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Abstract

Knowledge distillation provides an effective method for deploying complex ma-
chine learning models in resource-constrained environments. It typically involves
training a smaller student model to emulate either the probabilistic outputs or
the internal feature representations of a larger teacher model. By doing so, the
student model often achieves substantially better performance on a downstream
task compared to when it is trained independently. Nevertheless, the teacher’s
internal representations can also encode noise or additional information that may
not be relevant to the downstream task. This observation motivates our primary
question: What are the information-theoretic limits of knowledge transfer? To this
end, we leverage a body of work in information theory called Partial Information
Decomposition (PID) that unravels the joint information contained in several input
random variables about another target variable, e.g., the downstream task labels.
Our main contribution is to quantify the distillable and distilled knowledge of a
teacher’s representation for a given downstream task. Moreover, we demonstrate
that this metric can be practically used in distillation to address challenges caused
by the complexity gap between the teacher and the student representations.

1 Introduction

Knowledge distillation can be used to compress a complex machine learning model (the teacher)
by distilling it into a relatively simpler model (the student). The term “distillation” in this context
means obtaining some assistance from the teacher during the training of the student, so that the
student model performs much better than when it is trained alone. In one of its simplest forms,
knowledge distillation involves the student trying to match the logits of the teacher network, in
addition to the correct labels of the training examples [Hinton, 2015]. More advanced methods focus
on distilling multiple intermediate representations of the teacher to the corresponding layers of the
student [Romero et al., 2015, Ahn et al., 2019, Tian et al., 2020, Liang et al., 2023] (also see Gou
et al. [2021], Sucholutsky et al. [2023] for a survey). Information theory has been instrumental in
both designing [Ahn et al., 2019, Tian et al., 2020] and explaining [Zhang et al., 2022, Wang et al.,
2022] knowledge distillation techniques. However, less attention has been given to characterizing
the fundamental limits of the process from an information-theoretical perspective. Our goal is to
bridge this gap by introducing a metric to quantify the distillable knowledge available in a teacher
model, given a student model and a target task. As such, we bring in an emerging body of work
named Partial Information Decomposition (PID) [Williams and Beer, 2010, Griffith et al., 2014,
Bertschinger et al., 2014] to define the distillable knowledge as the “unique information about the
task that is available only with the teacher, but not the student.” As it follows, the quantification of
distillable knowledge gives rise to a quantification of already distilled knowledge, leading to a metric
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that we can optimize during the distillation process. We further provide a novel knowledge distillation
framework – Redundant Information Distillation (RID)– which optimizes this quantity and filters out
the task-irrelevant information from the teacher. See Appendix A for a discussion on related works.

Background on PID: Partial Information Decomposition (PID), first introduced in Williams and
Beer [2010], offers a way to decompose the joint information in two sources, say T and S, about
another random variable Y (i.e., I(Y ;T, S) where I(A;B) denotes the mutual information between
A and B [Cover and Thomas, 2006]) into four components as follows:

1. Unique information Uni(Y : T\S) and Uni(Y : S\T ): information about Y that each source
uniquely contains

2. Redundant information Red(Y : T, S): the information about Y that both T and S share
3. Synergistic information Syn(Y : T, S): the information about Y that can be recovered only by

using both T and S.

Figure 1: Partial Information
Decomposition

These PID components satisfy the relationships given below:
I(Y ;T, S) = Uni(Y : T\S) + Uni(Y : S\T )

+Red(Y : T, S) + Syn(Y : T, S) (1)
I(Y ;T ) = Uni(Y : T\S) +Red(Y : T, S) (2)
I(Y ;S) = Uni(Y : S\T ) +Red(Y : T, S). (3)

While a unique definition for each term does not exist, defining only one of them is sufficient to define
the rest. Consequently, a wide array of definitions exists, each based on different desired properties
[Williams and Beer, 2010, Bertschinger et al., 2014, Griffith et al., 2014, Griffith and Ho, 2015].
Among these, the definition proposed in Bertschinger et al. [2014] is motivated with an operational
interpretation of unique information in the context of decision theory. Moving on to the context of
knowledge distillation, we map T to be the teacher representation, S to be the student representation,
and Y to be the downstream task that the student is being trained for. That makes I(Y ;T ) and
I(Y ;S) be the total knowledge about Y that is in the teacher and in the student respectively.

Notation and problem setting: Upper-case letters denote random variables, except P and Q
which represent probability distributions, C,H,W which represent the representation dimen-
sions and K which represents the number of layers distilled. Lowercase letters are used for

Figure 2: Knowledge distillation

vectors unless specified otherwise. Lowercase Greek letters denote
parameters of neural networks. We consider a layer-wise distil-
lation scheme where the teacher representation T (X) is distilled
into the student representation Sηs

(X), where X is the input. The
target of the student is to predict the task Y from X . Both T (·)
and Sηs

(·) are deterministic functions of X and the randomness is
due to the input being random. Note that the student representation
depends on the parameters of the student network denoted by ηs and hence written as Sηs . However,
when this parameterization and dependence on X is irrelevant/obvious, we may omit both and simply
write T and S. We denote the supports of Y, T and S by Y, T and S respectively.

