

000 001 002 003 004 005 LIME: MAKING LLM DATA MORE EFFICIENT WITH 006 LINGUISTIC METADATA EMBEDDINGS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Pre-training decoder-only language models relies on vast amounts of high-quality data, yet the availability of such data is increasingly reaching its limits. While metadata is commonly used to create and curate these datasets, its potential as a direct training signal remains under-explored. We challenge this status quo and propose **LIME** (Linguistic Metadata Embeddings), a method that enriches token embeddings with metadata capturing syntax, semantics, and contextual properties. **LIME** substantially improves pre-training efficiency. Specifically, it adapts up to 56% faster to the training data distribution, while introducing only 0.01% additional parameters at negligible compute overhead. Beyond efficiency, **LIME** improves tokenization, leading to remarkably stronger language modeling capabilities and generative task performance. These benefits persist across model scales (500M to 2B). In addition, we develop a variant with shifted metadata, **LIME**⁺¹, that can guide token generation. Given prior metadata for the next token, **LIME**⁺¹ improves reasoning performance by up to 38% and arithmetic accuracy by up to 35%.

1 INTRODUCTION

Autoregressive language models have emerged as a prominent area of research due to their impressive capabilities. However, training these large language models (LLMs) is computationally expensive and highly data-intensive. Smaller LLMs are particularly attractive because of their reduced resource requirements and accessibility. Nonetheless, models up to 2B parameters require the same—or even increased—amount of training data, as their language modeling performance tends to regress (Hoffmann et al., 2022).

At the same time, the availability of novel human-generated high-quality training data is decreasing (Xue et al., 2023; Villalobos et al., 2024), emphasizing the need of improving the utility of existing datasets. To compensate this shortcoming, methods of accumulating LLM pre-training datasets shift from mere quality filtering to synthetization through earlier model generations and staging of increasing data quality buckets (Su et al., 2025). In order to determine the stage and quality bucket, existing document-level metadata is used, along with more complex—and even model-based—scores that reflect attributes such as educational value, or factual reliability (Schuhmann et al., 2022; Li et al., 2024; Penedo et al., 2024; Wettig et al., 2025).

However, neither pre-existing nor created metadata are typically propagated downstream into the model during training. Modern LLM tokenizers are typically trained on yet another blended dataset with solely text compression as objective, neglecting linguistic research entirely. As such, tokenization can fragment meaningful content, distort sequence relationships, and ultimately degrade the efficiency and quality of model learning. Recent work indicate that linguistically motivated segmentation can improve model training (Hou et al., 2023; Schmidt et al., 2024). Moreover, early work suggests that linguistic token annotation can improve certain modeling capabilities such as in machine translation (Sennrich & Haddow, 2016).

To this end, we introduce a method which rigorously integrates token-grained linguistic metadata into LLM pre-training at negligible complexity and computational overhead: **LIME** (Linguistic Metadata Embeddings for LLMs). Our method augments pre-trained subword tokenizer with linguistically informed annotations, namely POS and NER tags, extending its standard output of raw tokens with token-aligned metadata. We propagate metadata downstream by incorporating it as additional input

054 signals to shift the token embedding space. As a guidance variant, with LIME^{+1} we shift the metadata
 055 embeddings by one to guide the generation with look-ahead metadata.
 056

057 In our experiments, we demonstrate that LIME substantially enhances language modeling perfor-
 058 mance. By incorporating metadata, LIME improves data efficiency during training, enabling models
 059 to adapt up to 56% faster to the training data distribution. Additionally, LIME mitigates issues
 060 caused by artificial tokenization splits, keeping the meaning of subword tokens together, as supported
 061 by both qualitative and quantitative analyses. Finally, with LIME^{+1} we demonstrate that models
 062 achieve up to 35% higher accuracy when the metadata class of the token to be predicted is revealed
 063 in advance. Crucially, we apply this guidance in tasks such as for reasoning and arithmetic, where the
 064 relevant metadata is naturally available rather than artificially constructed. These benefits of metadata
 065 annotations persist consistently throughout our scaling ablations of 500M, 1B and 2B parameter
 066 models. Our results raise important questions about inefficient pre-training data usage in standard
 067 causal language model training.

068 Our main contributions and findings are summarized as follows:

- 069 1. We introduce LIME and LIME^{+1} , our approach to augment token embeddings with linguistic
 070 metadata in Sec. 3.
- 071 2. We demonstrate how LIME improves language modeling capabilities, in particular next-
 072 token prediction, consistently across various model sizes (Sec. 4.2).
- 073 3. LIME models excel in generative downstream tasks (Sec. 4.3) and keep split word tokens
 074 together by improving natural language word cohesion (Sec. 4.4).
- 075 4. LIME^{+1} enables inference-time metadata steering which improves reasoning and arithmetic
 076 capabilities (Sec. 4.5).

078 2 RELATED WORK

081 Before introducing LIME , we outline key areas of prior work that motivate and inform our approach.
 082 Specifically, we review tokenization strategies and their implications for model efficiency, the role of
 083 metadata in LLM pre-training, the use of linguistic annotations as auxiliary supervision, and recent
 084 efforts to integrate metadata directly at the embedding level.

085 **Pre-Tokenization and Tokenizers.** Pre-tokenization defines segment boundaries for subword
 086 tokenization by normalizing and splitting text (e.g., on whitespace or punctuation) into coherent
 087 units. Subword tokenizers, trained with compression-based methods like BPE (Sennrich et al., 2016),
 088 inherit biases from their training data: Ahia et al. (2023) report large cross-lingual disparities, with
 089 some languages requiring up to five times more tokens for the same content. Tokenizers optimized for
 090 one distribution may become inefficient under distribution shifts (Ahia et al., 2023; Deisereth et al.,
 091 2024; Neitemeier et al., 2025). Thus, fragmentation, or more tokens per word, correlates with poorer
 092 model performance. Linguistically informed segmentation can improve results: Hou et al. (2023)
 093 find morphological splits reduce perplexity and maintain or improve downstream accuracy, while
 094 Schmidt et al. (2024) show ignoring morphology in pre-tokenization can harm performance. Recent
 095 work explores byte-level or tokenizer-free models such as ByT5 (Xue et al., 2023) and MegaByte
 096 (Yu et al., 2023), and T-FREE (Deisereth et al., 2024), which embeds words via character trigrams,
 097 capturing morphological overlaps with smaller embeddings.

