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Abstract
Model editing aims to precisely modify the be-001
haviours of large language models (LLMs) on002
specific knowledge while keeping irrelevant003
knowledge unchanged. It has been proven ef-004
fective in resolving hallucination and out-of-005
date issues in LLMs. As a result, it can boost006
the application of LLMs in many critical do-007
mains (e.g., medical domain), where the hal-008
lucination is not tolerable. In this paper, we009
propose two model editing studies and validate010
them in the medical domain: (1) directly edit-011
ing the factual medical knowledge and (2) edit-012
ing the explanations to facts. Meanwhile, we013
observed that current model editing methods014
struggle with the specialization and complex-015
ity of medical knowledge. Therefore, we pro-016
pose MedLaSA, a novel Layer-wise Scalable017
Adapter strategy for medical model editing. It018
employs causal tracing to identify the precise019
location of knowledge in neurons and then in-020
troduces scalable adapters into the dense layers021
of LLMs. These adapters are assigned scal-022
ing values based on the corresponding specific023
knowledge. To evaluate the editing impact,024
we build two benchmark datasets and intro-025
duce a series of challenging and comprehen-026
sive metrics. Extensive experiments on medi-027
cal LLMs demonstrate the editing efficiency of028
MedLaSA, without affecting irrelevant knowl-029
edge that is not edited.030

1 Introduction031

Recent researches have demonstrated that the large032

language models (LLMs) can serve as a knowledge033

base to store facts about the world and possess034

remarkable understanding ability to facts (Petroni035

et al., 2019; Geva et al., 2022). Considering the sub-036

stantial cost of retraining LLMs, there has been an037

increasing interest in model editing (also known as038

knowledge editing), which seeks to modify the be-039

haviors of LLMs by precisely manipulating a part040

of knowledge while ensuring other stored knowl-041

edge unaffected (Zhang et al., 2024).042
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Figure 1: Examples of two editing methods.

However, the potential of model editing to mod- 043

ify specialized knowledge, particularly in medical 044

domain, has not been fully explored. While LLMs 045

have proven to be valuable tools, they may still 046

provide outdated factual information or even expe- 047

rience hallucinations, which is particularly concern- 048

ing when deployed in real-world medical scenarios. 049

(Hartvigsen et al., 2022; Feng et al., 2023). This re- 050

search gap presents a question: Can model editing 051

techniques effectively address the challenges when 052

integrating LLMs in medical domain? 053

In order to explore and promote model editing 054

techniques to solve out-of-date and hallucination 055

problems in medical LLMs by editing medical 056

knowledge, we propose two preliminary studies 057

as shown in Figure 1: (1) editing factual medical 058

knowledge within LLMs to ensure up-to-date in- 059

formation, and (2) editing LLMs to enhance its 060

ability to explain these facts to mitigate hallucina- 061

tions. To facilitate our exploration, we construct 062

two corresponding benchmarks, namely Medical 063

Counter Fact (MedCF) and Medical Fact Expla- 064

nation (MedFE), enabling us to evaluate model 065
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editing approaches from four perspectives: Effi-066

cacy, Generality, Locality, and Fluency (Zhang067

et al., 2024). Additionally, given the higher de-068

mand for reliability in the medical domain (Zhou069

et al., 2023), we propose more challenging and070

comprehensive metrics for Locality evaluation.071

Despite the remarkable achievements of model072

editing methods in general domains (Meng et al.,073

2022a), we observed that they struggle to over-074

come the challenges in the medical model editing075

due to the specialization and complexity of medical076

language (Karabacak and Margetis, 2023). These077

methods either overlook the storage of complex078

medical knowledge across different layers of LLMs079

(Zheng et al., 2023) or may introduce substantial080

modifications to original parameters, which con-081

sequently affect the model’s unrelated knowledge082

(not the target of editing) and lead to suboptimal083

performance (Meng et al., 2022b).084

To handle medical model editing, we propose085

MedLaSA, a novel Layer-wise Scalable Adapter086

strategy. MedLaSA employs a casual tracing087

method (Meng et al., 2022a) to associate medical088

knowledge to corresponding layers. By focusing089

on the layers where knowledge-to-edit resides, the090

targeted knowledge can be modified efficiently and091

other knowledge can be left unchanged. Exten-092

sive experiments conducted on MedCF and MedFE093

have demonstrated superior performance of Med-094

LaSA across a range of metrics. Our contributions095

are summarized as follows:096

• To the best of our knowledge, we are the first097

to propose medical LLM editing for factual098

knowledge and explanatory abilities in med-099

ical LLMs by constructing two benchmarks100

with comprehensive evaluation metrics.1101

• We propose MedLaSA to dynamically adjust102

the adapters across different layers of LLMs103

based on medical knowledge and automati-104

cally categorize whether the input knowledge105

requires editing.106

• We conduct extensive experimental analysis107

of complex and specialized medical knowl-108

edge model editing, which demonstrates that109

MedLaSA significantly outperforms the exist-110

ing cutting-edge methods.111

1The data and code will be open-sourced upon publication.