Knowledge distillation is usually achieved by modifying the student loss function to include a
distillation loss term in addition to the ordinary task-related loss as follows:

L(ηs) = λ1Lordinary(Y, Ŷ (X)) + λ2Ldistill(Y, Ŷ (X), Sηs , T ) (λ1, λ2 > 0). (4)
Since our experiments (in Section 4) are based on a classification task, in that case Y denotes the true
class label and we use the cross entropy loss LCE(Y, Ŷ ) = −EPX

[
logPŶ (X)(Y )

]
as the ordinary

task-related loss for the student. Here, Ŷ (X) is the student’s final prediction of Y . The teacher
network is assumed to remain unmodified during the distillation process.

2 Main Contribution: Quantifying Distillable and Distilled Knowledge

In this section, we propose information theoretic metrics to quantify both the task-relevant information
that is available in the teacher for distillation, and the amount of information that has already been
distilled to the student. Moreover, we discuss some favorable properties of the proposed metrics
with examples that compare other candidate measures. Accordingly, we first define the amount of
distillable information as follows:
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Definition 2.1 (Distillable Knowledge). Let Y , S, and T be the target variable, student’s intermediate
representation, and the teacher’s intermediate representation, respectively. The amount of knowledge
distillable from T to S is defined as Uni(Y : T\S).

With the above definition, we see that the more the distillation happens, the more the Uni(Y : T\S)
shrinks. Note that under the knowledge distillation setting, the total knowledge of the teacher
I(Y : T ) is constant since the teacher is not modified during the process. Since I(Y ;T ) = Uni(Y :
T\S) + Red(Y : T, S) we therefore propose Red(Y : T, S) as a measure for knowledge that is
already distilled.
Definition 2.2 (Distilled Knowledge). Let Y , S, and T be the target variable, student’s intermediate
representation, and the teacher’s intermediate representation, respectively. The amount of distilled
knowledge from T to S is defined as Red(Y : T, S).

We further propose using the unique and redundant information definitions due to Bertschinger et al.
[2014] for an exact quantification.
Definition 2.3 (Unique and redundant information Bertschinger et al. [2014]).

Uni(Y : T\S) = min
Q∈∆P

IQ(Y ;T |S) (5)

Red(Y : T, S) = I(Y ;T )− min
Q∈∆P

IQ(Y ;T |S) (6)

where ∆P = {Q : Q(Y = y, T = t) = P (Y = y, T = t), Q(Y = y, S = s) = P (Y = y, S =
s) ∀ y ∈ Y, t ∈ T and s ∈ S} and P is the joint distribution of Y, T and S.

A multitude of knowledge distillation frameworks exists which are based on maximizing the mutual
information between the teacher and the student (i.e., I(T ;S)) Ahn et al. [2019], Tian et al. [2020],
Chen et al. [2021], Miles et al. [2021]. While a distillation loss that maximizes I(T ;S) can be
helpful to the student when the teacher possesses task-related information, it creates a tension with
the ordinary loss when the teacher has little or no task-relevant information. Moreover, even though
the teacher contains task-related information, the limited capacity of the student may hinder a proper
distillation when this kind of framework is used. The following examples provide an insight in this
regard. The proposed measure Red(Y : T, S) resolves these cases in an intuitive manner.

Example 1: (Uninformative teacher) An uninformative teacher representation (i.e., T with I(Y ;T ) =
0) gives Uni(T : T\S) = Red(Y : T, S) = 0 for any S, agreeing with the intuition. Hence, an
algorithm that maximizes exactly the transferred knowledge Red(Y : T, S) will have a zero gradient
over this term. In contrast, algorithms that maximize the similarity between S and T quantified by
I(T ;S) will force S to mimic the uninformative teacher, causing a performance worse than ordinary
training without distillation. For example, let U1, U2 ∼ Ber(0.5) and Y = U1, T = U2. Then, the
teacher cannot predict the intended task Y . Note that in this case, I(T : S) is not maximized when
the student representation is S = Y . Instead, it is maximized when S = U2.

Example 2: (Extra complex teacher) Let U1 ∼ Ber(0.2), U2 ∼ Ber(0.5) and Y = U1, T =
(U1, U2). Then, the teacher can completely predict the intended task Y . Assume the student
is simpler than the teacher, and has only one binary output. In this situation, I(T : S) is not
maximized when S = U1 because I((U1, U2) : U1) ≈ 0.72 < 1 = I((U1, U2) : U2) where the
right-hand side is achieved when S = U2. However, S = U1 is a maximizer for Red(Y : T, S) (i.e.,
Red(Y : T, S) = Red(U1 : T,U1) = I(Y ;T )). Theorem 2.1 presents a more general case.
Theorem 2.1 (Teacher with nuisance). Let T = (Z,G) where Z contains all the task-related
information (i.e., I(Y ;T ) = I(Y ;Z)) and G does not contain any information about the task (i.e.,
I(Y ;G) = 0). (G can be seen as a stronger version of nuisance defined in [Achille and Soatto, 2018,
Section 2.2]). Let the student be a capacity-limited model as defined by H(S) ≤ max{H(Z), H(G)}
where H(X) denotes the entropy of the random variable X . Then,

(i) I(T ;S) is maximized when

S =

{
Z ; H(Z) > H(G)
G ; H(Z) < H(G)

. (7)

(ii) Red(Y : T, S) is always maximized when S = Z.
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In the above scenario, the task-related part of the student loss will have a tension with the distillation
loss when H(Z) < H(G), in which case, the distillation actually affects adversely on the student.
On the other hand, a distillation loss that maximizes Red(Y : T, S) will always be aligned with the
task-related loss.

