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Abstract

Recent studies have put into question the belief001
that emergent abilities (Wei et al., 2022b) in002
language models are exclusive to large models.003
This skepticism arises from two observations:004
1) smaller models can also exhibit high per-005
formance on emergent abilities and 2) there006
is doubt on the discontinuous metrics used to007
measure these abilities. In this paper, we pro-008
pose to study emergent abilities in the lens of009
pre-training loss, instead of model size or train-010
ing compute. We demonstrate that the models011
with the same pre-training loss, but different012
model and data sizes, generate the same perfor-013
mance on various downstream tasks. We also014
discover that a model exhibits emergent abili-015
ties on certain tasks—regardless of the continu-016
ity of metrics—when its pre-training loss falls017
below a specific threshold. Before reaching this018
threshold, its performance remains at the level019
of random guessing. This inspires us to rede-020
fine emergent abilities as those that manifest021
in models with lower pre-training losses, high-022
lighting that these abilities cannot be predicted023
by merely extrapolating the performance trends024
of models with higher pre-training losses.025

1 Introduction026

Scaling of language modes (LMs) on both model027

and data sizes has been shown to be effective for028

improving the performance on a wide range of029

tasks (Raffel et al., 2020; Brown et al., 2020; Hoff-030

mann et al., 2022; Chowdhery et al., 2023; Zeng031

et al., 2023; Touvron et al., 2023a; OpenAI, 2023),032

leading to the widespread adoption of LM applica-033

tions, e.g., ChatGPT. The success of such scaling034

is guided by scaling laws (Henighan et al., 2020;035

Kaplan et al., 2020; Clark et al., 2022; Hoffmann036

et al., 2022), which study the predictability of pre-037

training loss given the model and data sizes.038

While scaling laws focus on the pre-training039

loss, the scaling effect on the performance of down-040

stream tasks has thus far less studied. Emergent041

abilities (Wei et al., 2022b) are defined as abilities 042

that present in larger LMs but not present in smaller 043

one. The existence of such abilities is recently chal- 044

lenged for two reasons. First, small LMs trained 045

on a sufficient number of tokens can outperform 046

large models on tasks with claimed emergent abil- 047

ities (Touvron et al., 2023a,b; Jiang et al., 2023). 048

For example, LLaMA-13B with less compute (Tou- 049

vron et al., 2023a) can outperform GPT-3 (175B) 050

on MMLU (Hendrycks et al., 2021). Second, Scha- 051

effer et al. (2023) claim that emergent abilities ap- 052

pear due to the nonlinear or discontinuous metrics 053

selected to evaluate certain datasets, rather than 054

from a fundamental change in larger models. 055

Hoffmann et al. (2022) show that different com- 056

binations of model sizes and data sizes can lead 057

to different pre-training losses even with the same 058

training compute. Consequently, the pre-training 059

loss can naturally better represent the learning sta- 060

tus of LMs than the model or data sizes. However, 061

the relationship between the loss of an LM and its 062

performance on downstream tasks is not yet well 063

understood. Existing literature has either focused 064

on the transfer learning paradigm (Liu et al., 2023b; 065

Tay et al., 2023) or constrained its study to single 066

models, tasks, or prompting methods (Shin et al., 067

2022; Xia et al., 2023). 068

In this work, we propose to study emergent abil- 069

ities from the perspective of pre-training loss in- 070

stead of model size or training compute. To exam- 071

ine the relationship between the pre-training loss 072

of LMs and their performance, we pre-train more 073

than 30 LMs of varied model and data sizes from 074

scratch, using a fixed data corpus, tokenization, 075

and model architecture. Their downstream perfor- 076

mance is evaluated on 12 diverse datasets covering 077

different tasks, languages, prompting types, and an- 078

swer forms. We demonstrate that the pre-training 079

loss of an LM is predictive of its performance on 080

downstream tasks, regardless of its model size or 081

data size. The generality of this conclusion is fur- 082
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ther verified by extracting and observing the per-083

