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Abstract

Existing vision-language models often suffer from spatial hallucinations, i.e.,
generating incorrect descriptions about the relative positions of objects in an image.
We argue that this problem mainly stems from the asymmetric properties between
images and text. To enrich the spatial understanding ability of vision-language
models, we propose a simple, annotation-free, plug-and-play method named Stitch
and Tell (abbreviated as SiTe), which injects structured spatial supervision into
multimodal data. It constructs stitched image–text pairs by stitching images along
a spatial axis and generating spatially-aware captions or question answer pairs
based on the layout of stitched image, without relying on costly advanced models
or human involvement. We evaluate SiTe across three architectures including
LLaVA-v1.5-7B, LLaVA-Qwen2-1.5B and HALVA-7B, two training datasets, and
thirteen benchmarks. Experiments show that SiTe improves spatial understanding
tasks such as MMEPosition (+5.50%) and Spatial-MM (+4.19%), while maintaining
or improving performance on general vision-language benchmarks. Our findings
suggest that explicitly injecting spatially-aware structure into training data offers an
effective way to mitigate spatial hallucinations and improve spatial understanding,
while preserving general vision-language capabilities.

1 Introduction

Spatial understanding, the ability to comprehend and interpret the relationships between objects in a
space, is essential for tasks such as visual question answering, navigation, and embodied AI [1, 45, 40].
However, most existing vision-language models still struggle to understand and reason about spatial
relationships [19, 34, 5, 39], which leads to spatial hallucination problems.

We argue that the spatial hallucination problem is primarily caused by the implicit modality gap,
that is, while images contain rich multidimensional spatial features, their paired captions tend to
be relatively sparse. We investigated existing large-scale multi-modal datasets, such as Conceptual
Captions [28], COCO [18], VQA [1], and SBU Captions [24], and observed only a small fraction of
samples contain explicit spatial information (see Table 1). As shown in Figure 1, the spatially-aware
data means the samples whose captions include clear spatial information (e.g., “to the left of", “in
front of”). During training, the model aligns visual content with limited linguistic descriptions, which
may constrain its ability to capture latent spatial structures from the image alone.

This further motivates the need to introduce spatial information directly into the text. However,
collecting spatial annotations through crowd-sourcing is both difficult and expensive. It often
demands a carefully designed annotation interface and large-scale annotation efforts involving skilled
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Spatially-aware text: 
To the left of the stop sign, a 
woman is walking across the 
street.

Spatially-agnostic text :
A stop sign stands on a quiet 
street, as a woman walks 
across the crosswalk.

Figure 1: The difference between spatially-agnostic and
spatially-aware text. spatially-aware text has explicit
location cues that clarify object positions.

Table 1: Proportion of spatially-aware
data in common datasets.

Multimodal Datasets Ratio
Conceptual_captions [28] 0.0168
blip_laion_cc_sbu_558K [20] 0.0201
VQA_v2 [1] 0.0288
COCO_2017 [17] 0.0511
SBU_Captions [23] 0.0582
Visual_Genome [15] 0.0611
Flickr30K [43] 0.0732
VSR [19] 0.1898

annotators. One might consider leveraging data augmentation to construct spatial understanding
data. However, traditional methods are not design for spatial understanding. For instance, cropping,
dithering, rotation, and random erasing may break the alignment between images and text, introduce
spatial noise, or even distort main semantic consistency [6, 14, 29]. Recent work has explored using
large models to synthesize spatially-aware data through caption rewriting or image editing [35].
Although model-generated augmentation can enrich spatial supervision, it typically involves high
computational cost and complicated processing. Given the massive scale of pretraining data, such
methods are difficult to apply in practice.

T1 : the raven legacy of a master thief 

T2 : a porch at rockytop, a 2 
bedroom cabin rental located in 
pigeon country

Horizontalt Stitch/…

I1 I2

Spatial information injection

Left side displays the raven legacy of a master thief, 
While the right side shows a porch at rockytop, a 2 
bedroom cabin rental located in pigeon country.
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master thief, and the left image which shows 
a porch at rockytop, a 2 bedroom cabin rental 
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Right?...

Guide

Left! Right!

Image-Spatial Stitching Text-Spatial Telling

the raven legacy of a 
master thief 

a porch at rockytop, a 
2 bedroom cabin 
rental located in 
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Figure 2: An Overview of Stitch and Tell

In this work, we propose a simple yet effective multi-modal data augmentation method, Stitch and
Tell (SiTe), which injects spatial information into image–text pairs without relying on large-scale
generation models or incurring heavy computational cost. As shown in Figure 2, SiTe consists of
two main steps: IMAGE-SPATIAL STITCHING and TEXT-SPATIAL TELLING.

In the IMAGE-SPATIAL STITCHING step, we combine two images along a spatial axis (e.g., horizontal
or vertical) to create a new image with an explicit spatial layout. This stitched structure naturally
introduces spatial relations between regions.

In the TEXT-SPATIAL TELLING step, we generate spatially-aware textual annotations based on the
original captions. First, we construct structured captions by placing the two original texts into spatial
templates, such as “The right part shows T2, while the left part displays T1.” These templates make
spatial relations explicit and provide clearer supervision, helping the model associate language with
visual layout. Second, we extract object nouns from each caption and generate spatial question
answer (QA) pairs. For example, given “a cat” from T1 and “a car” from T2, we create a question like
“From the observer’s perspective, is the cat on the left of the car?” The answer can be automatically
determined based on the stitched layout, requiring no manual labeling. These QA examples offer an
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additional form of weak spatial supervision and can be directly used in instruction tuning. Compared
to image-based object detection or grounding, extracting object from text is more efficient and reliable.
It reduces the noise and computational overhead introduced by vision-level processing, making our
method lightweight and scalable. The image–text pairs generated by SiTe introduce explicit spatial
supervision through structured layout and spatially-aware text, without requiring manual annotations
or model-generated rewrites. This helps bridge the gap between sparse spatial expressions in text and
the richer spatial structure present in images, improving cross-modal alignment.

SiTe introduces spatial structure into multi-modal training data through simple image stitching
and spatially-aware caption generation, without relying on large-scale generation models or human
annotations. Each stitched sample has two image–text pairs, allowing the model to process more
content per step and reducing training time by over 20% in our SiTe default setting. SiTe is easy to
integrate into existing pipelines. It can be applied during both pretraining and supervised fine-tuning
without modifying the model architecture.

We evaluate SiTe across three model architectures (LLaVA-v1.5-7B [20], LLaVA-Qwen2-1.5b [41]
and HALVA [27]), two training dataset (558K [20] and Flickr30K), and thirteen popular bench-
marks, four for spatial understanding, four for general vision-language tasks and five for more
real-world benchmarks. On LLaVA-v1.5-7B, SiTe improves spatial understanding benchmarks such
as MMEPosition (+5.50%) and Spatial-MM (+2.13%), while also yielding gains on general tasks like
COCO-QA (+1.02%) and MMBench (+0.93%). For Qwen2-1.5B, SiTe improves MMBench by
+5.33% and MM-VetSpat by +4.38% in the fine-tuning stage, and achieves +10.42% on MMEPos and
+5.01% on MMBench during pretraining. These results demonstrate that SiTe provides an effective
form of weak spatial supervision that enhances spatial reasoning while maintaining competitive
performance on general benchmarks, across both large and small model settings.

2 Related Works

Multimodal Data Augmentation. To improve the generalization of vision-language models, recent
work explores multimodal data augmentation strategies [13, 26]. MixGen [12] combines image
interpolation with caption concatenation, but assumes semantic compatibility across samples, which
may yield implausible pairs. Other approaches rely on generative models, such as StableLLaVA [16]
for diffusion-based synthesis and ALIA [9] for language-guided editing. Sapkota et al. [26] categorize
these methods into input mixing, caption synthesis, and adversarial perturbation. However, most
require supervision, handcrafted rules, or heavy computation, limiting scalability. In contrast, we
propose a structured, weakly supervised augmentation method based on spatial compositionality. It
introduces explicit spatial grounding without labels or model-generated text, and integrates efficiently
into standard training pipelines.