These examples show that the frameworks based on maximizing I(T ;S) are not capable of selectively
distilling the task-related information to the student. In an extreme case, they are not robust to being
distilled from a corrupted teacher network. This is demonstrated in the experiments under Section 4.
It may appear that using I(Y ;T |S) as the metric for distillable knowledge resolves the cases similar
to Example 1. However, Example 3 below provides a counter-example.

Example 3: (Effect of synergy) Consider a scenario similar to Example 1, where the teacher is
uninformative regarding the interested task. For example, let U1, U2 ∼ Ber(0.5) and Y = U1, T =
U1 ⊕ U2 where ⊕ denotes the binary XOR operation. Suppose we were to consider conditional
mutual information I(Y ;T |S) as the measure of distillable information available in the teacher. Then,
I(Y ;T |S) = H(Y ) when S = U2, indicating non-zero distillable information in the teacher. This is
unintuitive since in this case both I(Y ;T ) = I(Y ;S) = 0 and neither the teacher nor the student can
be used alone to predict Y . In contrast, the proposed measures Uni(Y : T\S) = Red(Y : T, S) = 0
indicating no distillable or already distilled information available.

Next, we present Theorem 2.2 which highlights some important properties of the proposed metrics.
These properties indicate that the proposed measures agree well with the intuition.
Theorem 2.2 (Properties). The following properties hold for distillable and distilled knowledge
defined as in Definition 2.1 and Definition 2.2 respectively.

1. When Uni(Y : T\S) = 0, the teacher has no distillable information. At this point, the student
has the maximum information that any one of the representations T or S has about Y ; i.e.,

max{I(Y ;T ), I(Y ;S)} = I(Y ;S). (8)
2. For a given student representation S and any two teacher representations T1 and T2 if there exists

a deterministic mapping h such that T1 = h(T2), then Uni(Y : T1\S) ≤ Uni(Y : T2\S).
3. Both Uni(Y : T\S) and Red(Y : T, S) are non-negative.

3 A Framework To Maximize Distilled Knowledge

In this section, we propose a distillation framework – Redundant Information Distillation (RID) –
which maximizes the distilled knowledge quantified by Red(Y : T, S), targeting a classification
problem. Accordingly, we first show that the framework directly maps to an alternative definition
of redundant information (also called the Iα measure) denoted by Red∩(Y : T, S) [Griffith and
Ho, 2015], under a certain assumption. Next, we show that Red∩(Y : T, S) is a lower-bound for
Red(Y : T, S) by Bertschinger et al. [2014]. The definition of Red∩(Y : T, S) is given below:
Definition 3.1 (Iα measure [Griffith and Ho, 2015]).

Red∩(Y : T, S) = max
P (Q|Y )

I(Y : Q) subject to I(Y ;Q|ft(T )) = I(Y ;Q|fs(S)) = 0. (9)

The proposed framework is based on selecting Q to be Q = ft(T ), and parameterizing ft(·) and fs(·)
using small neural networks. To denote the parameterization, we will occasionally use the elaborated
notation ft(·; θt) and fs(·; θs), where θt and θs denote the parameters of ft and fs, respectively. With
the substitution of Q = ft(T ), Definition 3.1 results in the following optimization problem:

max
θt,θs,ηs

I(Y : ft(T ; θt)) subject to I(Y ; ft(T ; θt)|fs(Sηs
; θs)) = 0. (P1)

We divide the problem (P1) into two phases and employ gradient descent on two carefully designed
loss functions to perform the optimization. In the first phase, we maximize the objective w.r.t. θt while
θs and S are kept constant (recall that T is fixed in all cases because the teacher is not being trained
during the process). For this, we append an additional classification head gt(·;ϕt) parametrized by
ϕt to the teacher’s task aware filter ft. Then we minimize the loss function given below with respect
to θt and ϕt using gradient descent.

Lt(θt, ϕt) = LCE(Y, gt(ft(T ; θt);ϕt)) +

C∑
c=1

H∑
h=1

W∑
w=1

EPX

[
V 2
c,h,w

σc

]
(10)
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where Vc,h,w denotes the corresponding element of V = ft(T (X); θt)− fs(S(X); θs) ∈ RC×H×W .
Here, C,H, and W are the number of channels, height, and width of the outputs of fs and ft.
σ = [σ1, . . . , σC ]

T is a stand-alone vector of weights that are optimized in the second phase. Mini-
mizing the cross-entropy term LCE(Y, gt(ft(T ; θt);ϕt)) of Lt(θt, ϕt) above amounts to maximizing
I(Y ; ft(T ; θt)). The second term prohibits ft(T ) from diverting too far from fs(S) during the
process, so that the constraint I(Y ; ft(T ; θt)|fs(S; θs)) = 0 can be ensured.