2 Related Work 112

We present current model editing works in two 113

categories following Yao et al. (2023). 114

2.1 Memories or Additional Parameters 115

The methods of this category typically involve cre- 116

ating explicit memories to store the required knowl- 117

edge for editing, or adding additional trainable pa- 118

rameters to LLMs for learning new knowledge (Yu 119

et al., 2023; Dong et al., 2022; Hartvigsen et al., 120

2022). SERAC (Mitchell et al., 2022b) utilized 121

explicit memory for storing edits and incorporated 122

a scope classifier to understand the editing scope. 123

Given a sample within the editing scope, it uti- 124

lized a separate model to make edits, ensuring that 125

the original model remains unaffected. Inspired 126

by the in-context learning ability of LLMs, IKE 127

(Zheng et al., 2023) designed demonstration for- 128

matting and organization strategies, including the 129

copy, update, and retain templates, and retrieved 130

relevant knowledge facts from the editing memo- 131

ries as demonstration inputs to guide the editing 132

process. T-Patcher (Huang et al., 2023) retained 133

all original parameters to preserve overall perfor- 134

mance while adding trainable neuron patches to 135

the last Feed-Forward Network (FFN) layer of a 136

Transformer for handling sequential model editing. 137

Despite their success, the above methods lack the 138

exploration of the mechanics of knowledge storage 139

in LLMs, which ultimately leads to poor perfor- 140

mance in handling complex medical knowledge. 141

2.2 Modifying LLMs’ Parameters 142

The methods of this category aim to comprehend 143

how knowledge is stored in LLMs and how it can 144

be effectively altered by changing the parameters 145

(De Cao et al., 2021; Geva et al., 2021; Wu et al., 146

2023). KN (Dai et al., 2022) proposed a knowledge 147

attribution method to identify the neurons associ- 148

ated with specific knowledge without fine-tuning, 149

updating facts, and erasing relations by directly 150

modifying the corresponding parameters in FFN. 151

MEND (Mitchell et al., 2022a) introduced auxiliary 152

hyper-networks to transform the gradient during the 153

fine-tuning process, and trained the hyper-networks 154

to ensure edit success and locality when updating 155

LLMs’ parameters. ROME (Meng et al., 2022a) 156

applied causal mediation analysis (Pearl, 2022; Vig 157

et al., 2020) to identify decisive neuron activation 158

and modify FFN weights by solving a least squares 159

problem with a linear equality constraint using the 160

2



Lagrange multiplier. As an extension of ROME161

(Meng et al., 2022a), MEMIT (Meng et al., 2022b)162

introduced a multi-layer algorithm to update multi-163

ple cases simultaneously. PMET (Li et al., 2023)164

further improved MEMIT (Meng et al., 2022b) by165

simultaneously optimizing hidden states of self-166

attention and FFN. Despite impressive progress167

made by these methods, they often introduce sig-168

nificant modifications to the original parameters.169

Consequently, unrelated knowledge is affected, re-170

sulting in a noticeable impact on Locality and Flu-171

ency, as demonstrated in Section 4.172

3 Methodology173

3.1 Prelimimaries174

Model editing is a recently emerging field that aims175

to modify specific knowledge within a neural net-176

work while preserving the network’s behaviours177

for other knowledge (Zhang et al., 2024; Yao et al.,178

2023). In contrast to vanilla fine-tuning for updat-179

ing LLMs, model editing seeks to precisely manip-180

ulate and update the specific knowledge in LLMs,181

resulting in a more thorough and strict evaluation182

(Wang et al., 2023b). Formally, we denote a model183

as f(x; θ), which maps an input x to its prediction184

y with the pretrained model parameters θ, and the185

post-edited model is denoted as f ′(θe). To be con-186

sidered effective, model editing typically needs to187

satisfy the following four properties (Huang et al.,188

2023; Zhang et al., 2024):189

Property 1 Efficacy. The post-edited model190

should establish an effective mapping between the191

edit pair (xe, ye), i.e., f ′(xe, θe) = ye.192

Property 2 Generality. When an input sentence193

xs with a similar meaning to xe (e.g., a rephrased194

sentence) is provided, the post-edited model is ex-195

pected to produce the corresponding output ye as196

well, i.e., f ′(xs, θe) = ye.197

Property 3 Locality. The editing process should198

remain local and precise, meaning the post-edited199

model should not impact the prediction of irrelevant200

example pairs (xi,yi), i.e., f ′(xi, θe) = yi.201

Property 4 Fluency. The post-edited model202

should maintain generation ability and thus a high203

level of fluency in output, which is evaluated by204

calculating a weighted average of bi- and tri-gram205

entropies, as described by Meng et al. (2022a).206

3.2 Casual Tracing207

We first introduce casual tracing, which aims to208

identify factual associations to specific neuron acti-209

vations by calculating the contribution of each state 210

towards factual predictions (Meng et al., 2022a). 211

The knowledge and its associations in the network 212

can be effectively utilized to regulate model editing 213

and scaling operations in our model, as described 214

in Section 3.3. This process involves three forward 215

propagation runs: (1) Clean run. A factual knowl- 216

edge x is fed into model, and the hidden activations 217

{hli|i ∈ [1, T ], l ∈ [1, L]} of every token i of T to- 218

kens and every layer l of L layers are collected. 219

(2) Corrupted run. The subject of x is obfus- 220

cated by introducing Gaussian noise ϵ ∼ N(0; v) 221

with zero mean and standard deviation of v to the 222

subject embedding of x, and we can get a set of 223

corrupted activations {hli∗|i ∈ [1, T ], l ∈ [1, L]}. 224

(3) Corrupted-with-restoration run. The input 225

noisy embeddings are kept the same as in the cor- 226

rupted run, but the hidden activations hli∗ of each 227

token and layer are replaced with hli as in the clean 228

run. The probability of restoring the correct output, 229

