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Abstract

Model editing aims to precisely modify the be-
haviours of large language models (LLMs) on
specific knowledge while keeping irrelevant
knowledge unchanged. It has been proven ef-
fective in resolving hallucination and out-of-
date issues in LLMs. As a result, it can boost
the application of LLMs in many critical do-
mains (e.g., medical domain), where the hal-
lucination is not tolerable. In this paper, we
propose two model editing studies and validate
them in the medical domain: (1) directly edit-
ing the factual medical knowledge and (2) edit-
ing the explanations to facts. Meanwhile, we
observed that current model editing methods
struggle with the specialization and complex-
ity of medical knowledge. Therefore, we pro-
pose MedLaSA, a novel Layer-wise Scalable
Adapter strategy for medical model editing. It
employs causal tracing to identify the precise
location of knowledge in neurons and then in-
troduces scalable adapters into the dense layers
of LLMs. These adapters are assigned scal-
ing values based on the corresponding specific
knowledge. To evaluate the editing impact,
we build two benchmark datasets and intro-
duce a series of challenging and comprehen-
sive metrics. Extensive experiments on medi-
cal LLMs demonstrate the editing efficiency of
MedLaSA, without affecting irrelevant knowl-
edge that is not edited.

1 Introduction

Recent researches have demonstrated that the large
language models (LLMs) can serve as a knowledge
base to store facts about the world and possess
remarkable understanding ability to facts (Petroni
etal., 2019; Gevaet al., 2022). Considering the sub-
stantial cost of retraining LLMs, there has been an
increasing interest in model editing (also known as
knowledge editing), which seeks to modify the be-
haviors of LLMs by precisely manipulating a part
of knowledge while ensuring other stored knowl-
edge unaffected (Zhang et al., 2024).
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Figure 1: Examples of two editing methods.

However, the potential of model editing to mod-
ify specialized knowledge, particularly in medical
domain, has not been fully explored. While LLMs
have proven to be valuable tools, they may still
provide outdated factual information or even expe-
rience hallucinations, which is particularly concern-
ing when deployed in real-world medical scenarios.
(Hartvigsen et al., 2022; Feng et al., 2023). This re-
search gap presents a question: Can model editing
techniques effectively address the challenges when
integrating LLMs in medical domain?

In order to explore and promote model editing
techniques to solve out-of-date and hallucination
problems in medical LLMs by editing medical
knowledge, we propose two preliminary studies
as shown in Figure 1: (1) editing factual medical
knowledge within LLMs to ensure up-to-date in-
formation, and (2) editing LLMs to enhance its
ability to explain these facts to mitigate hallucina-
tions. To facilitate our exploration, we construct
two corresponding benchmarks, namely Medical
Counter Fact (MedCF) and Medical Fact Expla-
nation (MedFE), enabling us to evaluate model



editing approaches from four perspectives: Effi-
cacy, Generality, Locality, and Fluency (Zhang
et al., 2024). Additionally, given the higher de-
mand for reliability in the medical domain (Zhou
et al., 2023), we propose more challenging and
comprehensive metrics for Locality evaluation.

Despite the remarkable achievements of model
editing methods in general domains (Meng et al.,
2022a), we observed that they struggle to over-
come the challenges in the medical model editing
due to the specialization and complexity of medical
language (Karabacak and Margetis, 2023). These
methods either overlook the storage of complex
medical knowledge across different layers of LLMs
(Zheng et al., 2023) or may introduce substantial
modifications to original parameters, which con-
sequently affect the model’s unrelated knowledge
(not the target of editing) and lead to suboptimal
performance (Meng et al., 2022b).

To handle medical model editing, we propose
MedLaSA, a novel Layer-wise Scalable Adapter
strategy. MedLaSA employs a casual tracing
method (Meng et al., 2022a) to associate medical
knowledge to corresponding layers. By focusing
on the layers where knowledge-to-edit resides, the
targeted knowledge can be modified efficiently and
other knowledge can be left unchanged. Exten-
sive experiments conducted on MedCF and MedFE
have demonstrated superior performance of Med-
LaSA across a range of metrics. Our contributions
are summarized as follows:

* To the best of our knowledge, we are the first
to propose medical LLM editing for factual
knowledge and explanatory abilities in med-
ical LLMs by constructing two benchmarks
with comprehensive evaluation metrics. !

* We propose MedLaSA to dynamically adjust
the adapters across different layers of LLMs
based on medical knowledge and automati-
cally categorize whether the input knowledge
requires editing.

* We conduct extensive experimental analysis
of complex and specialized medical knowl-
edge model editing, which demonstrates that
MedLaSA significantly outperforms the exist-
ing cutting-edge methods.

'The data and code will be open-sourced upon publication.

2 Related Work

We present current model editing works in two
categories following Yao et al. (2023).

