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Abstract

Deep neural networks, including Convolutional Neural Networks (CNNs) and
Visual Transformers (ViT), have achieved stunning success in the medical image
domain. We study thorax disease classification in this paper. Effective extraction
of features for the disease areas is crucial for disease classification on radiographic
images. While various neural architectures and training techniques, such as self-
supervised learning with contrastive/restorative learning, have been employed for
disease classification on radiographic images, there are no principled methods that
can effectively reduce the adverse effect of noise and background or non-disease ar-
eas on the radiographic images for disease classification. To address this challenge,
we propose a novel Low-Rank Feature Learning (LRFL) method in this paper,
which is universally applicable to the training of all neural networks. The LRFL
method is both empirically motivated by a Low Frequency Property (LFP) and theo-
retically motivated by our sharp generalization bound for neural networks with low-
rank features. LFP not only widely exists in deep neural networks for generic ma-
chine learning but also exists in all the thorax medical datasets studied in this paper.
In the empirical study, using a neural network such as a ViT or a CNN pre-trained
on unlabeled chest X-rays by Masked Autoencoders (MAE), our novel LRFL
method is applied on the pre-trained neural network and demonstrates better classi-
fication results in terms of both multi-class area under the receiver operating curve
(mAUC) and classification accuracy than the current state-of-the-art. The code is
available at https://github.com/Statistical-Deep-Learning/LRFL.

1 Introduction

Following the huge success of deep learning, recent studies have developed deep neural networks
(DNNs) for various tasks in medical imaging, such as disease classification and abnormalities
detection in anatomy in chest X-rays [1, 2]. Accurate clinical decision-making with DNNs heavily
relies on learning informative medical feature representation. Early works adopt convolutional neural
networks (CNNs) such as U-Net [3] for representation learning on radiography images. Recently,
Visual Transformers (ViTs) [4] are also adopted to learn informative medical representations from
radiography images [2], utilizing their capabilities in capturing long-range feature dependencies.
Albeit the success of CNNs and ViTs in analyzing radiography images, their accuracy heavily relies
on the quality and quantity of data and annotations [5]. However, the collection of large amounts of
training data and high-quality annotations in the medical imaging domain are extremely hard [2]. To
tackle this problem, self-supervised learning (SSL) has been employed as a solution for acquiring
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representations from unlabeled data. Given the greater availability of unlabeled medical images [6],
SSL proves to be an efficient approach for obtaining discriminative representations. SSL employs a
range of pretext tasks to acquire transferable representations without manual annotations. Over recent
years, numerous variations of self-supervised learning have surfaced using contrastive learning [7]
and restorative learning [2].

Challenges in the Current Literature for Disease Classification. We study thorax disease clas-
sification in this paper. Clinical studies show that the disease areas on radiographic images are
subtle and exhibit localized variations. Such conditions are further complicated by the inevitable
noise that is ubiquitous in radiographic images, as detailed in Section 2.1. Effective and robust
extraction of features for the disease areas is crucial for disease classification on radiographic images.
Although various neural architectures, such as CNNs and ViTs, and different training techniques,
such as self-supervised learning with contrastive/restorative learning, have been employed for disease
classification on radiographic images, there have been no principled methods that can effectively
reduce the adverse effect of noise and background, or non-disease areas, for disease classification on
radiographic images.

Our Contributions. The contributions of this paper are presented as follows. First, in order to
address the aforementioned challenge, we propose a novel Low-Rank Feature Learning (LRFL)
method in this paper, which is universally applicable to the training of all neural networks with the
application for thorax disease classification. Our LRFL method employs low-rank features for disease
classification. The usage of low-rank features is empirically motivated by a Low Frequency Property
(LFP) illustrated in Figure 1. That is, the low-rank projection of the ground truth training class labels
possesses the majority of the information of the training class labels. In fact, LFP widely holds for
a broad range of classification problems using deep neural networks, such as [1, 8, 9]. Inspired by
LFP, our LRFL method adds the truncated nuclear norm as a low-rank regularization term to the
training loss of a neural network so as to perform classification using low-rank features. Because
the actual features used for classification are approximately low-rank and the high-rank features are
significantly truncated, all the noise and the information about the background or the non-disease
areas on radiographic images in the high-rank features are largely discarded and not learned in a
neural network. Importantly and significantly different from existing low-rank learning methods
reviewed in Section 2.3, we introduce a novel separable approximation for the TNN, enabling the
optimization of the LRFL training loss using standard SGD. The appropriate feature ranks retained
in the LRFL method across various datasets are determined through an efficient cross-validation
process, and the optimal ranks are detailed in Table 8. Extensive experimental results demonstrate
that our LRFL method renders new record mAUC on three standard thorax disease datasets, NIH-
ChestX-ray [10], COVIDx [11], and CheXpert [12], surpassing the current state-of-the-art [2] with
the same pre-training setup.

Second, we provide a theoretical analysis showing a sharp generalization bound for the LRFL method,
underscoring the substantial benefits of employing low-rank regularization within LRFL. Given these
theoretical insights and the versatility of LRFL across various neural networks, we anticipate broader
applications of LRFL in the classification of other diseases beyond thoracic ones, potentially enhanc-
ing classification tasks across different radiographic imaging contexts. It is worthwhile to mention
that the literature has studied low-rank learning using TNN resembling LRFL, as to be reviewed in
Section 2.3. Our LRFL method builds upon these foundational principles by incorporating low-rank
regularization into the training of neural networks, aiming to improve thorax disease classification
by reducing the adverse effects of noise and irrelevant background information. Different from the
conventional low-rank learning methods, our approach introduces a separable approximation
to the TNN, facilitating the optimization process and enhancing the generalization ability of the
model. Such improved generalization is evidenced by the improved prediction accuracy of LRFL
compared to the current state-of-the-art (SOTA) methods in medical image analysis.

Moreover, we have employed a conditional diffusion model trained on COVIDx and CheXpert
datasets to generate synthetic images. These synthetic images are then added to their respective
training sets to form the augmented training data on which our LRFL models are trained. This
approach has further elevated the state-of-the-art mAUC scores achieved by LRFL on both COVIDx
and CheXpert datasets.

Motivation for using synthetic images to boost the accuracy for thorax disease classification. The
computer vision literature [13, 14, 15] has extensively studied the usage of the generated synthetic
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(a) NiH-ChestXray-14 (b) COVIDx (c) CheXpert

Figure 1: Eigen-projection (first row) and signal concentration ratio (second row) of Vit-Base on
NiH-ChestXray-14, COVIDx, and CheXpert. To compute the eigen-projection, we first calculate
the eigenvectors U of the kernel gram matrix K ∈ Rn×n computed by a feature matrix F ∈ Rn×d,
then the projection value is computed by p = 1

C

∑C
c=1

∥∥U⊤Y(c)
∥∥2
2
/
∥∥Y(c)

∥∥2
2
∈ Rn, where C is the

number of classes, and Y ∈ {0, 1}n×C is the one-hot labels of all the training data, Y(c) is the c-th
column of Y. The eigen-projection pr for r ∈ [min(n, d)] reflects the amount of the signal projected
onto the r-th eigenvector of K, and the signal concentration ratio of a rank r reflects the proportion
of signal projected onto the top r eigenvectors of K. The signal concentration ratio for rank r is
computed by

∥∥p(1:r)
∥∥
2
, where p(1:r) contains the first r elements of p. For example, by the rank

r = 38, the signal concentration ratio of Y on NIH ChestX-ray14, COVIDx, and CheXpert are 0.959,
0.964, and 0.962 respectively.

images which augment the training data and improve the prediction accuracy of image classification.
Inspired and motivated by this observation, we propose to generate synthetic images and use them to
form the augmented training data and improve the performance of thorax disease classification. The
augmented training data comprise the original training images and the synthetic images. However,
too many synthetic images tend to introduce more noise to the augmented training data so excessive
synthetic images can hurt the prediction accuracy of DNNs trained on the augmented training
data [16]. As evidenced in the ablation study in Section C.3, our proposed LRFL method, coupled
with the selection of the number of synthetic images, effectively mitigates this issue. The proposed
low-rank learning method only learns the low-rank part of the features learned by a deep learning
model so that noise in the high-rank part would not affect the learned model. Also, cross-validation is
used to select a proper number of synthetic images, which will boost the prediction accuracy while
not introducing too much noise to the augmented training data.