as in the clean run, indicates the causal association 230

between knowledge and hidden states. The restora- 231

tion operation is performed separately on each to- 232

ken within every layer for a single piece of knowl- 233

edge and generates an impact matrix M ∈ RT×L. 234

We present heatmaps of the impact matrix of the 235

MedCF and MedFE datasets in Appendix D for 236

better understanding. 237

3.3 MedLaSA 238

In this section, we introduce MedLaSA, a simple 239

yet effective model editing strategy. MedLaSA is 240

designed to modify each layer in a tailored man- 241

ner by taking into account the associations between 242

multiple layers and medical knowledge while ensur- 243

ing that irrelevant knowledge remains unaffected 244

during the modification process. We first apply 245

causal tracing to each piece of medical knowledge 246

(as shown in Section 3.2), which has been proven 247

effective in identifying specific hidden states that 248

are crucial when recalling a fact (Meng et al., 249

2022a). Unlike previous methods such as ROME 250

(Meng et al., 2022a), which directly modify the 251

MLP weights of corresponding layers, we argue 252

that adding an adapter to dense weights is a more 253

effective way to insert new knowledge while mostly 254

preserving the original abilities of LLMs. 255

Our motivation lies in enabling the model to au- 256

tomatically discriminate whether the input knowl- 257

edge requires editing (Efficacy and Generality) or 258

not (Locality, Fluency), which is achieved by ap- 259

plying different scales of adjustment to adapter of 260
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Figure 2: The overview of our proposed MedLaSA. We demonstrate the process of inputting individual pieces of
data. This process is applicable to both edited and unedited knowledge. The activation scale of adapters in different
layers varies depending on the knowledge in data, ensuring that unrelated knowledge is not significantly impacted
after the editing process.

the layer where knowledge is located. For instance,261

as illustrated in Figure 2, when data that needs edit-262

ing is inputted, we increase its scale on i-th layer263

and decrease its impact on j-th layer, ensuring that264

knowledge updates occur at i-th layer. Conversely,265

when locality data is input, the influence of adapter266

on j-th layer is activated and reduces impact of267

adapter on i-th layer. Inspired by LoRA (Hu et al.,268

2021), we incorporate a parallel low-rank adapter269

into dense layers to enable parameter-efficient fine-270

tuning. Specifically, a pre-trained weight matrix271

W0 ∈ Rd×k from attention or MLP module is up-272

dated with two trainable matrics B ∈ Rd×r and273

A ∈ Rr×k. For layer l, we have:274

hl = W l
0x+

αl

rl
BlAlx, (1)275

where, the rank rl ≪ min(d, k) and the αl in our276

work are utilized to adjust the number and location277

of trainable parameters required for knowledge up-278

dating, respectively.279

Scaling α. Parameter α is used to measure the280

weight of the adapter relative to the original net-281

work. Each individual knowledge has a specific α282

value and can generate an impact matrix M through283

casual tracing in Section 3.2. The impact Iα:284

Iα = norm(
∑
t∈Es

Mt), (2)285

where Es is defined as the set of index of subject286

tokens, norm(·) denotes max-min normalization.287

The final scale of layer l can be computed by mul- 288

tiplying hyper-parameter αo with Iα value in the 289

i-th layer: αl = αo × I lα. 290

Scaling Rank. The rank r is used to control the 291

number of additional parameters required to update 292

new knowledge, which is generalized for knowl- 293

edge in whole dataset D and is specific to each 294

layer l: 295

Ir = norm(
∑
M∈D

∑
t∈Es

Mt). (3) 296

The final rank of layer l can be computed by multi- 297

plying hyper-parameter ro: rl = ⌈ro × I lr⌉. 298

What is more, a transformer block typically in- 299

cludes self-attention and MLP modules, whose ef- 300

fects can be separately analyzed with causal tracing. 301

For example, to measure the impact matrix Mattn 302

of the attention module, the MLP calculation is cut 303

off and frozen in its corrupted run state, so that 304

it is not affected by the insertion of a clean state. 305

We conducted a thorough analysis to examine the 306

influence of various weights and hyperparameters 307

on model editing, in Section 4. 308

4 Experiments 309

4.1 Medical Model Editing Benchmarks 310

We aim to investigate the effectiveness of model 311

editing techniques in the medical domain. On one 312

hand, there are potential concerns regarding medi- 313

cal knowledge stored in medical LLMs (e.g., out- 314

dated information and hallucination), which could 315
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result in errors in diagnosis or treatment recom-316

mendations (Zhou et al., 2023). On the other hand,317

real medical scenarios demand a high level of relia-318

bility, which has led to increased emphasis on the319

explanatory ability of LLMs, such as their ability to320

demonstrate a logical chain-of-thought during the321

decision-making process (Karabacak and Margetis,322

2023). Therefore, we construct the MedCF dataset323

for (1) editing factual medical knowledge and the324

MedFE dataset for (2) editing explanation ability325

of LLMs. The statistics are shown in Table 1.326

Medical Counter Fact Dataset. We build the327

MedCF dataset using a medical knowledge graph328

(Ioannidis et al., 2020) and corresponding text (Xu329

et al., 2023) as the source. To evaluate the ability330

to edit knowledge with unknown prediction results331

of LLMs, same as Meng et al. (2022a), we replace332

the tail entity t in triplets (h, r, t) and construct a333

set of false facts (h, r, t∗). We then use ChatGPT334

(OpenAI, 2023) to generate questions of (h, r, ?)335

and form edit pair (xe, ye), as well as generate336

rephrased data for these questions, as shown below.337

Question: What side effect is caused by Primaquine?
Rephrase: What adverse effect is attributed to Pri-
maquine?
Ground Truth: Nausea. Edit Target: Stinging