2.1 Memories or Additional Parameters

The methods of this category typically involve cre-
ating explicit memories to store the required knowl-
edge for editing, or adding additional trainable pa-
rameters to LLMs for learning new knowledge (Yu
et al., 2023; Dong et al., 2022; Hartvigsen et al.,
2022). SERAC (Mitchell et al., 2022b) utilized
explicit memory for storing edits and incorporated
a scope classifier to understand the editing scope.
Given a sample within the editing scope, it uti-
lized a separate model to make edits, ensuring that
the original model remains unaffected. Inspired
by the in-context learning ability of LLMs, IKE
(Zheng et al., 2023) designed demonstration for-
matting and organization strategies, including the
copy, update, and retain templates, and retrieved
relevant knowledge facts from the editing memo-
ries as demonstration inputs to guide the editing
process. T-Patcher (Huang et al., 2023) retained
all original parameters to preserve overall perfor-
mance while adding trainable neuron patches to
the last Feed-Forward Network (FFN) layer of a
Transformer for handling sequential model editing.
Despite their success, the above methods lack the
exploration of the mechanics of knowledge storage
in LL.Ms, which ultimately leads to poor perfor-
mance in handling complex medical knowledge.

2.2 Modifying LLMs’ Parameters

The methods of this category aim to comprehend
how knowledge is stored in LLMs and how it can
be effectively altered by changing the parameters
(De Cao et al., 2021; Geva et al., 2021; Wu et al.,
2023). KN (Dai et al., 2022) proposed a knowledge
attribution method to identify the neurons associ-
ated with specific knowledge without fine-tuning,
updating facts, and erasing relations by directly
modifying the corresponding parameters in FFN.
MEND (Mitchell et al., 2022a) introduced auxiliary
hyper-networks to transform the gradient during the
fine-tuning process, and trained the hyper-networks
to ensure edit success and locality when updating
LLMs’ parameters. ROME (Meng et al., 2022a)
applied causal mediation analysis (Pearl, 2022; Vig
et al., 2020) to identify decisive neuron activation
and modify FFN weights by solving a least squares
problem with a linear equality constraint using the



Lagrange multiplier. As an extension of ROME
(Meng et al., 2022a), MEMIT (Meng et al., 2022b)
introduced a multi-layer algorithm to update multi-
ple cases simultaneously. PMET (Li et al., 2023)
further improved MEMIT (Meng et al., 2022b) by
simultaneously optimizing hidden states of self-
attention and FFN. Despite impressive progress
made by these methods, they often introduce sig-
nificant modifications to the original parameters.
Consequently, unrelated knowledge is affected, re-
sulting in a noticeable impact on Locality and Flu-
ency, as demonstrated in Section 4.

3 Methodology

3.1 Prelimimaries

Model editing is a recently emerging field that aims
to modify specific knowledge within a neural net-
work while preserving the network’s behaviours
for other knowledge (Zhang et al., 2024; Yao et al.,
2023). In contrast to vanilla fine-tuning for updat-
ing LLMs, model editing seeks to precisely manip-
ulate and update the specific knowledge in LLMs,
resulting in a more thorough and strict evaluation
(Wang et al., 2023b). Formally, we denote a model
as f(x; ), which maps an input z to its prediction
y with the pretrained model parameters ¢, and the
post-edited model is denoted as f’(6,). To be con-
sidered effective, model editing typically needs to
satisfy the following four properties (Huang et al.,
2023; Zhang et al., 2024):

Property 1 Efficacy. The post-edited model
should establish an effective mapping between the
edit pair (ze, ye), i.€., [/ (e, 0e) = Ye.

Property 2 Generality. When an input sentence
xs with a similar meaning to z. (e.g., a rephrased
sentence) is provided, the post-edited model is ex-
pected to produce the corresponding output y. as
well, i.e., f/(zs,0e) = ye.

Property 3 Locality. The editing process should
remain local and precise, meaning the post-edited
model should not impact the prediction of irrelevant
example pairs (x;,y;), i.e., f'(x;,0c) = yi.
Property 4 Fluency. The post-edited model
should maintain generation ability and thus a high
level of fluency in output, which is evaluated by
calculating a weighted average of bi- and tri-gram
entropies, as described by Meng et al. (2022a).

3.2 Casual Tracing

We first introduce casual tracing, which aims to
identify factual associations to specific neuron acti-

vations by calculating the contribution of each state
towards factual predictions (Meng et al., 2022a).
The knowledge and its associations in the network
can be effectively utilized to regulate model editing
and scaling operations in our model, as described
in Section 3.3. This process involves three forward
propagation runs: (1) Clean run. A factual knowl-
edge x is fed into model, and the hidden activations
{nk|i € [1,T],1 € [1, L]} of every token i of T to-
kens and every layer [ of L layers are collected.
(2) Corrupted run. The subject of = is obfus-
cated by introducing Gaussian noise € ~ N (0;v)
with zero mean and standard deviation of v to the
subject embedding of z, and we can get a set of
corrupted activations {h |i € [1,T],1 € [1,L]}.
(3) Corrupted-with-restoration run. The input
noisy embeddings are kept the same as in the cor-
rupted run, but the hidden activations hé* of each
token and layer are replaced with hé as in the clean
run. The probability of restoring the correct output,
as in the clean run, indicates the causal association
between knowledge and hidden states. The restora-
tion operation is performed separately on each to-
ken within every layer for a single piece of knowl-
edge and generates an impact matrix M € RT*L,
We present heatmaps of the impact matrix of the
MedCF and MedFE datasets in Appendix D for
better understanding.