Spatial Understanding Task Spatial understanding is a fundamental capability for intelligent
agents to recognize and reason about the relative positions and relationships between objects. It
plays a central role in real-world applications such as robotics, embodied AI, and autonomous
driving [11, 21, 3]. Recent studies [30, 31, 45, 40, 42] emphasize that spatial reasoning is critical
for scene understanding, navigation, and visual question answering, all of which require accurate
perception of object positions and layouts. In robotics and autonomous systems, it enables agents to
make informed decisions in dynamic environments [46, 2, 8, 22]. In the vision-language domain,
spatial information is essential for grounding language in visual content [33, 25]. To enhance spatial
reasoning, recent efforts incorporate explicit spatial features such as coordinate embeddings [4] and
leverage additional modalities like depth and 3D information [7, 10]. The increasing attention to
this area reflects both the challenges it poses and its importance to general intelligence, making it an
active field with strong potential for future progress.

3 Stitch and Tell

In this section, we present Stitch and Tell, a structured multimodal data augmentation method that
injects spatial knowledge by stitching images and telling their spatial layout information through
structured text. We begin by introducing how images are spatially stitched to form structured visual
information. We then describe how spatial relations are explicitly injected into both captions and
question answer formats, allowing the model to learn spatial reasoning from weakly structured but
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naturally aligned supervision. Finally, we discuss how SiTe can be effectively integrated into the
model’s training process.

Algorithm 1 Image Stitch Algorithm
1: function STITCH(I1, I2,mode)
2: (w1, h1)← GetSize(I1)
3: (w2, h2)← GetSize(I2)
4: if mode = horizontal then
5: H ← max(h1, h2)
6: W ← w1 + w2

7: Icanvas ← NewImage(W,H)
8: Paste I1 at (0, 0) onto Icanvas
9: Paste I2 at (w1, 0) onto Icanvas

10: else if mode = vertical then
11: W ← max(w1, w2)
12: H ← h1 + h2

13: Icanvas ← NewImage(W,H)
14: Paste I1 at (0, 0) onto Icanvas
15: Paste I2 at (0, h1) onto Icanvas
16: else
17: return Error: Invalid mode
18: end if
19: return Icanvas
20: end function

IMAGE-SPATIAL STITCHING: Given two image–
caption pairs (I1, T1) and (I2, T2) from the
dataset, we first construct a stitched image by spa-
tially stitching the two input images along a spe-
cific axis. Concretely, we create a blank canvas
based on the larger height (for horizontal stitching)
or width (for vertical stitching) of the input images,
and paste I1 and I2 onto the canvas following a
layout mode. For example, in the horizontal set-
ting, we produce a left–right stitched image via
ILR

Stitch = I1 ⊕horizontal I2. This construction intro-
duces an explicit spatial information compaerd to
the original images, helping the model acquire a
grounded sense of spatial. The pseudocode of im-
age stitching process is illustrated in Algorithm 1.

We design two image pairing strategies for con-
structing composite samples in the SiTe frame-
work: (1) SiTerand randomly selects two images
from the dataset for horizontal concatenation,
without considering their geometric proportions.
This introduces diverse visual combinations but
may lead to uneven scaling or excessive blank ar-
eas in the merged image. (2) SiTeratio first filters
vertically dominant images with a height-to-width ratio greater than 1.2, then groups them into
buckets according to similar aspect ratios, and pairs images within each bucket. This ensures that
the two halves of the composite image have comparable geometric structures, thereby improving
spatial balance and reducing blank or redundant regions. Compared with the random pairing baseline,
SiTeratio increases the proportion of effective visual tokens and yields higher information density in
the visual encoder’s representation.

TEXT-SPATIAL TELLING. After performing image-spatial stitching, such as horizontally
combining two images, we obtain a new image ILR

Stitch with an explicit spatial layout.

A puppy sits on the grass.A kitten lies on the floor wearing a small hat.

NL = {kitten, floor, hat} NR ={puppy, grass}

Does {Kitten} appear on the left side of {puppy}?“

”Yes“

Figure 3: A construction process of spatial visual
question answering data

• Tell the Caption.The semantic content from
the original captions T1 and T2 is naturally
aligned with the left and right regions of the
stitched image. Based on the stitching mode
(e.g., left–right or top–down), we select a spa-
tial template from repository and stitch a struc-
tured caption TStitch by inserting T1 and T2

into the corresponding placeholders. For ex-
ample, the template “The left part shows T1,
and the right part displays T2.” explicitly in-
jects spatial information through the underlined
spatial phrases. These spatial information help
the model associate textual semantics with the
visual layout more effectively. This process does
not require any additional annotation, and re-
tains the original semantics while explicitly encoding spatial relationships, encouraging the model
better align visual content with spatial language.

• Tell the Question and Answer. Guided by the SiTe method, we further extend our method
to generate spatial question–answer pairs. As shown in Figure 3, for each stitched sample, we
extract noun lists from the original captions: NL = [oL,1, . . . , oL,m] and NR = [oR,1, . . . , oR,n],
corresponding to the left and right regions of the image ILR

Stitch. To reduce ambiguity, we remove
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overlapping nouns shared by both sides. We then sample entity pairs (oL, oR) from the disjoint noun
sets and generate questions such as “Is the oL on the left of the oR?”

Since the spatial position of each entity is predetermined by construction, the answer to such questions
can be automatically inferred based on the object’s region (e.g., oL ∈ NL implies a “Yes” answer).
This provides a lightweight way to generate weakly supervised spatial reasoning signals without the
need for manual annotation. Compared to object detection or image-level classification, extracting
entities from captions is significantly more efficient and reliable. It avoids visual ambiguity and
reduces computational cost. These question-answering pairs provide the model with a lightweight
but effective signal for learning spatial understanding.

The data generated by SiTe can be effectively applied across multiple stages of multimodal training.
The structured captions TStitch provide spatially grounded supervision during pretraining, facilitating
the alignment between visual representations and spatial language without additional annotation.
The constructed spatial question–answer pairs are suited for instruction tuning, where they serve as
explicit prompts to strengthen the model’s spatial understanding abilities. Furthermore, by modifying
spatial expressions in TStitch (e.g., exchanging “left” and “right”), we can generate hard negative
samples that maintain the global semantics while introducing localized spatial inconsistencies. These
samples can be used in contrastive learning settings to improve the model’s sensitivity to spatial
contradictions. Overall, SiTe offers a unified and extensible method for spatial data augmentation,
supporting both generative and discriminative learning objectives with minimal supervision.

4 Experiment Setup

4.1 Models.

We conduct experiments using three representative vision-language models: LLaVA-v1.5-7B [20]
(referred to as LLaVA), LLaVA-Qwen2-1.5B [41] (Qwen2), and HALVA-7B [27] (HALVA). LLaVA
is built on Vicuna-7B, while Qwen2 uses Qwen2-1.5B as the language backbone. HALVA adopts a
contrastive learning framework by aligning correct and hallucinated phrases at the token level for
fine-grained supervision. We evaluate LLaVA and Qwen2 in both pretraining and fine-tuning stages,
and apply HALVA only in the fine-tuning stage.

4.2 Training Sets and Augmentation Setup.

The training process of LLaVA consists of two stages: the pretraining stage and the supervised
fine-tuning stage. We describe the setup for each stage separately.

Pretraining Stage. To evaluate the effectiveness of SiTe across different training sets, we exper-
iment with two image–caption datasets: blip_laion_cc_sbu_558K (558K) and Flickr30K. As
shown in Table 1, these datasets differ in the proportion of spatially informative samples, with
Flickr30K containing a higher density of such spatial descriptions compared to 558K. We apply both
horizontal and vertical stitching in a 1:1 ratio. By default, the stitched data make up one-third of the
total set. To avoid duplicate supervision, image–caption pairs used for stitching are removed from the
raw set, ensuring each image appears only once. As a result, the final number of training samples
is slightly smaller than 558K. We design 35 templates for horizontal stitching and 29 templates for
veritcal stitching. For each sample, a template is randomly selected from the corresponding set based
on the stitching mode. This diversity in spatial phrasing encourages the model to learn spatial relations
in a more flexible and robust manner, rather than relying on fixed linguistic patterns. To further
compare SiTe-augmented data with existing spatial supervision data, we construct a pretraining
variant by substituting part of the original image–caption data with an equal-sized spatially-focused
samples from the Visual Spatial Reasoning (VSR) dataset [19]. In default setting, the number of VSR
data is 5K. Additionally, we compare SiTe with two standard augmentation baselines: Rotate and
Crop. For Rotate, images are randomly rotated between 0° and 360°, with captions unchanged. For
Crop, 80%–100% of the image is randomly retained and cropped from a random region. Further
implementation details, including the full list of spatial templates used for horizontal and vertical
stitching, as well as examples of the stitched image–text pairs, are provided in Appendix B.