formance and loss relationship of the open LLaMA084

models (Touvron et al., 2023a).085

Over the course, we find that performance on086

certain downstream tasks only improves beyond087

the level of random guessing when the pre-training088

loss falls below a specific threshold, i.e., emergent089

abilities. Interestingly, the loss thresholds for these090

tasks are the same. When the loss is above this091

threshold, performance remains at the level of ran-092

dom guessing, even though performance on other093

tasks continues to improve from the outset. To094

exclude the impact of discontinuous metrics (Scha-095

effer et al., 2023; Xia et al., 2023), we evaluate the096

emergent performance increase using continuous097

metrics and show that the emergent abilities persist098

across both discontinuous and continuous metrics.099

Based on these observations, we define the emer-100

gent abilities of LMs from the perspective of pre-101

training loss: an ability is emergent if it is not102

present in language models with higher pre-training103

loss, but is present in language models with lower104

pre-training loss. According to the loss scaling105

laws (Henighan et al., 2020; Kaplan et al., 2020),106

the pre-training loss is a function of model size,107

data size, and training compute. Therefore, the108

new emergent abilities can also account for the109

previously-observed emergent abilities in terms of110

model size or training compute.111

The advantage of the new definition lies in its112

ability to better capture the tipping points in train-113

ing trajectories when LMs acquire emergent abili-114

ties. Once again (Wei et al., 2022b), the existence115

of emergent abilities suggests that we cannot pre-116

dict all the abilities of LMs by simply extrapolating117

the performance of LMs with higher pre-training118

loss. Further scaling the model and data size to119

lower the pre-training loss may enable new abili-120

ties that were not present in previous LMs.121

2 The Pre-training Loss Predicts Task122

Performance?123

We study the relationship between the performance124

of the language models (LMs) on 12 downstream125

tasks and the pre-training loss. We pre-train LMs126

of different model sizes (300M, 540M, 1B, 1.5B,127

3B, 6B, and 32B) on varied numbers of tokens with128

fixed data corpus, tokenization, and architecture. In129

addition, we leverage the open LLaMA (Touvron130

et al., 2023a) models (7B, 13B, 33B, and 65B) to131

validate our observations.132

It is not straightforward that the loss of LMs de- 133

cides the performance on downstream tasks. For 134

simplicity, we consider the Exact Match (EM) met- 135

ric with single-token target. The score EM(ŷ, y) 136

for the prediction ŷ of the prompt x given the 137

ground truth y is 1 if ŷ = y and 0 otherwise. The 138

expectation of EM(ŷ, y) is 139

E[EM(ŷ, y)] = PLM(y|x) = exp(−ℓ(y|x)) (1) 140

where ℓ(y|x) is the cross entropy loss of the LM 141

given the context x and the target y. 142

Note that while ℓ(y|x) has the same form as the 143

pre-training loss L, they are not equal. First, the 144

pre-training loss is an average of all the tokens in 145

all the documents pre-trained on. According to our 146

empirical observation, the losses of different doc- 147

uments are not uniform. Second, if x and similar 148

documents do not exist in the pre-training corpus, 149

ℓ(y|x) is the generalization loss, which is often re- 150

lated to other factors beyond the training loss, such 151

as the model size. For example, in computer vision, 152

a highly over-parameterized models often improve 153

over an under-parameterized models in test perfor- 154

mance when both models converge on the training 155

data (Dar et al., 2021; Cao and Gu, 2020). 156

2.1 Pre-training Setting 157

All the models are pre-trained on a mixture of En- 158

glish and Chinese corpus. Both the English and 159

Chinese corpora consist of webpages, wikipedia, 160

books, and papers. The ratio of English to Chi- 161

nese is 4:1 in the pre-training corpus. We tokenize 162

the data with the byte pair encoding (BPE) algo- 163

rith (Sennrich et al., 2016) with the SentencePiece 164

package (Kudo and Richardson, 2018). 165

The model architecture is similar to 166

LLaMA (Touvron et al., 2023a) with two differ- 167

ences: we use grouped-query attention (Ainslie 168

et al., 2023) to replace the multi-query attention 169

and we apply rotary position embedding on half 170

the dimensions of the query and key vectors. 171

2.2 Evaluation Tasks 172

To present a comprehensive demonstration, we 173

evaluate the pre-trained models on 12 datasets 174

across different tasks and prompting types in both 175

English and Chinese. The six task types include: 176

Closed-book QA: Answering questions about the 177

real world based solely on the pretrained knowl- 178

edge. We use TriviaQA (Lai et al., 2017) for En- 179

glish. For Chinese, we build a closed-book QA 180
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Dataset Task Prompting Type Answer Form Metric

English datasets

TriviaQA (Joshi et al., 2017) Closed-book QA Few-shot Open-formed EM
HellaSwag (Zellers et al., 2019) Commonsense NLI Zero-shot Mulit-choice Accuracy
RACE (Lai et al., 2017) Reading Comprehension Few-shot Multi-choice Accuracy
WinoGrande (Sakaguchi et al., 2020) Coreference Resolution Zero-shot Multi-choice Accuracy
MMLU (Hendrycks et al., 2021) Examination Few-shot Multi-choice Accuracy
GSM8K (Cobbe et al., 2021) Math Word Problem Few-shot CoT Open-formed EM