338

Medical Fact Explanation Dataset. We build339

the MedFE dataset by utilizing MedMCQA (Pal340

et al., 2022), a dataset designed for answering med-341

ical entrance exam questions. To generate an edit342

pair (xe, ye), we combined the question and correct343

choice to form a factual statement, and we used the344

expert’s explanation as a source for the target edit.345

Fact: In obesity which of the following hormone levels
is decreased? Adiponectin.
Rephrase: In cases of obesity, which hormone experi-
ences a decrease in levels? Adiponectin.
Explanation: Adiponectin is an abundant adipose-
derived protein and enhances insulin sensitivity and lipid
oxidation. Its levels are reduced in obesity Obesity is
associated with significant disturbances in endocrine
function. Hyper insulinemia and insulin resistance are
the best known changes in obesity. Thyroxine, GH, and
adiponectin have lipolytic effects, hence their levels are
reduced in obesity.

4.2 Locality Evaluation Metrics346

The aforementioned data can be utilized to assess347

Efficacy, Generality, and Fluency. In terms of Lo-348

cality, previous benchmarks have either employed349

out-of-distribution data (e.g., zsRE (Mitchell et al., 350

2022a)) or solely relied on data with the same 351

ground truth (e.g., CounterFact (Meng et al., 352

2022a)). Nevertheless, we argue that a comprehen- 353

sive evaluation of Locality is necessary to prevent 354

the inadvertent modification of irrelevant knowl- 355

edge and ensure high reliability of the medical do- 356

main. The post-edited model should be evaluated 357

based on the following categories: (1) Target Dis- 358

tribution: Does the editing change the probability 359

distribution of ground truth tokens? (2) Entity 360

Mapping: Does the editing only learn the map- 361

ping relationship between head and tail entities? 362

(3) Structural Similarity: Does the editing affect 363

unrelated knowledge with similar structures? (4) 364

Textual Similarity: Does the editing affect unre- 365

lated knowledge with similar text? (5) Consistent 366

Topic: Does the editing affect unrelated knowledge 367

with the same topic? 368

Based on these requirements, we collected cor- 369

responding data for Locality evaluation separately, 370

which allows for a comprehensive analysis of the 371

impact of model editing techniques on other knowl- 372

edge within the medical domain. The data sam- 373

pling for metrics (1), (2), and (5) can be achieved 374

by simple retrieval. Metric (3) is attained by em- 375

ploying the knowledge graph embedding method 376

(e.g., RotatE (Sun et al., 2018)) to learn embed- 377

dings of entities and relations, which measures sim- 378

ilarity in terms of the graph structure. Metric (4) is 379

achieved by employing BioBERT (Lee et al., 2020) 380

to produce textual embeddings and compare simi- 381

lar question-answer pairs. Detailed samples can be 382

found in Appendix B. 383

4.3 Experimental Setup 384

Metrics. we utilize the metrics constructed in 385

Section 4.1 as our evaluation. The calculation 386

of Fluency follows ROME (Meng et al., 2022a). 387

The computation of other metrics follows EasyEdit 388

(Wang et al., 2023a), which are measured as aver- 389

age accuracy between the token matching of the 390

predicted output and the expected output. For ease 391

of presentation, we employ abbreviations to repre- 392

sent each metric: Efficacy (Eff.), Generality (Gen.), 393

Locality (Loc.), and Fluency (Flu.). For the sub- 394

metrics of Locality, we use the following abbrevi- 395

ations: Target Distribution (TD), Entity Mapping 396

(EM), Structural Similarity (SS), Textual Similarity 397

(TS), and Consistent Topic (CT). Due to limita- 398

tions of the original data, we measure TD, EM, 399

SS, TS for MedCF and measure TS and CT for 400
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Dataset #Type #Train #Valid #Test

MedCF 17 2,407 817 801
MedFE 9 2,533 851 841

Table 1: Statistics of MedCF and MedFE. The term
‘Type’ refers to the subject or relation types of datasets,
such as ‘Medicine’ and ‘Skin’. The number of samples
for different types is kept consistent, further details are
provided in the Appendix A.