Supervised Fine-Tuning Stage. We apply the SiTe method to augment the llava_v1_5_mix665k
dataset. Noun phrases are extracted from original sentences using Qwen2.5-72B-Instruct with the
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prompt: “Extract the concrete, visible physical objects or entities described in this sentence. Return
a comma-separated list. Ignore abstract terms like ‘type’, ‘color’, ‘time’, or actions.” Based on the
extracted entities, we construct spatial question–answer pairs to form a new instruction-tuning dataset.
We evaluate the effect of adding 1K and 5K such samples to both LLaVA and Qwen2 models.

We further explore the way to construct spatial negative data in contrastive learning by SiTe. For each
stitched caption, we generate a negative example by swapping the spatial expressions. For example,
given a positive sample such as “The bottom image contains T1, and the top image shows T2,” we
construct a corresponding negative sample as “The top image contains T1, and the bottom image
shows T2.” The SiTe method simplifies this process by providing explicit spatial layouts, making it
easy to create contrastive pairs based on spatial inconsistencies.

For the supervised fine-tuning stage, we define more than 20 question templates to generate spatial
reasoning prompts. To reduce ambiguity, most templates explicitly incorporate the camera’s per-
spective, using phrases such as “from the camera’s point of view, is left_obj located to the left of
right_obj?"to clarify directional references. See Appendix B for more details about QA templates.

SiTe provides a simple and controllable way to construct such contrastive pairs. By modifying
spatial expressions in structured captions (e.g., swapping “left” and “right”), we can easily generate
hallucinated variants while preserving the global semantics. In default setting for HALVASiTe use
20K data, and the HALVABaseline use 21.5K data.

4.3 Training Setup.

For the pretraining stage, we train LLaVA-v1.5-7B and LLaVA-Qwen2-1.5B using a batch size of
16 and 64 per GPU, respectively, on 8 L20Z GPUs. All pretraining experiments are conducted for 1
epoch following the original LLaVA setup. For the supervised fine-tuning stage, we use the same
hardware setup and follow the original LLaVA configuration, training both models for 1 epoch. The
batch sizes are set to 4, 16 and 128 per GPU for HALVA, LLaVA-v1.5-7B and LLaVA-Qwen2-1.5B,
respectively. We adopt the same learning rate and weight decay as in the original model settings. In
all ablation experiments, the batch size and training schedule also remain consistent, and only the
ratio of stitched data is varied. For each setting, we run five times and report the average results.

4.4 Evaluation Setup.

We assess models in two key areas: spatial understanding and general vision-language capabilities.
For spatial understanding, we use four benchmarks: COCO-QASpat (subset of COCO-QA focusing on
spatial questions), Spatial-MM (multiple-choice benchmark testing spatial relations between objects),
MME-Position (MME subset with spatially-aware questions answered in a single word/phrase),
and MMSpat (MM-Vet subset evaluating complex spatial reasoning). To examine whether spatial
supervision affects general multimodal performance, we evaluate on COCO-QA (a multimodal dataset
for basic visual understanding), VQA-v2 (diverse human-annotated QA pairs from MS-COCO for
robust visual reasoning), MMBench (multi-choice benchmark covering 20 vision-language ability
dimensions), and MM-Vet (open-ended and multi-choice tasks testing integrated reasoning and
knowledge). To verify the model’s generalization ability in spatial understanding, we conducted
evaluations on CV-Bench[32] and RealWorldQA[38], both of which include questions involving 3D
spatial reasoning. In addition, to explore whether this approach can also enhance model performance
on high-resolution data, we carried out experiments on two high-resolution datasets, HR-Bench
8K[36] and V-Star[37]. All evaluations are conducted in a zero-shot setting on target benchmarks.

5 Main Results

In this section, we present the performance of SiTe and several baseline methods on both spatial
understanding and general vision-language benchmarks. Notably, in the pretraining stage, the total
number of training samples is kept consistent across the Baseline, Rotate, Crop, and VSR settings.
For SiTe, since each stitched sample is formed by combining two image–caption pairs, the total
number of training examples is reduced accordingly to ensure the model sees the same number of
unique images. This means that no image–caption pair appears in both the stitched and raw data.
This adjustment ensures a more fair comparison across different stitching ratios.
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Table 2: Performance comparison on spatial understanding and general vision-language benchmarks
with ↑ or ↓ values showing improvements or declines relative to each corresponding baseline. In
the supervised fine-tuning stage, the superscript (e.g., LLaVA1K

SiTe) indicates that 1K spatially-aware
samples are added per stitching direction. The bottom-right corner of each model denotes the data
augmentation method used. Each variant is compared to its corresponding baseline with the same
backbone or data setting. *Results are using their official checkpoint.

Model Spatial Understanding General Vision-Language

COCO-QASpat(%) Spatial-MM(%) MMEPos MM-VetSpat COCO-QA (%) VQAv2(%) MMB(%) MM-Vet

Pretraining Stage

LLaVABaseline 67.72 42.02 127.83 26.52 70.52 60.48 73.50 31.11
LLaVARotate 68.09 43.01 128.89 29.40 71.36 60.60 74.86 32.20
LLaVACrop 67.82 42.69 127.78 28.53 70.93 60.37 74.41 31.43
LLaVAVSR 67.85 42.65 121.67 29.42 70.90 60.57 73.88 31.47
LLaVASiTe-rand 68.75↑1.03 43.78↑1.76 133.33↑5.50 28.43↑1.91 71.54↑1.02 60.53↑0.07 74.43↑0.93 31.40↑0.29

LLaVASiTe-ratio 70.06↑2.34 44.15↑2.13 132.80↑4.97 28.68↑2.16 71.19↑0.67 60.57↑0.09 73.64↑0.14 32.27↑1.16

LLaVAflickr 68.96 44.03 129.00 25.98 71.75 59.63 72.33 29.54
LLaVAflickr

Rotate 68.03 44.81 129.44 25.86 71.12 59.42 72.36 29.60
LLaVAflickr

Crop 69.34 42.69 131.11 28.73 72.12 60.20 72.68 29.87

LLaVAflickr
VSR 68.26 42.70 128.75 26.18 71.32 59.94 72.87 30.45

LLaVAflickr
SiTe-rand 71.42↑2.46 44.97↑0.94 130.70↑1.70 26.20↑0.22 73.74↑1.99 59.73↑0.10 72.88↑0.55 29.59↑0.05

LLaVAflickr
SiTe-ratio 71.51↑2.55 44.31↑0.28 131.50↑2.50 28.60↑2.62 73.89↑2.14 59.94↑0.31 71.66↓0.67 30.97↑1.43

Qwen2Baseline 62.25 40.85 60.75 20.72 64.72 53.66 61.67 22.48
Qwen2Rotate 60.73 40.78 60.50 19.62 60.22 52.77 66.61 20.97
Qwen2Crop 62.06 40.68 61.25 20.75 64.74 53.28 67.45 22.52
Qwen2VSR 57.18 41.46 58.50 22.40 60.22 54.64 66.58 22.95
Qwen2SiTe-rand 62.57↑0.32 41.25↑0.40 63.00↑2.25 22.90↑2.18 65.26↑0.54 54.18↑0.52 66.68↑5.01 22.10↓0.38

Qwen2SiTe-ratio 62.52↑0.27 41.00↑0.15 68.00↑7.25 21.00↑0.28 65.10↑0.38 54.23↑0.57 67.57↑5.90 22.80↑0.32