Chinese datasets

NLPCC-KBQA(Duan, 2016) Closed-book QA Few-shot Open-formed EM
ClozeT (Yao et al., 2021) Commonsense NLI Zero-shot Multi-choice Accuracy
CLUEWSC (Xu et al., 2020) Coreference Resolution Zero-shot Multi-choice Accuracy
C3 (Sun et al., 2020) Reading Comprehension Few-shot Multi-choice Accuracy
C-Eval (Huang et al., 2023) Examination Few-shot Multi-choice Accuracy
GSM8K-Chinese Math Word Problem Few-shot CoT Open-formed EM

Table 1: English and Chinese datasets evaluated in the experiment, and their task types, prompting types, answer
forms and metrics. For prompting type, we refer to the chain-of-thought prompting (Wei et al., 2022c) as few-shot
CoT and the original in-context learning prompting (Brown et al., 2020) as few-shot.

dataset based on NLPCC-KBQA (Duan, 2016)181

dataset following the TriviaQA format.182

Commonsense Natural Language Inference183

(NLI): Selecting the most likely followup given184

an event description. We use the HellaSwag185

dataset (Zellers et al., 2019) for English and the186

ClozeT dataset in Yao et al. (2021) for Chinese.187

Reading comprehension: Reading a given arti-188

cle or paragraph and answering questions about it.189

We use RACE (Lai et al., 2017) for English and190

C3 (Sun et al., 2020) for Chinese. Both are based191

on multi-choice questions.192

Coreference Resolution: Given a sentence with193

pronouns, determine which pronoun refers to194

which entity. We use the WinoGrande dataset (Sak-195

aguchi et al., 2020) for English and the CLUEWSC196

dataset (Xu et al., 2020) for Chinese.197

Examination: Multiple-choice questions in exami-198

nations. For English, we use MMLU (Hendrycks199

et al., 2021), which includes mathematics, US his-200

tory, computer science, law, and more. For Chinese,201

we use C-Eval (Huang et al., 2023) which com-202

prises multiple-choice ranging from humanities to203

science and engineering.204

Math Word Problem: Solving real-life, situa-205

tional and relevant problems using mathematical206

concepts. For English we use the GSM8K (Cobbe207

et al., 2021) dataset. For Chinese, we translate208

the questions and answers in GSM8K to Chinese,209

namely GSM8K-Chinese.210

The prompting types cover few-shot (Brown 211

et al., 2020), zero-shot, and few-shot chain-of- 212

thought (CoT) (Wei et al., 2022c). The datasets 213

are summarized in Table 1. 214

2.3 Pre-training Loss vs. Performance 215

In the first experiment, we train three models with 216

1.5B, 6B, and 32B parameters and observe their be- 217

haviors until trained on 3T, 3T, and 2.5T tokens, re- 218

spectively. The training hyperparameters are shown 219

in Table 3 (Appendix). 220

We evaluate the performance of intermediate 221

training checkpoints. The checkpoints are saved 222

around every 43B tokens during pre-training. We 223

plot the points of task performance (y-axis) and 224

training loss (x-axis) in Figure 1. From the curves, 225

we can see that the training loss is a good predictor 226

of the performance on 12 downstream tasks. 227

• Generally, the task performance improves as 228

the training loss goes down, regardless of the 229

model sizes. On MMLU, C-Eval, GSM8K, and 230

GSM8K-Chinese, all models of three sizes per- 231

form at the random level until the pre-training 232

loss decreases to about 2.2, after which the per- 233

formance gradually climbs as the loss increases. 234

Detailed analysis on this is shown in Section 3. 235

• Importantly, the performance-vs-loss data points 236

of different model sizes fall on the same trending 237

curve. That is, by ignoring the color differences 238

(model sizes), the data points of different models 239

are indistinguishable. For example, when the 240
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Figure 1: The performance-vs-loss curves of 1.5B, 6B, and 32B models. Each data point is the loss (x-axis) and
performance (y-axis) of the intermediate checkpoint of one of the three models. We mark the results of random
guess in black dashed lines.