During the second phase, we freeze θt and maximize the objective over θs, Sηs and σ. The loss
function employed in this phase is as follows:

L(θs, σ, ηs) = λ1LCE(Y, Ŷηs
) + λ2

(
||σ||2 +

C∑
c=1

H∑
h=1

W∑
w=1

EPX

[
V 2
c,h,w

σc

])
︸ ︷︷ ︸

Ls(θs,σ,ηs)

(11)

where λ1 and λ2 are scalar hyperparameters which determine the prominence of ordinary learning
and distillation. V and σ are as defined earlier. Ŷηs denotes the final prediction of the student network.

The first term of the loss function is the ordinary task-related loss. The next two terms correspond
to the distillation loss, which is our focus in the following explanation. Consider phase 2 as an
estimation problem that minimizes the σ-weighted mean squared error, where Q = ft(T ) is the
estimand and fs(·) is the estimator. The magnitudes of the positive weights σ are controlled using the
term ||σ||2. We observe that this optimization ensures I(Y ;Q|fs(S)) = 0 given that the following
assumption holds.

Assumption: Let the estimation error be ϵ = ft(T )− fs(S). Assume I(ϵ;Y |fs(S)) = 0. In other
words, given the estimate, the estimation error is independent of Y .

With the above assumption, we see that
I(Y ;Q|fs(S)) = I(Y ; ft(T )|fs(S)) = I(Y ; fs(S) + ϵ|fs(S)) = I(Y ; ϵ|fs(S)) = 0. (12)

Therefore, the constraint in problem P1 is satisfied by this selection of random variables. Therefore,
along with the maximization of I(Y ;Q) during phase 1, the proposed framework can be seen as
performing the optimization in Definition 3.1 in two steps.

Finally, we claim through Theorem 3.1 that Red∩(Y : T, S) is a lower bound for Red(Y : T, S).
Theorem 3.1 (Distilled information lower bound). For any three random variables Y, T and S,

Red∩(Y : T, S) ≤ Red(Y : T, S) (13)
where Red∩(Y : T, S) is as per Definition 3.1 and Red(Y : T, S) is defined in Definition 2.3.

Figure 3: Redundant Information Distillation

This completes our claim that the proposed
framework maximizes a lower bound for the
distilled knowledge. The framework is sum-
marized in Algorithm 1. The advantage of
this framework over the VID framework [Ahn
et al., 2019] (which maximizes I(T ;S)) can
be observed in the experiments in Section 4.
RID losses can be extended to multiple lay-
ers by simply summing up L(k)

t (θ
(k)
t , ϕ

(k)
t ) and

L(k)
s (θ

(k)
s , σ(k), ηs) corresponding to the rep-

resentations T (k) and S
(k)
ηs (k = 1, . . . ,K) in

equations (10) and (11) respectively.
Remark. We observe that the Task-aware Layer-wise Distillation (TED) framework [Liang et al.,
2023] shares intuitive similarities with RID, with regard to distilling task-related knowledge. However,
they take a heuristic approach to the design and the focus is on large language models. In fact, our
mathematical formulation can explain the success of TED as detailed in Appendix C. In addition
to the domain of application, the difference between TED and RID can mainly be attributed to
the following: (i) During the first stage, TED trains both ft(·) and fs(·) whereas RID only trains
ft(·); (ii) In the second stage loss, TED includes an ordinary mean squared error term whereas RID
includes a weighted (using σ) mean squared error term. To the best of our knowledge, our work is the
first to information-theoretically quantify the actual task-relevant distilled knowledge and formally
incorporate it into an optimization.
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4 Experiments

We compare the performance of the proposed RID framework with that of the VID framework under
two different conditions. In the first setting, the teacher network is fully trained with the complete
training set, whereas in the second setting, the teacher is just randomly initialized without any training
at all. Experiments are carried out on the CIFAR-10 dataset [Krizhevsky et al., 2009]. Additionally,
we train a student without any knowledge distillation, which we label as BAS. We distill three
teacher layers to the corresponding student layers. In all cases, we compute the PID components
[Bertschinger et al., 2014] of the joint information of the innermost distilled layer using the estimation
method in Liang et al. [2024a]. All the teacher models are WideResNet-(40,2) and all the student
models are WideResNet-(16,1). More details on the experiments are given in Appendix D.

In the case of the trained (i.e., I(Y ;T ) > 0) teacher, we observe that Uni(Y : T\S) decreases
with the increasing number of epochs. In the case of the untrained teacher (i.e., I(Y ;T ) = 0),
Uni(Y : T\S) = 0 as expected. Both BAS and RID models show an increase in I(Y ;S) even
under the untrained teacher. In this case, VID shows a very low I(Y ;S) as expected, caused by the
distillation loss forcing to mimic the teacher. The results are shown in Figure 4. Figure 5 in Appendix
D shows the corresponding classification accuracies.