098 **Metadata in LLM Pre-training.** Pre-training refers to an LLM learning from scratch on large
 099 corpora to establish a foundation for downstream adaptation. LLM downstream performance is
 100 strongly influenced by the quality of pre-training data (Longpre et al., 2024; Wettig et al., 2024). To
 101 improve quality, pre-training data is filtered and deduplicated using metadata typically derived from
 102 heuristic approaches (Raffel et al., 2020; Rae et al., 2021) or model-based classifiers (Brown et al.,
 103 2020; Xie et al., 2023; Penedo et al., 2024; Li et al., 2024; Su et al., 2025). Further, several approaches
 104 have been proposed that, instead of leveraging metadata solely to improve data quality, propagate
 105 metadata directly into model training. For example, CTRL (Keskar et al., 2019) prepends source-
 106 domain metadata, Dhingra et al. (2022) prepend timestamps to improve memorization, Liu et al.
 107 (2020) add language identifiers for multilingual training, and Khalifa et al. (2024) include document
 108 identifiers to improve source attribution. Most recently, Allen-Zhu & Li (2025) demonstrated
 109 that prepending a special token to useful data significantly increases the model’s capacity ratio,

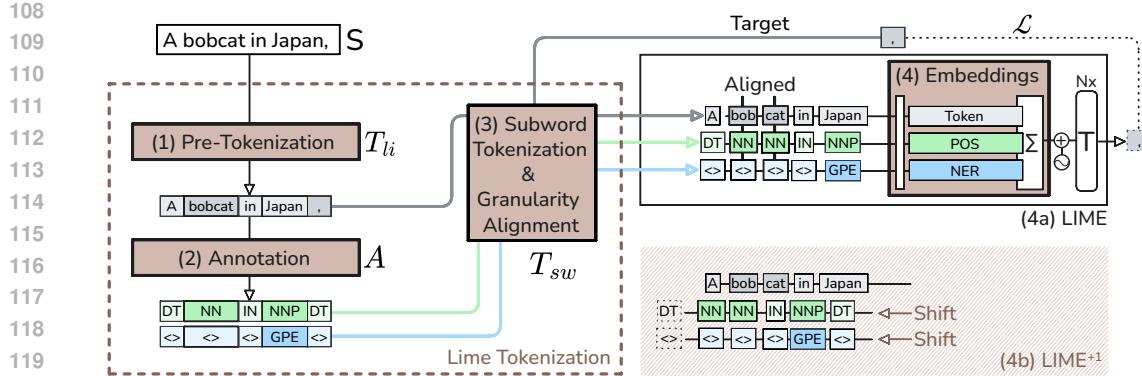


Figure 1: LIME and LIME^{+1} architecture. (1) Input text S is split by the linguistic tokenizer (T_{li}). (2) Linguistic splits are annotated, e.g. with POS and NER tags. (3) Subword tokenization (T_{sw}) is applied to the linguistic tokens and annotations are aligned to the new splits. (4) Tokens and metadata are embedded, fused together and passed into consecutive transformer blocks.

while Gao et al. (2025) provided empirical evidence by showing a 33% improvement in pre-training efficiency when URL metadata was prepended. While effective, these methods rely on the existing vocabulary to encode metadata, which consumes valuable input token space, and they typically operate at the document level, limiting annotation granularity.

Auxiliary Supervision with Linguistic Annotations. Incorporating fine-grained linguistic token annotations into neural NLP models has been widely studied. For example, Sennrich & Haddow (2016) showed that features such as POS tags and dependency relations can improve neural machine translation. These ideas have since been extended to pre-training: ERNIE (Sun et al., 2021) leverages entity-aware masking guided using NER, while syntax-aware pre-training models incorporate dependency structures into attention mechanisms (Zhang et al., 2022). Knowledge-enhanced pre-trained language models (KEPLMs) (Hu et al., 2024) integrate structured information, such as knowledge graphs. Yet, these approaches substantially increase architectural complexity and computational cost.

Embedding-Level Metadata Integration. Embedding layers serve as an effective mechanism for metadata injection, enabling structured information to be incorporated directly into the model’s representational space. For instance, (Guu et al., 2020) propose retrieval-augmented pre-training using a knowledge-enriched encoder. The joint learning of language and knowledge embeddings within a masked language modeling framework has been investigated by Sun et al. (2020). CUE (Novotney et al., 2022) incorporates metadata, such as author and date, into LLMs through a separate context encoder. Furthermore, McLeish et al. (2024) showed that embedding positional cues into the representations of numerical tokens can enhance performance on arithmetic tasks. Armengol-Estepé et al. (2021) investigate the extension of token embeddings with linguistic information to improve low-resource machine translation in bidirectional transformer models. Nevertheless, incorporating fine-grained linguistic metadata into the token embeddings of autoregressive LLMs remains an open research direction. We address this gap with LIME , showing that it delivers scalable improvements in both efficiency and performance.

3 LIME: LINGUISTIC METADATA FOR LLMs

In this section, we present LIME which integrates linguistic metadata for LLMs. LIME consists of four stages: (1) linguistic pre-tokenization, (2) metadata annotation, (3) subword tokenization & granularity alignment, (4) and metadata embedding, as shown in Fig. 1.

Illustrative Example. Before introducing technical details, we summarize $\text{LIME}^{(+1)}$. The method enriches input text with linguistic metadata (e.g., POS or NER tags) before passing it to an LLM. As illustrated in Fig. 1, a sentence is first split into linguistic tokens (e.g., A bobcat in Japan → four tokens), which are then annotated with metadata such as POS tags. Since LLMs operate on subword units, the metadata is aligned with the subword tokenizer output to preserve dimensions. The tokens and metadata are then embedded, combined, and fed into the transformer. LIME applies each token’s

162
163Table 1: Illustrating LIME and LIME^{+1} with the example of Fig. 1. {} denote embeddings.164
165
166
167
168
169
170
171
172
173
174
175

(0)	Input Sequence	A_bobcat_in_Japan
(1)	Linguistic Pre-Tokenization	A DT
(2)	Metadata Annotation	bobcat NN
(3)	Subword Tokenization & Granularity Alignment	cat NN
(4a)	Metadata Embeddings LIME	in IN
		Japan NNP
(4b)	Metadata Embeddings LIME^{+1}	+{ DT } +{ NN } +{ NN } +{ IN } +{ NNP }
		+{ NN } +{ NN } +{ IN } +{ NNP } +{ X }

176

own metadata, while LIME^{+1} shifts embeddings to use the next token’s metadata, giving the model richer linguistic context. These stages are further illustrated in Tab. 1.

177
178
179
180
181
182
183
184

(1) Linguistic Pre-Tokenization. We define a tokenizer on the alphabet Σ as the tuple $T = (f, V)$ consisting of the function $f : \Sigma^* \rightarrow V^*$ that splits a given text $s \in \Sigma^*$ into a sequence of tokens of the token vocabulary V (Minixhofer et al., 2024). A token sequence is denoted as $T(s) = t_1, t_2, \dots, t_n$ of length n . Unlike the conventional approach of using only a statistically learned subword tokenizer T_{sw} , we introduce a rule-based linguistic tokenizer T_{li} for pre-tokenization. Introducing T_{li} allows for effective and linguistically-informed segmentation into minimal meaningful text units, enabling the assignment of fine-grained metadata labels.

185
186
187
188
189
190

(2) Metadata Annotation. The metadata annotation process is defined by an annotator $A = (g, C)$ with the annotation function $g : V^n \rightarrow C^n$ that, for a given token sequence $T(s)$ of length n produces an annotation sequence $A(T(s)) = a_1, a_2, \dots, a_n$ with $a \in C$ and C being the set of pre-defined annotation symbols. The annotation function g can consist of rule-based methods, heuristics or classification models. As illustrated in Fig. 1, our method allows to define and integrate multiple annotators, e.g., POS and NER annotations.