MedFE. To examine the trade-off between edit suc-401

cess and locality, we further report the weighted402

mean by: Avg. = (vEdit+vLoc.)/2, where vLoc. =403
1

|Loc.|
∑

m∈Loc.m, and vedit = (Eff.+Gen.)/2.404

Backbones and Baselines. Due to the lack of405

datasets for medical model editing, all our ex-406

periments are conducted on MedCF and MedFE407

datasets, In our experiments, we focus on single-408

edit problem, and employ two LLMs that have409

been retrained in the medical domain as the to-be-410

edited models: ChatDoctor-13B (Yunxiang et al.,411

2023) and Meditron-7B (Chen et al., 2023). We412

compare various model editing methods, including413

FT-M (Fine-tuning on multiple layers), LoRA (Hu414

et al., 2021), ROME (Meng et al., 2022a), MEND415

(Mitchell et al., 2022a), and MEMIT (Meng et al.,416

2022b). All hyper-parameters are set according to417

optimal values in validation set of corresponding418

works. More details are shown in Appendix E.419

4.4 Main Results420

In this section, we present the main results com-421

pared with baselines. As indicated in Table 2, Med-422

LaSA demonstrates significant improvements over423

all the baselines across most metrics. For instance,424

MedLaSA exhibits superior performance of Flu-425

ency on both datasets and two LLM backbones,426

validating our method’s ability to maintain genera-427

tion capability. The experimental results of FT-M428

indicate that excessive retraining of the parameters429

of an LLM could result in model collapse, causing430

the model to lose its original generating capabil-431

ity (i.e., much lower Fluency). LoRA introduces432

supplementary parameters but fails to consider the433

significant impact on unrelated knowledge. It also434

overlooks the specific positioning of knowledge in435

LLMs and the dependency of knowledge on dif-436

ferent layers. As a result, when compared to Med-437

LaSA, LoRA may have a similar level of editing438

success, but it performs poorly in terms of Local-439

ity. MEND has high requirements for initialization440

conditions and struggles to adapt to MedCF and 441

MedFE datasets, resulting in lower average perfor- 442

mance on these datasets. ROME focuses solely 443

on single-layer knowledge editing of LLMs, with- 444

out taking into account the knowledge stored in 445

multi-layers, thus the performance tends to deterio- 446

rate. For the MedCF dataset, MEMIT is effective 447

in editing counterfactual data by locating the key 448

through the subject in the prompt and optimizing 449

the value to select the object. This can improve 450

factors such as Efficacy and Generality. However, 451

MEMIT underperforms compared to MedLaSA 452

in terms of Locality, especially for Entity Map- 453

ping. This is because MEMIT only learns the map- 454

ping relationship between the head and tail entities, 455

leading to consistent predictions when the subject 456

in the locality prompt is the same as the editing 457

prompt. Furthermore, MEMIT’s performance on 458

the MedFE dataset is inferior due to its inability 459

to handle long text output and complex multiple 460

knowledge. MEMIT, which relies on subject-to- 461

object localization, is not suitable for such scenar- 462

ios. In contrast, our proposed MedLaSA addresses 463

this issue by dynamically adjusting the scale of ad- 464

ditional parameters and ensuring the insertion of 465

complex knowledge. 466

4.5 Comparison of Strategies 467

In this section, we evaluate different strategies, in- 468

cluding the Random and Fixed strategies, in com- 469

parison to our layer-wise scalable adapter strategy 470

to assess their impact, as shown in Table 3. From 471

Table 3, it is evident that our designed strategy 472

outperforms both the Random and Fixed strategies 473

across all metrics, which proves the effectiveness 474

of MedLaSA. Moreover, Random strategy’s per- 475

formance is hindered by the unpredictability of pa- 476

rameter selection. This randomness leads to lower 477

Efficacy and lower Generality compared to Fixed 478

strategy. Despite these shortcomings, the Random 479

strategy’s varying scales for different knowledge 480

and layers result in a lesser impact on irrelevant 481

knowledge compared to the Fixed strategy, leading 482

to higher scores in terms of Locality and Fluency. 483

4.6 Ablation Study 484

In this section, we analyze the effects on the perfor- 485

mance of the model after removing Scaling Alpha 486

(SA) and Scaling Rank (SR) in the self-attention 487

(Attn) and MLP layers, as shown in Table 4. We 488

can observe that the removal of SR leads to a de- 489

cline in all metrics. Most notably, Locality-TS 490
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Datasets MedFE MedCF

Models Eff. Gen. Loc. Flu. Avg. Eff. Gen. Loc. Flu. Avg.CT TS TD EM SS TS

ChatDoctor-13B

FT-M 61.39 61.04 73.09 70.78 516.44 66.57 61.55 61.48 60.74 63.02 59.66 58.74 356.31 61.03
LoRA 94.45 88.56 83.24 79.75 570.12 86.50 72.01 71.90 93.52 91.88 91.76 92.72 575.71 82.21
MEND 40.66 40.51 50.43 44.52 385.75 44.03 24.72 24.71 75.29 75.17 74.85 75.24 449.94 49.92
ROME 84.01 69.37 92.88 81.98 572.82 82.06 72.73 72.51 92.27 61.20 89.41 86.51 556.11 77.48
MEMIT 84.59 70.23 95.80 82.46 566.95 83.27 82.20 82.03 94.61 62.12 92.09 91.01 563.31 83.54
MedLaSA 98.11 93.58 89.25 84.11 576.13 91.26 72.37 70.80 96.16 95.24 95.59 95.19 583.49 83.56

Meditron-7B

FT-M 62.82 62.68 67.62 64.94 473.66 64.51 65.97 65.36 48.91 50.39 48.13 46.25 327.76 57.04
LoRA 94.01 89.29 83.75 79.13 571.42 86.55 72.19 71.80 92.29 91.11 91.36 92.42 572.33 81.90
MEND 34.21 31.34 30.03 34.23 404.19 32.46 22.87 22.93 71.16 71.21 71.03 72.29 428.38 47.16
ROME 84.59 69.22 95.78 86.44 564.75 84.01 72.69 72.91 92.79 61.80 90.06 86.93 559.82 77.84
MEMIT 84.91 70.80 95.40 82.02 566.95 83.28 83.10 83.23 95.01 62.62 92.99 90.50 563.31 84.22
MedLaSA 98.77 94.81 87.41 81.67 575.58 90.66 72.37 71.06 95.71 94.84 95.04 94.90 582.80 83.42

Table 2: Model editing results compared with other state-of-the-art methods on MedCF and MedFE benchmarks.
The best results are highlighted in bold, and larger values for all metrics indicate better performance. It should be
noted that Locality metrics TD, EM, and SS necessitate source data that is structured in a knowledge graph format,
thus can only be utilized for MedCF. Metric CT requires a more specific topic for the question, making it applicable
only to MedFE.