3.3 MedLaSA

In this section, we introduce MedLaSA, a simple
yet effective model editing strategy. MedLaSA is
designed to modify each layer in a tailored man-
ner by taking into account the associations between
multiple layers and medical knowledge while ensur-
ing that irrelevant knowledge remains unaffected
during the modification process. We first apply
causal tracing to each piece of medical knowledge
(as shown in Section 3.2), which has been proven
effective in identifying specific hidden states that
are crucial when recalling a fact (Meng et al.,
2022a). Unlike previous methods such as ROME
(Meng et al., 2022a), which directly modify the
MLP weights of corresponding layers, we argue
that adding an adapter to dense weights is a more
effective way to insert new knowledge while mostly
preserving the original abilities of LLMs.

Our motivation lies in enabling the model to au-
tomatically discriminate whether the input knowl-
edge requires editing (Efficacy and Generality) or
not (Locality, Fluency), which is achieved by ap-
plying different scales of adjustment to adapter of
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Figure 2: The overview of our proposed MedLaSA. We demonstrate the process of inputting individual pieces of
data. This process is applicable to both edited and unedited knowledge. The activation scale of adapters in different
layers varies depending on the knowledge in data, ensuring that unrelated knowledge is not significantly impacted

after the editing process.

the layer where knowledge is located. For instance,
as illustrated in Figure 2, when data that needs edit-
ing is inputted, we increase its scale on i-th layer
and decrease its impact on j-th layer, ensuring that
knowledge updates occur at i-th layer. Conversely,
when locality data is input, the influence of adapter
on j-th layer is activated and reduces impact of
adapter on ¢-th layer. Inspired by LoRA (Hu et al.,
2021), we incorporate a parallel low-rank adapter
into dense layers to enable parameter-efficient fine-
tuning. Specifically, a pre-trained weight matrix
Wy € R4k from attention or MLP module is up-
dated with two trainable matrics B € R**" and
A € R™¥_ For layer [, we have:
l
ht = Wiz + 2Bl Ala, (1)
T

where, the rank r! < min(d, k) and the o/ in our
work are utilized to adjust the number and location
of trainable parameters required for knowledge up-
dating, respectively.

Scaling o. Parameter « is used to measure the
weight of the adapter relative to the original net-
work. Each individual knowledge has a specific o
value and can generate an impact matrix M through
casual tracing in Section 3.2. The impact I,:

I, = norm(z M),

teEs

2

where E; is defined as the set of index of subject
tokens, norm(-) denotes max-min normalization.

The final scale of layer [ can be computed by mul-
tiplying hyper-parameter «,, with I, value in the
i-th layer: o! = o, x I..

Scaling Rank. The rank r is used to control the
number of additional parameters required to update
new knowledge, which is generalized for knowl-
edge in whole dataset D and is specific to each

layer I:
I, = norm( Z Z My).

MeDteEs

3

The final rank of layer [ can be computed by multi-
plying hyper-parameter r,: ' = [r, x I'].

What is more, a transformer block typically in-
cludes self-attention and MLP modules, whose ef-
fects can be separately analyzed with causal tracing.
For example, to measure the impact matrix M,
of the attention module, the MLP calculation is cut
off and frozen in its corrupted run state, so that
it is not affected by the insertion of a clean state.
We conducted a thorough analysis to examine the
influence of various weights and hyperparameters
on model editing, in Section 4.

4 Experiments

4.1 Medical Model Editing Benchmarks

We aim to investigate the effectiveness of model
editing techniques in the medical domain. On one
hand, there are potential concerns regarding medi-
cal knowledge stored in medical LLMs (e.g., out-
dated information and hallucination), which could



result in errors in diagnosis or treatment recom-
mendations (Zhou et al., 2023). On the other hand,
real medical scenarios demand a high level of relia-
bility, which has led to increased emphasis on the
explanatory ability of LLMs, such as their ability to
demonstrate a logical chain-of-thought during the
decision-making process (Karabacak and Margetis,
2023). Therefore, we construct the MedCF dataset
for (1) editing factual medical knowledge and the
MedFE dataset for (2) editing explanation ability
of LLMs. The statistics are shown in Table 1.

Medical Counter Fact Dataset. We build the
MedCF dataset using a medical knowledge graph
(Ioannidis et al., 2020) and corresponding text (Xu
et al., 2023) as the source. To evaluate the ability
to edit knowledge with unknown prediction results
of LLMs, same as Meng et al. (2022a), we replace
the tail entity ¢ in triplets (h, 7, t) and construct a
set of false facts (h, 7, t.). We then use ChatGPT
(OpenAl, 2023) to generate questions of (h,r,7)
and form edit pair (x.,y.), as well as generate
rephrased data for these questions, as shown below.

Question: What side effect is caused by Primaquine?
Rephrase: What adverse effect is attributed to Pri-
maquine?