Qwen2flickr 47.10 38.90 51.25 10.95 47.90 42.38 50.90 10.50
Qwen2flickr

Rotate 40.08 39.10 58.33 9.50 42.45 39.04 47.86 9.20
Qwen2flickr

Crop 42.37 39.37 64.25 8.30 44.61 40.41 46.43 10.00

Qwen2flickr
VSR 46.00 39.90 67.25 10.15 48.00 40.93 48.71 9.60

Qwen2flickr
SiTe-rand 47.71↑0.61 39.35↑0.45 61.67↑10.42 12.47↑1.52 48.68↑0.78 42.95↑0.57 51.33↑0.43 10.80↑0.30

Qwen2flickr
SiTe-ratio 49.04↑1.94 40.04↑1.14 56.00↑4.75 13.10↑2.15 47.38↓0.52 43.91↑1.53 51.31↑0.41 10.60↑0.10

Supervised Fine-tuning Stage

LLaVA1K
SiTe-rand 68.81↑1.09 43.16↑1.14 128.70↑0.87 27.06↑0.54 71.74↑1.22 61.17↑0.69 74.60↑1.10 31.20↑0.09

LLaVA1K
SiTe-ratio 68.35↑0.63 46.96↑4.94 136.00↑8.17 29.70↑3.18 71.32↑0.80 60.92↑0.44 73.37↓0.13 31.54↑0.43

LLaVA5K
SiTe-rand 67.75↑0.03 46.21↑4.19 139.26↑11.43 28.10↑1.58 70.96↑0.44 60.38↓0.10 74.53↑1.03 30.69↓0.42

LLaVA5K
SiTe-ratio 68.37↑0.65 48.58↑6.56 141.00↑13.17 31.05↑4.53 70.92↑0.40 60.82↑0.34 73.76↑0.26 32.15↑1.04

Qwen21K
SiTe-rand 58.53↓3.72 41.24↑0.39 65.33↑4.58 23.10↑2.38 61.77↓2.95 54.58↑0.92 66.37↑4.70 23.93↑1.45

Qwen21K
SiTe-ratio 59.66↓2.59 42.31↑1.46 62.75↑2.00 24.07↑3.35 62.59↓2.13 55.30↑1.64 65.75↑4.08 22.80↑0.32

Qwen25K
SiTe-rand 59.95↓2.30 42.22↑1.37 61.67↑0.92 23.20↑2.48 63.00↓1.72 54.75↑1.09 66.43↑4.76 23.93↑1.45

Qwen25K
SiTe-ratio 60.22↓2.03 41.56↑0.71 64.50↑3.75 25.10↑4.38 62.86↓1.86 54.77↑1.11 67.00↑5.33 24.27↑1.79

HALVA∗
Baseline 63.16 43.07 135.00 25.70 67.12 61.67 72.44 30.00

HALVASiTe 64.77↑1.61 44.15↑1.08 123.33↓11.67 26.10↑0.40 68.54↑1.42 61.03↓0.64 71.54↓0.90 30.80↑0.80

5.1 Evaluation on Spatial Understanding Benchmarks

We first evaluate the impact of SiTe on spatial understanding. The results are provided in Table 2. In
pretraining stage, experiments are conducted under the pretraining setting using two datasets (558K
and Flickr30K) and two backbones: LLaVA-v1.5-7B and LLaVA-Qwen2-1.5B. We compare SiTe
against baseline training, traditional augmentations (Rotate, Crop), and training data mixed with VSR
data.

Effect of SiTe-Augmented Pretraining. SiTe-augmented method consistently improves spatial
understanding performance across all benchmarks and model backbones. This gain can be attributed
to its explicit introduction of structured spatial knowledge during pretraining. By stitching two
images with corresponding spatial information (e.g., “left to", “top of"), the model learns to associate
language not only with object content, but also with relative layout.

The LLaVARotate model shows moderate improvement on the 558K dataset. This may be because
spatial expressions are relatively sparse in 558K, so rotating the image does not heavily conflict with
the caption. In some cases, it may even help the model become more robust by learning to generalize
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across different viewpoints. However, when using Flickr30K as the training set, where captions
contain richer spatial descriptions, LLaVAflickr

Rotate performs worse than LLaVAflickr on several spatial
benchmarks. For instance, on COCO-QASpat, accuracy drops by 0.93%. This suggests that rotation
may introduce misalignment between spatial phrases in the caption and the actual image layout,
potentially resulting in implicit negative supervision. And the performance of the Crop baseline is
less stable. Random cropping may inadvertently remove key objects or semantic regions, leading
to weakened image-text alignment. Although the retained area is still between 0.8 to 1, the risk of
disrupting mismatch grounding remains high—potentially introducing merrors where the caption
does not accurately reflects the image content.

Among SiTe variants, SiTe-rand corresponds to the original random pairing strategy, while SiTe-ratio
adopts a ratio-based image pairing scheme that aligns images by aspect ratio before stitching.
Compared with SiTe-rand, SiTe-ratio achieves further gains on most spatial benchmarks, indicating
that more efficient image composition improves the performance of spatial supervision. The random
variant still provides strong overall enhancement across models and datasets, showing that SiTe is
robust even without additional pairing constraints.

Flickr30K contains higher proportion of spatially-aware data, which helps allows LLaVAflickr
SiTe learn

both spatial relations within each image and layout patterns from stitched pairs, and perform better
than LLaVASiTe(from 68.75% to 71.42%). This allows the model to better understand complex spatial
structures, even with less data in pretraining, and achieve strong overall performance.

Effect of SiTe-Augmented Supervised Fine-Tuning. SiTe continues to deliver strong results during
the supervised fine-tuning stage. By adding 1K and 5K spatially-aware samples per stitching mode to
the instruction tuning set, we observe consistent improvements across most spatial benchmarks. For
example, after adding 5K horizontal and 5K vertical QA samples to LLaVA-v1.5-7B in fine-tuning
stage, the accuracy on Spatial-MM increases from 42.97% to 46.21%, outperforming the baseline
by 4.19%. These gains come from our data construction strategy, which extracts noun entities from
stitched regions and generates spatial QA instructions from the camera’s perspective. This enables
the model to learn spatial reasoning patterns from naturally aligned weak supervision.

The SiTe-augmented method can also be used to construct contrastive examples. We apply spatially
stitched text to HALVA by replacing only spatial information (e.g., “left” ↔ “right”) while keeping the
other semantics information unchanged. In contrast, the HALVA method modifies objects, relations,
and attributes. Despite this simpler setup, HALVASiTe still outperforms the HALVABaseline on most
benchmarks.

We observe a slight performance drop for Qwen2SiTe on COCO-QA. This suggests a potential unalign-
ment when fine-tuning small-capacity models on highly structured spatial QA data. Specifically, SiTe
provides binary Yes/No questions focused spatial understanding, which differ in format and answer
space from COCO-QA’s diverse and open-ended questions. As a result, the model may over-adapt to
the binary QA style, leading to reduced flexibility when answering questions that require generative
reasoning or retrieval of specific object names. This effect is more pronounced in smaller models like
Qwen2-1.5B, which are more sensitive to supervision bias and have limited generalization capacity.

5.2 Evaluation on General Vision-Language Benchmarks

We further evaluate whether SiTe compromises general vision-language capabilities while improving
spatial understanding. Results are summarized in Table 2. For models based on LLaVA-v1.5-7B,
SiTe consistently maintains or improves general performance. Notably, SiTe-augmented in LLaVA
maintains consistent improvements on general vision-language benchmarks during the pretraining
stage. This suggests that introducing spatial understanding at this stage enhances the model’s ability
to generalize to out-of-distribution (OOD) scenarios. In the supervised fine-tuning stage stage, SiTe
still shows mostly positive gains, though we observe slight drops on VQA-v2 and MM-Vet. This may
be due to the nature of instruction tuning, where a large number of spatial-focused examples shift
the model’s preference, potentially affecting its performance on general tasks. For Qwen2, which
has relatively limited capacity, SiTe also brings clear benefits in pretraining. In particular, Qwen2SiTe
improves MMBench by 5.01%. However, during supervised fine-tuning stage, Qwen2 shows a slight
decrease on COCO-QA, indicating that instruction tuning tends to reinforce domain-specific behavior.
For smaller models, this may reduce the ability to follow diverse instructions, leading to weaker
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generalization. These results further highlight the importance of spatial supervision during pretraining
for improving downstream robustness.