Figure 4: Information atoms of I(Y ;T, S) for BAS, VID and RID when distilled using a trained and
an untrained teacher. Values are shown for the innermost distilled layer. Notice how VID performs
worse than BAS when the teacher is not trained.

5 Conclusion

We propose using Uni(Y : T\S) and Red(Y : T, S) to quantify distillable and distilled knowledge,
corresponding to a given teacher-student pair regarding a given task. We show that knowledge distilla-
tion frameworks which use mutual information between the teacher and the student representations to
quantify distillation have a fundamental problem. In contrast, through many examples we demonstrate
that the proposed metric can correctly characterize the distillable and distilled knowledge. Moreover,
we show the advantage of the proposed metric by implementing a new distillation framework – Re-
dundant Information Distillation (RID) – and comparing its performance with the existing technique
VID [Ahn et al., 2019]. While VID and RID perform similarly when the teacher is well-trained for
the downstream task, VID performance degrades largely when the teacher is not trained. However,
RID performs close to a student model that is trained independently, without knowledge distillation.

While the RID framework uses an alternative definition for redundant information, computation of
exact Red(Y : T, S) during training can be computationally prohibitive due to the optimization over
∆P . Extending the mathematical formulation in Section 3 to analyze other knowledge distillation
frameworks is an interesting path for future research. Other potential research directions include: (i)
distilling from an ensemble of teachers [Malinin et al., 2020] in a way that the adverse effects of
corrupted teachers are mitigated; (ii) dataset distillation [Sucholutsky and Schonlau, 2021]; or (iii)
distillation for model reconstruction from counterfactual explanations [Dissanayake and Dutta, 2024].
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A Related works

Multi-layer knowledge distillation was introduced in FitNets [Romero et al., 2015]. There onwards
a large number of techniques, based on different statistics derived for matching a teacher-student
pair, have been proposed. In particular, Ahn et al. [2019], Tian et al. [2020], Chen et al. [2021],
Miles et al. [2021] leverage an information-theoretic perpective to arrive at a solution. We refer the
reader to [Gou et al., 2021, Sucholutsky et al., 2023] for a thorough survey of different techniques
used in knowledge distillation. In this article, we focus on Variational Information Distillation (VID,
Ahn et al. [2019]) as a representative framework of the larger class of distillation frameworks which
maximizes I(T ;S) as the distillation strategy. We also discuss Task-aware Layer-wise Distillation
(TED, Liang et al. [2023]) as a framework that filters out task-related information. Specifically, Liang
et al. [2023] highlight the importance of distilling only the task-related information when there is a
significant complexity gap between the teacher and the student. Towards this end, Zhu et al. [2022]
points out the existence of undistillable classes due to the unmatched capacity of the student model.
Kundu et al. [2021] presents a distillation scheme much similar to TED, with the difference in the
teacher’s representation used for the distillation. While TED uses intermediate representations of the
teacher, Kundu et al. [2021] uses the penultimate layer.

Information theory has been instrumental in the attempts to explain the success of knowledge
distillation. Wang et al. [2022] utilizes information bottleneck principles [Tishby et al., 2000, Tishby
and Zaslavsky, 2015] to explain how a teacher model may assist the student to learn relevant features
quickly. They reveal that a partially trained checkpoint of the teacher can help the student more
than the fully converged teacher. [Zhang et al., 2022] observes the training process as systematically
discarding knowledge from the input. Accordingly, the distillation helps the student to quickly
learn what information to discard. Despite these attempts, we observe that there exists a gap in
characterizing the fundamental limits of knowledge distillation which we seek to address using PID.

PID is also beginning to generate interest in other areas of machine learning [Dutta et al., 2020,
2021, Dutta and Hamman, 2023, Hamman and Dutta, 2024a, Liang et al., 2024a,b, Hamman and
Dutta, 2024b, Tax et al., 2017, Ehrlich et al., 2022, Wollstadt et al., 2023, Mohamadi et al., 2023,
Venkatesh et al., 2024, Halder et al., 2024]. However, it has not been leveraged in the context
of knowledge distillation before. Additionally, while most related works predominantly focus on
efficiently computing PID, e.g., Kleinman et al. [2021], Liang et al. [2024a], Halder et al. [2024],
Pakman et al. [2021] that itself requires solving an optimization over the joint distribution, there
are limited works that further incorporate it as a regularizer during model training. Dutta et al.
[2021] leverages Gaussian assumptions to obtain closed-form expressions for the PID terms, enabling
them to use unique information as a regularizer during training for fairness (also see Venkatesh and
Schamberg [2022], Venkatesh et al. [2024] for more details on Gaussian PID). Our work makes novel
connections between two notions of redundant information, and shows how PID can be integrated
as a regularizer in a multi-level optimization without Gaussian assumptions, which could also be of
independent interest outside the context of knowledge distillation.