191
192
193
194
195
196
197
198
199
200
201
202
203
204

(3) Subword Tokenization & Granularity Alignment. Given the subsequent subword tokenizer $T_{sw} = (f_{sw}, V_{sw})$, its vocabulary and annotation function will naturally differ from those of the rule-based word tokenizer T_{li} used in the first stage, as shown in Fig. 1. This entails that $n_{li} = |T_{li}(s)| \neq |T_{sw}(s)| = n_{sw}$ has to be aligned for an input text s . In the case of $n_{li} < n_{sw}$, we define the annotation function $g' : V^{n_{li}} \rightarrow C^{n_{sw}}$ that resolves this granularity mismatch as follows: g' tracks for every token in $T_{sw}(s)$ its word context defined by $T_{li}(s)$ and repeats the relevant annotation until a granularity match is achieved. In the case of $n_{li} > n_{sw}$, where T_{li} splits a input sequence in more tokens than T_{sw} , we keep the finer granularity of T_{li} by expressing every token in $T_{li}(s)$ with tokens from the vocabulary V_{sw} . For example, the word “don’t” could linguistically be split as $T_{li}(s) = \text{do } \text{n } \text{t}$ while the subword tokenizer may produce $T_{sw} = \text{don } \text{t}$. In that case we keep the slightly less compressed word boundaries of $T_{li}(s)$ and their corresponding annotations as the subsequent tokenization of T_{sw} , to not lose annotation precision. Now, for a set of metadata domains D , and $|D|$ metadata annotators, the final output of this stage is a granularity aligned sequence consisting of tuple $(t_i, (a_{i,d})_{d \in D})$ for token index i . We refer to these first three stages as LIME Tokenization.

205
206
207
208
209
210

(4) Metadata Embeddings. In our output tuple $(t_i, (a_{i,d})_{d \in D})$ at index i , token t_i is one-hot encoded to a vector of length $|V_{sw}|$ and multiplied with the embedding matrix $W^L \in \mathbb{R}^{|V_{sw}| \times h}$, h being the hidden size hyperparameter, producing the language token embedding $E_L(t_i)$. From here we introduce two variants to blend in token annotations. The first, termed LIME (see Fig. 1 top), uses metadata embeddings E_M^d originating from the same token:

211
212

$$E(t_i) = E_L(t_i) + \sum_{d \in D} w_d E_M^d(a_{i,d}). \quad (1)$$

213
214
215

Note that the annotation embedding process is applied to individual respective matrices $W^{(d)} \in \mathbb{R}^{|C_d| \times h}$ producing $E_M^d(a_{i,d})$. E_L combined with the weighted sum of $|D|$ metadata embeddings creates the final embedding and LLM input $E(t_i)$.

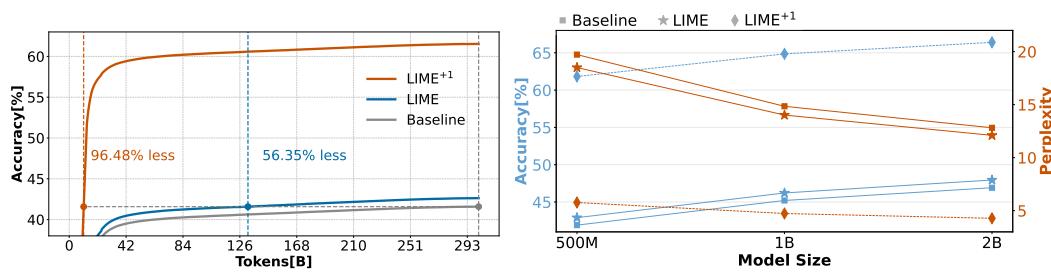


Figure 2: **Left:** Next-token accuracy improves with metadata embedding layers. Our $\text{LIME}_{500\text{M}}$ model requires 56% less pre-training data to achieve the same token prediction accuracy as Baseline. **Right:** Accuracy and perplexity improvements translate consistently across model sizes.

The second implementation (see Fig. 1 bottom), termed LIME^{+1} , is tailored for scenarios where the metadata annotation of the next token (a_{i+1}) is known in advance, such as demonstrated in Sec. 4.5. During training and inference (Fig. 4), the base embedding E_L is augmented using the metadata embeddings of the *next* token, rather than the current one. This look-ahead embedding is defined as:

$$E(t_i) = E_L(t_i) + \sum_{d \in D} w_d E_M^d(a_{i+1,d}). \quad (2)$$

Note, that we modify only the token embeddings; all other transformer components, including the LLM head and the cross-entropy loss applied during training, remain unaltered and fully agnostic to the metadata.

4 EXPERIMENTS

We now present empirical evidence demonstrating the benefits of LIME and LIME^{+1} . We start with the experimental setup followed by an investigation of model prediction qualities (Sec. 4.2) and evaluations on popular benchmarks (Sec. 4.3). We then provide qualitative and quantitative analyses that LIME models improve token coupling (Sec. 4.4) and finally show that LIME^{+1} excels in reasoning as well as arithmetic performance (Sec. 4.5).

4.1 EXPERIMENTAL SETUP

In our experiments, we followed the Gemma architecture (Mesnard et al., 2024) and pre-trained LIME models in three sizes, 500M, 1B, 2B, on 302 billion tokens of the DCML-BASELINE (Li et al., 2024) dataset (cf. App. A.2). We applied the three-stage LIME Tokenization process described in Sec. 3, with T_{li} being the english spaCy tokenizer¹ and T_{sw} the SentencePiece (Kudo & Richardson, 2018) Gemma tokenizer, and otherwise optimizing the standard cross-entropy loss \mathcal{L} on the language head (disregarding metadata). As mentioned in Sec. 3, extending tokenization with T_{li} increases token count, in our case by 1.19%, but compresses the used vocabulary by 1.03%, and as such frees embedding parameters (cf. App. A.3). Models trained with Lime Tokenization but no additional metadata embedding layers are referred to as **Baseline** in the following.

We extended the **Baseline** models with two metadata domains available in spaCy: Syntactic Part of Speech (POS), with $|C_{\text{pos}}| = 51$ (App. A.11), and semantic Named Entity Recognition (NER), with $|C_{\text{ner}}| = 20$ (App. A.12). Both annotation embedding layers are weighted equally with $w_{\text{pos}} = w_{\text{ner}} = 1$ (Eq. 1). For both LIME and LIME^{+1} , the additional embedding layers, having 71 entries in total, add less than 0.01% to the total parameters. Since it requires only one vectorized lookup and addition in the forward pass, it adds negligible runtime overhead. For details, see App. A.3. $\text{LIME}^{(+1)}$ inference is illustrated in Fig. 4.

¹<https://spacy.io/api/tokenizer>

270
 271 Table 2: LIME excels at generative tasks.
 272 Improvements to Base are indicated by \uparrow ,
 273 to LIME with $\uparrow\uparrow$. We highlight (yellow)
 274 generative-format tasks. Exemplified on 500M,
 275 other model sizes in App. A.5.