We also present ablation study results evidencing our contributions. We compare the eigenvalues
of the kernels and the kernel complexity associated with the LRFL models and the corresponding
base models in Section B.4.1 of the appendix, and the lower kernel complexity of the LRFL models
suggests their lower generalization error [17, 18, 19].

Notations. We use bold letters to denote matrices or vectors. [A]i stands for the i-th row of a matrix
A. ∥·∥p denotes the p-norm of a vector or a matrix. ∥·∥F is the Frobenius norm of a matrix. We
use [m. . . n] to indicate numbers between m and n inclusively, and [n] denotes the natural numbers
between 1 and n inclusively.

2 Related Works
2.1 Radiographic Imaging

Radiographic imaging [20] is a cornerstone in medical image analysis. Unlike photographic
images [21], radiography images have consistent backgrounds due to fixed imaging proto-
cols [22, 23, 24, 2]. Clinical details are spread across the images, while areas indicating illness
show localized variations [2, 25, 26], making analysis challenging. Noise is unavoidable in ra-
diography images, stemming from quantum fluctuations, electronic interference, scatter radiation,
motion blur, and overlapping structures [27, 28, 29, 30]. Quantum noise, originating from statisti-
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cal fluctuations in detected X-ray photons [31, 32, 25, 30], is often the primary source. Quantum
noise introduces graininess, obscuring details and diminishing contrast [31]. Modeled as a Poisson
process [25, 30], it can be approximated by a Gaussian distribution under high photon flux [33, 34],
enabling noise reduction techniques [34].

2.2 Medical Image Analysis with Deep Learning

Deep learning has made remarkable progress in photographic image analysis [35, 36, 37], spark-
ing interest in applying it to medical imaging due to the ability to learn complex representations.
Convolutional neural networks (CNNs) like U-Net [3, 38, 39] pioneered this field, achieving state-
of-the-art performance across various tasks such as image classification [40, 41, 42], object detec-
tion [43, 39, 44], and semantic segmentation [44, 45, 39, 46, 47]. More recently, visual transformers,
inspired by the success of transformers in natural language processing [48], have outperformed
state-of-the-art CNNs on various computer vision benchmarks [49, 50, 4, 51, 52, 53]. Despite
debates around transformers vs CNNs in terms of generalization [54, 55, 56, 57, 58], data require-
ments [4, 59, 60], and computational costs [61], transformers have shown great potential in medical
image analysis [2, 62, 63]. Given the scarcity of high-quality annotations, self-supervised con-
trastive learning techniques [7, 64, 65, 66, 2] have gained traction for pre-training networks in this
domain [22, 2, 62]. However, the high similarity between radiographic images due to standardized
protocols [67, 68] poses challenges compared to photographic images [69, 7]. To address this, recent
works utilize restorative strategies like masked autoencoders (MAE) [70, 71, 72, 73, 74, 2, 75] for
pre-training [2]. Similarly, we adopt MAE [2] to pre-train our networks before learning low-rank
features.

2.3 Low-Rank Learning
Low-rank learning has garnered significant attention across various fields for its capacity to reduce
dimensionality, suppress noise, and enhance feature extraction. Robust Principal Component Analysis
(RPCA) [76] serves as a cornerstone in this realm, efficiently separating data matrices into low-rank
and sparse components. This technique proves invaluable for vision-related tasks such as image
denoising and background subtraction. Building on this foundation, [77] introduced singular value
pruning, a method to impose low-rank constraints on neural network layers, thereby boosting both
computational efficiency and performance. The concept of TNN regularization (TNNR) has been
further refined by researchers like [78], who noted that TNNR more accurately approximates the rank
function by selectively minimizing singular values, essential for precise low-rank matrix recovery
in noisy conditions. Following that, some existing works [79, 80, 81] propose to perform low-rank
feature learning by minimizing the TNN of the feature matrix. Additionally, the use of TNNR
in tensor completion has markedly improved the restoration of incomplete visual data, utilizing
tensor singular value decomposition (t-SVD) [82, 83]. More contemporary learning-based methods,
such as those developed by [84], have optimized low-rank approximations through targeted training,
enhancing practical application outcomes. Some works [85, 86, 87] also demonstrate that learning
low-rank features can significantly enhance the robustness of deep neural networks against noise in
input images. In addition, recent works [88, 89, 90] find that the good generalization capabilities of
deep neural networks are attributed to the fact that deeper networks are inductively biased to find
solutions with lower effective rank embeddings.

3 Formulation
3.1 Pipeline for Thorax Disease Classification

We utilize the masked MAE technique [75] for the initial pre-training of both CNNs and ViTs
following[2], and subsequently fine-tune the pre-trained networks with our Low-Rank Feature
Learning (LRFL). The full training pipeline of learning low-rank features for disease classification
can be described in three steps. In the first step, which is the pre-training step, we pre-train the
networks using the self-supervised restorative learning method, masked MAE [75], on a diverse
pre-training dataset that includes ImageNet-1k [91] and a collection of X-rays (0.5M) [2]. During
this phase, we randomly mask patches on input images and drive the networks to optimize pixel-wise
image reconstruction for the obscured patches. In the second step, which is the regular fine-tuning
step, we fine-tune the pre-trained networks employing cross-entropy loss aimed at image classification
on specific target datasets, namely NIH-ChestX-ray [10], COVIDx [11], and CheXpert [12]. In the
last step, which is the low-rank feature learning step, we fix the backbones of the networks and
fine-tune the linear classifier utilizing our novel LRFL method.
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3.2 Problem Setup for LRFL
We now introduce the problem setup for LRFL with training details. Suppose the training data are
given as {xi,yi}ni=1 where xi and yi ∈ RC are the i-th training data point and its corresponding
class label vector respectively, and C is the number of classes. Each element yi is binary with yi = 1
indicating the i-th disease is present in xi, otherwise yi = 0. Suppose that the neural network trained
by step two of our pipeline in Section 3.1 generates a feature vector fW1(0)(x) ∈ Rd (the output
of the layer preceding the final linear/softmax layer of the network) for any input x, and fW′(·) is
the feature extraction function with W′ being the weights of the feature extraction backbone of the
network. W1(0) denotes the denotes the weights of feature extraction backbone by step two of the
pipeline. We can train a neural network by optimizing

min
W

L(W) =
1

n

n∑
i=1

KL
(
yi, σ

(
W2fW1(0)(x)

))
, (1)

where W1 is initialized by W1(0), W2 ∈ RC×d, and W = (W1,W2). Here σ is an element-
wise sigmoid function, σ(a) ∈ RC with [σ(a)]c = 1/(1 + exp(−ac)) for a ∈ RC and c ∈ [C].
KL stands for the element-wise binary cross-entropy function. Given two nonnegative vectors
u = [u1, . . . , ud] ∈ Rd,v = [v1, . . . , vd] ∈ Rd where ui ∈ {0, 1} for all i ∈ [d] and ∥v∥∞ ≤ 1,
KL(u,v) :=

∑d
j=1 −ui log vi − (1− ui) log(1− vi). We use Y =

[
y⊤
1 ;y

⊤
2 ; . . . ;y

⊤
n

]
∈ Rn×C to

denote the training label matrix by stacking the label vectors of all the training data. Let the mapping
function of the neural network used in the loss function L(W) be NNW(x) = W2fW1(x).