training loss falls around 2.00, the green and241

orange points on TriviaQA are indistinguishable.242

This indicates that the model performance on243

downstream tasks largely correlates with the pre-244

training loss, regardless of the model size.245

• Interestingly, we find that the overall training loss246

is a good predictor of performance on both En-247

glish and Chinese tasks, although it is computed248

on a mixture of English and Chinese tokens. This249

implies that the learning dynamics of English250

and Chinese tokens are likely very similar during251

multilingual pre-training.252

2.4 Training Token Count vs. Performance253

Following the empirical experiments in scaling254

laws (Henighan et al., 2020; Kaplan et al., 2020;255

Hoffmann et al., 2022), we further pre-train 28 rel-256

atively smaller models with different numbers of257

training tokens. The model sizes range from 300M,258

to 540M, 1B, 1.5B, 3B, and to 6B, while the num-259

bers of pre-training tokens range from 33B to 500B.260

The learning rate schedule is set to reach the min-261

imum at the corresponding token count, which is 262

critical to the optimal performance (Kaplan et al., 263

2020; Hoffmann et al., 2022). The number of to- 264

kens used and hyperparameters for all models are 265

shown in Table 4 (Appendix). 266

On each line, each data point represents the per- 267

formance and pre-training loss of the correspond- 268

ing model pre-trained completely from scratch with 269

the certain token count (and learning rate sched- 270

ule). We can see that similar to the observations 271

from Figure 1, the data points of different models 272

sizes and training tokens largely fall on the same 273

trending curves. In other words, the LMs with the 274

same pre-training loss regardless of token count 275

and model size exhibit the same performance on 276

the 12 downstream tasks. 277

Another similar observation is that the perfor- 278

mance curves on MMLU, C-Eval, GSM8K, and 279

GSM8K-Chinese do not yield an uptrend, meaning 280

that the performance of these models on these four 281

tasks are close to random (with fewer than 500B 282

tokens). For simplicity, we only plot the perfor- 283
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Figure 2: The performance-vs-loss curves of smaller models pre-trained with different numbers of training
tokens. Each data point is the loss (x-axis) and performance (y-axis) of the final checkpoint of one model, i.e., each
point corresponds to one model trained from scratch. We mark the results of random guess in black dashed lines.

mance of the latest checkpoint in each training in284

Figure 2. The complete performance curves with285

intermediate checkpoints of each model, in which286

we can observe the same trend but larger variance,287

are shown in Figure 5 (Appendix).288

2.5 LLaMA’s Loss vs. Performance289

To validate the generality of our observations, we290

analyze a different model series with required infor-291

mation made publicly available, i.e., LLaMA (Tou-292

vron et al., 2023a). Compared to our models,293

LLaMA uses a pre-training corpus that excludes294

Chinese documents, leverages a different pre-295

training framework (Ott et al., 2019), and adopts296

a slightly different model architecture. Since the297

intermediate checkpoints of LLaMA are not avail-298

able, we extract the pre-training loss and corre-299

sponding performance on six question answering300

and commonsense reasoning tasks from the figures301

in its original paper, and plot the points in Figure 3.302

Excitingly, most data points from the LLaMA303

models with different sizes (7B, 13B, 33B, 65B)304

fall on the same upwards trend. This observation305

further confirm our conclusion that the model’s 306

pre-training loss can predict its performance on 307

downstream tasks, regardless of model size and 308

token count. Note that there is one only excep- 309

tion at the early stage of LLaMA-65B. We can 310

see that when the training loss is higher than 1.8, 311

LLaMA-65B performs worse than smaller models 312

with the same training loss. Without access to its 313

intermediate checkpoints, we unfortunately cannot 314

further analyze the result. Note that the outliers 315

only constitute the initial 10% training tokens. 316

Observed from previous experiments and anal- 317

ysis, we can conclude that the pre-training loss is 318

a good indicator of LMs’ performance on down- 319

stream tasks, independent of model sizes, training 320

tokens, languages, and pre-training frameworks. 321

3 Analysis of Different Tasks and Metrics 322

3.1 Performance Trends of Different Tasks 323

In Figures 1 and 2, we can separate the datasets 324

into two groups: First, on TriviaQA, HellaSwag, 325

RACE, WinoGrande, NLPCC-KBQA, ClozeT, 326
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Figure 3: The performance-vs-loss curves of LLaMA. The values of performance and training loss are extracted
from the figures in the original LLaMA paper (Touvron et al., 2023a). Note that the LLaMA2 paper (Touvron et al.,
2023b) does not cover such figures with related information.