Strategy Eff. Gen. Loc. Flu. Avg.CT TS

Random 92.15 86.98 85.62 80.11 572.76 86.22
Fixed 94.45 88.56 83.24 79.75 570.12 86.50
MedLaSA 98.77 94.81 87.41 81.67 575.58 90.66

Table 3: Comparison of different editing strategies on
MedFE. The Random strategy involves randomly select-
ing the scale values of rank ro and alpha αo of all layers,
instead of using casual tracing to determine knowledge
location. The reported results were obtained through
five random sampling experiments. The Fixed strategy
maintains fixed scale values of rank ro and alpha αo

to all data (factual knowledge), same with MedLaSA,
across all layers.

experiences a decrease of approximately 5%. This491

suggests that SR plays a crucial role in maintaining492

the overall performance. On the other hand, when493

SA is removed, there is an improvement in the494

model’s Generality. However, this improvement495

comes at the cost of a significant decrease in Lo-496

cality-TS (e.g., from 84.11% reduced to 75.84%).497

This indicates that while SA helps in minimizing498

the model’s modification of irrelevant knowledge,499

it concurrently compromises the model’s general-500

ization to rephrases. Similar results can also be501

observed when our proposed method is applied502

exclusively to Attn or MLP, which further demon-503

strates the effectiveness of SA and SR in medical504

model editing.505

Eff. Gen. Loc. Flu. Avg.CT TS

ALL 98.11 93.58 89.25 84.11 576.13 91.26
w/o SR 96.85 93.24 84.88 79.02 573.56 88.50
w/o SA 96.90 94.44 82.16 75.84 571.36 87.34
w/o SA&SR 94.45 88.56 83.24 79.75 570.12 86.50

w/o Attn 98.11 93.58 89.25 84.11 573.34 91.26
w/o Attn&SR 96.11 91.57 87.19 82.10 574.85 89.24
w/o Attn&SA 96.86 94.12 87.51 80.19 575.47 89.67

w/o MLP 92.94 85.11 88.18 84.17 578.41 87.60
w/o MLP&SR 90.96 84.13 86.19 82.20 577.30 85.87
w/o MLP&SA 96.05 91.07 84.57 79.27 576.13 87.74

Table 4: Ablation study on MedFE dataset. The ab-
breviation ‘w/o’ indicates that the following module is
removed, and the term ‘ALL’ indicates that both scaling
strategies are employed in both MLP and Attn layers.

4.7 Hyper-parameters Analysis 506

In this section, we analyze the impact of different 507

alpha αo and rank ro values on MedLaSA under 508

the MedCF and MedFE datasets. The results of Lo- 509

cality are derived by averaging all its sub-metrics. 510

As shown in Figure 3, we observe that as αo in- 511

creases, both Efficacy and Generality also increase. 512

However, Locality decreases concurrently. This 513

suggests that the size of αo significantly influences 514

the model’s ability to successfully incorporate new 515

knowledge and its impact on irrelevant knowledge. 516

When selecting αo, the trade-off between the fac- 517

tors must be considered, and the best average result 518
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Weight Type Editable Weight Eff. Gen. Loc. Flu. Avg.CT TS

Attn Weights

Wq,Wv 80.63 73.49 92.33 89.58 579.29 84.01
Wk,Wo 78.65 71.76 94.71 91.88 582.62 84.25

Wq,Wv,Wk,Wo 92.07 84.16 90.23 86.21 577.86 88.17

MLP Weights
Wup 82.62 76.30 96.47 93.40 580.81 87.20

Wdown 80.73 74.88 94.09 91.03 578.29 85.18
Wup,Wdown,Wgate 96.47 90.93 91.89 87.31 576.53 91.65

Attn + MLP Wq,Wv,Wup,Wdown 96.99 91.43 88.93 84.22 577.0 90.39
Wq,Wv,Wup,Wdown,Wgate 98.27 93.70 88.73 83.58 576.13 91.07

Wq,Wv,Wk,Wo,Wup,Wdown,Wgate 98.70 94.63 87.66 82.10 574.19 90.77

Table 5: Comparison of the impact of editing weights. The framework of ChatDoctor and Meditron are
based on Llama (Touvron et al., 2023), which includes Attn weights (Wq,Wv,Wk,Wo) and MLP weights
(Wup,Wdown,Wgate).
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Figure 3: Analysis of hype-parameters ro and αo. The
top two figures depict the results on MedFE, while the
bottom two figures display the results on MedCF.