	Base _{500M}	LIME _{500M}	LIME _{500M} ⁺¹
ARC-Easy [7]	57.00 \pm 1.57	\uparrow 57.20 \pm 1.57	$\uparrow\uparrow$ 58.10 \pm 1.56
BoolQ [6]	49.50 \pm 1.58	47.90 \pm 1.58	$\uparrow\uparrow$ 59.40 \pm 1.55
COPA [35]	62.00 \pm 4.88	\uparrow 64.00 \pm 4.82	61.00 \pm 4.90
HellaSwag [51]	36.20 \pm 1.52	\uparrow 37.00 \pm 1.53	$\uparrow\uparrow$ 43.10 \pm 1.57
LAMBADA [30]	26.50 \pm 1.40	\uparrow 29.80 \pm 1.45	$\uparrow\uparrow$ 49.00 \pm 1.58
OpenBookQA [26]	31.00 \pm 2.07	\uparrow 32.60 \pm 2.10	$\uparrow\uparrow$ 34.20 \pm 2.12
PIQA [4]	69.90 \pm 1.45	69.40 \pm 1.46	68.20 \pm 1.47
TriviaQA [16]	8.20 \pm 0.87	\uparrow 9.80 \pm 0.94	$\uparrow\uparrow$ 19.50 \pm 1.25
WinoGrande [36]	51.70 \pm 1.58	\uparrow 52.60 \pm 1.58	$\uparrow\uparrow$ 54.60 \pm 1.58
Mean	43.56 \pm 1.88	\uparrow 44.48 \pm 1.89	$\uparrow\uparrow$ 49.68 \pm 1.95

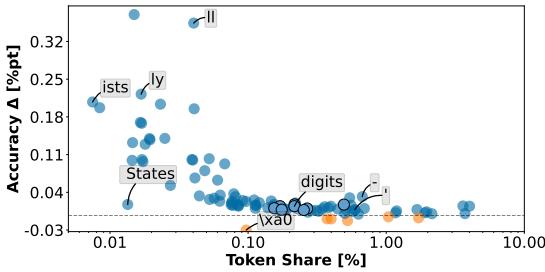


Figure 3: LIME_{500M} token prediction accuracy increases within semantic and syntactic metadata class boundaries: Among the 100 most impactful (share \times Δ) tokens, our model exhibits improved token coupling for suffix-, digit-tokens and an exemplary entity group token `States`.

4.2 LINGUISTIC METADATA-EMBEDDINGS IMPROVE LANGUAGE MODELING

We first analyze the effect of metadata embeddings on general pre-training dynamics. Across all three model sizes, LIME variants reach the same next-token accuracy as their baselines earlier in training. Fig. 2 (left) illustrates these gains for the 500M model. First, we observe that LIME_{500M} achieves the final accuracy of its Baseline counterpart (41.90%) using 56.35% fewer tokens. Specifically, both models follow the expected pre-training pattern of rapid early gains. For 500M, gains begin plateauing after about 42B tokens. From that stage onward, LIME maintains a stable accuracy advantage, suggesting that extended pre-training of the baseline cannot substitute for LIME metadata embeddings. This training dynamic is consistent across all three model sizes.

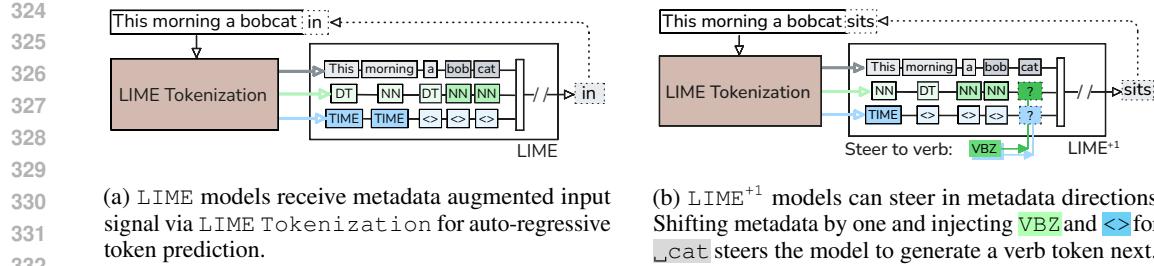
Further, we evaluate model quality across sizes on a DCLM-BASELINE test set of 10,000 samples, reporting next-token accuracy and perplexity on the same batches of data (Fig. 2 right). We observe that all LIME models have improved accuracy and reduced perplexity relative to their Baseline models. Accuracy increases by a constant magnitude of approximately +1 percentage points across all model sizes. Perplexity reduction is, as expected in this range, more pronounced in smaller model sizes. LIME⁺¹ shows a substantial improvement in accuracy and perplexity. Relative to Baseline models, accuracy increases by over 40% across model sizes, while perplexity is reduced by more than 65%, enabling our LIME_{2B}⁺¹ model to achieve a perplexity of 4.30. Training was stable across all methods and model sizes. For more detailed results and learning curves, please refer to App. A.4. Next, we demonstrate that these results directly translate to downstream task performance.

4.3 LIME MODELS EXCEL IN GENERATIVE TASKS

We evaluate downstream transfer on standard benchmarks (Tab. 2), highlighting results for the 500M model; comparable trends hold for all sizes, detailed in App. A.5. Each task was run with 1,000 samples using randomly selected 5-shot contexts.

The results show that LIME models on average slightly improve over their respective Baseline models. These LIME improvements appear modest due to the use of multiple-choice logit comparisons, which may not fully capture the LIME benefits. On tasks that are evaluated using generative greedy sampling (e.g., LAMBADA/TriviaQA), our method improves model performance substantially across sizes.² Specifically, for our 500M model, LAMBADA increased from 26.50 to 29.80 and TriviaQA from 8.20 to 9.80. LIME⁺¹ models, on the other hand, improve in 500M and 1B on 7 of 9 tasks, and on 5 tasks in 2B parameters, when being compared to their respective Baseline and LIME. The substantial and constant improvement of LIME models on greedily sampled tasks is further amplified by LIME⁺¹ models: For TriviaQA, we observe a relative improvement of 138%, 90%, and 64%, and in LAMBADA of 85%, 61%, 53% for 500M, 1B, 2B, compared to their respective Baseline.

²The remaining tasks are multiple-choice log-likelihood evaluations compared to argmax matching.

Figure 4: Inference with LIME and LIME⁺¹ models.

4.4 LIME KEEPS TOKENS TOGETHER

Building on the previous finding that LIME boosts performance in generative tasks, we aim to better understand where and how these improvements arise at the token level. To this end, we first conduct a qualitative study of token-level accuracy shifts, followed by a detailed quantitative analysis across word lengths, model sizes, and architectures.

Suffix Tokens, Entity-Groups & Digits. In the following, we take the dataset of Sec. 4.2 and rank all unique tokens by their shift in prediction accuracy and weight them by their share in the set. Illustrating accuracy shifts of the 100 most impactful tokens (Fig. 3) reveals: Suffix tokens such as `ing` and `ly`, that finish words consisting of multiple tokens, exhibit large positive accuracy shifts. This holds moreover for apostrophe and hyphen, as well as entity-group tokens, i.e. consecutive tokens that share the same entity metadata class, such as `_States` from “United States”. Finally, we observe a constant accuracy improvement across all single-digit tokens `0-9`. Accumulating all positive and negative accuracy shifts resembles the total accuracy gain of LIME_{500M} as reported in Sec. 4.2 (more details in App. A.6).

Keeping Natural Language Word Tokens Together. Additionally, in Tab. 3 (left), we count occurring words of certain token lengths and show their averaged accuracies.³ We observe that LIME models outperform their baselines across all cases, and notably, for word lengths $x \geq 2$.⁴ For single-word tokens ($x = 1$), we still obtain gains of roughly 0.7%. This highlights that metadata embeddings not only have a strong effect on the cohesion of subword sequences, but also help improving in-context relevance. LIME⁺¹ models further amplify the previously described improvements. As expected, the look-ahead metadata of LIME⁺¹ compellingly improve single-word token prediction by +21%. Moreover, models trained that way even further double the token-coupling accuracies improvements to +10%. These findings underline to what extent certainty on token metadata can still improve next-token prediction, even on models with up to 2B parameters. More details in App. A.6.