B Proofs

B.1 Proof of Theorem 2.1

Theorem 2.1 (Teacher with nuisance). Let T = (Z,G) where Z contains all the task-related
information (i.e., I(Y ;T ) = I(Y ;Z)) and G does not contain any information about the task (i.e.,
I(Y ;G) = 0). (G can be seen as a stronger version of nuisance defined in [Achille and Soatto, 2018,
Section 2.2]). Let the student be a capacity-limited model as defined by H(S) ≤ max{H(Z), H(G)}
where H(X) denotes the entropy of the random variable X . Then,

(i) I(T ;S) is maximized when

S =

{
Z ; H(Z) > H(G)
G ; H(Z) < H(G)

. (7)

(ii) Red(Y : T, S) is always maximized when S = Z.
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Proof. To prove claim 1, observe that

I(T ;S) = H(T )−H(T |S) (14)
= H(Z,G)−H(Z,G|S) (15)
= H(Z) +H(G)−H(Z,G|S). (16)

Now, S = Z =⇒ H(Z,G|S) = H(G) and S = G =⇒ H(Z,G|S) = H(Z). Therefore,

I(T ;S) =

{
H(Z) ; S = Z
H(G) ; S = G

. (17)

Claim 1 follows from the above since I(T ;S) ≤ H(S) ≤ max{H(Z), H(G)}.

To prove claim 2, first observe that I(Y ;T ) = I(Y ;Z) =⇒ I(Y ;G|Z) = 0. Now consider the
conditional mutual information I(Y ;T |S):

I(Y ;T |S) = I(Y ;Z,G|S) (18)
= I(Y ;G|S) + I(Y ;Z|G,S) (19)

Note that the right-hand side above vanishes when S = Z. Therefore, S = Z =⇒ I(Y ;T |S) = 0.
Now since

Red(Y : T, S) = I(Y ;T )− min
Q∈∆P

IQ(Y ;T |S)︸ ︷︷ ︸
=0 with Q=P when S=Z

(20)

and Red(Y : T, S) ≤ I(Y ;T ), setting S = Z achieves the maximum Red(Y : T, S).

B.2 Proof of Theorem 2.2

Theorem 2.2 (Properties). The following properties hold for distillable and distilled knowledge
defined as in Definition 2.1 and Definition 2.2 respectively.

1. When Uni(Y : T\S) = 0, the teacher has no distillable information. At this point, the student
has the maximum information that any one of the representations T or S has about Y ; i.e.,

max{I(Y ;T ), I(Y ;S)} = I(Y ;S). (8)

2. For a given student representation S and any two teacher representations T1 and T2 if there exists
a deterministic mapping h such that T1 = h(T2), then Uni(Y : T1\S) ≤ Uni(Y : T2\S).

3. Both Uni(Y : T\S) and Red(Y : T, S) are non-negative.

Proof of the first property is given below:

Proof.

max{I(Y ;T ), I(Y ;S)} = max{Red(Y : T, S) + Uni(Y : T\S)︸ ︷︷ ︸
=0

, (21)

Red(Y : T, S) + Uni(Y : S\T )} (22)
= Red(Y : T, S) + Uni(Y : S\T ) (23)
= I(Y ;S). (24)

The second and third properties directly follow from Banerjee et al. [2018, Lemma 31] and
Bertschinger et al. [2014, Lemma 5].

B.3 Proof of Lemma B.1

Lemma B.1. Let Y, T and S be any three random variables with supports Y, T and S respectively
and g(·) be a deterministic function with domain S. Then

I(Y ;T |g(S), S) = I(Y ;T |S). (25)

11



Proof. By applying the mutual information chain rule to I(Y ;T, S, g(S)) we get

I(Y ;T, S, g(S)) = I(Y ;S) + I(Y ;T |S) + I(Y ; g(S)|T, S) (26)
= I(Y ;S) + I(Y ;T |S) +H(g(S)|T, S)︸ ︷︷ ︸

=0

−H(g(S)|Y, T, S)︸ ︷︷ ︸
=0

(27)

= I(Y ;S) + I(Y ;T |S). (28)

Also, from a different decomposition, we get

I(Y ;T, S, g(S)) = I(Y ;S) + I(Y ; g(S)|S)︸ ︷︷ ︸
=0

+I(Y ;T |g(S), S) (29)

= I(Y ;S) + I(Y ;T |g(S), S). (30)

Combining the two right-hand sides yields the final result.

B.4 Proof of Theorem 3.1

Theorem 3.1 (Distilled information lower bound). For any three random variables Y, T and S,

Red∩(Y : T, S) ≤ Red(Y : T, S) (13)

where Red∩(Y : T, S) is as per Definition 3.1 and Red(Y : T, S) is defined in Definition 2.3.

Proof. For a given set of random variables Y, T and S, let f∗
t (T ) and f∗

s (S) achieve the maximum
I(Y ;Q) in Definition 3.1, i.e., Red∩(Y : T, S) = I(Y ; f∗

t (T )) while I(Y ; f∗
t (T )|f∗

s (S)) = 0. We
first observe that Red(Y : f∗

t (T ), f
∗
s (S)) = Red∩(Y : T, S) = I(Y ; f∗

t (T )) as shown below:

Red(Y : f∗
t (T ), f

∗
s (S)) = I(Y ; f∗

t (T ))− min
Q∈∆P

IQ(Y ; f∗
t |f∗

s (S)) (31)

= I(Y ; f∗
t (T )) (∵ I(Y ; f∗

t (T )|f∗
s (S)) = 0) (32)

= Red∩(Y : T, S). (33)

Next, we show that Red(Y : f∗
t (T ), f

∗
s (S)) < Red(Y : T, S). In this regard, we use the following

lemma due to Bertschinger et al. [2014].

