisation. The PBT competitor is PPO working under the population-based
learning environment (Jaderberg et al., 2017), where each PPO style agent of the population can
exploit information from the rest of the population. Like the proposed BiO, EMOGI (Shen et al.,
2020) combines PPO with the evolutionary multi-objective optimisation approach, but the objectives
are defined based on a hierarchical comparison of win rate and two handcrafted playing styles (i.e.,
aggressive and defensive). More details about these four competitors can be found in Appendix C.

For a fair comparison, all the four algorithms are run within the same computational budgets (1G
frames) and the average win rate of 500 games for each environment is reported. In our algorithm,
the frequency of updating the evaluation population freq is set to 5. The hyperparameters of PPO for
all the algorithms are set according to (Schulman et al., 2017). Appendix C gives all the parameters
and their settings in the experiments.

We aim to evaluate the proposed algorithm through answering the following four questions.

• Research Question 1 (RQ1): How does BiO perform, in comparison with the other algo-
rithms, in the same training and evaluation environments when playing against a built-in
AI?

• Research Question 2 (RQ2): How does BiO perform, in comparison with the other algo-
rithms, in different training and evaluation environments when against a built-in AI?

• Research Question 3 (RQ3): What happens when the agents obtained by BiO and the other
algorithms play directly against each other?

• Research Question 4 (RQ4): What kind of agents can BiO provide? Do they have diverse
playing styles?

The experiment for the question RQ1 is to see the ability of the obtained policy in playing against
a rule-based built-in AI player when the training and evaluation environments are the same. The
experiment for RQ2 is to see the generalisation of the policy to a different environment. Here, we
change the start position of the opponent from the central point of the site in the training to a random
boundary point in the evaluation. The above two experiments are all about playing against a build-in
AI; then one would be interested to know what if the agents obtained by all the algorithms play
directly against each other. RQ3 is designed to answer this question. The experiment for RQ4 is to

7

Under review as a conference paper at ICLR 2023

see if the proposed BiO model can produce diverse playing styles. Since Algorithm 1 returns only
the highest skill-level policy, one may be curious about what the whole population (i.e., P in Step 15
of the algorithm) looks like. RQ4 is for this question.

RQ1: How does BiO perform in the same environment when against the built-in AI? Table 1
gives the win rate of the policies obtained by the five algorithms. As can be seen in the table, PBT
has the best overall performance. This may be attributed to the fact that PBT configures optimal
hyperparameters for the training to avoid premature convergence. Our algorithm BiO performs best
in Pong and takes the second place in Justice Online, achieving a win rate of over 90% for both
games. In contrast, the agents trained by the other three algorithms perform differently in the two
environments, especially for Multi-reward which only has close to 20% win rate in Justice Online,
but more than 97% win rate in Pong. One explanation is that the built-in AI in Justice Online is
rather different from the opponents that the three algorithms’ agent (PPO, Multi-reward and EMOGI)
encounters in the training, but in Pong they are very similar.

Table 1: Win rate of the policies against the built-in AI in the same training and evaluation environ-
ments.

PPO PBT Multi-reward EMOGI BiO (ours)

Pong 92.8% 99.4% 97.4% 99.4% 99.7%
Justice Online 74.0% 99.2% 20.4% 80.8% 93.0%

RQ2: How does BiO perform in different environments when against the built-in AI? Table 2
gives the win rate of the policies obtained by the five algorithms. It can be seen that the environmental
changes have a greater impact on all the algorithms except BiO. In Pong, the performance of the
four peer algorithms (PPO, PBT, Multi-reward and EMOGT) have a significant drop, especially the
win rate of PPO, PBT and EMOGT being less than 50%. In Justice Online, these four algorithms
still cannot obtain a good winning rate, despite a slight increase of the Multi-reward’s performance
compared with the result in the same training and evaluation environments (Table 1). In contrast, our
BiO maintains a win rate above 80% when the environment changes, even reaching over 90% win
rate in Justice Online. One explanation for this is that the built-in AI is affected very differently by
changes in different environments.

Table 2: Win rate of the policies against the built-in AI in different training and evaluation environ-
ments.