4.5 METADATA GUIDANCE UNLOCKS HIDDEN REASONING AND ARITHMETIC ABILITIES

Finally, we demonstrate the impact of token-metadata on two common tasks, reasoning (FlenQA) and symbolic addition arithmetic (ARI-ADD).

Task Definition. FlenQA (Levy et al., 2024) requires reasoning across multiple, increasingly noisy contexts. As such it provides a measure of a model’s ability to robustly handle reasoning scenarios. We use the FlenQA task ‘People in Rooms’ (PIR) that prompts to combine two pieces of information found in a given noisy context. Both facts are required to answer the question, as in the following example: “John’s room is blue walled [...] Ethan is in John’s room [...] Is Ethan in a blue walled room?” To evaluate our models that are trained on DCLM-BASELINE only, we convert the questions into the following generative format: “John’s room is blue walled [...] Ethan is in John’s room [...] Ethan is in a room. It has the following properties:” and greedily sample for the ground truth “blue walled” to appear in the subsequent words. Note that using LIME_{2B}⁺¹, we syntactically steer (Fig. 4b) the model to, e.g., in the prior example, predict an adjective token (`blue` and `<>`) by overloading the last

³Details are found in App. A.6.

⁴Note that, the category of tokens in words of $x \geq 2$ accounts for 10% of the number of single-word tokens, since we apply an English-optimized tokenizer to a primarily English corpus.

378
 379
 380
 381
 382
 Table 3: **Left:** LIME models have improved prediction accuracies on tokens within natural language
 words of length $x \geq 2$ (in tokens) and slightly improve on words consisting of one token ($x=1$). n
 denotes the total token count of the respective length. **Right:** Reasoning and arithmetic capabilities
 are significantly improved with LIME_{2B}⁺¹. Evaluated on FLenQA and ARI-ADD, an addition task.
 More details in App. A.7.

size	x	n	Base	LIME	LIME ⁺¹	Task	Base _{2B}	LIME _{2B}	LIME _{2B} ⁺¹
500M	≥ 2	424,960	69.68	73.95 $\uparrow 4.27$	80.41 $\uparrow 10.73$	FLQA-250	42.0	52.0 $\uparrow 10.0$	80.0 $\uparrow 38.0$
	1B	424,960	73.32	77.48 $\uparrow 4.16$	83.43 $\uparrow 10.11$		49.5	65.3 $\uparrow 15.8$	73.5 $\uparrow 24.0$
	2B	424,960	75.51	79.24 $\uparrow 3.73$	84.95 $\uparrow 9.44$		34.8	47.0 $\uparrow 12.2$	65.3 $\uparrow 30.5$
500M	1	5,049,553	33.91	34.59 $\uparrow 0.68$	55.10 $\uparrow 21.19$	FLQA-2000	40.3	44.3 $\uparrow 4.0$	52.5 $\uparrow 12.2$
	1B	5,049,553	37.23	37.89 $\uparrow 0.65$	58.35 $\uparrow 21.12$		28.2	30.0 $\uparrow 1.8$	39.3 $\uparrow 11.1$
	2B	5,049,553	39.08	39.80 $\uparrow 0.72$	59.94 $\uparrow 20.86$		22.6	26.9 $\uparrow 4.3$	58.7 $\uparrow 36.1$
ARI-ADD									

390
 391 token (a) of the context. The benchmark is grouped into 5 noise levels, adding irrelevant information
 392 of 250, 500, 1000, 2000, and 3000 tokens, and each group consisting of 400 samples.
 393

394 Second, for the arithmetic task, we again try to leverage the already obtained arithmetic performance
 395 from DCLM-BASELINE without further finetuning. We found the prompt "*The result is: {number}+{number} =*"
 396 performs best. The greedily sampled completion is then compared with the
 397 correct numerical result, thus testing basic symbolic arithmetic capabilities in a generative setting.
 398 We randomly sample $5 \leq \{number\} \leq 49$ and average the results over 500 unique number pairs.

399 **Results.** In Tab. 3 (right), we report performances across the different FLenQA variants and the
 400 ARI-ADD task. For all tasks we only show the 2B accuracies, as the other model sizes further
 401 degenerated. Nevertheless, the described behavior is consistent across sizes and found in App. A.7
 402 for completion.

403 In FLenQA we first observe a clear trend of decreasing performance with increasing noise context
 404 across all models, as it is expected. LIME already yields notable improvements over Baseline,
 405 especially for shorter contexts (e.g., +15.8 on FLQA-500). This again indicates that enriching the
 406 embedding with metadata is already helpful to improve next-token accuracy. In contrast, LIME⁺¹
 407 consistently delivers two-digit improvements across all variants, still achieving 39.3% on FLQA-3000
 408 and improving even 38% on FLQA-250. This trend highlights the effectiveness of syntactic steering
 409 in reasoning scenarios when the target class is clear. It is moreover beneficial as noise mitigation,
 410 maintaining robust performance even in more challenging settings.

411 For ARI-ADD, we first want to highlight that all generated outputs, across all models, were numbers.
 412 The drop in accuracy therefore refers to generation of the wrong digits. Simply annotating the single
 413 digits with number metadata already improves accuracy by 4.3%. Through syntactic steering, i.e.
 414 prioring the model to continue with digits at the \square token of the prompt, proves crucial in unlocking
 415 the full potential of the model on the arithmetic task and improves accuracy by 36.1%.

416 5 DISCUSSION

417 Building on the promising results presented above, we now discuss key observations and potential
 418 directions for future work with LIME models.

419 **Pre-Training Efficiency.** LIME models consistently reach baseline token accuracy and perplexity
 420 with substantially fewer training tokens. This suggests that linguistic metadata provides meaningful
 421 information that default embeddings would otherwise need to learn expensively, and moreover
 422 do not converge to for 302 billion tokens. The observed benefits scale to larger model sizes; we
 423 conducted experiments with models of up to 2B parameters. LIME metadata embeddings reshape the
 424 inductive biases of LLMs. Whereas standard approaches compress linguistic and metadata signals
 425 into a single embedding space, LIME keeps them disentangled at the embedding mapping, offering
 426 weak supervision. Furthermore, we find that the language modeling improvements of LIME do not
 427 consistently generalize to standard downstream predictive tasks, i.p. those based on logit comparison,
 428 which is consistent with the observations of Tay et al. (2022) and Wettig et al. (2024). Providing the
 429 LLM with accurate look-ahead metadata, as in LIME⁺¹, acts as a constraint on the search space for
 430 the next token, leading to substantial improvements in accuracy and perplexity across model sizes.

432 **Scaling LIME Models.** The computational overhead of LIME models demonstrates robust scaling
 433 characteristics, as it increases linearly with the context length while remaining independent of all other
 434 architectural hyperparameters. Specifically, it runs on CPU at negligible costs compared to model
 435 execution, as described in App. A.3. When scaling model parameters, we observe a modest reduction
 436 in relative gains on training metrics such as perplexity as model size increases (see App. A.4). This
 437 may be due to the logarithmic nature of the scales. At the same time, metadata embeddings provide
 438 substantial benefits for larger models, including the LIME_{2B} model, on tasks that involve emerging
 439 capabilities such as arithmetic (see App. A.5), even when trained solely on the base pre-training
 440 dataset without instruction tuning. These findings suggest that LIME scales effectively to larger
 441 models while still offering meaningful advantages in training data efficiency.