We further conducted experiments on both high-resolution and 3D spatial benchmarks to evaluate
the generalization capability of our approach. Specifically, we tested models enhanced with SiTe
on HR-Bench 8K and V-Star, where they consistently achieved higher scores than the baselines,
demonstrating improved perception of fine-grained visual details.

To assess spatial reasoning in more realistic and complex settings, we also evaluated the models on
CV-Bench and RealWorldQA, which include diverse questions involving 3D spatial relationships.
The results show that injecting structured spatial supervision through SiTe significantly improves
performance on out-of-distribution spatial reasoning tasks and generalizes well to more challenging
real-world scenarios. We hypothesize that these gains arise from the model’s enhanced ability to
represent fundamental directional relations, which in turn supports broader spatial understanding
across different dimensions.

Table 3: Performance comparison across real-world and high resolution benchmarks.
Model CV-Bench 2D (%) CV-Bench 3D (%) RealworldQA (%) HRBench-8K (%) V-Star (%)

LLaVABaseline 52.56 33.43 55.12 30.90 48.34
LLaVASiTe-rand 54.28↑1.72 35.50↑2.07 55.21↑0.09 32.56↑1.66 49.95↑1.61

LLaVASiTe-ratio 55.58↑3.02 36.53↑3.10 55.26↑0.14 33.72↑2.82 50.13↑1.79

LLaVAflickr 52.87 28.39 54.51 33.52 49.32
LLaVAflickr

SiTe-rand 54.06↑1.19 38.66↑10.27 55.28↑0.77 34.53↑1.01 47.28↓2.04

LLaVAflickr
SiTe-ratio 55.07↑2.20 39.80↑11.41 56.25↑1.74 33.94↑0.42 50.79↑1.47

Qwen2Baseline 46.77 47.63 52.28 32.25 37.83
Qwen2SiTe-rand 48.16↑1.39 50.36↑2.73 54.44↑2.16 32.67↑0.42 38.92↑1.09

Qwen2SiTe-ratio 47.47↑0.70 50.40↑2.77 52.94↑0.66 32.94↑0.69 38.09↑0.26

Qwen2flickr 42.59 51.57 43.20 32.63 36.13
Qwen2flickr

SiTe-rand 43.64↑1.05 51.67↑0.10 42.75↓0.45 33.34↑0.71 36.52↑0.39

Qwen2flickr
SiTe-ratio 44.44↑1.85 51.50↓0.07 49.74↑6.54 34.33↑1.70 36.39↑0.26

We also calculate the computational time efficiency improvement brought about by pre-training
training using SiTe method. Taking default as an example, due to the decrease in the number of data
strips, the time to run an epoch in the pre-training stage is 77.4% of the baseline.

In summary, Stitch and Tell effectively enhances spatial supervision by increasing data density
through structured augmentation, without sacrificing the original knowledge. This approach leads
to stronger spatial understanding and remains competitive on general vision-language benchmarks,
demonstrating its broad applicability.

5.3 Qualitative Analysis

Where is the AI chip in relation to the hand?
A. Front B. Behind C. Above D. Under 

Is there a backpack on the left of the laptop from camera's 
perspective?
A. Yes B. No 

Is there a tea cup on the left of the cake from camera's 
perspective?
A. Yes B. No

Is there a table lamp on the left of the TV from camera's 
perspective?
A. Yes B. No

LLaVA: A SiTe: B LLaVA: B SiTe: A

LLaVA: B SiTe: ALLaVA: A SiTe: B

(a) (b)

(c) (d)

Figure 4: Qualitative comparisons between LLaVA and SiTe. SiTe can better distribute attention
between objects and judge their spatial relationships.
We visualize attention differences MLLM-Know [44], which highlights image regions where the
model assigns more attention under task-specific prompts compared to general prompts. A qualitative
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comparison between LLaVA-v1.5-7B and SiTe is shown in Figure 4. In Figure 4 (a), when asked about
the relation between the AI chip and the hand, LLaVA mainly attends to the hand while neglecting
the chip, resulting in an incorrect answer. In contrast, SiTe correctly focuses on both entities. In
Figure 4 (b), where the question involves the left side of the cake, SiTe allocates more attention to the
region between the cup and the cake, effectively capturing their spatial arrangement. Similarly, in
Figure 4 (c) and (d), SiTe exhibits more precise attention distribution across the referenced objects,
which contributes to more accurate spatial understanding.

5.4 Ablations

Recalling the SiTe method in the pretraining stage, we define a stitching ratio parameter λ to measure
the proportion between stitched and raw samples in the final training set. Let T denote the number
of original image–caption pairs, and N be the number of stitched samples constructed for each
stitching mode (e.g., horizontal or vertical). Since each stitched sample is formed by consuming two
raw samples, the total number of stitched samples is 2N , and the remaining raw examples become
T − 4N , assuming two stitching modes are used. Let DStitch and DRaw denote the sets of stitched and
retained raw examples, respectively. The final ratio λ is defined as: λ = |DStitch|

|Draw| = 2N
T−4N .

Table 4: Settings of SiTe-rand as variants of
SiTedefault used for the ablation study during pre-
training on the 558K dataset. Each variant adopts
a different ratio λ, representing the proportion of
stitched samples to the remaining raw samples in
the training set, and the total number of training
instances varies accordingly.

Setting Images(Total data size) λ

SiTedefault 458K 1 : 3.58
(a) N=1K 556K 1 : 277.0
(b) N=5K 548K 1 : 53.8
(c) N=10K 538K 1 : 25.9
(d) N=100K 358K 1 : 0.79
(e) N=139K 280K 1 : 0.01

We present an ablation study using the 558K
dataset for pretraining. Specifically, we intro-
duce seven SeTi variants with different stitching
ratios, as summarized in Table 5. We observe
that when the stitching ratio λ is around 1/3, the
model achieves overall strong performance on spa-
tial understanding benchmarks while maintaining
competitive results on general vision-language
tasks. This setting provides a favorable trade-off
between spatial supervision and overall data diver-
sity. A similar trend is observed when using the
Flickr30K dataset for training, and the more detail
ablation results and analysis are included in the
Appendix C.

Table 5: Performance on spatial understanding benchmarks (left) and general vision-language
benchmarks (right) under different spatial data augmentation settings.

Setting Spatial Understanding General Vision-Language
COCO-QASpatial Spatial-MM MMEPosition MM-VetSpat COCO-QA VQAv2 MMB MM-Vet

SiTedefault 68.75 43.78 133.33 28.43 74.43 60.53 74.43 31.40
(a) 69.23 42.90 126.3 27.54 74.05 60.50 74.05 30.58
(b) 67.58 42.42 132.67 27.59 74.11 60.35 74.11 31.34
(c) 68.13 42.83 128.67 27.50 74.04 60.40 74.04 31.45
(d) 68.83 43.10 132.17 27.63 71.53 60.55 74.55 31.27
(e) 71.09 43.72 132.50 28.06 74.74 60.32 74.74 31.29

6 Conclusion

In this work, we present Stitch and Tell, a simple and scalable data augmentation strategy that
injects spatial structure into vision-language training. SiTe combines image stitching with spatially-
aware caption generation to provide weak spatial supervision without requiring human annotation or
architectural changes. We apply SiTe to multiple backbones, including LLaVA, Qwen2 and HALVA,
across two training datasets and thirteen benchmarks. Experiments show consistent improvements
on both spatial understanding and general vision-language tasks. These results demonstrate that
encoding spatial structure into training data can improve cross-modal alignment and spatial reasoning,
while maintaining strong general performance. We hope this work provides a lightweight and broadly
applicable approach to structured multimodal data augmentation for spatial understanding.
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A Limitation

While Stitch and Tell demonstrates strong performance and scalability across multiple settings,
it currently focuses on simple binary spatial configurations—primarily horizontal (left-right) and
vertical (top-down) compositions. This design enables efficient supervision generation and robust
model alignment, but may limit the model’s exposure to more complex spatial relationships that occur
in real-world environments, such as diagonal layouts, circular arrangements, or relative distances in
3D space. We believe extending SiTe to handle richer spatial topologies, possibly by incorporating
depth maps, multi-image compositions, or 3D-aware stitching strategies, is a promising direction for
future work.