PPO PBT Multi-reward EMOGI BiO (ours)

Pong 39.8% 19.8% 64.5% 8.4% 84.1%
Justice Online 2.4% 35.6% 39.0% 75.0% 91.0%

RQ3: What happens when the agents obtained by BiO and the other algorithms play directly
against each other? In this experiment, we construct an opponent pool of the agents ever generated,
i.e., one agent from PPO, one from PPT, three from multi-reward (as it generates three agents with
aggressive, balanced and defensive playing styles respectively), 30 from EMOGI and 30 from BiO
(the population size is 30). We then randomly pick one from the opponent pool to be played against
our agent. This repeats 60 times and the average win rate is reported in Table 3. As shown, BiO
achieves a significantly higher win rate than the other four algorithms (except in Justice Online
with the same environment where PBT’s win rate is slightly higher than BiO’s), indicating better
generalisation of the proposed model to different opponents. It is worth noting that the advantage of
BiO over its competitors is more evident when training and testing in different environments. This
implies the importance of maintaining a set of high skill-level agents with diverse styles during the
training, which provides the agent with opportunities to play against very different opponents.
RQ4: Can BiO provide diverse playing styles? Since our algorithm (Algorithm 1 in Section 4)
returns only the highest skill-level agent in the final population, one may ask how the remaining
agents look like. Figure 2(b) plots the final population obtained by the algorithm under the Justice
Online environment in the space of skill level and playing style. As can be seen, these agents have
similar skill level and diverse playing styles. This indicates that our algorithm can provide agents
with very different behaviours. These agents should all have good generalisation as they encountered
the same set of various opponents in the training.

8

Under review as a conference paper at ICLR 2023

Table 3: Win rate of the policies against a pool of the opponents obtained by all the algorithms in the
same and different training-evaluation environments.

PPO PBT Multi-reward EMOGI BiO (ours)

Pong (same environment) 54.6% 59.0% 52.4% 26.9% 83.5%
Justice Online (same environment) 71.0% 79.6% 6.0% 55.0% 78.0%

Pong (diff. environment) 60.7% 39.3% 70.9% 42.4% 88.8%
Justice Online (diff. environment) 45.9% 45.9% 45.7% 63.7% 81.8%

To get a sense of how the results look like in the game environments, Figures 2(c)-(e) plot the
behaviour trajectories of three representative agents (aggressive, neural and defensive) tagged in
Figure 2(b) on nine randomly selected games. As shown, although each agent has very similar
behavioural trajectories (orange line) across the nine games, different agents behave rather differently.
The aggressive agent runs towards the opponent, the defensive agent tends to avoid confrontation
with the opponent and runs around the arena, and the neutral agent stays or walks around some of the
arena’s boundaries.

Figure 2: An illustration that BiO can obtain a set of agents with diverse play styles under the Justice Online
environment. (a) A scene of the game environment. (b) The final agent population obtained by BiO in the
space of skill level and playing style. (c)-(e) The behaviour trajectories of three representative agents tagged in
Figure 2(b) on nine randomly selected games, where the orange and blue lines represent the footprints of the
agent and opponent, respectively.

6 CONCLUSION

This paper proposes a bi-objective optimisation model (BiO), working with an evolutionary algorithm,
to improve the generalisation of the policy in self-play. BiO maintains an agent population and
enables high-level, diverse-style agents more likely to be Pareto optimal, thus playing against each
other throughout the training process. The experimental studies have shown its effectiveness and
robustness in different environments. In addition to the improvement of the policy’s generalisation,
a by-product from this model is that it can provide a set of high skill-level policies with diverse
behaviours.

This work is the first step towards a new attempt of balancing performance and behaviour in games,
and it could be potentially improved by different ways, for example, tuning the coefficient κ of the
model for specific problems and developing other population-based algorithms for the model. In
addition, despite being used for self-play here, it is extendable to other RL settings where the agent’s
behaviour can be properly measured.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alexandros Agapitos, Julian Togelius, Simon M. Lucas, Jurgen Schmidhuber, and Andreas Konstan-
tinidis. Generating diverse opponents with multiobjective evolution. In 2008 IEEE Symposium On
Computational Intelligence and Games, pp. 135–142, 2008. doi: 10.1109/CIG.2008.5035632.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
complexity via multi-agent competition. In 6th International Conference on Learning Rep-
resentations, ICLR, Vancouver, BC, Canada, April 2018. OpenReview.net. URL https:
//openreview.net/forum?id=Sy0GnUxCb.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, January
2013.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, NIPS, pp. 1471–1479, Barcelona, Spain, December 2016.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray,
Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019.

Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter Abbeel, and Anca D.
Dragan. On the utility of learning about humans for human-AI coordination. In Advances in
Neural Information Processing Systems, NIPS, pp. 5175–5186, Vancouver, BC, Canada, December
2019.

Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver, and
Nando de Freitas. Bayesian optimization in AlphaGo. CoRR, abs/1812.06855, 2018.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In Advances in Neural Information Processing Systems,
NIPS, pp. 5032–5043, Montréal, Canada, December 2018.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22(2):245–259, April 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):182–197,
April 2002.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. CoRR, abs/1901.10995, 2019. URL http:
//arxiv.org/abs/1901.10995.

Matthew Fontaine and Stefanos Nikolaidis. Differentiable quality diversity. Advances in Neural
Information Processing Systems, NIPS, 34:10040–10052, 2021.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration
processes with automatic curriculum learning. CoRR, abs/1708.02190, 2017. URL http:
//arxiv.org/abs/1708.02190.

Zhaohan Daniel Guo and Emma Brunskill. Directed exploration for reinforcement learning. CoRR,
abs/1906.07805, 2019. URL http://arxiv.org/abs/1906.07805.

Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic reinforcement
learning. Journal of Algorithms, 64(4):152–168, October 2009.

10

https://openreview.net/forum?id=Sy0GnUxCb
https://openreview.net/forum?id=Sy0GnUxCb
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1906.07805

Under review as a conference paper at ICLR 2023

Daniel Hernandez, Kevin Denamganaï, Yuan Gao, Peter York, Sam Devlin, Spyridon Samothrakis,
and James Alfred Walker. A generalized framework for self-play training. In 2019 IEEE Conference
on Games (CoG), pp. 1–8, London, United Kingdom, August 2019. doi: 10.1109/CIG.2019.
8848006.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
variational information maximizing exploration. In Advances in Neural Information Processing
Systems, NIPS, pp. 1109–1117, Barcelona, Spain, December 2016.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846, 2017.
URL http://arxiv.org/abs/1711.09846.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen, and Hai Fang. Deltadou: Expert-level doudizhu
AI through self-play. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pp. 1265–1271, Macao, China, July 2019. International Joint
Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2019/176. URL https:
//doi.org/10.24963/ijcai.2019/176.

Whiyoung Jung, Giseung Park, and Youngchul Sung. Population-guided parallel policy search
for reinforcement learning. In 8th International Conference on Learning Representations,
ICLR, Addis Ababa, Ethiopia, April 2020. URL https://openreview.net/forum?id=
rJeINp4KwH.

Anssi Kanervisto and Ville Hautamäki. Torille: Learning environment for hand-to-hand combat. In
IEEE Conference on Games, CoG 2019, pp. 1–8, London, United Kingdom, August 2019. IEEE.

Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl Ha-
jjar, Torbjorn S. Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: Enabling self-play
reinforcement learning for combinatorial optimization. CoRR, abs/1807.01672, 2018. URL
http://arxiv.org/abs/1807.01672.

Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual creatures through novelty
search and local competition. In 13th Annual Genetic and Evolutionary Computation Conference,
GECCO, pp. 211–218, Dublin, Ireland, July 2011. ACM.

Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu, David Budden, Tim
Harley, and Pramod Gupta. A generalized framework for population based training. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD, pp. 1791–1799, Anchorage, AK, USA, August 2019. ACM.

F. Liu and C. Qian. Prediction guided meta-learning for multi-objective reinforcement learning. IEEE
Congress on Evolutionary Computation, CEC, pp. 2171–2178, 2021.

Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. In 7th International Conference on Learning Rep-
resentations, ICLR, New Orleans, LA, USA, May 2019. URL https://openreview.net/
forum?id=BkG8sjR5Km.

Ryan Lowe, Abhinav Gupta, Jakob Foerster, Douwe Kiela, and Joelle Pineau. On the interaction
between supervision and self-play in emergent communication. arXiv preprint arXiv:2002.01093,
2020.

Ehrgott Matthias. Multicriteria optimization. Springer Science & Business Media, 2006.