442 **Token Coupling.** Linguistic metadata helps models maintain coherence both within subword
 443 boundaries and beyond single-word tokens (Sec. 4.4). Our analyses show that LIME strengthens
 444 token coupling across words of all lengths and improves predictions for digits and entities. Using look-
 445 ahead metadata, as with LIME⁺¹, further amplifies accuracy gains. By binding fragmented tokens
 446 into coherent units, metadata embeddings not only boost accuracy but also resolve inconsistencies
 447 inherent to subword tokenization, such as handling prefixes, suffixes, and numbers, which even
 448 renders reasoning abilities more robust and precise. These results highlight metadata as a powerful
 449 inductive bias and a potential complement to tokenizer architectures, providing structural guidance
 450 that would otherwise be missing.

451 **Tokenizer’s Language Bias.** Tokenization inherently introduces language-specific biases. Due
 452 to the fixed vocabulary size and the challenges of modifying embedding layers after training, un-
 453 derrepresented languages often undergo suboptimal segmentation. Such segmentations frequently
 454 misalign with semantic boundaries, which can negatively impact overall model performance. Lime
 455 Tokenization provides a simple yet effective way to extract a richer data signal per token by
 456 leveraging lightweight annotation models. As previously stated this has in particular been beneficial to
 457 keep split tokens together. Future work should explore augmenting the embedding space with explicit
 458 language identifiers to further improve multilingual robustness. Additionally, the tokenizer-agnostic
 459 nature of our method opens the door to extending it beyond subword-based tokenizers, including
 460 byte-level, character-level, or even tokenizer-free models (Deisereth et al., 2024).

461 **Metadata Steering.** Metadata inference-time steering with LIME⁺¹ enables controllable generation.
 462 In our generative use cases (Sec. 4.5), metadata guidance leads to substantial improvements in
 463 reasoning and arithmetics. This indicates that metadata is not only a meaningful training signal
 464 but also a useful mechanism at inference, providing a new, interpretable interface for controllable
 465 token generation. Unlike fine-tuning methods or steering vector methods, metadata steering operates
 466 directly at the embedding layer, requiring no retraining or fine-tuning. The improvements of both
 467 LIME and LIME⁺¹ models on the addition task suggest that heterogeneity in the Baseline latent
 468 space hinders the early emergence of arithmetic capabilities. While this study focuses on linguistic
 469 metadata, our approach can be readily adapted to other domains. In some cases, non-linguistic
 470 domains may provide even more informative look-ahead metadata for language modeling. This
 471 should particularly be useful in the current research trend towards smaller agentic experts.

472 **Predicting Metadata.** Throughout this work we applied spaCy as a metadata annotator for POS
 473 and NER tags. Being a model itself, it achieves an accuracy of roughly 97% on POS and F-score
 474 of 86% on NER. Albeit not being perfect, we demonstrated consistently improved performance
 475 when applying these annotations during training. LIME⁺¹ leverages look-ahead metadata to achieve
 476 even stronger performance. Metadata steering, however, relies on knowledge of the next token. We
 477 demonstrated common use cases where this information is naturally available, allowing LIME⁺¹
 478 to capitalize on these gains. However, in tasks where such information is absent, either additional
 479 supervision is required, or the model must learn to predict the appropriate next-token metadata itself.
 480 To show feasibility of the latter, we extended the language modeling head of a LIME_{2B}⁺¹ model with an
 481 additional metadata head tasked to predict look-ahead POS tags. After pre-training with a balanced
 482 loss on both heads, the metadata head achieves a top-3 accuracy of 82.32%, without affecting the
 483 language head’s performance. Prior work has also explored prediction using intermediate internal
 484 representations of large language models (Popovic & Färber, 2024; Ghandeharioun et al., 2024).
 485 This demonstrates that simultaneous autoregressive prediction of look-ahead metadata holds strong
 486 potential, and, by further steering with it as shown with LIME⁺¹, leverages gains in token accuracy.

486 **Flexibility of Metadata.** Our method deliberately adopts a simple and transparent training con-
 487 figuration in which full input sequences are annotated at once without imposing constraints on
 488 how metadata is generated. The `LIME` method’s design highlights the flexibility of this paradigm.
 489 Specifically, despite the absence of strict causality in our training experiments, when being evaluated
 490 under an enforced strictly causal regime (a condition outside its training distribution where failure is
 491 expected), the model exhibited robustness, maintaining performance parity with or demonstrating
 492 clear advantages over baseline models (see A.10). If strict causality of Metadata is desired, it can be
 493 incorporated through several straightforward strategies in model training. Subsets of tokens during
 494 training may be intentionally re-labeled or noised to improve robustness, and metadata predictors can
 495 be strengthened and jointly optimized as previously discussed. In practice, predictive metadata further
 496 reduces the relevance of strict causality by enabling models to infer reliable anticipatory signals on
 497 their own. It is also likely that `LIME`⁺¹ may be used in constrained generation or settings where
 498 next-token information is naturally available or by running auxiliary models alongside it. Finally, we
 499 observed that the spaCy models used may occasionally fail, e.g., on Q/A-style templates (see A.9).
 500 We left these errors uncorrected; addressing them would likely further improve the benchmark results.
 501 Overall, the design space for strictly causal or hybrid metadata-steered models is broad and supports
 502 multiple paths toward further improvement.

503 6 CONCLUSION

504 In this work, we introduced `LIME`, a novel method to overload token embeddings with linguistic
 505 metadata capturing syntax, semantics, and contextual information. Our approach demonstrates
 506 improvements in language modeling capabilities across various model sizes, while requiring minimal
 507 additional computational resources. We show that `LIME` models keep split word tokens together
 508 and improve cohesion of entities spanning tokens. Our method shows significant improvements on
 509 generative tasks. Furthermore, by pre-training with look-ahead metadata embeddings in `LIME`⁺¹,
 510 we show that token generation can effectively be steered, which is particularly beneficial for noisy
 511 reasoning and arithmetic tasks. These results highlight that `LIME` is a seamless way of integrating
 512 metadata as an auxiliary data signal, enhancing both model efficiency and controllability. The gains
 513 observed with `LIME` and `LIME`⁺¹ demonstrates that models substantially benefit from access to
 514 lightweight metadata. As this benefit occurs even in models up to the 2-billion-parameter scale, it
 515 implies that linguistic features are not yet easily or exhaustively learned. This limitation suggests that
 516 performance gains could be considerably amplified if models were equipped with reliable predictors
 517 for upcoming token classes. Thus, our results emphasize the current efficacy of metadata steering
 518 while pointing to the substantial performance headroom achievable through the integration of richer
 519 anticipatory signals.

520 Future work could explore alternative methods for generating the look-ahead metadata used in
 521 `LIME`⁺¹, such as recovering it from the internal states of LLMs, to further enhance autoregressive
 522 capabilities. Additionally, evaluating `LIME`’s compatibility with different tokenization strategies and
 523 extending the approach beyond language modeling could unlock broader applications and capabilities.
 524 Further, the experiments in this work focused on English, as the DCLM-Baseline dataset is
 525 predominantly English. However, multilingual `LIME` models offer an interesting direction for future
 526 work. Several promising avenues include: (1) replacing language-specific POS embeddings with
 527 UPOS, a universal part-of-speech scheme with 17 labels designed for cross-linguistic consistency
 528 and applicable to many languages, which we expect to generalize well with appropriate taggers;
 529 (2) extending the POS layer to incorporate tag sets from additional languages; and (3) adding
 530 supplementary embedding layers, for instance, grouped by language or language family.