is achieved when αo is set to 24. On the other hand,519

as the value of rank increases, there is no signifi-520

cant change in all metrics. Only when the rank is521

too small (e.g., equal to 2), does the model’s edit-522

ing Locality suffer certain negative effects, which523

indicates that for single-edit problems, the size of524

the rank is not a major determinant of the model’s525

performance.526

4.8 Comparison of Editing Weights527

To analyze and evaluate the specific model weights528

that are more suitable for editing in MedLaSA,529

we conduct a comparison of editing weights, as530

shown in Table 5. it can be observed that for Attn531

weights, Wq and Wv demonstrate a higher editing532

success rate compared to weights Wk and Wo, and533

exhibit better generalization ability for rephrasing534

text. However, Wq and Wv show a poorer perfor-535

mance in terms of the Locality metrics. When all536

four weights are edited together, the learning of537

editing text is improved, but this improvement is 538

accompanied by a decrease in the Locality metrics. 539

On the other hand, when comparing the weights 540

of MLP, Wup consistently outperforms Wdown in 541

all metrics. This suggests that Wup may have 542

the ability to retain more knowledge and is more 543

suitable for editing medical models. Furthermore, 544

when Wup, Wdown, and Wgate are used together, 545

there is a notable enhancement in both Efficacy and 546

Average performance. It is worth noting that when 547

both the Attn and MLP weights are simultaneously 548

made trainable for editing, there are additional en- 549

hancements in Efficacy and Generality. However, 550

this comes at the cost of significant decreases in 551

Locality and Fluency. This suggests that by in- 552

corporating more trainable adapter parameters, the 553

success rate of medical model editing increases. 554

Consequently, it leads to a stronger impact on the 555

prediction of irrelevant information. 556

5 Conclusion 557

In this paper, we focused on the editing of medical 558

knowledge in LLMs and proposed two prelimi- 559

nary studies: editing factual medical knowledge 560

and editing the explanations of LLMs. Two corre- 561

sponding benchmarks were constructed to evaluate 562

model editing methods, and more comprehensive 563

and challenging metrics were proposed for Locality 564

evaluation. What is more, we proposed MedLaSA 565

to address the challenges faced in medical model 566

editing due to the specialization and complexity 567

of medical language. Extensive experiments con- 568

ducted on MedCF and MedFE demonstrated the 569

drawbacks of the existing methods and the outper- 570

formance of MedLaSA over them. 571
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6 Limitations572

There are several aspects to consider for both our573

datasets and our method in terms of limitations.574

Regarding the MedCF and MedFE datasets, they575

consider different aspects of medical model editing576

and include a comprehensive evaluation of Local-577

ity. However, our proposed datasets do not consider578

more robust evaluations, such as portability (Yao579

et al., 2023) to assess whether editing was suc-580

cessful. Meanwhile, due to the constraints of the581

original data, the number of samples for medical582

model editing is relatively small, which does not583

support simultaneous editing on a larger scale.584

As for our method, MedLaSA, although it ef-585

fectively addresses the challenges of specialization586

and complexity of medical knowledge in model587

editing, it may have some negative impact on588

Generality. MedLaSA is primarily designed for589

single-edit cases and lacks considering batch edit-590

ing (Meng et al., 2022b), which involves multiple591

edits (Huang et al., 2023) at once, or sequence edit-592

ing, where models must retain previous modifica-593

tions while implementing new ones. Furthermore,594

its performance on encyclopedic data (Mitchell595

et al., 2022a) remains to be explored.596

7 Ethics Statement597

The main objective of this paper is to propose two598

benchmarks and a novel medical model editing599

framework that aims to solve out-of-date and hallu-600

cinations problem in medical LLMs. It is important601

to note that our method does not produce uncontrol-602

lable outputs. On the contrary, the model editing603

method has the potential to enhance the controlla-604

bility and reliability of medical LLMs. Addition-605

ally, the datasets and codes used in this study are606

constructed using publicly available data and tools,607

ensuring that there are no negative social conse-608

quences or ethical concerns.609
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A Knowledge Type793