Ground Truth: Nausea. Edit Target: Stinging

Medical Fact Explanation Dataset. We build
the MedFE dataset by utilizing MedMCQA (Pal
et al., 2022), a dataset designed for answering med-
ical entrance exam questions. To generate an edit
pair (z¢, Y. ), we combined the question and correct
choice to form a factual statement, and we used the
expert’s explanation as a source for the target edit.

Fact: In obesity which of the following hormone levels
is decreased? Adiponectin.

Rephrase: In cases of obesity, which hormone experi-
ences a decrease in levels? Adiponectin.

Explanation: Adiponectin is an abundant adipose-
derived protein and enhances insulin sensitivity and lipid
oxidation. Its levels are reduced in obesity Obesity is
associated with significant disturbances in endocrine
function. Hyper insulinemia and insulin resistance are
the best known changes in obesity. Thyroxine, GH, and
adiponectin have lipolytic effects, hence their levels are
reduced in obesity.

4.2 Locality Evaluation Metrics

The aforementioned data can be utilized to assess
Efficacy, Generality, and Fluency. In terms of Lo-
cality, previous benchmarks have either employed

out-of-distribution data (e.g., zsRE (Mitchell et al.,
2022a)) or solely relied on data with the same
ground truth (e.g., CounterFact (Meng et al.,
2022a)). Nevertheless, we argue that a comprehen-
sive evaluation of Locality is necessary to prevent
the inadvertent modification of irrelevant knowl-
edge and ensure high reliability of the medical do-
main. The post-edited model should be evaluated
based on the following categories: (1) Target Dis-
tribution: Does the editing change the probability
distribution of ground truth tokens? (2) Entity
Mapping: Does the editing only learn the map-
ping relationship between head and tail entities?
(3) Structural Similarity: Does the editing affect
unrelated knowledge with similar structures? (4)
Textual Similarity: Does the editing affect unre-
lated knowledge with similar text? (5) Consistent
Topic: Does the editing affect unrelated knowledge
with the same topic?

Based on these requirements, we collected cor-
responding data for Locality evaluation separately,
which allows for a comprehensive analysis of the
impact of model editing techniques on other knowl-
edge within the medical domain. The data sam-
pling for metrics (1), (2), and (5) can be achieved
by simple retrieval. Metric (3) is attained by em-
ploying the knowledge graph embedding method
(e.g., RotatE (Sun et al., 2018)) to learn embed-
dings of entities and relations, which measures sim-
ilarity in terms of the graph structure. Metric (4) is
achieved by employing BioBERT (Lee et al., 2020)
to produce textual embeddings and compare simi-
lar question-answer pairs. Detailed samples can be
found in Appendix B.

4.3 Experimental Setup

Metrics. we utilize the metrics constructed in
Section 4.1 as our evaluation. The calculation
of Fluency follows ROME (Meng et al., 2022a).
The computation of other metrics follows EasyEdit
(Wang et al., 2023a), which are measured as aver-
age accuracy between the token matching of the
predicted output and the expected output. For ease
of presentation, we employ abbreviations to repre-
sent each metric: Efficacy (Eff.), Generality (Gen.),
Locality (Loc.), and Fluency (Flu.). For the sub-
metrics of Locality, we use the following abbrevi-
ations: Target Distribution (TD), Entity Mapping
(EM), Structural Similarity (SS), Textual Similarity
(TS), and Consistent Topic (CT). Due to limita-
tions of the original data, we measure TD, EM,
SS, TS for MedCF and measure TS and CT for



Dataset ‘ #Type #Train #Valid #Test

MedCF 17 2,407 817 801
MedFE 9 2,533 851 841

Table 1: Statistics of MedCF and MedFE. The term
“Type’ refers to the subject or relation types of datasets,
such as ‘Medicine’ and ‘Skin’. The number of samples
for different types is kept consistent, further details are
provided in the Appendix A.

MedFE. To examine the trade-off between edit suc-
cess and locality, we further report the weighted
mean by: Avg. = (UEdit_FULoc‘)/Z, where V.. =
ﬁ Y meLoe. M» and Vegiy = (Ef f. + Gen.) /2.

Backbones and Baselines. Due to the lack of
datasets for medical model editing, all our ex-
periments are conducted on MedCF and MedFE
datasets, In our experiments, we focus on single-
edit problem, and employ two LLMs that have
been retrained in the medical domain as the to-be-
edited models: ChatDoctor-13B (Yunxiang et al.,
2023) and Meditron-7B (Chen et al., 2023). We
compare various model editing methods, including
FT-M (Fine-tuning on multiple layers), LoRA (Hu
etal.,, 2021), ROME (Meng et al., 2022a), MEND
(Mitchell et al., 2022a), and MEMIT (Meng et al.,
2022b). All hyper-parameters are set according to
optimal values in validation set of corresponding
works. More details are shown in Appendix E.