531
 532
 533
 534
 535
 536
 537
 538
 539

540 7 REPRODUCIBILITY
541542 We are committed to ensuring the reproducibility of our work. Upon publication, we will release
543 the code, the final pre-trained models, and detailed instructions necessary to reproduce all final
544 experiments and results presented in this paper.545 Meanwhile we have the modified python tokenizer class, the core of this research, attached. Furthermore,
546 we report all hyperparameters in App. A.2.
547548 549 REFERENCES
550551 Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David R. Mortensen, Noah A. Smith,
552 and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial
553 language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural
554 Language Processing, EMNLP 2023*, pp. 9904–9923, 2023. URL <https://doi.org/10.18653/v1/2023.emnlp-main.614>.555 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
556 scaling laws. In *The Thirteenth International Conference on Learning Representations, ICLR 2025*.
557 OpenReview.net, 2025. URL <https://openreview.net/forum?id=FxNNiUgtfa>.558 Jordi Armengol-Estabé, Marta R. Costa-jussà, and Carlos Escolano. Enriching the transformer with
559 linguistic factors for low-resource machine translation. In Galia Angelova, Maria Kunilovskaya,
560 Ruslan Mitkov, and Ivelina Nikolova-Koleva (eds.), *Proceedings of the International Conference
561 on Recent Advances in Natural Language Processing (RANLP 2021), Held Online, 1-3 Septem-
562 ber, 2021*, pp. 73–78. INCOMA Ltd., 2021. URL <https://aclanthology.org/2021.ranlp-1.9>.563 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
564 about physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on
565 Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-
566 gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
567 Intelligence, EAAI 2020*, pp. 7432–7439, 2020. URL <https://doi.org/10.1609/aaai.v34i05.6239>.568 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
569 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
570 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
571 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
572 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
573 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural
574 Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
575 2020, NeurIPS 2020*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfc4967418bfb8ac142f64a-Abstract.html>.576 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
577 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings
578 of the 2019 Conference of the North American Chapter of the Association for Computational
579 Linguistics: Human Language Technologies, NAACL-HLT 2019, Volume 1 (Long and Short
580 Papers)*, pp. 2924–2936, 2019. URL <https://doi.org/10.18653/v1/n19-1300>.581 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
582 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
583 *CoRR*, abs/1803.05457, 2018. URL <http://arxiv.org/abs/1803.05457>.584 Björn Deiseroth, Manuel Brack, Patrick Schramowski, Kristian Kersting, and Samuel Weinbach.
585 T-FREE: subword tokenizer-free generative llms via sparse representations for memory-efficient
586 embeddings. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
587 Processing, EMNLP 2024*, pp. 21829–21851, 2024. URL <https://doi.org/10.18653/v1/2024.emnlp-main.1217>.

594 Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein,
 595 and William W. Cohen. Time-aware language models as temporal knowledge bases. *Trans.
 596 Assoc. Comput. Linguistics*, 10:257–273, 2022. URL https://doi.org/10.1162/tacl_a_00459.

598 Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, and Danqi Chen. Metadata
 599 conditioning accelerates language model pre-training, 2025. URL <https://arxiv.org/abs/2501.01956>.

600 Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes: A
 601 unifying framework for inspecting hidden representations of language models. In *Forty-first Inter-
 602 national Conference on Machine Learning, ICML 2024*, 2024. URL <https://openreview.net/forum?id=5uwBzcn885>.

603 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
 604 language model pre-training. In *Proceedings of the 37th International Conference on Machine
 605 Learning, ICML 2020*, volume 119 of *Proceedings of Machine Learning Research*, pp. 3929–3938,
 606 2020. URL <http://proceedings.mlr.press/v119/guu20a.html>.

607 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 608 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 609 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
 610 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
 611 Sifre. Training compute-optimal large language models. *CoRR*, abs/2203.15556, 2022. URL
 612 <https://doi.org/10.48550/arXiv.2203.15556>.

613 Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman Yangarber. Effects of sub-word segmentation
 614 on performance of transformer language models. In *Proceedings of the 2023 Conference on
 615 Empirical Methods in Natural Language Processing, EMNLP 2023*, pp. 7413–7425, 2023. URL
 616 <https://doi.org/10.18653/v1/2023.emnlp-main.459>.

617 Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. A survey of knowledge
 618 enhanced pre-trained language models. *IEEE Trans. Knowl. Data Eng.*, 36(4):1413–1430, 2024.
 619 URL <https://doi.org/10.1109/TKDE.2023.3310002>.

620 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 621 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual
 622 Meeting of the Association for Computational Linguistics, ACL 2017, Volume 1: Long Papers*, pp.
 623 1601–1611, 2017. URL <https://doi.org/10.18653/v1/P17-1147>.

624 Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. CTRL:
 625 A conditional transformer language model for controllable generation. *CoRR*, abs/1909.05858,
 626 2019. URL <http://arxiv.org/abs/1909.05858>.

627 Muhammad Khalifa, David Wadden, Emma Strubell, Honglak Lee, Lu Wang, Iz Beltagy, and
 628 Hao Peng. Source-aware training enables knowledge attribution in language models. *CoRR*,
 629 abs/2404.01019, 2024. URL <https://doi.org/10.48550/arXiv.2404.01019>.

630 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
 631 tokenizer and detokenizer for neural text processing. In *Proceedings of the 2018 Conference on
 632 Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations*, pp.
 633 66–71, 2018. URL <https://doi.org/10.18653/v1/d18-2012>.

634 Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
 635 on the reasoning performance of large language models. In *Proceedings of the 62nd Annual
 636 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024*, pp.
 637 15339–15353, 2024. URL <https://doi.org/10.18653/v1/2024.acl-long.818>.

638 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,
 639 Etash Kumar Guha, Sedrick Scott Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff,
 640 Reinhard Heckel, Jean Mercat, Mayee F. Chen, Suchin Gururangan, Mitchell Wortsman, Alon
 641 Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,

648 Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M. Pratt, Sunny Sanyal, Gabriel
 649 Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Raghavi Chandu,
 650 Thao Nguyen, Igor Vasiljevic, Sham M. Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri,
 651 Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev,
 652 Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar,
 653 Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm:
 654 In search of the next generation of training sets for language models. In *Advances in Neural*
 655 *Information Processing Systems 38: Annual Conference on Neural Information Processing Systems*
 656 *2024, NeurIPS 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html.

657

658

659 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis,
 660 and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. *Trans.*
 661 *Assoc. Comput. Linguistics*, 8:726–742, 2020. URL https://doi.org/10.1162/tacl_a_00343.

662

663 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
 664 Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
 665 to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
 666 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-*
 667 *tational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024*, pp.
 668 3245–3276, 2024. URL <https://doi.org/10.18653/v1/2024.naacl-long.179>.

669

670 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson,
 671 Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein.
 672 Transformers can do arithmetic with the right embeddings. In *Advances in Neural Information*
 673 *Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,*
 674 *NeurIPS 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/c35986bc1ee29b31c1011481b77fe540-Abstract-Conference.html.