11

http://arxiv.org/abs/1711.09846
https://doi.org/10.24963/ijcai.2019/176
https://doi.org/10.24963/ijcai.2019/176
https://openreview.net/forum?id=rJeINp4KwH
https://openreview.net/forum?id=rJeINp4KwH
http://arxiv.org/abs/1807.01672
https://openreview.net/forum?id=BkG8sjR5Km
https://openreview.net/forum?id=BkG8sjR5Km

Under review as a conference paper at ICLR 2023

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML, pp.
1928–1937, New York City, NY, USA, June 2016.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, January 2014.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. CoRR, abs/1610.02707, 2016. URL http://arxiv.org/abs/
1610.02707.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. CoRR,
abs/1504.04909, 2015. URL http://arxiv.org/abs/1504.04909.

Jean-Baptiste Mouret and Stéphane Doncieux. Using behavioral exploration objectives to solve
deceptive problems in neuro-evolution. In Genetic and Evolutionary Computation Conference,
GECCO, pp. 627–634, Montreal, Québec, Canada, July 2009. ACM.

Inseok Oh, Seungeun Rho, Sangbin Moon, Seongho Son, Hyoil Lee, and Jinyun Chung. Creat-
ing pro-level AI for real-time fighting game with deep reinforcement learning. arXiv preprint
arXiv:1904.03821, 2019.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, ICML, volume 70, pp. 2721–2730, Sydney, NSW, Australia, August 2017.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective
diversity in population-based reinforcement learning. CoRR, abs/2002.00632, 2020.

Krzysztof Pawelczyk, Michal Kawulok, and Jakub Nalepa. Genetically-trained deep neural networks.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO,
pp. 63–64, Kyoto, Japan, July 2018. ACM.

Thomas Pierrot, Valentin Macé, Felix Chalumeau, Arthur Flajolet, Geoffrey Cideron, Karim Beguir,
Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert. Diversity policy gradient for sample
efficient quality-diversity optimization. In ICLR Workshop on Agent Learning in Open-Endedness,
2022a.

Thomas Pierrot, Guillaume Richard, Karim Beguir, and Antoine Cully. Multi-objective quality
diversity optimization. arXiv preprint arXiv:2202.03057, 2022b.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for
evolutionary computation. Front. Robotics and AI, 3:40, July 2016.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. CoRR, abs/1703.03864, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang
Liu. Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement
learning. In International Joint Conferences on Artificial Intelligence, IJCAI, 2020. URL https:
//sites.google.com/view/ijcai20-emogi.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, January 2016. doi:
10.1038/nature16961.

12

http://arxiv.org/abs/1610.02707
http://arxiv.org/abs/1610.02707
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://sites.google.com/view/ijcai20-emogi
https://sites.google.com/view/ijcai20-emogi

Under review as a conference paper at ICLR 2023

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815, 2017a. URL http://arxiv.org/
abs/1712.01815.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550:354–359, October 2017b.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, January 2019.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. CoRR, abs/1712.06567, 2017.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in Neural Information Processing Systems, NIPS, pp. 2753–
2762, Long Beach, CA, USA, December 2017.

Bryon Tjanaka, Matthew C Fontaine, Julian Togelius, and Stefanos Nikolaidis. Approximating gradi-
ents for differentiable quality diversity in reinforcement learning. arXiv preprint arXiv:2202.03666,
2022.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, October 2019.

Huazhe Xu, Keiran Paster, Qibin Chen, Haoran Tang, Pieter Abbeel, Trevor Darrell, and Sergey
Levine. Hierarchical deep reinforcement learning agent with counter self-play on competitive
games. https://openreview.net/forum?id=HJz6QhR9YQ, September 2018.

K. Xue, J. Xu, L. Yuan, M. Li, C. Qian, Z. Zhang, and Y. Yu. Multi-agent dynamic algorithm
configuration. Advances in Neural Information Processing Systems, NIPS, 2022.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems, NIPS, pp. 14610–14621, Vancouver, BC, Canada, December 2019.

Rui Zhao, Jinming Song, Hu Haifeng, Yang Gao, Yi Wu, Zhongqian Sun, and Yang Wei. Max-
imum entropy population based training for zero-shot human-ai coordination. arXiv preprint
arXiv:2112.11701, 2021.

A ENVIRONMENTS

This section describes the two environments Pong and Justice Online and the implementation of the
bi-objective model BiO in them, i.e., how to determine the skill level function g(π) and the playing
style function h(π) in the two environments.