4.4 Main Results

In this section, we present the main results com-
pared with baselines. As indicated in Table 2, Med-
LaSA demonstrates significant improvements over
all the baselines across most metrics. For instance,
MedLaSA exhibits superior performance of Flu-
ency on both datasets and two LLM backbones,
validating our method’s ability to maintain genera-
tion capability. The experimental results of FT-M
indicate that excessive retraining of the parameters
of an LLM could result in model collapse, causing
the model to lose its original generating capabil-
ity (i.e., much lower Fluency). LoRA introduces
supplementary parameters but fails to consider the
significant impact on unrelated knowledge. It also
overlooks the specific positioning of knowledge in
LLMs and the dependency of knowledge on dif-
ferent layers. As a result, when compared to Med-
LaSA, LoRA may have a similar level of editing
success, but it performs poorly in terms of Local-
ity. MEND has high requirements for initialization

conditions and struggles to adapt to MedCF and
MedFE datasets, resulting in lower average perfor-
mance on these datasets. ROME focuses solely
on single-layer knowledge editing of LLMs, with-
out taking into account the knowledge stored in
multi-layers, thus the performance tends to deterio-
rate. For the MedCF dataset, MEMIT is effective
in editing counterfactual data by locating the key
through the subject in the prompt and optimizing
the value to select the object. This can improve
factors such as Efficacy and Generality. However,
MEMIT underperforms compared to MedLaSA
in terms of Locality, especially for Entity Map-
ping. This is because MEMIT only learns the map-
ping relationship between the head and tail entities,
leading to consistent predictions when the subject
in the locality prompt is the same as the editing
prompt. Furthermore, MEMIT’s performance on
the MedFE dataset is inferior due to its inability
to handle long text output and complex multiple
knowledge. MEMIT, which relies on subject-to-
object localization, is not suitable for such scenar-
10s. In contrast, our proposed MedLaSA addresses
this issue by dynamically adjusting the scale of ad-
ditional parameters and ensuring the insertion of
complex knowledge.

4.5 Comparison of Strategies

In this section, we evaluate different strategies, in-
cluding the Random and Fixed strategies, in com-
parison to our layer-wise scalable adapter strategy
to assess their impact, as shown in Table 3. From
Table 3, it is evident that our designed strategy
outperforms both the Random and Fixed strategies
across all metrics, which proves the effectiveness
of MedLaSA. Moreover, Random strategy’s per-
formance is hindered by the unpredictability of pa-
rameter selection. This randomness leads to lower
Efficacy and lower Generality compared to Fixed
strategy. Despite these shortcomings, the Random
strategy’s varying scales for different knowledge
and layers result in a lesser impact on irrelevant
knowledge compared to the Fixed strategy, leading
to higher scores in terms of Locality and Fluency.

4.6 Ablation Study

In this section, we analyze the effects on the perfor-
mance of the model after removing Scaling Alpha
(SA) and Scaling Rank (SR) in the self-attention
(Attn) and MLP layers, as shown in Table 4. We
can observe that the removal of SR leads to a de-
cline in all metrics. Most notably, Locality-TS



Datasets | MedFE MedCF
Loc. Loc.
Models Eff. ‘ Gen. CT TS ‘ Flu. ‘ Avg. | Eff. ‘ Gen. T EM SS TS ‘ Flu. ‘ Avg.
ChatDoctor-13B
FT-M 61.39 61.04 73.09 70.78 516.44 66.57 | 61.55 61.48 60.74 63.02 59.66 58.74 35631 61.03
LoRA 94.45 88.56 83.24 79.75 570.12 86.50 | 72.01 71.90 93.52 91.88 91.76 92.72 575.71 82.21
MEND 40.66 40.51 50.43 44.52 38575 44.03 |24.72 2471 7529 75.17 74.85 75.24 44994 49.92
ROME 84.01 69.37 92.88 81.98 572.82 82.06|72.73 72.51 9227 61.20 89.41 86.51 556.11 77.48
MEMIT 84.59 70.23 95.80 82.46 566.95 83.27 |82.20 82.03 94.61 62.12 92.09 91.01 563.31 83.54
MedLaSA | 98.11 93.58 89.25 84.11 576.13 91.26 | 72.37 70.80 96.16 95.24 95.59 95.19 583.49 83.56
Meditron-7B

FT-M 62.82 62.68 67.62 6494 473.66 64.51|65.97 6536 4891 50.39 48.13 46.25 327.76 57.04
LoRA 94.01 89.29 83.75 79.13 571.42 86.55|72.19 71.80 9229 91.11 91.36 9242 572.33 81.90
MEND 3421 31.34 30.03 34.23 404.19 3246 |22.87 2293 71.16 71.21 71.03 7229 42838 47.16
ROME 84.59 69.22 95.78 86.44 564.75 84.01 | 72.69 7291 92.79 61.80 90.06 86.93 559.82 77.84
MEMIT 8491 70.80 9540 82.02 566.95 83.28 | 83.10 83.23 95.01 62.62 92.99 90.50 563.31 84.22
MedLaSA | 98.77 94.81 87.41 81.67 575.58 90.66 | 72.37 71.06 95.71 94.84 95.04 94.90 582.80 83.42

Table 2: Model editing results compared with other state-of-the-art methods on MedCF and MedFE benchmarks.
The best results are highlighted in bold, and larger values for all metrics indicate better performance. It should be
noted that Locality metrics TD, EM, and SS necessitate source data that is structured in a knowledge graph format,
thus can only be utilized for MedCF. Metric CT requires a more specific topic for the question, making it applicable

only to MedFE.