Lemma B.2 (Lemma 25, Bertschinger et al. [2014]). Let X,Y, Z1, Z2 . . . , Zk and Zk+1 be a set of
random variables. Then,

Uni(X : Y \Z1, Z2 . . . , Zk) ≥ Uni(X : Y \Z1, Z2 . . . , Zk, Zk+1). (34)

Consider the set of random variable Y, f∗
t (T ), f

∗
s (S) and S. From the above lemma we get

Uni(Y : f∗
t (T )\f∗

s (S)) ≥ Uni(Y : f∗
t (T )\f∗

s (S), S) (35)
= I(Y ; f∗

t (T ))− IQ∗(Y ; f∗
t (T )|f∗

s (S), S) (36)

where Q∗ = argminQ∈∆P
IQ∗(Y ; f∗

t (T )|f∗
s (S), S). Now, by applying Lemma B.1 to the right-

hand side we arrive at

Uni(Y : f∗
t (T )\f∗

s (S)) ≥ I(Y ; f∗
t (T ))− IQ∗(Y ; f∗

t (T )|S) (37)
= Uni(Y : f∗

t (T )\S). (38)

Next, observe that the following line arguments hold from Definition 2.3:

Uni(Y : f∗
t (T )\f∗

s (S)) ≥ Uni(Y : f∗
t (T )\S) (39)

⇐⇒ I(Y ; f∗
t (T ))− Uni(Y : f∗

t (T )\f∗
s (S)) ≤ I(Y ; f∗

t (T ))− Uni(Y : f∗
t (T )\S) (40)

⇐⇒ Red(Y : f∗
t (T ), f

∗
s (S)) ≤ Red(Y : f∗

t (T ), S). (41)

Noting that Red(Y : A,B) is symmetric w.r.t. A and B, we may apply the previous argument to the
pair Red(Y : f∗

t (T ), S) and Red(Y : T, S) to obtain

Red(Y : f∗
t (T ), f

∗
s (S)) ≤ Red(Y : f∗

t (T ), S) ≤ Red(Y : T, S), (42)

concluding the proof.
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C VID and TED frameworks

C.1 Variational Information Distillation (VID)

The VID framework [Ahn et al., 2019] is based on maximizing a variational lower bound to the
mutual information I(T ;S). It finds a student representation S which minimizes the following loss
function:

LV ID(ηs, µ) = LCE(Y, Ŷηs)+λ

C∑
c=1

H∑
h=1

W∑
w=1

(
log σc + EPX

[
(Tc,h,w − µc,h,w(Sηs))

2

2σ2
c

])
. (43)

Here, C,H and W are the number of channels, height and width of the representation T respectively
(i.e., T ∈ RC×H×W ). µ is a deterministic function parameterized using a neural network and learned
during the training process. σ = [σ1, . . . , σc]

T is a vector of independent positive parameters, which
is also learned during the training process. Ŷηs is the final prediction of the student model of the
target label Y .

C.2 Task-aware Layer-wise Distillation (TED)

The TED framework Liang et al. [2023] fine-tunes a student in two stages. During the first stage,
task-aware filters appended to the teacher and the student are trained with task-related heads while
the student and the teacher parameters are kept constant. In the next step, the task-related heads are
removed from the filters and the student is trained along with its task-aware filter while the teacher and
its task-aware filter is kept unchanged. We observe that each of these steps implicitly maximizes the
redundant information under Definition 3.1. To see the relationship between the TED framework and
the above definition of redundant information, let Q be parameterized using the teacher’s task-aware
filter as Q = ft(T ). Now consider the first stage loss corresponding to the teacher’s task-aware filter
which is given below:

Lt (T, θt) = Ex∼X [ℓ(ft(T ; θt))] . (44)
Here, ℓ(·) is the task specific loss, ft is the task-aware filter parameterized by θt. During the first stage,
this loss is minimized over θt. A similar loss corresponding to the student (i.e., Ex∼X [ℓ(fs(S; θt))])
is minimized in order to train the student’s task aware filter. Note that during this process, both
I(Y ; ft(T )) and I(Y ; fs(S)) are increased.

During stage 2, the distillation loss which is given below is minimized over θs and S while θt and T
being held constant.

DTED (T, S) = Ex∼X
[
||ft(T ; θt)− fs(S; θs)||2

]
. (45)

Consider stage 2 as an estimation problem which minimizes the mean square error, where Q = ft(T )
is the estimand and fs(·) is the estimator. We observe that this optimization ensures I(Y ;Q|fs(S)) =
0 given that the same assumption as in Section 3 holds. Following similar steps as in Section 3,
we see that TED framework maximizes a lower bound for the distilled knowledge, quantified as in
Definition 2.2.