CLUEWSC, and C3, the performance improves327

smoothly with decreased pre-training loss from328

the very beginning. Second, on MMLU, C-Eval,329

GSM8K, and GSM8K-Chinese, the performance330

remains flat when the loss is higher than a certain331

threshold. Once the pre-training loss is lower than332

this threshold, the performance starts to improve.333

Take MMLU as an example of the second group,334

when the pre-training loss is higher than 2.2, the335

accuracy remains around 25%. Since each ques-336

tion in MMLU has four options, this means the337

model prediction is no better than random guessing.338

However, when the pre-training loss drops below339

2.2, the accuracy increases as the loss decreases,340

similar to the trend observed in the first group of341

tasks. The performance trends of C-Eval, GSM8K,342

and GSM8K-Chinese follow a similar pattern. De-343

spite differences in languages, tasks, prompting344

types, and answer forms among the four datasets345

are different, the thresholds for performance im-346

provement are surprisingly all around 2.2.347

RACE in the first group has a prompting format348

similar to MMLU: both consist of multi-choice349

examination questions with in-context demonstra-350

tions, but their performance curves are quite differ-351

ent. We hypothesis that it is the task difficulty that352

makes the difference. Tasks of the first group of353

datasets are easier than those of the second group.354

For example, RACE requires the model to select 355

correct answers for questions about a given arti- 356

cle, and HellaSwag lets the model to select the 357

possible followup of a situation based on common- 358

sense. In contrast, MMLU and C-Eval consist of 359

questions designed for high school, college, or pro- 360

fessional examinations, requiring a broader range 361

of knowledge. GSM8K and GSM8K-Chinese are 362

math word problems that are used to be consid- 363

ered as impossible to solve by pre-trained language 364

models without Chain-of-Thought prompting. 365

The phenomenon can be related to grokking, 366

which describes the improvement of performance 367

from the random chance level to perfect general- 368

ization (Power et al., 2022). Power et al. (2022) 369

find that this improvement can occur well past the 370

point of overfitting. In pre-training, the models are 371

usually underfitting instead of overfitting overall. 372

Since the pre-training corpus is a mixture of differ- 373

ent documents, it is possible that the model already 374

fits some patterns—such as numerical addition—in 375

the data, while still underfitting the overall corpus. 376

Certainly, the observations on the second groups 377

of datasets can also be related to emergent abili- 378

ties (Wei et al., 2022b), that is, abilities that only 379

present in large models. According to the scal- 380

ing law, with the number of training tokens fixed, 381

the pre-training loss follows a power law with re- 382
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Figure 4: The performance-vs-loss curves of different metrics on MMLU and C-Eval. Accuracy: discontinuous;
CorrectChoiceProb and BrierScore: continuous. We mark the result of random guess in black dashed lines.

spect to model sizes. In other words, there is a383

monotonic relationship between model size and384

pre-training loss. For the second group of tasks,385

there is a threshold of model sizes that corresponds386

to the tipping point in the pre-training loss. When387

the model size exceeds this threshold, the model388

can exhibit performance above the random chance389

level.390

3.2 Influence of Different Metrics391

Schaeffer et al. (2023) propose an alternative expla-392

nation of emergent abilities of LMs, that is, emer-393

gent abilities appear due to the researchers’ choice394

of nonlinear or discontinuous metrics. The accu-395

racy on multi-choice questions (e.g., MMLU) is396

discontinuous, since the score on a question is ei-397

ther 1 or 0. To validate this claim, we examine the398

intermediate checkpoints on MMLU and C-Eval399

with continuous metrics rather than accuracy (dis-400

continuous) used in the original benchmarks. The401

first metric is the predicted probability of the cor-402

rect answer (CorrectChoiceProb). The second one403

is the Brier Score (Brier, 1950) used in Schaeffer404

et al. (2023):405

BrierScore =
1

N

N∑
i=1

C∑
j=1

(yij − ŷij)
2 (2)406

where ŷij is the predicted probability of sample i407

for class j and yij is the ground probability.408

We plot the results measured by different met- 409

rics on MMLU and C-Eval in Figure 4. All three 410

metrics—accuracy, correct choice probability, and 411

Brier Score—show emergent performance improve- 412

ments (value increase for the first two and decrease 413

for the third) when the pre-training loss drops be- 414

low a certain threshold. The Brier Score also de- 415

creases when the pre-training loss is above the 416

threshold. However, the decrease of Brier Score 417

does not always represent improvements on the 418

task, since the Brier Score is related to not only 419

the predicted probability of the correct answer but 420

also the predicted probabilities of the incorrect an- 421

swers. We find that the distribution of the correct 422

answers is uniform in the four options in MMLU 423

and C-Eval. The best Brier Score for a context-free 424

predictor is achieved by always giving uniform 425

probability to all the options. In this case, the Brier 426

Score is equal to 0.75. Therefore, the performance 427

in terms of Brier Score is no better than random 428

guess before the loss reaches the threshold. This ob- 429

servation further confirms our previous conclusion. 430

We discuss the contrary observations of Schaeffer 431

et al. (2023) and Xia et al. (2023) in Appendix C. 432

We conclude that emergent abilities of language 433

models occur when the pre-training loss reaches a 434

certain tipping point, and continuous metrics can- 435

not eliminate the observed tipping point. 436
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4 Defining Emergent Abilities from the437