Motivation for Low-Rank Regularization The Low Frequency Property is illustrated in Figure 1,
that is, the low-rank projection of the ground truth class labels possesses the majority of the infor-
mation of the class labels. Inspired by this observation, our LRFL encourages the low-rank part of
the feature to participate in the classification process. In this way, the noise and non-disease areas in
the high-rank part of the feature are mostly not learned by LRFL so as to improve the classification
accuracy. Using notations in Section 3.2, the truncated nuclear norm of F is ∥F∥T :=

∑d
i=T+1 σi

where T ∈ [0, d]. It can be observed by the generalization error bound discussed in Section 3.2 that a
smaller ∥F∥T renders a tighter upper bound for the generalization error of the linear neural network
used for LRFL. This observation gives a strong theoretical motivation for us to add the truncated
nuclear norm ∥F∥T to the training loss L(W).

3.3 Generalization Bound for Low-Rank Feature Learning
We define the loss function ℓ(NNW(x),y) := ∥NNW(x)− y∥22, and the generalization error
of the network NN is the expected risk of the loss ℓ, which is denoted by LD(NNW) :=
E(x,y)∼D [ℓ(NNW(x),y)], with D being the distribution of the data x and its class label y. The
network NNW generates a feature F ∈ Rn×d of all the training data with Fi = f⊤

W1
(xi) for i ∈ [n].

The kernel gram matrix for the feature F is Kn = 1
nFF

⊤. We let λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r̄ > 0 where
r̄ ≤ min {n, d} is the rank of Kn. Suppose the Singular Value Decomposition of F is F = UΣV⊤,
where U ∈ Rn×d has orthogonal columns, Σ ∈ Rd×d is a diagonal matrix with diagonal elements
being the singular values of F, and V ∈ Rd×d is an orthogonal matrix. The columns of U and V are
also called the left eigenvectors and the right eigenvectors of F, respectively. Let σ1 ≥ σ2 . . . ≥ σd

be the singular values of F, and Ȳ = U(r̄)U(r̄)⊤Y be the projection of the training label matrix Y
onto the subspace spanned by the top-r̄ left eigenvectors of F, where U(r̄) ∈ Rn×r̄ is formed by the
top r̄ eigenvectors in U. Then, we have the following theorem giving the sharp generalization error
bound for the linear neural network in (1).
Theorem 3.1. For every x > 0, with probability at least 1 − exp(−x), after the t-th iteration of
gradient descent for all t ≥ 1, we have

LD(NNW) ≤
∥∥Y − Ȳ

∥∥
F + c1

(
1− ηλ̂r

)2t
∥Y∥2F +c2 min

h∈[0,r]

h

n
+

√√√√ 1

n

r∑
i=h+1

λ̂i

+
c3x

n
,

(2)

where c1, c2, c3 are positive constants.
Remark 3.2. The RHS of (2) is the generalization error bound for the linear neural network used in
LRFL as step three of the pipeline in Section 3.1. Moreover, let σ1 ≥ σ2 . . . ≥ σd be the singular
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values of F. Due to the fact that

√
1
n

r∑
i=h+1

λ̂i ≤ 1
n

r∑
i=h+1

σi, it follows by (2) that

LD(NNW) ≤ c1

(
1− ηλ̂r

)2t
∥Y∥2F + c2

(
h

n
+

1

n

d∑
i=T+1

σi

)
+

c3x

n
, (3)

which holds for all T ∈ [0, d]. (3) motivates the reduction of the truncated nuclear norm of the feature
F, as detailed in the next subsection.

3.4 Optimization of the Truncated Nuclear Norm in SGD
The truncated nuclear norm ∥F∥T is not separable, so the training loss with ∥F∥T cannot be directly
optimized by the standard SGD. To address this problem, we propose an approximation ∥F∥T to
∥F∥T which is separable so that ∥F∥T can be optimized by standard SGD.

First, we note that if U,V are known, then Σ = U⊤FV. If we have an approximation U to U

and an approximation V to V, then Σ can be approximated by Σ = U
⊤
FV. As a result, the

approximation ∥F∥T to the truncated nuclear norm is ∥F∥T =
n∑

i=1

(
d∑

s=T+1

d∑
k=1

U
⊤
siFikVks

)
. Due

to the above discussions, the loss function of LRFL with the approximate truncated nuclear norm
∥F∥T is LLRFL(W) = 1

m

∑
vi∈VL

KL
(
yi,
[
σ
(
FW(lin)

)]
i

)
+ η∥F∥T , which is separable, so that it

can be trained by the standard SGD. η > 0 is the weighting parameter for the truncated nuclear norm.
Because LLRFL(W) is to be optimized by the standard SGD, we have the loss function of LRFL for
the j-th minibatch Bj ⊆ [n] as

Lj(W) =
1

|Bj |
∑
i∈Bj

KL
(
yi,
[
σ
(
FW(lin))]

i

)
+

η

|Bj |
∑
i∈Bj

(
d∑

s=T+1

d∑
k=1

U
⊤
siFikVks

)
. (4)

The approximation U and V can be computed as the left and right eigenvectors of the feature F
computed at earlier epochs. In order to save computation and avoiding performing SVD for F at every
epoch, we propose to update U and V only after certain epochs. Algorithm 1 describes the training
algorithm for the neural network trained with LRFL, which uses the standard SGD to optimize the
loss function LLRFL(W), as step three of our pipeline in Section 3.1. Before the first epoch, we
compute U and V as the left and right eigenvectors of the feature F at the initialization of the neural
network. After every t0 epoch with t0 being a constant integer, we update U and V as the left and
right eigenvectors of the feature F produced by the neural network right after t0-th epoch, with t0
being a constant integer.

Algorithm 1 Training Algorithm with the Approximate Truncated Nuclear Norm by SGD

1: Initialize the weights W1 by W1 = W1(0), and initialize W2 randomly
2: Compute feature F by the neural network, and its SVD as F = UΣV
3: Update U = U, V = V
4: for t = 1, 2, . . . , tmax do
5: if t ≡ 0 (mod t0) then
6: Compute feature F of the neural network, and its SVD F = UΣV.
7: Update U = U, V = V
8: end if
9: for b = 1, 2, . . . , B do

10: Update W by applying gradient descent on batch Bj ⊆ [n] using the gradient of the loss Lj in Eq.(4)
11: end for
12: end for
13: return The trained weights W of the network

4 Experimental Results

In this section, we conduct experiments on medical datasets to demonstrate the effectiveness of
the proposed LRFL method. The experiments section is organized as follows: In Section 4.1, we
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discuss our experimental setup and implementation details. In Sections 4.2 and 4.3, we evaluate the
LRFL models for thorax disease classification on CheXpert and COVIDx. Evaluation results on NIH
ChestX-ray14 are deferred to Section B.1 of the appendix. In Section 4.4, we evaluate synthetic
data augmentation on LRFL models, with additional details and results deferred to Section C of the
appendix. Comprehensive ablation studies on LRFL are performed in Section 4.5. In Section 4.5.1,
we study the effectiveness of the LRFL models in reducing the adverse effect of the background
for disease classification. In Section 4.5.2, we study the performance of LRFL models for disease
localization. Grad-CAM visualization results of LRFL models and baseline models are illustrated
in Section 4.5.3. Additional ablation studies are deferred to Section B.4 of the appendix. In
Section B.4.1, we compare the kernel eigenvalues and kernel complexity between the LRFL models
and their corresponding base models to show that LRFL improves the generalization capability of the
base models by reducing their kernel complexity. In Section B.4.2, we evaluate the performance of
the LRFL models with limited data availability. In Section B.4.3, we compare the performance of the
LRFL with other fine-tuning strategies. In Section B.4.5, we present the training time of the LRFL
models compared with the corresponding base models.