Strategy ‘ Eff. ‘Gen. CTLOC.TS ‘ Flu. ‘Avg. Eff. ‘Gen. CTLOC.TS ‘ Flu. ‘Avg.
Random [92.15 86.98 85.62 80.11 572.76 86.22 ALL 98.11 93.58 89.25 84.11 576.13 91.26
Fixed 94.45 88.56 83.24 79.75 570.12 86.50 w/o SR 96.85 93.24 84.88 79.02 573.56 88.50
MedLaSA |98.77 94.81 87.41 81.67 575.58 90.66 w/o SA 96.90 94.44 82.16 75.84 571.36 87.34
w/o SA&SR |94.45 88.56 83.24 79.75 570.12 86.50

Table 3: Comparison of different editing strategies on w/o Attn 08.11 93.58 89.25 84.11 573.34 91.26
MedFE. The Random strategy involves randomly select- w/o Attn&SR [ 96.11 91.57 87.19 82.10 574.85 89.24
ing the scale values of rank r, and alpha o, of all layers, w/o Attn&SA | 96.86 94.12 87.51 80.19 575.47 89.67
instead of using casual tracing to determine knowledge w/o MLP 9294 85.11 88.18 84.17 578.41 87.60
location. The reported results were obtained through w/o MLP&SR | 90.96 84.13 86.19 82.20 577.30 85.87
five random sampling experiments. The Fixed strategy w/o MLP&SA | 96.05 91.07 84.57 79.27 576.13 87.74

maintains fixed scale values of rank r, and alpha «,
to all data (factual knowledge), same with MedLaSA,
across all layers.

experiences a decrease of approximately 5%. This
suggests that SR plays a crucial role in maintaining
the overall performance. On the other hand, when
SA is removed, there is an improvement in the
model’s Generality. However, this improvement
comes at the cost of a significant decrease in Lo-
cality-TS (e.g., from 84.11% reduced to 75.84%).
This indicates that while SA helps in minimizing
the model’s modification of irrelevant knowledge,
it concurrently compromises the model’s general-
ization to rephrases. Similar results can also be
observed when our proposed method is applied
exclusively to Attn or MLP, which further demon-
strates the effectiveness of SA and SR in medical
model editing.

Table 4: Ablation study on MedFE dataset. The ab-
breviation ‘w/o’ indicates that the following module is
removed, and the term ‘ALL’ indicates that both scaling
strategies are employed in both MLP and Attn layers.

4.7 Hyper-parameters Analysis

In this section, we analyze the impact of different
alpha o, and rank r, values on MedLaSA under
the MedCF and MedFE datasets. The results of Lo-
cality are derived by averaging all its sub-metrics.
As shown in Figure 3, we observe that as «, in-
creases, both Efficacy and Generality also increase.
However, Locality decreases concurrently. This
suggests that the size of «, significantly influences
the model’s ability to successfully incorporate new
knowledge and its impact on irrelevant knowledge.
When selecting «,, the trade-off between the fac-
tors must be considered, and the best average result



Loc.

Weight Type Editable Weight Eft. ‘ Gen. ‘ CT TS ‘ Flu. ‘ Avg.
We, W 80.63 7349 9233 89.58 579.29 84.01

Attn Weichts Wi, Wo 78.65 7176 9471 91.88 582.62 84.25
g Wq, Wy, Wi, W, 92.07 84.16 9023 86.21 577.86 88.17

Waup 82.62 7630 96.47 9340 580.81 87.20

MLP Weights Waown 80.73 74.88 94.09 91.03 57829 85.18
Weps Waown, Waate 96.47 90.93 91.89 87.31 57653 91.65

Attn + MLP Wea, We, Wap, Waown 9699 9143 8893 8422 577.0 90.39
Wa, Wo, Wap, Waown, Wate 98.27 9370 88.73 83.58 576.13 91.07

Wea, We, Wi, Wo, Wap, Waown, Waate | 98.70  94.63  87.66 82.10 574.19 90.77

Table 5: Comparison of the impact of editing weights.

The framework of ChatDoctor and Meditron are

based on Llama (Touvron et al., 2023), which includes Attn weights (W, W, Wi, W,) and MLP weights
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Figure 3: Analysis of hype-parameters 7, and a,,. The
top two figures depict the results on MedFE, while the
bottom two figures display the results on MedCF.

is achieved when ¢, is set to 24. On the other hand,
as the value of rank increases, there is no signifi-
cant change in all metrics. Only when the rank is
too small (e.g., equal to 2), does the model’s edit-
ing Locality suffer certain negative effects, which
indicates that for single-edit problems, the size of
the rank is not a major determinant of the model’s
performance.