The main difference of this scheme w.r.t. the RED framework is two-fold. First, in RED we optimize
ft(·) in addition to fs(·) and S during stage 2. In contrast, TED does not modify the teacher’s filter
during the second stage. Second, RED distillation loss employs a weighting parameter similar to that
of VID.

D Experiments

Dataset: We use the CIFAR-10 dataset [Krizhevsky et al., 2009] with 60000 32x32 colour images
belonging to 10 classes, with 6000 images per class. The training set consists of 50000 images (5000
per class) and the test set is 10000 images (1000 per class). The PID values are evaluated over the
same test set.

Redundant Information Distillation algorithm: We distill from multiple teacher layers
T (1), . . . , T (K) to corresponding student layers S(1), . . . , S(K). Each teacher layer T (k) has its
own filter f (k)

t parameterized with θ
(k)
t . Student filters are parameterized in a similar manner. More-

over, each teacher filter f (k)
t (·) has its own classification head g(k)(·) parameterized with ϕ(k). All
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the student representations are parameterized by the complete weight vector ηs. In the beginning,
the teacher filters are trained for nw number of warm-up epochs with just the cross-entropy loss∑K

k=1 LCE(Y, g
(k)
t (f

(k)
t (T (k); θ

(k)
t );ϕ

(k)
t )). Then, the optimization alternates between the first and

second stages, with each cycle taking q epochs in total. Within a cycle, phase 1 is carried out for
r × q epochs followed by phase 2 for rest of the epochs (See Algorithm 1).

Algorithm 1: Redundant Information Distillation
Data: A dataset of samples of (X,Y), teacher model with intermediate representations

T (1), . . . , T (k), hyperparameters λ1, λ2 > 0, # warm-up epochs nw, # training epochs n,
# steps per cycle q ≤ n, alternating ratio r(0 < r < 1)

Result: Trained student network parameterized with ηs
Initialize parameters θ(k)t , θ

(k)
s , ϕ

(k)
t and ηs;

for i ∈ {1, . . . , nw} do

minimize
{θ(k)

t ,ϕ
(k)
t }

K∑
k=1

LCE(Y, g
(k)
t (f

(k)
t (T (k); θ

(k)
t );ϕ

(k)
t )) ;

end
for i ∈ {1, . . . , n} do

if round(i/q) < q × r then

minimize
{θ(k)

t ,ϕ
(k)
t }

K∑
k=1

Lt(θ
(k)
t , ϕ

(k)
t ) ; /* See equation (10) */

else

minimize
{θ(k)

s ,σ(k),ηs}
λ1LCE(Y, Ŷηs

) + λ2

K∑
k=1

Ls(θ
(k)
s , σ(k), ηs) ; /* See equation (11) */

end
end

Models and hyperparameters: Teacher models are WideResNet-(40,2) and the student models are
WideResNet-(16,1). For the VID distillation, the value for λ was set to 100. Learning rate was 0.05
at the beginning and was reduced to 0.01 and 0.002 at 150th and 200th epochs respectively. Stochastic
Gradient Descent with a weight decay=0.0005 and momentum=0.9 with Nesterov momentum enabled
was used as the optimiser. We choose three intermediate layers for distillation from the last three
blocks of both the teacher and student models. The function µ(·) for each layer is parameterized
using a sequential model with three convolutional layers, ReLU activations and batch normalization
in between the layers. A similar architecture and a training setup was used for the basline (BAS,
no distillation) and the RID models. In case of the RID models, the filters fs(·) and ft(·) were
parameterized using 2-layer convolutional network with a batch normalization layer in the middle.
The classification head gt(·) is a linear layer. We set nw = 30, q = 30, r = 1/4 and the total number
of epochs n + nw = 300. Teacher, Baseline and VID models are trained for 300 epochs. In both
cases of VID and RID, the independent parameter vector σ has a dimension equal to the number of
channels in the outputs of functions µ, fs or ft. All the training was carried out on a computer with
an AMD Ryzen Threadripper PRO 5975WX processor and an Nvidia RTX A4500 graphic card.

PID computation: We compute the PID components of the joint information of innermost distilled
layers I(Y ;T, S), using the framework proposed in Liang et al. [2024a] as follows:

1. Representations are individually flattened
2. Compute PCA on each set of representations
3. Cluster representations to discretize
4. Compute the joint distribution p(Y, T, S)

5. Compute PID components using the joint distribution
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Figure 5: Classification accuracy for CIFAR10 dataset of BAS, VID, TED and RID when distilled
using a trained and an untrained teacher. The suffixes “tt” stands for a trained teacher and “ut” stands
for an untrained teacher. Graphs show the average over 3 runs and the shaded areas indicate mean ±
standard deviation regions.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Dataset used in the experiments is publicly available. Code will be released
soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Accuracy of the models are evaluated over 3 runs and the one-standard
deviation is depicted in pale colors. However, the PID values are computed over a single run
due to the high computational cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources used are listed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work does not involve human subjects or sensitive data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss some of the potential applications in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Paper does not poses any risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The publicly available dataset that is being used in the paper has been cited
properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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