4.1 Implementation Details

In this section, we evaluate the proposed LRFL for thorax disease classification. We utilize networks
pre-trained on ImageNet [92] or chest X-rays in [2] with MAE, a self-supervised learning strategy that
reconstructs missing pixels from patches of input images. We fine-tune these pre-trained networks
with low-rank regularization on three public X-ray datasets: (1) NIH ChestX-ray14 [10], (2) Stanford
CheXpert [12], and (3) COVIDx [11]. The ADAM optimizer is used with a batch size of 1024
for all datasets. Initially, we fine-tune the entire networks for 75 epochs following the settings in
[2], then fine-tune with low-rank regularization for another 75 epochs. We use a cosine learning
rate schedule, and the initial learning rate, which is denoted as µ, is selected by cross-validation
for each model and each dataset. The default values for momentum and weight decay are set to
0.9 and 0, respectively. We use standard data augmentation techniques, including random-resize
cropping, random rotation, and random horizontal flipping. For a fair comparison, all baselines
are also fine-tuned for an additional 150 epochs, showing almost no improvement. An exhaustive
analysis of this additional fine-tuning is in Section B.4.3. We evaluate our LRFL method on both
CNN and visual transformer architectures, including ResNet-50, DenseNet, ViT-S, and ViT-B. Our
model is referred to as ’X-LR’, where X is the base model (e.g., ResNet-50-LR for ResNet-50 with
low-rank features).

Tuning the T , η, and µ by Cross-Validation. We search for the optimal values of feature
rank T , the weighting parameter for the truncated nuclear norm η, and the learning rate µ on
each dataset. Let T = ⌈γmin(n, d)⌉, where γ is the rank ratio. We select the values of γ
and η by performing 5-fold cross-validation on 20% of the training data in each dataset. The
value of γ is selected from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2}. The value of η is selected
from

{
5× 10−4, 1× 10−3, 2.5× 10−3, 5× 10−3, 1× 10−2

}
. The value of µ is selected form{

5× 10−4, 2.5× 10−4, 1× 10−4, 5× 10−5, 2.5× 10−5, 1× 10−5
}

. To determine the optimal val-
ues of the parameters η, γ, and µ, we employ a sequential greedy search strategy. We first fix η and µ
and find the optimal value of γ by cross-validation. Subsequently, using this optimized γ, we proceed
to search for the optimal η while keeping µ constant. Finally, with optimal γ and η, we search for
the optimal µ by cross-validation. The optimal values of η, γ, and µ selected by cross-validation are
shown in Table 8 in Section B.3 of the appendix. The time spent for the entire cross-validation process
is presented in Table 9 Section B.3 of the appendix, which demonstrates that the cross-validation
process is efficient and does not significantly increase the computational overhead of the training
process.

4.2 Stanford CheXpert

Experimental setup. CheXpert [12] consists of 224,316 chest X-rays collected from 65,240 patients,
where 191,028 chest X-rays are used for training. Each X-ray in the dataset has radiology reports
indicating the presence of 14 diseases. Following the protocol in [2], all images are resized into
224 × 224. We also report the mean AUC (Area Under the Curve) for the 5 distinct classes and
conduct a comprehensive comparison with state-of-the-art baseline methods.

Results and analysis. Table 1 presents the performance comparisons between the baseline models
and the LRFL models on the CheXpert dataset. Throughout this section, we use the postfix “-LR” to
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indicate a neural network trained with our LRFL. For example, we use the ViT-B model pre-trained
on 489, 090 and the ViT-S model pre-trained on 266, 340 chest X-rays with Masked Autoencoders
(MAE) [2]. The pre-trained ViT-B network is fine-tuned on the CheXpert dataset and achieves a
mean AUC of 89.3. It is observed that ViT-B-LR achieves state-of-the-art performance of 89.8%
in mAUC and improves the performance of ViT-B by 0.5% in mAUC. ViT-S-LR also improves
the performance of ViT-S by 0.4% in mAUC, which demonstrates the power of LRFL. We also
show the classification accuracy of the five diseases in Table 1, where our method exhibits much
better performance than baseline methods. For example, ViT-S-LR achieves an mAUC of 86.3%
on Cardiomegaly, with a 4.5% improvement over ViT-S trained with MAE. Such improvements
demonstrate the power of LRFL in detecting distinct diseases. The comparison between LRFL
models and a more comprehensive list of baseline models are deferred to Table 7 of the appendix.

Table 1: Performance comparisons between LRFL models and SOTA baselines on CheXpert. The
best result is highlighted in bold, and the second-best result is underlined. This convention is followed
by all the tables in this paper. DN represents DenseNet.

Method Architecture Rank Atelectasis Cardiomegaly Consolidation Edema Effusion mAUC (%)
Irvin et al.[12] - 81.8 82.8 93.8 93.4 92.8 88.9
Pham et al.[9] DN121 - 82.5 85.5 93.7 93.0 92.3 89.4
Kang et al.[93] DN121 - 82.1 85.9 94.4 89.2 93.6 89.0
MoCo v2 [2] DN121 - 78.5 77.9 92.5 92.8 92.7 88.7

ViT-S [2] ViT-S/16 - 83.5 81.8 93.5 94.0 93.2 89.2
ViT-S-LR (Ours) ViT-S/16 0.05r 83.7 86.3 90.9 93.7 93.1 89.6

ViT-B [2] ViT-B/16 - 82.7 83.5 92.5 93.8 94.1 89.3
ViT-B-LR (Ours) ViT-B/16 0.05r 81.6 85.4 93.4 94.6 93.9 89.8

4.3 COVIDx

Experimental setup. COVIDx (Version 9A) [11] consists of 30,386 chest X-rays collected from
17,026 unique patients. We follow the previous works [11, 2] in splitting the dataset into 29,986
training images with four different classes and 400 testing images with three classes. For fair
comparisons with the previous methods, we report Top-1 accuracy on the test set (3 classes).

Results and Analysis. Table 2 compares the performance of SOTA transformer-based models and
the LRFL models on the COVIDx dataset. Similar to Section 4.2, the base ViTs are first pre-trained
on chest X-rays using Masked Autoencoders (MAE), and then the pre-trained model is fine-tuned on
the COVIDx dataset. It can be observed from Table 2 that both ViT-S-LR and ViT-B-LR outperform
their corresponding base models ViT-S and ViT-B, achieving an increase in accuracy of 1.6% and
1.7%, respectively. Table 2 also compares the performance of our LRFL models against the state-of-
the-art models on the COVIDx dataset. LRFL models achieve much higher accuracy compared to
CNN-based models such as DenseNet-121. ViT-B-LR achieves the new SOTA performance of 97%
top-1 accuracy with input resolution set to 224×224, which exceeds the previous SOTA performance
[2] by 1.7% in top-1 accuracy.

Table 2: Performance comparisons between LRFL models and SOTA baselines on COVIDx (in
accuracy). DN represents DenseNet.