4.8 Comparison of Editing Weights

To analyze and evaluate the specific model weights
that are more suitable for editing in MedLaSA,
we conduct a comparison of editing weights, as
shown in Table 5. it can be observed that for Attn
weights, W, and W, demonstrate a higher editing
success rate compared to weights W, and W,,, and
exhibit better generalization ability for rephrasing
text. However, W, and W, show a poorer perfor-
mance in terms of the Locality metrics. When all
four weights are edited together, the learning of

editing text is improved, but this improvement is
accompanied by a decrease in the Locality metrics.

On the other hand, when comparing the weights
of MLP, W, consistently outperforms W, in
all metrics. This suggests that W, may have
the ability to retain more knowledge and is more
suitable for editing medical models. Furthermore,
when W, Waown, and Wy are used together,
there is a notable enhancement in both Efficacy and
Average performance. It is worth noting that when
both the Attn and MLP weights are simultaneously
made trainable for editing, there are additional en-
hancements in Efficacy and Generality. However,
this comes at the cost of significant decreases in
Locality and Fluency. This suggests that by in-
corporating more trainable adapter parameters, the
success rate of medical model editing increases.
Consequently, it leads to a stronger impact on the
prediction of irrelevant information.

5 Conclusion

In this paper, we focused on the editing of medical
knowledge in LLMs and proposed two prelimi-
nary studies: editing factual medical knowledge
and editing the explanations of LLMs. Two corre-
sponding benchmarks were constructed to evaluate
model editing methods, and more comprehensive
and challenging metrics were proposed for Locality
evaluation. What is more, we proposed MedLaSA
to address the challenges faced in medical model
editing due to the specialization and complexity
of medical language. Extensive experiments con-
ducted on MedCF and MedFE demonstrated the
drawbacks of the existing methods and the outper-
formance of MedLaSA over them.



6 Limitations

There are several aspects to consider for both our
datasets and our method in terms of limitations.

Regarding the MedCF and MedFE datasets, they
consider different aspects of medical model editing
and include a comprehensive evaluation of Local-
ity. However, our proposed datasets do not consider
more robust evaluations, such as portability (Yao
et al., 2023) to assess whether editing was suc-
cessful. Meanwhile, due to the constraints of the
original data, the number of samples for medical
model editing is relatively small, which does not
support simultaneous editing on a larger scale.

As for our method, MedLaSA, although it ef-
fectively addresses the challenges of specialization
and complexity of medical knowledge in model
editing, it may have some negative impact on
Generality. MedLaSA is primarily designed for
single-edit cases and lacks considering batch edit-
ing (Meng et al., 2022b), which involves multiple
edits (Huang et al., 2023) at once, or sequence edit-
ing, where models must retain previous modifica-
tions while implementing new ones. Furthermore,
its performance on encyclopedic data (Mitchell
et al., 2022a) remains to be explored.

7 Ethics Statement

The main objective of this paper is to propose two
benchmarks and a novel medical model editing
framework that aims to solve out-of-date and hallu-
cinations problem in medical LLMs. It is important
to note that our method does not produce uncontrol-
lable outputs. On the contrary, the model editing
method has the potential to enhance the controlla-
bility and reliability of medical LLMs. Addition-
ally, the datasets and codes used in this study are
constructed using publicly available data and tools,
ensuring that there are no negative social conse-
quences or ethical concerns.
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A Knowledge Type

In this section, we provide a comprehensive
overview of the knowledge types of MedCF and
MedFE, as shown in Table 6 and 7, respectively.
The knowledge types included in MedCF are cate-
gorized based on their relations, whereas the knowl-
edge types in MedFE are categorized according to
medical subjects.

B Data Samples

We provide data samples for the MedCF and
MedFE datasets in Figure 4 and 5, comprising
of the knowledge that requires editing, rephrase
knowledge, and irrelevant knowledge obtained
through our proposed methodology in Section 4.2.

C Templates

The data of Efficacy for MedCF and Generality for
both MedCF and MedFE are generated by querying
ChatGPT. The template for querying is shown in 8.

D Case of Casual Tracing

In this section, we showcase heatmaps illustrat-
ing individual instances of causal tracing from
the MedCF and MedFE datasets on ChatDoctor
network parameters (including Attn and MLP net-
works) in Figure 4 and 5. These heatmaps provide a
visual representation of the causal tracing, allowing
us to visually understand how the model makes de-
cisions and pinpoint areas that can be enhanced. By
examining these heatmaps, we can extract valuable
information about how the model makes decisions
and establish factual connections with particular
neuron activations (Meng et al., 2022a).