Loss Perspective438

In previous sections, we show that 1) the pre-439

training loss is predictive of the performance of440

language modes on downstream tasks, and 2) some441

tasks exhibit emergent performance improvements442

from the random guess level when the pre-training443

loss drops below a certain threshold regardless of444

model size, token count, and continuity of metrics.445

Based on these observations, we give a new defini-446

tion of emergent abilities from the pre-training loss447

perspective:448

Definition. An ability is emergent if it is not present449

in models with higher pre-training loss but is450

present in models with lower pre-training loss.451

The normalized performance on an emergent452

ability as a function of the pre-training loss L is:453 {
f(L) if L < η

0 otherwise
(3)454

where f(L) is a monotonically decreasing func-455

tion of L, η is the threshold, and the normalized456

performance of random guess is 0.457

In Henighan et al. (2020), they give the scaling458

relation for the loss with model size N when the459

number of training tokens D is fixed:460

L(N) = L∞ +

(
N0

N

)αN

(4)461

where L∞ is the irreducible loss, and αN is the462

coefficient. The equation shows that the loss of lan-463

guage models follows a power-law plus a constant.464

Combining Equation (3) and Equation (4), we can465

get the normalized performance as a function of466

the model size N467 f
(
L∞ +

(
N0
N

)αN
)

if N ≥ N0 · (η − L∞)
− 1

αN

0 otherwise
(5)468

From this equation, we can explain the emer-469

gent abilities observed in Wei et al. (2022b): when470

model sizes are smaller than N0 · (η − L∞)−1/αN ,471

the normalized performance is zero. When model472

sizes exceed N0 · (η − L∞)−1/αN , the increase in473

model size leads to a decrease of pre-training loss474

and an improvement in normalized performance.475

5 Related Work476

Relationship of Pre-training Loss and Task Per-477

formance. In the transfer learning setting, Liu et al.478

(2023b); Tay et al. (2023) find that models with 479

the same pre-training loss can have different down- 480

stream performance after finetuning, due to induc- 481

tive bias in model sizes, model architectures, and 482

training algorithms. For the prompted performance 483

of large language models, Xia et al. (2023) claim 484

that perplexity is a strong predictor of in-context 485

learning performance, but the evidence is limited 486

to the OPT model (Zhang et al., 2022) and a subset 487

of BIG-Bench (Srivastava et al., 2022). Instead, 488

Shin et al. (2022) find that low perplexity does not 489

always imply high in-context learning performance 490

when the pre-training corpus changes. 491

Emergent abilities. Wei et al. (2022b) propose 492

the idea of emergent abilities, abilities that only 493

present in large language models. This is simi- 494

lar to the claim of Ganguli et al. (2022) that it is 495

more difficult to predict the capacities of language 496

models than to predict the pre-training loss. The 497

existence of emergent abilities has been challenged. 498

Hoffmann et al. (2022) show that smaller language 499

models trained with sufficient data can outperform 500

undertrained larger language models, supported 501

by follow-up models (Touvron et al., 2023a; Jiang 502

et al., 2023; Touvron et al., 2023b). On the other 503

hand, Schaeffer et al. (2023) claim that emergent 504

abilities are due to the discontinuos metrics used 505

for evaluation, also found in Xia et al. (2023). Sim- 506

ilarly, Hu et al. (2023) propose to predict the perfor- 507

mance of emergent abilities with the infinite reso- 508

lution evaluation metric. In this paper we prove the 509

existence of emergent abilities from the perspecitve 510

of pre-training loss, even with continuous metrics. 511

6 Conclusion 512

Our paper proposes a new definition of emergent 513

abilities of language models from the perspective 514

of pre-training loss. Empirical results show that the 515

pre-training loss is a better metric to represent the 516

scaling effect of language models than model size 517

or training compute. The performance of emergent 518

abilities exhibits emergent increase when the pre- 519

training loss falls below a certain threshold, even 520

when evaluated with continuous metrics. 521

The new definition offers a precise characteri- 522

zation of the critical junctures within training tra- 523

jectories where emergent abilities manifest. It en- 524

courages future studies to investigate the shifts in 525

language models at these junctures, which facilitate 526

the development of new capabilities. 527
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7 Limitation528