Method Architecture Rank Covid-19 Sensitivity Accuracy
COVIDNet-CXR Small [8] - - 87.1 92.6
COVIDNet-CXR Large [8] - - 96.8 94.4

MoCo v2 [2] DN121 - 94.5 94.0
DN121 [2] DN121 - 97.0 93.5
ViT-S [2] ViT-S/16 - 94.5 95.2

ViT-S-LR (Ours) ViT-S/16 0.01r 97.5 96.8
ViT-B [2] ViT-B/16 - 95.5 95.3

ViT-B-LR (Ours) ViT-B/16 0.003r 98.5 97.0

4.4 Improved Results using Diffusion Model

Experimental Setup. In this section, we aim to further improve the performance of LRFL models
by adding labeled synthetic radiographic images of thorax diseases to the training sets of COVIDx
and CheXpert. The synthetic radiographic images are generated by a conditional diffusion model,
Diffusion Transformer (DiT) [94], trained on the training set of the corresponding dataset. Details
on the training of DiT are deferred to Section C.2 of the appendix. To maintain the same disease
co-occurrence, synthetic radiographic images are generated based on the labels from the label set of
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each dataset. The number of synthetic images added to the training set of each dataset is determined
via cross-validation. We first generate synthetic images of the same size as the training set. The
optimal percentage of synthetic images is selected using 5-fold cross-validation on the training data,
which is detailed in Section C.2 of the appendix. Synthetic images are combined with the original
dataset for further fine-tuning with low-rank regularization. Ablation studies on the number of
synthetic images incorporated are performed in SectionC.3.

Results. The results of LRFL models trained after adding synthetic images on CheXpert and COVIDx
are shown in Table 3. It is observed from the results that adding synthetic data into the training set of
LRFL models can further increase their performance. For example, ViT-B-LR with synthetic images
added in training outperforms the corresponding base model ViT-B by 2.2% on COVIDx.

Table 3: Performance comparison of baseline models and LRFL models on the CheXpert and
COVIDx datasets, with and without synthetic data. n denotes the number of training images in the
respective dataset.

Method Architecture CheXpert COVIDx
Rank # Synthetic Images mAUC (%) Rank # Synthetic Images Accuracy (%)

ViT-S [2] ViT-S/16 - - 89.2 - - 95.2
ViT-S-LR (Ours) ViT-S/16 0.05r - 89.6 0.01r - 96.8

ViT-S (Ours) ViT-S/16 - 0.2n 89.3 - 1.0n 97.0
ViT-S-LR (Ours) ViT-S/16 0.05r 0.2n 89.7 0.01r 1.0n 97.3

ViT-B [2] ViT-B/16 - - 89.3 - - 95.3
ViT-B-LR (Ours) ViT-B/16 0.025r - 89.8 0.003r - 97.0

ViT-B (Ours) ViT-B/16 - 0.25n 89.9 - 1.0n 97.0
ViT-B-LR (Ours) ViT-B/16 0.025r 0.25n 90.4 0.003r 1.0n 97.5

4.5 Ablation Study

4.5.1 Study of LRFL in Reducing the Adverse Effects of Background
To demonstrate that the LRFL models are more robust to the background than the baselines, we
perform an ablation study on the LRFL to reduce the adverse effects of the background. In this
study, we create a mask for the disease area for each original image, then decompose the original
image, which has a bounding box for the disease, into a disease image and a background image.
Both the disease image and the background image are of the same size as the original image. The
background image has grayscale 0 in the masked disease area, and the disease image has grayscale 0
in the non-disease area. We feed the three images, which are the original image, the disease image,
and the background image, to an LRFL model and obtain the original features, disease features,
and background features for the LRFL model, respectively. We also feed these three images to a
baseline model and obtain the original features, disease features, and background features for the
baseline model. For each original image, we measure the distance between the disease features and
original features using KL-divergence on the softmaxed features for the LRFL model and the baseline
model. We then compute the average feature distance for each model, which is the average distance
between the disease features and original features over the images with a ground-truth bounding box
for the disease in the NIH ChestX-ray 14. The results in Table 4 indicate that the original features
are closer to the disease features by the LRFL models compared to the baseline models, evidencing
the effectiveness of the LRFL models in reducing the adverse effect of the background area. We
also remark that since only the low-rank part of the original features participates in the classification
process, the noise and non-disease areas in the high-rank part of the features are mostly not learned
by LRFL, and in this manner, LRFL is robust to both noise and background.

Table 4: Average feature distance between original features and disease features of images with a
ground-truth bounding box for the disease in the NIH ChestX-ray 14.

Methods mAUC (%) Average Feature Distance
ViT-S 82.3 0.7030

ViT-S-LR 82.7 0.6352
ViT-B 83.0 0.5642

ViT-B-LR 83.4 0.6628

4.5.2 Disease Localization

To study which part of the X-ray image is responsible for the model prediction by the LRFL models,
we perform the disease localization experiment following the settings in [2]. We first obtain the Grad-
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CAM visualization results with the last transformer block of ViT-S. The experiments are performed
with all the images with a ground-truth bounding box for disease in ChestX-ray14. The predicted
bounding box is generated with the thresholded Grad-CAM heatmap, largest connected component,
and box regression. We evaluate the performance of disease localization by Intersection over Union
(IoU) between the ground-truth bounding box and the predicated bounding box used for evaluation.
The Average Precision (AP) on 25% and 50% IoUs, which are denoted as AP25 and AP50, for ViT-S
and ViT-S-LR are shown in Table 5. It is observed from the results that our LRFL model significantly
outperforms the base model in detecting the bounding box of thorax disease. For example, ViT-S-LR
outperforms ViT-S by 26.9% in AP25 for detecting the bounding box of Mass. In addition, ViT-S-LR
outperforms ViT-S by 21.2% in AP25 for detecting the bounding box of Effusion.

Table 5: AP25 and AP50 scores for different diseases using ViT-S and ViT-S-LR models.

Disease Size (# of px) AP25 AP50

ViT-S ViT-S-LR ViT-S ViT-S-LR
Mass 756 27.0 53.9 11.1 8.0

Atelectasis 924 31.5 49.3 8.1 11.3
Pneumothorax 1899 4.7 18.3 0.0 1.5

Infiltrate 2754 11.4 22.7 1.3 2.1
Effusion 2925 8.8 30.0 1.0 3.1

Pneumonia 2944 27.8 44.1 9.3 12.5
All 2300 18.0 28.5 4.7 5.2

4.5.3 Grad-CAM Visualization

To study how LRFL improves the performance of base models in disease detection, we use the
Grad-CAM [95] to visualize the parts in the input images that are responsible for the predictions of
the base models and low-rank models. Robust Grad-CAM [95] visualization results of Low-Rank
ViT-Base are illustrated in Figure 2. All Grad-CAM visualization results illustrate that our LRFL
models usually focus more on the areas inside the bounding box associated with the labeled disease.
In contrast, the base models also focus on the areas outside the bounding box or even areas in
the background. Robust Grad-CAM visualization results of Low-Rank ResNet-50 and additional
Grad-CAM visualization results of Low-Rank ViT-Base are deferred to Figure 4 and Figure 5 in
Section B.4.4 of the appendix.
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Figure 2: Robust Grad-CAM [95] visualization results on NIH ChestX-ray 14. The figures in the first
row are the visualization results of ViT-Base, and the figures in the second row are the visualization
results of Low-Rank ViT-Base.

5 Conclusion

In this paper, we propose a novel Low-Rank Feature Learning (LRFL) method for thorax disease
classification, which can effectively reduce the adverse effect of noise and background, or non-disease
areas, on the radiographic images for disease classification. Being universally applicable to the
training of all neural networks, LRFL is both empirically motivated by the low frequency property
and theoretically motivated by our sharp generalization bound for neural networks with low-rank
features. Extensive experimental results on thorax disease datasets, including NIH-ChestX-ray,
COVIDx, and CheXpert, demonstrate the superior performance of LRFL in terms of mAUC and
classification accuracy. In addition, the performance of LRFL models is further improved by adding
synthetic radiographic images into the training set for data augmentation.
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A Proofs

Proof of Theorem 3.1. It can be verified that at the t-th iteration of gradient descent for t ≥ 1, we
have

W(t) = W(t−1) − η

n
F⊤
(
FW(t−1) −Y

)
. (5)
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It follows by (5) that

FW(t) = FW(t−1) − ηKn

(
FW(t−1) −Y

)
= FW(t−1) − ηKn

(
FW(t−1) − Ȳ

)
, (6)

where Kn = 1/n · FF⊤, Ȳ = U(r̄)U(r̄)⊤Y.