E Hyper-parameters Selection

All experiments was conducted on four NVIDIA
V100 32G. During our hyper-parameters search,
we focused on finding the optimal hyperparam-
eters for r, «, and editable weights W. The
search scope for hyperparameters r and « was
limited to the values [2, 8, 24, 32, 64, 128].
The analysis of » and « can be seen in Figure
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3. The editable weights we considered were
Wae, We, Wie, Wo, Wap, Waowns Wyate, Which is
compared in Table 5. We selected the parameter
with the highest Average value as the best choice.
The hyper-parameters we use are as follows:

e MedCF dataset on ChatDoctor-13B: r: 24,
a: 32, learning rate: le-05, the number of
steps: 70, the maximum length: 40, the ed-
itable weights: Wy, Wy, Wy, Waown.-

¢ MedCF dataset on Meditron-7B: r: 24, o 32,
learning rate: 1e-05, the number of steps: 70,
the maximum length: 40, the editable weights:
qu an Wk’y Wm Wupa Wdouma Wgate~

¢ MedFE dataset on ChatDoctor-13B: r: 24, «:
32, learning rate: Se-05, the number of steps:
40, the maximum length: 200, the editable
weights: W, Waown.

* MedFE dataset on Meditron-7B: r:
24, «o: 24, learning rate: 5e-05, the
number of steps: 40, the maximum
length: 200, the editable weights:

Wq, an Wka Woa Wupa Wdowna Wgate-



Entity type Relation type #Samples

Compound:Compound drug-drug interaction 255
Compound:Disease compound treats the disease 256
Compound:Disease inhibits cell growth (esp. cancers) 256
Compound:Disease role in disease pathogenesis 256
Compound:Disease biomarkers (of disease progression) 256
Compound:Disease alleviates, reduces 256
Compound:Disease prevents, suppresses 256
Compound:Disease side effect/adverse event 256
Compound:Disease treatment/therapy (including investigatory) 256
Compound:Side Effect causes 160
Compound:Disease palliation 256
Compound:Compound resemblence 256
Compound:Disease treatment 256
Anatomy:Disease localization 133
Disease:Symptom presents 152
Diisease:Disease resemblence 256

Compound:Pharmacologic Class  inclusion

256

Table 6: Knowledge type of MedCF.

"prompt": "What side effect is caused by Primaquine?",

"target_new": "Stinging",
"subject": "Primaquine",
"ground_truth": "Nausea",

"rephrase_prompt": "What adverse effect is attributed to Primaquine?",
"locality _target prompt": "What side effect is caused by Orciprenaline?",

"locality target ground truth": "Nausea",

"locality_mapping_prompt": "Which drug is involved in a drug-drug interaction with Primaquine?",
"locality_mapping_ground_truth": "Lobeglitazone",
"locality _struc_prompt": "What side effect is caused by Domperidone?",

"locality_struc_ground_truth": "Breast pain",

"locality_tokenSem_prompt": "What disease does Primaquine treat?",

"locality tokenSem_ground truth": "PJP"

Figure 4: A sample of the MedCF dataset.

Knowledge Type #Samples
Pharmacology 510
Ear, nose, and throat 510
Medicine 505
Pediatrics 509
Orthopaedics 503
Pathology 508
Gynaecology & Obstetrics 509
Ophthalmology 510
Skin 164

Table 7: Knowledge type of MedFE.
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Template

Efficacy: Given atriplet ([ep,], [], [e:]), please
express this triplet in a question-answer form.
The [e;,] and [r] form a question, and you need
to ask what the corresponding answer [e;] is
for this question.

Generality: Please rephrase the question using
medical terminology, without changing the se-
mantics: ¢

Table 8: Templates for querying ChatGPT to generate
the Efficacy and Generality data. ey, r, and e; denote
the head entity, relation, and tail entity, respectively.



"subject": "Adiponectin",

"subject_type": "Medicine",

"topic_type": "Diabetes Mellitus",

"prompt": "Please provide an explanation for the following fact: \n In obesity which of the following hormone levels is
decreased ? Adiponectin",

"target new": "Adiponectin is an abundant adipose-derived protein and enhances insulin sensitivity and lipid oxidation .Its
levels are reduced in obesity Obesity is associated to significant disturbances in endocrine function. Hyper insulinemia and
insulin resistance are the best known changes in obesity. Thyroxine, GH and adiponectin have lipolytic effects, hence their
levels are reduced in obesity",

"rephrase_prompt": "Please provide an explanation for the following fact: \n In cases of obesity, which hormone
experiences a decrease in levels? Adiponectin.",

"locality topic_prompt": "Please provide an explanation for the following fact: \n Which type of Insulin is used to manage
a case of Diabetic ketoacidosis? Regular",

"locality topic_ground truth": "Drug of choice for DKA - IV/ SC regular insulin IV NS 5L/ 24 hours Bed time Insulin -
Glargine IV Insulin - 1. Acute Hyperkalemia 2. DKA 3. Hyperosmolar coma SC Insulin - DMI",
"locality_tokenSem_prompt": "Please provide an explanation for the following fact: \n Which protein secreted by
adipocytes prevents obesity? Leptin",

"locality_tokenSem_ground_truth": "Leptin is a peptide produced by the ob gene; Its name derived from the Greek root
leptos, meaning thinLeptin is secreted by adipose cells and acts primarily through the hypothalamusHigh leptin levels
decrease food intake and increase energy expenditure, thereby preventing obesity"

Figure 5: A sample of the MedFE dataset.
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Figure 6: Case of casual tracing on the MedCF dataset.
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