In this section, we provide a comprehensive794

overview of the knowledge types of MedCF and795

MedFE, as shown in Table 6 and 7, respectively.796

The knowledge types included in MedCF are cate-797

gorized based on their relations, whereas the knowl-798

edge types in MedFE are categorized according to799

medical subjects.800

B Data Samples801

We provide data samples for the MedCF and802

MedFE datasets in Figure 4 and 5, comprising803

of the knowledge that requires editing, rephrase804

knowledge, and irrelevant knowledge obtained805

through our proposed methodology in Section 4.2.806

C Templates807

The data of Efficacy for MedCF and Generality for808

both MedCF and MedFE are generated by querying809

ChatGPT. The template for querying is shown in 8.810

811

D Case of Casual Tracing812

In this section, we showcase heatmaps illustrat-813

ing individual instances of causal tracing from814

the MedCF and MedFE datasets on ChatDoctor815

network parameters (including Attn and MLP net-816

works) in Figure 4 and 5. These heatmaps provide a817

visual representation of the causal tracing, allowing818

us to visually understand how the model makes de-819

cisions and pinpoint areas that can be enhanced. By820

examining these heatmaps, we can extract valuable821

information about how the model makes decisions822

and establish factual connections with particular823

neuron activations (Meng et al., 2022a).824

E Hyper-parameters Selection825

All experiments was conducted on four NVIDIA826

V100 32G. During our hyper-parameters search,827

we focused on finding the optimal hyperparam-828

eters for r, α, and editable weights W . The829

search scope for hyperparameters r and α was830

limited to the values [2, 8, 24, 32, 64, 128].831

The analysis of r and α can be seen in Figure832

3. The editable weights we considered were 833

Wq,Wv,Wk,Wo,Wup,Wdown,Wgate, which is 834

compared in Table 5. We selected the parameter 835

with the highest Average value as the best choice. 836

The hyper-parameters we use are as follows: 837

• MedCF dataset on ChatDoctor-13B: r: 24, 838

α: 32, learning rate: 1e-05, the number of 839

steps: 70, the maximum length: 40, the ed- 840

itable weights: Wq,Wv,Wup,Wdown. 841

• MedCF dataset on Meditron-7B: r: 24, α: 32, 842

learning rate: 1e-05, the number of steps: 70, 843

the maximum length: 40, the editable weights: 844

Wq,Wv,Wk,Wo,Wup,Wdown,Wgate. 845

• MedFE dataset on ChatDoctor-13B: r: 24, α: 846

32, learning rate: 5e-05, the number of steps: 847

40, the maximum length: 200, the editable 848

weights: Wup,Wdown. 849

• MedFE dataset on Meditron-7B: r: 850

24, α: 24, learning rate: 5e-05, the 851

number of steps: 40, the maximum 852

length: 200, the editable weights: 853

Wq,Wv,Wk,Wo,Wup,Wdown,Wgate. 854
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Entity type Relation type #Samples

Compound:Compound drug-drug interaction 255
Compound:Disease compound treats the disease 256
Compound:Disease inhibits cell growth (esp. cancers) 256
Compound:Disease role in disease pathogenesis 256
Compound:Disease biomarkers (of disease progression) 256
Compound:Disease alleviates, reduces 256
Compound:Disease prevents, suppresses 256
Compound:Disease side effect/adverse event 256
Compound:Disease treatment/therapy (including investigatory) 256
Compound:Side Effect causes 160
Compound:Disease palliation 256
Compound:Compound resemblence 256
Compound:Disease treatment 256
Anatomy:Disease localization 133
Disease:Symptom presents 152
Diisease:Disease resemblence 256
Compound:Pharmacologic Class inclusion 256

Table 6: Knowledge type of MedCF.

{
"prompt": "What side effect is caused by Primaquine?",
"target_new": "Stinging",
"subject": "Primaquine",
"ground_truth": "Nausea",
"rephrase_prompt": "What adverse effect is attributed to Primaquine?",
"locality_target_prompt": "What side effect is caused by Orciprenaline?",
"locality_target_ground_truth": "Nausea",
"locality_mapping_prompt": "Which drug is involved in a drug-drug interaction with Primaquine?",
"locality_mapping_ground_truth": "Lobeglitazone",
"locality_struc_prompt": "What side effect is caused by Domperidone?",
"locality_struc_ground_truth": "Breast pain",
"locality_tokenSem_prompt": "What disease does Primaquine treat?",
"locality_tokenSem_ground_truth": "PJP"

}

Figure 4: A sample of the MedCF dataset.

Knowledge Type #Samples

Pharmacology 510
Ear, nose, and throat 510
Medicine 505
Pediatrics 509
Orthopaedics 503
Pathology 508
Gynaecology & Obstetrics 509
Ophthalmology 510
Skin 164

Table 7: Knowledge type of MedFE.

Template

Efficacy: Given a triplet ([eh], [r], [et]), please
express this triplet in a question-answer form.
The [eh] and [r] form a question, and you need
to ask what the corresponding answer [et] is
for this question.
Generality: Please rephrase the question using
medical terminology, without changing the se-
mantics: q

Table 8: Templates for querying ChatGPT to generate
the Efficacy and Generality data. eh, r, and et denote
the head entity, relation, and tail entity, respectively.
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{
"subject": "Adiponectin",
"subject_type": "Medicine",
"topic_type": "Diabetes Mellitus",
"prompt": "Please provide an explanation for the following fact: \n In obesity which of the following hormone levels is 
decreased ? Adiponectin",
"target_new": "Adiponectin is an abundant adipose-derived protein and enhances insulin sensitivity and lipid oxidation .Its 
levels are reduced in obesity Obesity is associated to significant disturbances in endocrine function. Hyper insulinemia and 
insulin resistance are the best known changes in obesity. Thyroxine, GH and adiponectin have lipolytic effects, hence their 
levels are reduced in obesity",
"rephrase_prompt": "Please provide an explanation for the following fact: \n In cases of obesity, which hormone 
experiences a decrease in levels? Adiponectin.",
"locality_topic_prompt": "Please provide an explanation for the following fact: \n Which type of Insulin is used to manage 
a case of Diabetic ketoacidosis? Regular",
"locality_topic_ground_truth": "Drug of choice for DKA - IV/ SC regular insulin IV NS 5L/ 24 hours Bed time Insulin -
Glargine IV Insulin - 1. Acute Hyperkalemia 2. DKA 3. Hyperosmolar coma SC Insulin - DMI",
"locality_tokenSem_prompt": "Please provide an explanation for the following fact: \n Which protein secreted by 
adipocytes prevents obesity? Leptin",
"locality_tokenSem_ground_truth": "Leptin is a peptide produced by the ob gene; Its name derived from the Greek root 
leptos, meaning thinLeptin is secreted by adipose cells and acts primarily through the hypothalamusHigh leptin levels 
decrease food intake and increase energy expenditure, thereby preventing obesity"

}

Figure 5: A sample of the MedFE dataset.
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Figure 6: Case of casual tracing on the MedCF dataset.
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Figure 7: Case of casual tracing on the MedFE dataset.
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