PONG. Pong is a two-player game that simulates table tennis, in which each player controls an
in-game paddle by moving it vertically across the left or right side of the screen. There are three
actions that the players can take: move up the paddle, move down the paddle, or stay still. Points
are earned when one fails to return the ball to the other. The goal of the game is for each player
to reach 20 points before the opponent. The self-play version of Pong we used in the experiments
is accessible at https://github.com/xinghai-sun/deep-rl/blob/master/docs/
selfplay_pong.md.

To estimate the skill level of an agent in Pong, we consider the average difference of the final scores
between the agent and its opponent in the opponent pool. Formally, the skill level function g(π) of

13

http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://openreview.net/forum?id=HJz6QhR9YQ
https://github.com/xinghai-sun/deep-rl/blob/master/docs/selfplay_pong.md
https://github.com/xinghai-sun/deep-rl/blob/master/docs/selfplay_pong.md

Under review as a conference paper at ICLR 2023

the agent π is calculated as:

g(π) =
1

K

K∑
k=1

scoreπ − scoreπk
+ 20

40
(5)

where K is the size of the opponent pool (i.e. the population size in our algorithm) and scoreπ is the
score of the agent π at the end of the game.

The playing style in Pong is in the opponent-independent mode. It can be reflected by the move
frequency of the agent’s paddle. As such, the state change function varπk

(when π plays against πk)
in the playing style function (i.e. Equation (3) in the text)

h(π) =
1

K

K∑
k=1

1

Tk − 1

Tk−1∑
t=1

varπk
(st, st+1) (6)

can be defined as

varπk
(st, st+1) =

{
0, if the position of π’s paddle in state st+1 is the same as in st
1, otherwise

(7)

where Tk denotes the length of the trajectory produced by π playing against the opponent πk.

JUSTICE ONLINE. Justice Online 3 supplies duels between two players called “Arena Battles”. The
arena battle is a two-player zero-sum game, where two players fight against each other to decrease
the opponent’s Health Point (HP) to zero as the goal within a fixed amount of time. This game
is a non-trivial task. First, it is a real-time game which requires two players to make decisions
simultaneously under imperfect information. At any time of the game, neither player knows what the
opponent’s current skills and skill levels are likely to be. Second, the game has a massive state space.
An agent must make various skills, moves and targeted decisions simultaneously, leading to a huge
number of possible states.

To estimate the skill level of an agent, we consider the average difference of the final HP values
between the agent and its opponent in the opponent pool, expressed as:

g(π) =
1

K

K∑
k=1

HPπ −HPπk
(8)

where K is the size of the opponent pool and HPπ is the HP value of the agent π at the end of the
game.

The playing style in Justice Online is in the opponent-dependent mode. It needs to be measured by
the relative position (i.e. distance) between the agent and its opponent. Aggressive agents like close
combat and their distance to the opponent is small, whereas defensive agents like to stay in a certain
distance from their opponents. We thus define the varπk

function in Equation 6 as
varπk

(st, st+1) = distt+1(π, πk) (9)
where distt+1(π, πk) denotes the Euclidean distance between the agents π and πk at step t + 1.
Note that both the skill level and playing style values are normalized into the range of [0, 1] in our
implementation.

B ALGORITHM DETAILS

This section first describes how to generate new agents in our algorithm and then explains how to
constitute the new population based on the old population and newly-generated agents.

B.1 AGENT GENERATION

In the proposed algorithm, variable parameters of the agents are the network weight θ and the reward
weight ω; other hyperparameters (e.g. neural architecture, discount factor and learning rate) are fixed
and set manually (their settings can be found in Appendix C). Here, we consider basic variation
operators from evolutionary algorithm for searching for promising θ and ω. For θ, we use the
single-point crossover (Pawelczyk et al., 2018) to recombine two networks. It randomly selects
a hidden layer of two networks and swaps part of them to produced two new networks. Figure 3
illustrates this operator.

3https://github.com/NeteaseFuxiRL/nsh

14

https://github.com/NeteaseFuxiRL/nsh

Under review as a conference paper at ICLR 2023

Parent 1 Parent 2

Children 1 Children 2

Figure 3: An illustration of the single-point crossover for generating new neural networks.