We study the relationship of pre-training loss and529

performance on downstream tasks of language530

models, across model sizes, training tokens, tasks,531

languages, prompting types, and answer forms.532

Factors we have not considered are model archi-533

tectures and training algorithms. We analyze the534

performance-loss curves of LLaMA, a language535

model with a slightly different architecture, and536

fine that the relationship holds for the model fam-537

ily. But there are fundamentally different model538

architectures, such as routed Transformers (Fe-539

dus et al., 2022), and non-Transformer architec-540

tures (Fu et al., 2023; Poli et al., 2023) beyond our541

consideration. Both our models and LLaMA use542

AdamW optimizer (Loshchilov and Hutter, 2019),543

while there are other optimizers for language model544

pre-training (Shazeer and Stern, 2018; Liu et al.,545

2023a).546

The disadvantage of studying emergent abili-547

ties in the lens of pre-training loss is that the pre-548

training loss is affected by the tokenizer and the549

distribution of pre-training corpus. The values of550

pre-training loss of language models trained on551

different corpus are not directly comparable. One552

possible solution is to evaluate different language553

models on a public validation set with the normal-554

ized perplexity (Roh et al., 2020) to account for the555

different vocabulary sizes.556

The paper should not be considered as a push557

to expand model sizes and data sizes of language558

models beyond current scales. It is not guaran-559

teed that new tipping points emerge in larger scales.560

Also, pre-training is not the only way to improve561

the performance of emergent abilities. For exam-562

ple, instruction tuning (Wei et al., 2022a; Sanh563

et al., 2022; Chung et al., 2022; Longpre et al.,564

2023) can improve the zero-shot performance of565

language models on unseen tasks, including the566

MMLU dataset. Future studies can analyze the ac-567

quisition of emergent abilities and lower the scale568

requirements.569
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A Pre-training Hyperparameters 1051

Source Ratio

CommonCrawl 80.2%
Code 10.0%
Books 3.8%
Wikipedia 3.8%
Papers 1.6%
StackExchange 0.6%

Table 2: The ratio of different sources in the English
corpus.

The hyperparameters for training of 1.5B, 6B, 1052

and 32B models are shown in Table 3. The hy- 1053

perparameters for training of smaller models are 1054

shown in Table 4. The sequence length is 2048 and 1055

the optimizer is AdamW (Loshchilov and Hutter, 1056

2019) with β1 = 0.9 and β2 = 0.95. 1057

B Evaluation Dataset Statistics 1058

The evaluated splits and numbers of examples 1059

are summarized in Table 5. For English datasets, 1060

we follow Gopher (Rae et al., 2021) and Chin- 1061

chilla (Hoffmann et al., 2022)’s selection of eval- 1062

uation splits. For Chinese datasets, we use the 1063

validation split when the ground labels are always 1064

available. For CLUEWSC, the size of the valida- 1065

tion set is too small (100), so we combine the train 1066

and validation splits. GSM8K-Chinese is translated 1067

from GSM8K with machine translation and human 1068

proofreading. 1069

C Are Emergent Abilities of Language 1070

Models a Mirage? 1071

Schaeffer et al. (2023) claim that emergent abilities 1072

proposed in Wei et al. (2022b) are mainly a mirage 1073

caused by nonlinear and discontinuos metrics. Xia 1074

et al. (2023) also support the idea. 1075

Xia et al. (2023) use the perplexity of correct op- 1076

tions as the metric for BIG-Bench and find that the 1077

metric impproves smoothly on almost all the tasks 1078

of BIG-Bench. We argue that the perplexity of cor- 1079

rect options is not the correct metric to evaluate the 1080

performance of multi-choice questions. The cor- 1081

rect metric of multi-choice questions should reflect 1082

the ability of distinguishing correct options from 1083

incorrect options. The perplexity of correct options 1084

and incorrect options may decrease simultaneously. 1085

In fact, Xia et al. (2023) already observe perplexity 1086
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Parameters Tokens d_model d_hidden n_heads n_layers Batch Size Max LR

1.5B 3T 2048 6912 16 24 1344 5e-4
6B 3T 4096 13696 32 28 4224 4e-4

32B 2.5T 6656 22272 52 58 8832 3e-4

Table 3: Hyperparameters of pre-training of 1.5B, 6B, and 32B models.