We define F(W, t) := FW(t), then it follows by (6) that

F(W, t)− Ȳ = (In − ηKn)
(
F(W, t)− Ȳ

)
,

which indicates that
F(W, t)− Ȳ = (In − ηKn)

t (
F(W, 0)− Ȳ

)
= − (In − ηKn)

t
Ȳ,

and

∥F(W, t)−Y∥F ≤
∥∥Y − Ȳ

∥∥
F +

(
1− ηλ̂r

)t ∥∥Ȳ∥∥F

≤
∥∥Y − Ȳ

∥∥
F +

(
1− ηλ̂r

)t
∥Y∥F. (7)

As a result of (7), by using the proof of [17, Theorem 3.3,Corollary 6.7], for every x > 0, with
probability at least 1− exp(−x),

LD(NNW) ≤ c1
∥∥Y − Ȳ

∥∥2
F + c1

(
1− ηλ̂r

)2t
∥Y∥2F

+ c2 min
h∈[0,r]

h

n
+

√√√√ 1

n

r∑
i=h+1

λ̂i

+
c3x

n
. (8)

B More Experimental Results

B.1 NIH ChestX-ray14

Experimental setup. NIH ChestX-ray14 [10] consists of 112, 120 X-rays collected from 30, 805
unique patients. Each X-ray can have up to 14 associated labels, with the possibility of multiple labels
per image. Following the official data split in [10], we use 75, 312 images for training and 25, 596
images for testing. The raw images from the dataset are sized 1024× 1024. In our experiments, we
scale down the input images to 224× 224. We report the mean AUC (Area Under the Curve) for 14
distinct classes and conduct a comprehensive comparison with 18 widely recognized and influential
baseline methods.

Results and Analysis. Table 6 presents the performance comparisons between several top-performing
baseline models and their corresponding low-rank models on the NIH ChestX-ray14 dataset. Similar
to Section 4.2, the ViTs are first pre-trained chest X-rays using Masked Autoencoders (MAE). Then,
the pre-trained ViT-B network is fine-tuned on the NIH ChestX-ray14 dataset and achieves a mean
AUC of 83.0. Next, we fine-tune ViT-B with low-rank regularization for another 75 epochs. The
low-rank model, denoted as ViT-B-LR, achieves the new state-of-the-art performance with a mean
AUC of 83.4. It is observed that all low-rank models achieve improvement in mean AUC compared
to the corresponding base models. It is important to highlight that the research community dedicated
four years to enhancing the AUC score for CNN-type architectures, advancing it from 74.5% to
82.2%, which was primarily attributed to the challenging nature of the classification with the NIH
ChestX-ray14 dataset.

B.2 Comparison with A Comprehensive List of Baselines

We compare the results of LRFL models with a more comprehensive list of baselines on CheXpert.
It is observed from the results in Table 7 that LRFL models significantly outperform all existing
state-of-the-art methods on CheXpert.
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Table 6: erformance comparisons between LRFL models and SOTA baselines on NIH ChestX-ray14.
RN, DN, and SwinT represent ResNet, DenseNet, and Swin Transformer.

Method Architecture Pre-training Rank mAUC
Wang et al. [10] RN50

ImageNet-1K

- 74.5
Li et al.[96] RN50 - 75.5

Yao et al. [97] RN&DN - 76.1
Wang et al.[41] R152 - 78.8
Ma et al.[98] R101 - 79.4

Tang et al.[99] RN50 - 80.3
Baltruschat et al.[100] RN50 - 80.6

Guendel et al.[1] DN121 - 80.7
Guan et al.[101] DN121 - 81.6

Seyyed et al.[102] DN121 - 81.2
Ma et al.[42] DN121(×2) - 81.7

Hermoza et al.[103] DN121 - 82.1
Kim et al.[104] DN121 - 82.2

Haghighi et al.[68] DN121 - 81.7
Liu et al.[105] DN121 - 81.8

Taslimi et al.[106] SwinT - 81.0
MoCo v2 [2] DN121 X-rays (0.3M) - 80.6

MAE [2] DN121 - 81.2
RN-50 [2] RN50 ImageNet-1K - 81.8

RN-50-LR (Ours) RN50 0.05r 82.2
DN-121 [2] DN121 ImageNet-1K - 82.0

DN-121-LR (Ours) DN121 0.05r 82.4
ViT-S [2] ViT-S/16 X-rays (0.3M) - 82.3

ViT-S-LR (Ours) ViT-S/16 0.05r 82.7
ViT-B [2] ViT-B/16 X-rays (0.5M) - 83.0

ViT-B-LR (Ours) ViT-B/16 0.05r 83.4

Table 7: The table shows the performance of various state-of-the-art (SOTA) CNN-based and
Transformer- based methods on CheXpert.

Method Architecture Rank Atelectasis Cardiomegaly Consolidation Edema Effusion mAUC (%)
Allaouzi et al.[107]

DN121

- 72.0 88.0 77.0 87.0 90.0 82.8
Irvin et al.[12] - 81.8 82.8 93.8 93.4 92.8 88.9

Seyyedkalantari et al.[102] - 81.2 83.0 90.0 88.3 93.8 87.3
Pham et al.[9] - 82.5 85.5 93.7 93.0 92.3 89.4

Hosseinzadeh et al.[108] - - - - - - 87.1
Haghighi et al.[68] - - - - - - 87.6

Kang et al.[93] - 82.1 85.9 94.4 89.2 93.6 89.0
DN121 (MoCo v2) [2] - 78.5 77.9 92.5 92.8 92.7 88.7

DN121 [2] - 81.5 77.6 89.4 92.3 92.0 88.7
ViT-S [2] ViT-S/16 - 83.5 81.8 93.5 94.0 93.2 89.2

ViT-S-LR (Ours) ViT-S/16 0.05r 83.7 86.3 90.9 93.7 93.1 89.6
ViT-B [2] ViT-B/16 - 82.7 83.5 92.5 93.8 94.1 89.3

ViT-B-LR (Ours) ViT-B/16 0.05r 81.6 85.4 93.4 94.6 93.9 89.8

B.3 Cross-Validation Results

The optimal values of the rank ratio γ, weighting parameter η, and learning rate µ decided by
cross-validation for different models on different datasets are shown in Table 8.

Table 8: Optimal values of rank ratio γ, weighting parameter η, and learning rate µ decided by
cross-validation for different models on different datasets.

Models Parameters NIH-ChestX-ray COVIDx CheXpert

ViT-S
γ 0.05 0.01 0.05
η 5× 10−4 1× 10−3 1× 10−3

µ 5× 10−5 2.5× 10−5 1× 10−5

ViT-B
γ 0.05 0.003 0.05
η 5× 10−4 1× 10−3 1× 10−3

µ 5× 10−5 2.5× 10−5 2.5× 10−5

In addition, the time for the entire cross-validation process in searching for the optimal values of
the rank ratio γ, weighting parameter η, and learning rate µ are shown in Table 9. The evaluation is
performed on 4 Nvidia A100 GPUs. As we use only 20% of the training data for cross-validation and
train the models with each option for only 40% of the entire number of training epochs, the entire

19



cross-validation process is efficient and does not largely increase the computation cost of the training
process.