B Data Template

To support structured data generation in our Stitch and Tell method, we employ a collection of
spatially guided templates that are automatically generated and manually filtered for diversity and
clarity by GPT-4o. These templates are designed to inject explicit spatial structure into image–text
data and are categorized as follows:

• Spatial Caption Templates: As shown in Table 6 and Table 7, we collect 35 templates for
horizontal stitching and 29 for vertical stitching. These templates are automatically produced
using a language model and then curated to ensure naturalness and correctness. Each template
organizes two independent captions into a single sentence with clear spatial cues, such as “Left
side displays: {caption1}, Right side shows: {caption2}”. The diversity of expressions encourages
the model to learn generalized spatial grounding rather than relying on specific lexical patterns.

• Spatial QA Templates: As shown in Table 8 and Table 9, we generate 20 question templates in
each stitching way (horizontal or vertical). These templates are used to form weakly supervised
question answer pairs such as “From the observer’s viewpoint, is the cat on the left of the car?”,
with answers derived directly from the known image layout. Templates were automatically
generated with instruction-tuned models and then filtered to preserve clarity, directional accuracy,
and grammatical diversity.
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Table 6: Caption templates used for constructing structured spatial descriptions in S&T. Placeholders
{caption1} and {caption2} represent the original descriptions from the left and right images,
respectively.

No. Template

1. On the left, {caption1}. Meanwhile, the right side presents {caption2}.

2. This composite image showcases {caption1} on the left, contrasting beautifully with {caption2}
on the right.

3. The left section highlights {caption1}, while the right side draws attention to {caption2}.

4. Displayed in the left half is {caption1}, while the right half features {caption2}.

5. {caption1} on the left and {caption2} on the right.

6. Left image shows: {caption1} | Right image shows: {caption2}.

7. On the left: {caption1} || On the right: {caption2}.

8. First image description: {caption1}, Second image description: {caption2}.

9. Image pair – Left: {caption1} ; Right: {caption2}.

10. [Left] {caption1} [Right] {caption2}.

11. Left side displays: {caption1} <==> Right side displays: {caption2}.

12. Left view: {caption1} — Right view: {caption2}.

13. Left portion: {caption1} » Right portion: {caption2}.

14. Left panel shows: {caption1} || Right panel shows: {caption2}.

15. Left section: {caption1} <-> Right section: {caption2}.

16. The right one shows {caption2}, while the left displays {caption1}.

17. A pair of images: on the right we see {caption2}, and on the left there’s {caption1}.

18. The right image contains {caption2}, paired with a left image showing {caption1}.

19. Two scenes: {caption2} on the right, accompanied by {caption1} on the left.

20. Right image depicts {caption2}, contrasting with the left image showing {caption1}.

21. {caption1} (left) vs {caption2} (right).

22. Contrast in perspective – left presents {caption1}, while right shows {caption2}.

23. Visual contrast: Left shows {caption1}, Right shows {caption2}.

24. Left portrays {caption1}, Right highlights {caption2}.

25. Left vs Right: {caption1} & {caption2}.

26. Left illustrates {caption1}, whereas right {caption2}.

27. Left image showcasing {caption1}, and right image featuring {caption2}.

28. {caption1} and {caption2}.

29. {caption1}, {caption2}.

30. Left: {caption1} Right: {caption2}.

31. {caption1} {caption2}.

32. Left/Right: {caption1}/ {caption2}.

33. | {caption1} | vs | {caption2} |
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Table 7: Templates used for generating structured captions in top–down stitched images. Placeholders
{caption1} and {caption2} represent captions from the top and bottom image regions.

No. Caption Template

1. On the top, you can see {caption1}, the bottom side presents {caption2}.

2. This composite image showcases {caption1} on the top, with {caption2} on the bottom.

3. The top section highlights {caption1}, while the bottom side draws attention to {caption2}, creating
an engaging visual comparison.

4. Displayed in the upper half is {caption1}, while the lower half features {caption2}, illustrating
unique attributes side by side.

5. A striking juxtaposition: {caption1} on the top and {caption2} on the bottom, offering an interest-
ing visual narrative.

6. Top image shows: {caption1}, Bottom image shows: {caption2}.

7. On the top: {caption1}. On the bottom: {caption2}.

8. First image description: {caption1}, Second image description: {caption2}.

9. Top: {caption1}; Bottom: {caption2}.

10. Top part display: {caption1} Bottom part display: {caption2}.

11. Upper displays: {caption1}, Lower displays: {caption2}.

12. Top view: {caption1}, and Bottom view: {caption2}.

13. Top portion: {caption1} » Bottom portion: {caption2}.

14. Upper panel shows: {caption1} || Lower panel shows: {caption2}.

15. Upper section: {caption1} <-> Lower section: {caption2}.

16. The bottom one shows {caption2}, while the top displays {caption1}.

17. A pair of images: on the bottom we see {caption2}, and on the top there’s {caption1}.

18. The bottom image contains {caption2}, the top image showing {caption1}.

19. Two scenes: {caption2} on the lower side, accompanied by {caption1} on the upper.

20. Bottom image depicts {caption2}, contrasting with the top image which shows {caption1}.

21. {caption1} (top) vs {caption2} (bottom).

22. Top side presents {caption1}, while bottom side shows {caption2}.

23. Top shows {caption1}, Bottom shows {caption2}.

24. Top portrays {caption1}, Bottom highlights {caption2}.

25. Top vs Bottom: {caption1} & {caption2}.

26. Top illustrates {caption1}, whereas bottom captures {caption2} in detail.

27. A split view: top image showcasing {caption1}, and bottom image featuring {caption2}.

28. {caption1} and {caption2}.

29. {caption1}, {caption2}.

30. Top: {caption1}, Bottom: {caption2}.
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Table 8: List of spatial QA templates used in instruction tuning. Each template is instantiated with
{left_obj} and {right_obj}, and paired with a binary answer.

ID Template (with placeholders) Answer

1. From the observer’s point of view, is {left_obj} located to the left of
{right_obj}?

Yes

2. From the camera’s viewpoint, can we see {right_obj} on the right of
{left_obj}?

Yes

3. Looking from the front, is {left_obj} placed to the right of {right_obj}? No

4. As observed from the viewer’s perspective, does {right_obj} appear left of
{left_obj}?

No

5. From the point of view of the observer, is {left_obj} on the left side of
{right_obj}?

Yes

6. Is {right_obj}, from the camera’s perspective, situated to the right of
{left_obj}?

Yes

7. When facing the image, does the left contain {left_obj} and the right contain
{right_obj}?

Yes

8. From a frontal viewpoint, is {left_obj} to the left side of {right_obj}? Yes

9. As seen in the combined image, is {right_obj} located right of {left_obj}? Yes

10. To the viewer, does {left_obj} appear on the right side of {right_obj}? No

11. Does {left_obj} appear on the left side of {right_obj}? Yes

12. Is {right_obj} located to the left of {left_obj}? No

13. Can {left_obj} be found on the right of {right_obj}? No

14. Is {right_obj} positioned on the right of {left_obj}? Yes

15. Would you say {left_obj} is left to {right_obj}? Yes

16. Is {right_obj} on the left of {left_obj} in this composition? No

17. Does the image on the left contain {left_obj} while the right image contains
{right_obj}?

Yes

18. Is {left_obj} positioned on the right of {right_obj} instead? No

19. In this pair, is {right_obj} located to the right of {left_obj}? Yes

20. If you observe carefully, is {left_obj} on the right and {right_obj} on the
left?

No
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Table 9: Templates for generating top–down spatial question–answer (QA) pairs. Placeholders
{top_obj} and {bottom_obj} denote entities from the top and bottom image regions.