B.2 ENVIRONMENTAL SELECTION

We use the classic NSGA-II environmental selection procedure (Deb et al., 2002) to select the K
best solutions as the next-generation population from the union of the old population P and the new
generated solutions P ′, as shown in Algorithm 2. First, we divide the union into different fronts
(F1, F2, ..., Fi, ...) where the solutions in the same front are nondominated to each other. Then, the
critical front Fi is found such that |F1 ∪ F2 ∪ ... ∪ Fi−1| ≤ K and |F1 ∪ F2 ∪ ... ∪ Fi−1 ∪ Fi| > K;
correspondingly the first i− 1 fronts (F1, F2, ..., Fi−1) make up the new population P . Now if the
size of P is less than the population capacity K, we calculate the crowding distance of the solutions
in Fi and sort them in a descending order. Next, we choose the first K − |P | solutions of Fi and put
them into P . Now, P is the population to be returned.

Algorithm 2: EnvironmentalSelection(P, P ′) (Deb et al., 2002)
Input: Population capacity K;

1 F1, F2, ..., Fi, ...← NondominatedSort(P ∪ P ′) ; // Partition P into
different nondominated fronts F1, F2, ..., Fi, ... and find the
critical front Fi where 0 ≤ K − |F1 ∪ F2 ∪ ... ∪ Fi−1| < Fi

2 P ← F1 ∪ F2 ∪ ... ∪ Fi−1 ;
3 if |P | < K then
4 Fi ← CrowdingDistance(Fi) ; // Calculate crowding distance of

each solution in Fi

5 Fi ← Sort(Fi) ; // Sort in the desending order accroding to
crowding distance

6 P ← P ∪Fi[1 : K−|P |] ; // Choose the first K−|P | solutions of Fi

7 return P

C EXPERIMENT DETAILS

This section details all parameters/hyperparameters used in the experiments. We first list the PPO-
associated hyperparameters (Mnih et al., 2016) which are shared by all the four algorithms. This is
followed by the parameters/hyperparameters specific to each algorithm. Finally we give the reward
settings of the four algorithms for the two environments Pong and Justice Online.

PARAMETERS FOR PPO USED IN ALL THE ALGORITHMS.

• Discount Rate (γ = 0.99). This parameter controls how much the RL agent cares about
rewards in the immediate future relative to those in the distant future.

• Weights for Loss Function ([1, 0.5, 0.01]). The loss function of PPO consists of three
terms, the policy loss (actor), the value loss (critic), and an entropy loss. Their weights were
assigned 1, 0.5 and 0.01, respectively.

15

Under review as a conference paper at ICLR 2023

• Learning Rate for Adam (0.00025). This parameter controls the learning rate of the loss
function.

• Neural Architecture [256, 128, 128]. The network consists of three hidden layers, of which
the first one has 256 nodes and the other two have 128 nodes. For the image input (such as
Pong game), we stack 4 layers of 3× 3 convolutions before the fully connected layers.

PARAMETERS FOR PPO-SP.

• Opponent Pool Update Frequency (1, 000 episodes). This parameter controls the update
frequency of the opponent pool in self-play, i.e., how often the algorithm sends its agent
into the opponent pool.

• Opponent Change Frequency (3 episodes). This parameter controls how long the agent
plays against one opponent.

PARAMETERS FOR THE MULTI-REWARD ALGORITHM.

• Opponent Pool Update Frequency (1, 000 episodes). This parameter controls the update
frequency of the opponent pool in self-play.

• Opponent Change Frequency (3 episodes). This parameter controls how long the agent
plays against one opponent.

• Opponent Selection Probability. In the multi-reward algorithm, the most recent 10 models
of each playing style are selected to play against the agent with a probability p, while the
other past versions are selected uniformly with probability 1− p. As practiced in (Oh et al.,
2019), p was set gradually decreased from 0.8 to 0.1 with the progress of the training.

PARAMETERS FOR THE PROPOSED ALGORITHM.

• Population Size (K = 30). This parameter controls the size the population in the evolution-
ary process.

• Single-Point Crossover Probability (0.5). This parameter controls the probability of
performing the recombination of two networks.

• Simulated Binary Crossover Probability (1.0). This parameter controls the probability
of performing the recombination of two agents’ reward weights. The distribution index
ηc = 20 was used (Deb et al., 2002).