Table 9: Time Spent for cross-validation on NIH ChestX-ray14, CheXpert, and CovidX. All the
results are reported in minutes.

Datasets NIH ChestX-ray14 CheXpert CovidX
ViT-S-LR 149 178 57
ViT-B-LR 172 285 69

B.4 Additional Ablation Study

B.4.1 Study on the Kernel Eigenvalues and Kernel Complexity

Kernel complexity [17, 18, 19] is a widely-studied complexity measure for the generalization ca-
pability of kernel-based learning algorithms. In this section, we compare the eigenvalues of the
kernel and kernel complexity of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and CheXpert.
Given the representations of all the training images F learned by ViT-B or ViT-B-LR, the kernel
complexity of the gram matrix Kn = 1

nFF
⊤, which is also defined in Section 3.3, can be computed

by minh∈[0,n]

h
n +

√
n∑

i=h+1

λ̂i

n

.

The eigenvalues of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and CheXpert are illustrated in
Figure 3. The computed kernel complexities of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and
CheXpert are shown in Table 10. It is observed that LRFL significantly reduces the kernel complexity
of the image representations, which suggests that the LRFL models have lower generalization
errors [17, 18, 19].

Table 10: Kernel complexity comparison between ViT-B-LR and ViT-B on ChestX-ray14, COVIDx,
and CheXpert.

Method ChestX-ray14 COVIDx CheXpert
Kernel Complexity h Kernel Complexity h Kernel Complexity h

ViT-B 0.0101 465 0.0207 303 0.0040 766
ViT-B-LR 0.0076 262 0.0155 187 0.0038 389
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Figure 3: Eigenvalues comparison between ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and
CheXpert.

B.4.2 Experiments in Small Data Regimes

Experimental setup. We explore the effectiveness of low-rank features learned in scenarios with
limited data availability, which is particularly significant given the challenges in acquiring high-quality
data annotations in the medical imaging domain. We expect that LRFL models can demonstrate
improved performance in such situations due to our theoretical guarantee of the better generalization
capability of LRFL. We randomly select 5%, 10%, 15%, 20%, 25%, and 50% of the training data
from the NIH ChestX-ray14 dataset and then fine-tune the base model using its default training
configurations. We then train LRFL models for 20 epochs.
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Results and analysis. As depicted in Table 11, our LRFL models consistently outperform their
corresponding base methods across all data subsets, including 5%, 10%, 15%, 20%, 25%, and
50% on the NIH ChestX-ray14 dataset. Notably, the average improvement in performance is more
substantial for the 5% data subset compared to the remaining subsets. For instance, ViT-B-LR
exhibits a remarkable improvement of 1.05% for the 5% data subset, which significantly surpasses
the improvements of 0.15%, 0.06%, 0.06%, 0.09%, and 0.11% observed for the 10%, 15%, 20%,
25%, and 50% training data subsets, respectively. These findings are consistent with our expectations,
showcasing the strong generalization capability of LRFL models in mitigating over-fitting issues
with limited data. In conclusion, our findings in the low-data regimes demonstrate the superiority
of our LRFL in delivering more generalizable and robust representations for tasks with limited data
availability, thereby contributing to the reduction of annotation costs.

Table 11: The table evaluates the performance of various models under low data regimes on the
NIH ChestX-rays14 dataset. Models trained with low-rank features effectively combat overfitting
in scenarios with limited data availability, thereby enhancing the quality of representations for
downstream tasks.

Pre-training Dataset Model

Label Fractions
5% 10% 15% 20% 25% 50%

Rank mAUC Rank mAUC Rank mAUC Rank mAUC Rank mAUC Rank mAUC

X-rays(0.3M) ViT-S - 61.22 - 73.19 - 76.99 - 78.65 - 79.57 - 81.20
ViT-S-LR(Ours) 0.05r 61.81 0.2r 73.84 0.04r 77.21 0.04r 78.86 0.05r 79.65 0.05r 81.35

X-rays(0.5M) ViT-B - 70.71 - 78.67 - 79.99 - 80.59 - 81.13 - 82.19
ViT-B-LR (Ours) 0.05r 71.76 0.2r 78.82 0.2r 80.05 0.1r 80.65 0.05r 81.22 0.05r 82.30

B.4.3 Exploring Fine-tuning Strategies

Our LRFL method learns low-rank features by leveraging models pre-trained on the target dataset. In
this section, we conduct an ablation study to investigate the significance of low-rank regularization in
the fine-tuning process. A detailed comparative analysis of low-rank regularization against several
performance-enhancing techniques, including mix-up [109], label smoothing [110], and EMA [111],
is presented in Table 12. We performed an experiment by fine-tuning without low-rank regularization
and other tricks, which serves as a baseline for studying the effects of fine-tuning strategies. All
models underwent equivalent training epochs to ensure a fair comparison. The results demonstrate
that LRFL models achieve the highest performance improvement compared to all other approaches.
Notably, unlike natural images, applying mix-up, label smoothing, or EMA to the NIH ChestX-ray
dataset leads to performance drops (see Table 12). Fine-tuning models pre-trained on the target
dataset without low-rank regularization does not lead to performance improvements compared to
fine-tuning with low-rank regularization. For example, the original ViT-S [2] achieves a mean AUC of
82.27% on NIH Chest Xray-14. Fine-tuning this model for 20 epochs without low-rank regularization
leads to a mean AUC of 82.26%, whereas fine-tuning with low-rank regularization for 75 epochs
results in a mean AUC of 83.40%. We observe similar results for all models based on low-rank
features, demonstrating the significance of LRFL.

Table 12: Comparison of fine-tuning strategies on NIH ChestX-ray14.

Model mAUC
Base Model Fine-tuning Mix-up [109] Label Smoothing [110] EMA [111] LRFL

ViT-S 82.27 82.26 82.09 82.24 82.26 82.70
ViT-B 83.00 83.00 82.37 82.99 82.98 83.40

B.4.4 Additional Grad-CAM Visualization Results

Additional Grad-CAM visualization results of the Low-Rank ViT-Base on NIH ChestX-ray 14
are illustrated in Figure 5. Robust Grad-CAM visualization results of the Low-Rank ResNet-50
are illustrated in Figure 4. We visualize the parts in the input images that are responsible for the
predictions of the ground-truth disease label for base models and low-rank models. The visualization
results show that our low-rank models usually focus more on the areas inside the bounding box
associated with the labeled disease. In contrast, the base models also focus on the areas outside the
bounding box or even areas in the background.
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Figure 4: Robust Grad-CAM [95] visualization results on NIH ChestX-ray 14. The figures in the first
row are the visualization results of ViT-Base, and the figures in the second row are the visualization
results of Low-Rank ResNet-50.
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Figure 5: Grad-CAM visualization results on NIH ChestX-ray 14. The figures in the first row are the
visualization results of ViT-Base, and the figures in the second row are the visualization results of
Low-Rank ViT-Base.

B.4.5 Training Time Analysis

We evaluate the training time of LRFL models and compare them with the training time of the
baseline models. The evaluation of LRFL models and baseline models is performed on 4 Nvidia
A100 GPUs. It is observed from the results in Table 13 that the training time of LRFL models
is comparable to the training time of LRFL models. The main computational overhead of LRFL
models is the computation of the eigenvectors of the feature matrix F and the truncated nuclear norm.
However, the computation overhead is largely reduced by avoiding performing SVD for the feature
matrix F at every epoch, benefiting from the approximation algorithm we designed in Algorithm 1.

Table 13: Training time comparison between LRFL models and baseline models on NIH ChestX-
ray14, CheXpert, and CovidX. All the results are reported in minutes.