No. QA Template Answer

1. In the image, is {top_obj} located above {bottom_obj}? Yes

2. From the viewpoint of the observer, is {bottom_obj} below {top_obj}? Yes

3. Would you say that {top_obj} is placed underneath {bottom_obj}? No

4. As observed from the front, is {bottom_obj} situated on top of {top_obj}? No

5. Does the top part of the image contain {top_obj} while the bottom part has {bottom_obj}? Yes

6. Looking from top to bottom, do you first see {top_obj}, then {bottom_obj}? Yes

7. Is {bottom_obj} placed above {top_obj} in this composition? No

8. From top-down perspective, is {top_obj} above {bottom_obj}? Yes

9. In this combined image, does {top_obj} appear at the top and {bottom_obj} at the bottom? Yes

10. Is {top_obj} below {bottom_obj}? No

11. Would you say {bottom_obj} is at a lower vertical position than {top_obj}? Yes

12. Does the vertical layout place {top_obj} higher than {bottom_obj}? Yes

13. Is {bottom_obj} appearing above {top_obj} in this image? No

14. Do you see {top_obj} on the upper half and {bottom_obj} on the lower half of the image? Yes

15. Can we find {bottom_obj} positioned higher than {top_obj} in the image? No

16. In the vertical layout, is {top_obj} stacked above {bottom_obj}? Yes

17. Does {top_obj} sit at the bottom while {bottom_obj} is on top? No

18. Is the object {top_obj} visually located above {bottom_obj} from this angle? Yes

19. Would you agree that {bottom_obj} is beneath {top_obj} in this view? Yes

20. Is {bottom_obj} placed at the upper portion of the image, above {top_obj}? No
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C Additional Experiments and Results

C.1 Ablation study

Table 11: Performance of LLaVA-Qwen2-1.5B pretrained on the 558K dataset under different spatial
data augmentation strategies. Results are reported on spatial understanding benchmarks (left) and
general vision-language benchmarks (right).

Setting Spatial Understanding General Vision-Language

COCO-QASpatial Spatial-MM MMEPosition MM-VetSpat COCO-QA VQAv2 MMB MM-Vet

SiTedefault 62.57 41.25 63.00 22.90 65.26 54.18 66.68 22.10
(c) 60.88 41.08 63.20 20.80 64.81 53.50 67.51 21.04
(d) 59.83 41.11 64.00 21.75 62.74 52.83 70.32 21.30
(e) 53.20 39.66 55.00 18.15 54.74 46.80 64.47 17.10

Table 12: Performance of LLaVA-v1.5-7B pretrained on the Flickr30K dataset under different spatial
data augmentation strategies. Results are reported on spatial understanding benchmarks (left) and
general vision-language benchmarks (right).

Setting Spatial Understanding General Vision-Language

COCO-QASpatial Spatial-MM MMEPosition MM-VetSpat COCO-QA VQAv2 MMB MM-Vet

SiTedefault 71.42 44.97 130.70 26.20 73.74 59.73 72.88 29.59
(1) 69.80 42.96 130.30 27.54 72.53 59.65 72.56 31.06
(2) 69.63 44.50 126.90 27.59 72.44 59.10 72.42 29.40
(3) 71.03 44.21 133.00 26.17 73.28 58.73 72.31 29.19

Table 13: Performance of LLaVA-Qwen2-1.5B pretrained on the Flickr30K dataset under different
spatial data augmentation strategies. Results are reported on spatial understanding benchmarks (left)
and general vision-language benchmarks (right).

Setting Spatial Understanding General Vision-Language

COCO-QASpatial Spatial-MM MMEPosition MM-VetSpat COCO-QA VQAv2 MMB MM-Vet

SiTedefault 47.71 39.35 61.00 12.47 48.68 42.95 51.33 10.80
(1) 47.57 39.28 57.60 12.00 48.17 40.78 49.43 10.54
(2) 48.16 38.88 56.50 12.60 48.76 41.69 52.04 11.23
(3) 43.06 39.63 60.00 11.65 45.72 39.36 49.09 10.53

Table 10: Settings of SiTe variants used for ab-
lation study during pretraining on the Flickr30K
dataset. Each variant uses a different ratio λ,
which denotes the proportion of stitched samples
to the remaining raw samples in the training set.
The total number of training data varies accord-
ingly.

Setting Images(Total data size) λ

SiTedefault 24K 1 : 3.0
(1) N=1K 28K 1 : 13.0
(2) N=5K 20K 1 : 1.0
(3) N=7K 16K 1 : 0.14

To identify the optimal stitching ratio for spatial
data augmentation, we perform ablation experi-
ments on four settings: LLaVA-v1.5-7B trained
on 558K and Flickr30K, Qwen2-1.5B trained on
558K and Flickr30K. In each setting, we vary
the number of stitched samples and report perfor-
mance on both spatial understanding and general
vision-language benchmarks.

In the main text, we present ablation results of our
SiTe method on LLaVA using the 558K dataset.
Here, we provide additional ablations on two new
settings: LLaVA-v1.5-7B pretrained on Flickr30K,
and LLaVA-Qwen2-1.5B pretrained on both 558K
and Flickr30K.

For the 558K dataset, we evaluate Qwen2 under
four configurations with different stitching sizes: N = 10K (setting (c)), N = 50K (default setting
on 558K), N = 100K (setting (d)), and N = 139K (setting (e)). The corresponding results are
summarized in Table 11.
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For Flickr30K, we evaluate on N = 1K (setting (1)), N = 3K (default setting on Flickr30K),
N = 5K (setting (2)), and N = 7K (setting (3)). Dataset statistics are shown in Table 10, and the
results are reported in Table 12 and Table 13 for LLaVA and Qwen2 backbones.

We summarize our key observations as follows:

• Qwen2 on 558K (Table 11): The default 1:3 setting achieves the best overall spatial performance.
Specifically, it yields the highest results on COCO-QASpat (62.57), Spatial-MM (41.25), MM-
VetSpat (22.90), and also achieve most tops general metrics. Increasing the stitching ratio beyond
this point (e.g., settings (d) and (e)) leads to degradation on both spatial and general benchmarks,
indicating over-augmentation.

• LLaVA on Flickr30K (Table 10): The 1:3 setting (SiTedefault) still consistently provides strong
performance across tasks. It outperforms other ratios on Spatial-MM (44.97), MMEPosition (130.70),
and general vision-language tasks like COCO-QA (73.74) and MMBench (72.88). Other ratios
(settings (1)–(3)) offer marginal or inconsistent gains, and in some cases hurt generalization.

• Qwen2 on Flickr30K (Table 13): In this setting, the 1:3 setting still maintains strong spatial
performance, achieving the best results on MMEPosition (61.00) and balanced results on general
tasks. While setting (2) gives slightly better COCO-QA and MMB scores, the default ratio still
offers a stable and robust trade-off.

In summary, the 1:3 stitch-to-raw ratio consistently provides a balanced trade-off between spatial
reasoning and general vision-language performance. Ratios that are too low underutilize the
spatial supervision potential of SiTe while overly high ratios risk oversaturating the model with
structured spatial prompts, which may harm generalization. Based on these findings, we adopt the
1:3 setting as the default configuration throughout our experiments.

In all experiments, we define the default SiTe configuration as the one where the stitching-to-raw
sample ratio is approximately 1:3, which provides a good trade-off performance between spatial
understanding and general vision language tasks.

C.2 More Qualitative Analysis

In this section, we present additional qualitative examples to illustrate both the effectiveness and
limitations of the proposed method. LLaVA refers to the baseline model. SiTepretrain indicates the
model trained with stitched image–caption pairs during the pretraining stage, while SiTeSFT refers to
the model fine-tuned using structured spatial question–answer pairs.

As shown in Case 1 and Case 2, although all models attend to the relevant objects (e.g., the dog
and the people), the baseline model fails to correctly answer the spatial question due to limited
understanding of directional language, selecting an incorrect option such as “A. bottom”. In contrast,
both SiTe-enhanced models correctly interpret the spatial relation and make the right prediction. Case
2 also involves a challenging camera-perspective transformation, which often requires the model
to reason from the observer’s viewpoint. Here, both SiTe variants successfully leverage spatial
knowledge injected through pretraining and fine-tuning, resulting in correct answers.

However, limitations remain in non-camera-perspective scenarios. In Case 3 and Case 4, while all
models attend to the appropriate regions (e.g., the glasses in Case 3 and the phone in Case 4), they
fail to answer correctly. This suggests that despite improved attention, the models still struggle to
generalize spatial understanding across different viewpoints.

These examples highlight both the strengths and boundaries of the proposed method: SiTe im-
proves spatial reasoning under observer-aligned prompts, but further work is needed to enhance
generalization under varied spatial perspectives.

C.3 Standard Deviation of Main Results

We compute the standard deviation of main results in Table 14. As indicated by the standard deviation
results, our performance gains are consistent and robust.