Parameters Tokens d_model d_hidden n_heads n_layers Batch Size Max LR

300M 67B 1152 3840 9 12 1152 2.8e-3
300M 125B 1152 3840 9 12 1152 2.8e-3
300M 250B 1152 3840 9 12 1152 2.8e-3
300M 500B 1152 3840 9 12 1152 2.8e-3
540M 33B 1536 5120 12 12 1152 2e-3
540M 66B 1536 5120 12 12 1152 2e-3
540M 125B 1536 5120 12 12 1152 2e-3
540M 250B 1536 5120 12 12 1152 2e-3
540M 500B 1536 5120 12 12 1152 2e-3

1B 33B 2048 6912 16 16 1152 1.5e-3
1B 67B 2048 6912 16 16 1152 1.5e-3
1B 125B 2048 6912 16 16 1152 1.5e-3
1B 250B 2048 6912 16 16 1152 1.5e-3
1B 500B 2048 6912 16 16 1152 1.5e-3

1.5B 67B 2048 6912 16 24 1152 1e-3
1.5B 100B 2048 6912 16 24 1152 1e-3
1.5B 125B 2048 6912 16 24 1152 1e-3
1.5B 250B 2048 6912 16 24 1152 1e-3
1.5B 375B 2048 6912 16 24 1152 1e-3
1.5B 500B 2048 6912 16 24 1152 1e-3

3B 67B 3072 10240 24 24 1152 7e-4
3B 125B 3072 10240 24 24 1152 7e-4
3B 250B 3072 10240 24 24 1152 7e-4
3B 500B 3072 10240 24 24 1152 7e-4
6B 33B 4096 13696 32 28 1152 4e-4
6B 67B 4096 13696 32 28 1152 4e-4
6B 125B 4096 13696 32 28 1152 4e-4
6B 250B 4096 13696 32 28 1152 4e-4

Table 4: Hyperparameters of pre-training of smaller models. Each line represents one model pre-trained completely
from scratch with the certain number of tokens and its corresponding learning rate schedule.
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Dataset Evaluated Split Num. Examples

TriviaQA validation 11,313
HellaSwag validation 10,042
RACE test 4,934
WinoGrande validation 1,267
MMLU test 14,042
GSM8K test 1,319
NLPCC-KBQA validation 10,613
ClozeT validation 938
CLUEWSC train & validation 508
C3 validation 3,816
C-Eval validation 1,346
GSM8K-Chinese test 1,212

Table 5: Statistics of evaluation datasets.

of incorrect options decreasing during pre-training1087

and only at the end of training that the perplexity1088

of correct and incorrect options starts to diverge.1089

This supports the existence of emergent abilities.1090

Schaeffer et al. (2023) use Brier Score (Brier,1091

1950) as the metric for BIG-Bench. We argue that1092

increase in Brier Score does not always represent1093

improvement of performance on the multi-choice1094

task, since Brier Score is also related to the allo-1095

cation of probabilities for incorrect options. For1096

example, questions in the MMLU dataset have1097

four options (A, B, C, and D) and the frequency1098

of the four options as correct is equal. Consider1099

two models that give the same probability indepen-1100

dent of questions. One model predicts (1, 0, 0, 0)1101

for the four options and the other model predicts1102

(0.25, 0.25, 0.25, 0.25). The Brier Score for the1103

former is 1.5 while the Brier Score for the latter1104

is 0.75. However, both models do not learn the1105

relationship between questions and correct options1106

at all. One can argue that the latter model better fits1107

the distribution of correct options in the dataset, but1108

the improvement is not as large as the different of1109

1.5 and 0.75. We should consider the Brier Score of1110

0.75 as the performance of the random guess base-1111

line, and any decrease in Brier Score above 0.751112

should not be considered as the real improvement1113

on the task.1114

In Figure 6 of Schaeffer et al. (2023), they eval-1115

uate 4 tasks in BIG-Bench with the Brier Score1116

metric and find that the emergent abilities disap-1117

per. We hypothesis that they normalize the Brier1118

Score with the number of options in each ques-1119

tion, otherwise the Brier Score of 0.25 on the1120

swahili_english_proverbs task is too low for the 1121

smallest model. Four tasks have 2, 2, 4, 5 options 1122

in each question. The values of Brier Score for 1123

random guess basenlines on the four tasks are 0.25, 1124

0.25, 0.1875, and 0.16. Only the largest model 1125

surpasses the random guess baseline. This also 1126

supports the existence of emergent abilities. 1127

D Complete Performance-vs-Loss Curves 1128

of Smaller Models 1129

The performance-vs-loss curves for all the interme- 1130

diate checkpoints are shown in Figure 5. The trend 1131

is the same as Figure 2, but with larger variance. 1132

E Loss vs Compute as an Indicator of 1133

Performance 1134

We show the performance-compute curves in Fig- 1135

ure 6. Compared with Figure 1, we observe that 1136

points from different models do not fall on the same 1137

curves on most tasks. This proves that pre-training 1138

loss is a better indicator of task performance than 1139

compute. 1140
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Figure 5: The complete performance-vs-loss curves of smaller models.
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Figure 6: The performance-vs-compute curves of 1.5B, 6B, and 32B models.
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