Datasets NIH ChestX-ray14 CheXpert CovidX
ViT-S 54 90 23

ViT-S-LR 98 117 38
ViT-B 72 162 32

ViT-B-LR 113 185 45

C Training with Synthetic Data by Diffusion Models

In this section, we explore generative data augmentation using diffusion models. Section C.1
introduces the preliminaries of diffusion models and outlines the specific modifications made for our
target task. In Section C.2, we discuss the implementation details of training of the diffusion model.
Finally, we show some of the generated synthetic images in Figure 6.

C.1 Data Generation with the Diffusion Model

The diffusion model operates through a probabilistic framework, employing a forward noising process
that gradually introduces noise to the original data x0. Initially, the model defines a distribution

22



q(xt|x0) where xt is progressively noised from x0 over time t. This distribution is governed by
predetermined hyperparameters ᾱt, with xt sampled using the reparameterization trick q(xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ϵ ∼ N (0, I). As t advances, the noise contribution increases,

leading xt to become progressively noisier until it approximates a standard Gaussian distribution.

Following the training of the diffusion model, the focus shifts to the reverse process, aimed at denois-
ing a noisy sample xt to recover the original data x0. Utilizing a Gaussian noise xT as the starting
point, the model iteratively refines the sample using pθ(xt−1|xt), where µθ is parameterized to ap-
proximate the posterior mean of the forward process pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
where µθ(xt, t) = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
. Training involves minimizing a simplified loss

function Lsimple to ensure accurate prediction of noise, facilitating effective denoising during the
reverse process Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
.

We adopt a class of diffusion model known as the Diffusion Transformer (DiT) [94], chosen for
its efficiency and token-agnostic conditioning, making it particularly suitable for our task. DiTs
efficiently leverage label embedding for guidance and exhibit high compute efficiency, which is
crucial for scaling to large datasets.

The Diffusion Transformer (DiT) model is trained on the CheXpert and COVIDx datasets, as described
by [94]. The DiT model, specifically designed for text-based labels, operates without classifiers and
instead relies on label embedding to guide the diffusion process. Modifications are made to the label
embedding layer to adapt the model to the multi-label problem. Once the training is finished, images
are sampled according to the label distribution of the original dataset to maintain the distribution of
co-occurring diseases in the synthetic dataset.

C.2 Implementation Details

Training Settings of the Diffusion Model. Following the protocol in [94], the DiT is trained
on 256 × 256 images for 2800 epochs, employing a global batch size of 512 distributed across 4
Nvidia A100 GPUs. Throughout training, a constant learning rate of 10−4 is maintained. After
the training of the diffusion model is finished, synthetic images are sampled using a CFG scale of
4.0 and 128 sampling steps. To preserve the disease co-occurrence distribution within the synthetic
dataset, identical image labels as those from the original dataset are utilized. The number of synthetic
images added to the training set of each dataset is determined via cross-validation. We first generate
synthetic images of the same size as the training set. The optimal percentage of synthetic images is
selected using 5-fold cross-validation on the training data. Synthetic images are combined with the
original dataset for further fine-tuning with low-rank regularization. Figure 6 presents examples of
the synthetic chest X-rays generated using the aforementioned setting.

Table 14: Selected optimal percentage of images α on different datasets and models.

Dataset CheXpert COVIDx
Models ViT-S ViT-S-LR ViT-B-LR ViT-B-LR ViT-S ViT-S-LR ViT-B ViT-B-LR

α 0.15 0.2 0.25 0.25 0.7 1.0 0.75 1.0

Tuning the Number of Synthetic Images n by Cross-Validation. We determine the optimal
number of synthetic images for each dataset and the corresponding ViT variant. Let N = ⌈α× n⌉,
where α is the percentage of the images and n denotes the size of the training set of the target dataset.
The values of α are selected through 5-fold cross-validation on the training data in each dataset.
Specifically, α is chosen from the set {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0}. The optimal
values of α selected by cross-validation for each dataset and ViT variant are presented in Table 14.

Training Settings of the LRFL Models with the Synthetic Images. Once we obtain the synthetic
images generated by the diffusion model, we add the synthetic images into the training set of the target
datasets, including COVIDx and CheXpert. We also leverage networks pre-trained on ImageNet [92]
or chest X-rays [2] using Masked Autoencoders (MAE). The MAE pre-trained models are fine-tuned
following the same pipeline as in Section 3.1 and the same implementation details as in Section 4.1.
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Label: Cardiomegaly and Effusion

Label: Effusion, Infiltration and Pneumonia

Figure 6: Synthetic images generated using the Diffusion Model. The images in the first row are
labeled Cardiomegaly and Effusion, and the images in the second row are labeled Effusion, Infiltration,
and Pneumonia.
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Figure 7: Performance comparisons between base models and LRFL models trained with different
numbers of synthetic images added on CheXpert. n is the number of original training images in
CheXpert.

C.3 Ablation Study on the Number of Synthetic Images

Although the usage of the generated synthetic images can improve the prediction accuracy of DNNs
for image classification [13, 14, 15], too many synthetic images tend to introduce more noise to the
augmented training data so excessive synthetic images can hurt the prediction accuracy of DNNs
trained on the augmented training data [14]. Our proposed LRFL method, coupled with the selection
of the amount of synthetic images, effectively mitigates this issue. In this section, we compare the
performance of LRFL models with base models when different numbers of synthetic images are
added to the training set of CheXpert. As illustrated in Figure 7, the performance of both the LRFL
model and the base model can be initially improved with more synthetic images. However, after
a certain point, even more, synthetic images start to hurt the performance due to the noise in the
synthetic images, and the literature on using synthetic data for training classifiers such as [13] also
has a similar observation. This is the reason why we need to perform a cross-validation on the size of
the synthetic data for the best performance. Importantly, it can be observed that our LRFL models
(ViT-S-LR or ViT-B-LR) usually improve the performance of the corresponding base models (ViT-S
or ViT-B) on different choices of the size of the synthetic data. The improvements of our LRFL
models over the corresponding base models tend to be more significant as the size of synthetic data
increases. This observation justifies the effectiveness of LRFL in reducing the adverse effect of
noise in the synthetic images. For example, ViT-B-LR outperforms ViT-B by 0.5% in mAUC when
0.1n synthetic images are added into the training set, and the improvement escalates to 2.5% with n
synthetic images added into the training set where n is the size of the original training data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction in Section 1 accurately
reflect the paper’s contributions and scope. The contributions of the paper are clearly stated
in Section 1.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
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Justification: The theorem and proposition in this paper are clearly stated in Section 3. The
proof of the theorem is attached in Section A of the appendix of this paper.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The anonymous link to the code is attached at the end of the abstract. Imple-
mentation details for the experiments on image classification are stated in Section 4, and
training the diffusion model is described in Section C of the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The anonymous link to the code is attached at the end of the abstract. Imple-
mentation details for the experiments on image classification are stated in Section 4, and
training the diffusion model is described in Section C of the appendix. The datasets used
in the experiments are public benchmarks. Detailed information on the datasets for image
classification is stated in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings, including data splits, hyperparameters, type of optimizer,
etc, for image classification are stated in Section 4, and training the diffusion model is
described in Section C of the appendix. The datasets used in the experiments are public
benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow the manners in previous works [2, 94] for reporting the results on
image classification, in Section 4, and for training of the diffusion model in Section C of the
appendix.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resources used are specified in Section B.4.5 of our paper.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read NeurIPS Code of Ethics in https://neurips.cc/public/
EthicsGuidelines and confirm that the research conducted in the paper conform, in every
respect, with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: The experiments performed do not have societal impacts as we did not perform
any experiments on real-world data collected from the society.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks for misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper performs experiments on widely used public benchmarks, which
are properly cited in Section 4 of our paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service
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• If assets are released, the license, copyright information, and terms of use in the package
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licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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