21



In which hand is the man holding the phone? A. left B. right

LLaVA: A SiTePretrain: A

Case 4

SiTeSFT: A

Where is the dogs from the people‘s perspective? A. bottom B. right C. front D. left 

Case 1

LLaVA: A SiTePretrain: B SiTeSFT: B

Case 3

Which hand is the man using to hold the glasses? A. left B. right

LLaVA: B SiTePretrain: B SiTeSFT: B

Case 2

Which hand of the boy is the man holding? A. left B. right 

LLaVA: B SiTePretrain: A SiTeSFT: A

Figure 5: Qualitative comparisons among the baseline LLaVA and our SiTe models.
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Table 14: Standard deviation of main results

Model Spatial Understanding General Vision-Language

COCO-QASpat(%) Spatial-MM(%) MMEPos MM-VetSpat COCO-QA (%) VQAv2(%) MMB(%) MM-Vet

Pretraining Stage

LLaVABaseline 67.72±0.10 42.02±0.54 127.83±1.07 26.52±0.08 70.52±0.32 60.48±0.16 73.50±0.14 31.11±0.19
LLaVARotate 68.09±0.17 43.01±0.11 128.89±1.51 29.40±0.03 71.36±0.11 60.60±0.17 74.86±0.05 32.20±0.12
LLaVACrop 67.82±0.25 42.69±0.24 127.78±0.94 28.53±0.12 70.93±0.18 60.37±0.24 74.41±0.09 31.43±0.25
LLaVAVSR 67.85±0.21 42.65±0.36 121.67±1.01 29.42±0.54 70.90±0.28 60.57±0.25 73.88±0.14 31.47±0.07
LLaVASiTe-rand 68.75±0.06 43.78±0.14 133.33±0.43 28.43±0.19 71.54±0.27 60.53±0.23 74.43±0.03 31.40±0.04
LLaVASiTe-ratio 70.06±0.18 44.15±0.22 132.80±0.97 28.68±0.16 71.19±0.31 60.57±0.20 73.64±0.15 32.27±0.10

LLaVAflickr 68.96±0.21 44.03±0.17 129.00±0.85 25.98±0.14 71.75±0.28 59.63±0.19 72.33±0.13 29.54±0.15
LLaVAflickr

Rotate 68.03±0.15 44.81±0.19 129.44±0.78 25.86±0.11 71.12±0.22 59.42±0.18 72.36±0.14 29.60±0.12
LLaVAflickr

Crop 69.34±0.24 42.69±0.21 131.11±0.92 28.73±0.10 72.12±0.26 60.20±0.21 72.68±0.17 29.87±0.16

LLaVAflickr
VSR 68.26±0.18 42.70±0.28 128.75±0.97 26.18±0.13 71.32±0.31 59.94±0.24 72.87±0.19 30.45±0.18

LLaVAflickr
SiTe-rand 71.42±0.13 44.97±0.22 130.70±0.85 26.20±0.14 73.74±0.29 59.73±0.18 72.88±0.14 29.59±0.12

LLaVAflickr
SiTe-ratio 71.51±0.15 44.31±0.25 131.50±0.81 28.60±0.12 73.89±0.25 59.94±0.20 71.66±0.16 30.97±0.13

Qwen2Baseline 62.25±0.16 40.85±0.18 60.75±0.53 20.72±0.10 64.72±0.22 53.66±0.25 61.67±0.19 22.48±0.11
Qwen2Rotate 60.73±0.14 40.78±0.20 60.50±0.67 19.62±0.15 60.22±0.26 52.77±0.22 66.61±0.23 20.97±0.09
Qwen2Crop 62.06±0.21 40.68±0.15 61.25±0.58 20.75±0.11 64.74±0.19 53.28±0.27 67.45±0.21 22.52±0.14
Qwen2VSR 57.18±0.18 41.46±0.17 58.50±0.73 22.40±0.16 60.22±0.28 54.64±0.23 66.58±0.22 22.95±0.12
Qwen2SiTe-rand 62.57±0.15 41.25±0.22 63.00±0.61 22.90±0.14 65.26±0.23 54.18±0.20 66.68±0.19 22.10±0.13
Qwen2SiTe-ratio 62.52±0.17 41.00±0.19 68.00±0.88 21.00±0.13 65.10±0.27 54.23±0.21 67.57±0.20 22.80±0.12

Qwen2flickr 47.10±0.20 38.90±0.23 51.25±0.64 10.95±0.10 47.90±0.31 42.38±0.25 50.90±0.19 10.50±0.09
Qwen2flickr

Rotate 40.08±0.23 39.10±0.27 58.33±0.75 9.50±0.13 42.45±0.29 39.04±0.28 47.86±0.21 9.20±0.10
Qwen2flickr

Crop 42.37±0.22 39.37±0.24 64.25±0.78 8.30±0.12 44.61±0.28 40.41±0.25 46.43±0.22 10.00±0.11

Qwen2flickr
VSR 46.00±0.19 39.90±0.20 67.25±0.70 10.15±0.11 48.00±0.26 40.93±0.24 48.71±0.20 9.60±0.09

Qwen2flickr
SiTe-rand 47.71±0.17 39.35±0.18 61.67±0.82 12.47±0.14 48.68±0.25 42.95±0.21 51.33±0.18 10.80±0.11

Qwen2flickr
SiTe-ratio 49.04±0.18 40.04±0.20 56.00±0.69 13.10±0.15 47.38±0.27 43.91±0.23 51.31±0.17 10.60±0.10

Supervised Fine-tuning Stage

LLaVA1K
SiTe-rand 68.81±0.26 43.16±0.27 128.70±0.08 27.06±0.11 71.74±0.47 61.17±0.29 74.60±0.26 31.20±0.03

LLaVA1K
SiTe-ratio 68.35±0.21 46.96±0.23 136.00±0.92 29.70±0.14 71.32±0.33 60.92±0.27 73.37±0.19 31.54±0.10

LLaVA5K
SiTe-rand 67.75±0.04 46.21±0.14 139.26±0.31 28.10±0.23 70.96±0.13 60.38±0.20 74.53±0.18 30.69±0.24

LLaVA5K
SiTe-ratio 68.37±0.22 48.58±0.26 141.00±1.03 31.05±0.16 70.92±0.28 60.82±0.25 73.76±0.20 32.15±0.12

Qwen21K
SiTe-rand 58.53±0.47 41.24±0.03 65.33±0.54 23.10±0.44 61.77±1.32 54.58±0.03 66.37±0.11 23.93±0.22

Qwen21K
SiTe-ratio 59.66±0.32 42.31±0.27 62.75±0.63 24.07±0.21 62.59±0.35 55.30±0.25 65.75±0.19 22.80±0.18

Qwen25K
SiTe-rand 59.95±0.53 42.22±0.21 61.67±0.53 23.20±0.37 63.00±1.10 54.75±0.14 66.43±0.13 23.93±0.19

Qwen25K
SiTe-ratio 60.22±0.35 41.56±0.29 64.50±0.59 25.10±0.22 62.86±0.41 54.77±0.20 67.00±0.18 24.27±0.15

HALVA∗
Baseline 63.16±0.14 43.07±0.26 135.00±0.94 25.70±0.13 67.12±0.25 61.67±0.18 72.44±0.16 30.00±0.11

HALVASiTe 64.77±0.18 44.15±0.22 123.33±0.83 26.10±0.12 68.54±0.27 61.03±0.20 71.54±0.15 30.80±0.10
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the core motivation and contribution
of the work—namely, that current vision-language models struggle with spatial understand-
ing due to limited spatial supervision in training data. The proposed method, Stitch and
Tell (SiTe), is presented as a simple and efficient data augmentation strategy that injects
spatial structure without requiring labels or additional model generation. The claims are well
supported by experiments across multiple benchmarks and architectures. Both the strengths
(lightweight, scalable, effective across stages) are presented in a balanced manner, matching
the scope and results of the paper.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the SiTe limitation in Appendix A Limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4 Experiment Setup, we introduced the parameters and environment
required for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We will release the data and code soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4 Experiment Setup, we introduced the parameters and environment
required for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation of main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4 Experiment Setup, we introduced the parameters and environment
required for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: CC-BY 4.0
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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