• Polynomial Mutation Probability (pm = 0.05). This parameter controls the probability of
performing the disturbance of an agent’s reward weights. The distribution index ηm = 20
was used (Deb et al., 2002).

• PPO Training Budget (Pong = 600, 000, Justice Online = 1, 000, 000). This parameter
controls the training overheads (frames) of PPO in one generation of the evolutionary
algorithm.

REWARD SETTINGS IN PONG. In Pong, the internal reward at step t for the algorithms PPO and
PPO-SP was set to rt = 1 if the agent wins at that step; otherwise rt = 0. As for the algorithms
multi-reward and BiO, different playing styles of agents are considered explicitly or implicitly. So
a factor to reflect the agent’s playing style was also included in the reward function. Formally, the
internal reward r at step t is expressed as

rt = w1r
skill
t + w2r

style
t (10)

where

rskillt =

{
1, if the agent wins at step t

0, otherwise
(11)

and

rstylet =

{
1, if the position of the agent’s paddle in state st is different from that in st−1

0, otherwise
(12)

16

Under review as a conference paper at ICLR 2023

w1 and w2 are two weight parameters. Among them, w2 is to control agents’ playing styles. In the
multi-reward algorithm, w1 was set to 1 across the three styles, while w2 was set to 0.01, 0 and−0.01
for the busy, neutral and lazy styles, respectively. In our algorithm, w1 and w2 are generated by the
evolutionary search (i.e. simulated binary crossover and polynomial mutation) within the range of
w1 ∈ [0, 1] and w2 ∈ [−0.01, 0.01].

REWARD SETTINGS IN JUSTICE ONLINE. In Justice Online, the goal of the agent is to decrease
the opponent’s Health Point (HP) while trying to keep its own HP non-decreasing. Therefore, the
HP margin can be used as the internal reward. Specifically, in PPO and PPO-SP we considered the
following internal reward at step t when the agent π plays against its opponent πk.

rt = (HPπ
t −HPπ

t−1) + (HPπk
t−1 −HPπk

t) (13)

where HPπ
t denotes the HP value of the agent π at step t. The term (HPπ

t −HPπ
t−1) is to encourage

the agent to defend the opponent’s attack, and the term (HPπk
t−1 −HPπk

t) is to encourage the agent
to attack the opponent.

As for the algorithms multi-reward and BiO, since different playing styles of agents are considered,
we added a term to reflect the agent’s playing style. Specifically, we used the following internal
reward at step t when the agent π plays against its opponent πk.

rt = w1(HPπ
t −HPπ

t−1) + w2(HPπk
t−1 −HPπk

t) + w3(distt(π, πk)− distt−1(π, πk)) (14)

where distt(π, πk) denotes the Euclidean distance between the agents π and πk at step t. Among the
three weight parameters, w1 and w2 are concerned with the skill level while w3 controls the playing
style. In the multi-reward algorithm, w1 and w2 were set to 1 across the three styles, while w3 was
set to 1, 0 and −1 for the aggressive, neutral and defensive styles, respectively. In our algorithm,
all the weights are generated by the evolutionary search within the range of w1 ∈ [0, 1], w2 ∈ [0, 1]
and w3 ∈ [−1, 1]. Table 4 and Table 5 summarize the reward weight settings of the multi-reward
algorithm and the proposed algorithm in the two environments, respectively.

Table 4: Reward weights of each style in the multi-reward algorithm.

Environments Playing styles Reward weights

Pong

busy w1 = 1, w2 = 0.01

neutral w1 = 1, w2 = 0

lazy w1 = 1, w2 = −0.01

Justice Online

aggressive w1 = 1, w2 = 1, w3 = 1

neutral w1 = 1, w2 = 1, w3 = 0

defensive w1 = 1, w2 = 1, w3 = −1

Table 5: The range of reward weights for the search in the proposed algorithm.

Environments Weight range

Pong w1 ∈ [0, 1], w2 ∈ [−0.01, 0.01]
Justice Online w1 ∈ [0, 1], w2 ∈ [0, 1], w3 ∈ [−1, 1]

17

	Introduction
	Preliminaries and Related Work
	Proposed Model
	Optimisation
	Experiments
	Conclusion
	Environments
	Algorithm Details
	Agent Generation
	Environmental Selection

	Experiment Details