675

676 Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
 677 Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
 678 Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Am-
 679 brose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai,
 680 Bobak Shahriari, Charlène Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer,
 681 Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George
 682 Tucker, George-Cristian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney,
 683 Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
 684 Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma:
 685 Open models based on gemini research and technology. *CoRR*, abs/2403.08295, 2024. URL
 686 <https://doi.org/10.48550/arXiv.2403.08295>.

687

688 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 689 electricity? A new dataset for open book question answering. In *Proceedings of the 2018*
 690 *Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018. URL
 691 <https://doi.org/10.18653/v1/d18-1260>.

692

693 Benjamin Minixhofer, Edoardo Maria Ponti, and Ivan Vulic. Zero-shot tok-
 694 enizer transfer. In *Advances in Neural Information Processing Systems 38: An-*
 695 *nual Conference on Neural Information Processing Systems 2024, NeurIPS 2024*,
 696 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/532ce4fcf853023c4cf2ac38cbc5d002-Abstract-Conference.html.

697

698 Pit Neitemeier, Björn Deisereth, Constantin Eichenberg, and Lukas Balles. Hierarchical autoregres-
 699 sive transformers: Combining byte- and word-level processing for robust, adaptable language
 700 models. In *The Thirteenth International Conference on Learning Representations, ICLR 2025*,
 701 2025. URL <https://openreview.net/forum?id=tU074jg2vS>.

702

703 Scott Novotney, Sreeparna Mukherjee, Zeeshan Ahmed, and Andreas Stolcke. CUE vectors:
 704 Modular training of language models conditioned on diverse contextual signals. In *Findings*

702 *of the Association for Computational Linguistics: ACL 2022*, pp. 3368–3379, 2022. URL
 703 <https://doi.org/10.18653/v1/2022.findings-acl.265>.

704

705 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 706 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 707 Word prediction requiring a broad discourse context. In *Proceedings of the 54th Annual Meeting
 708 of the Association for Computational Linguistics, ACL 2016, Volume 1: Long Papers*, 2016. URL
 709 <https://doi.org/10.18653/v1/p16-1144>.

710

711 Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
 712 Colin A. Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting
 713 the web for the finest text data at scale. In *Advances in Neural Information Processing
 714 Systems 38: Annual Conference on Neural Information Processing Systems 2024,
 715 NeurIPS 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html.

716

717 Nicholas Popovic and Michael Färber. Embedded named entity recognition using probing classifiers.
 718 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
 719 EMNLP 2024*, pp. 17830–17850, 2024. URL <https://doi.org/10.18653/v1/2024.emnlp-main.988>.

720

721 Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song,
 722 John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
 723 Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
 724 Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
 725 Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
 726 Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
 727 Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
 728 Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-
 729 Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
 730 Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li,
 731 Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia
 732 Guy, Chris Jones, James Bradbury, Matthew J. Johnson, Blake A. Hechtman, Laura Weidinger,
 733 Iason Gabriel, William Isaac, Edward Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
 734 Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
 735 and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher.
CoRR, abs/2112.11446, 2021. URL <https://arxiv.org/abs/2112.11446>.

736

737 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 738 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 739 text transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2020. URL <https://jmlr.org/papers/v21/20-074.html>.

740

741 Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives:
 742 An evaluation of commonsense causal reasoning. In *Logical Formalizations of Commonsense
 743 Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06*, 2011. URL
 744 <http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418>.

745

746 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
 747 adversarial winograd schema challenge at scale. *Commun. ACM*, 64(9):99–106, 2021. URL
 748 <https://doi.org/10.1145/3474381>.

749

750 Craig W. Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
 751 Chris Tanner. Tokenization is more than compression. In *Proceedings of the 2024 Conference
 752 on Empirical Methods in Natural Language Processing, EMNLP 2024*, pp. 678–702, 2024. URL
 753 <https://doi.org/10.18653/v1/2024.emnlp-main.40>.

754

755 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
 756 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
 757 Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kacz-
 758 marczyk, and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next

756 generation image-text models. In *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/a1859debf3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html.

761

762 Rico Sennrich and Barry Haddow. Linguistic input features improve neural machine translation. In *Proceedings of the First Conference on Machine Translation, WMT 2016, colocated with ACL 2016*, pp. 83–91, 2016. URL <https://doi.org/10.18653/v1/w16-2209>.

763

764

765 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, Volume 1: Long Papers*, 2016. URL <https://doi.org/10.18653/v1/p16-1162>.

766

767

768

769 Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into a refined long-horizon pretraining dataset. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025*, pp. 2459–2475, 2025. URL <https://aclanthology.org/2025.acl-long.123/>.

770

771

772

773

774

775 Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuanjing Huang, and Zheng Zhang. Colake: Contextualized language and knowledge embedding. In *Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020*, pp. 3660–3670, 2020. URL <https://doi.org/10.18653/v1/2020.coling-main.327>.

776

777

778

779 Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu, Weibao Gong, Jianzhong Liang, Zhizhou Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao Tian, Hua Wu, and Haifeng Wang. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation. *CoRR*, abs/2107.02137, 2021. URL <https://arxiv.org/abs/2107.02137>.

780

781

782

783

784

785 Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from pre-training and finetuning transformers. In *The Tenth International Conference on Learning Representations, ICLR 2022*, 2022. URL <https://openreview.net/forum?id=f2QYVDyfIB>.

786

787

788

789 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbahn. Position: Will we run out of data? limits of LLM scaling based on human-generated data. In *Forty-first International Conference on Machine Learning, ICML 2024*, 2024. URL <https://openreview.net/forum?id=ViZcgDQjyG>.

790

791

792

793

794 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality data for training language models. In *Forty-first International Conference on Machine Learning, ICML 2024*, 2024. URL <https://openreview.net/forum?id=GLGYYqPwjy>.

795

796

797 Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini. Organize the web: Constructing domains enhances pre-training data curation. *CoRR*, abs/2502.10341, 2025. URL <https://doi.org/10.48550/arXiv.2502.10341>.

798

799

800

801 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via importance resampling. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html.

802

803

804

805

806 Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to repeat: Insights from scaling LLM under token-crisis. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/b9e472cd579c83e2f6aa3459f46aac28-Abstract-Conference.html.

807

808

809

810 Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and
811 Mike Lewis. MEGABYTE: predicting million-byte sequences with multiscale
812 transformers. In *Advances in Neural Information Processing Systems 36: Annual
813 Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
814 2023*. URL [http://papers.nips.cc/paper_files/paper/2023/hash/
815 f8f78f8043f35890181a824e53a57134-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/f8f78f8043f35890181a824e53a57134-Abstract-Conference.html).

816 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
817 machine really finish your sentence? In *Proceedings of the 57th Conference of the Association
818 for Computational Linguistics, ACL 2019, Volume 1: Long Papers*, pp. 4791–4800, 2019. URL
819 <https://doi.org/10.18653/v1/p19-1472>.

820 Shuai Zhang, Lijie Wang, Xinyan Xiao, and Hua Wu. Syntax-guided contrastive learning for pre-
821 trained language model. In *Findings of the Association for Computational Linguistics: ACL 2022,
822 pp. 2430–2440, 2022*. URL [https://doi.org/10.18653/v1/2022.findings-acl.
823 191](https://doi.org/10.18653/v1/2022.findings-acl.191).

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A APPENDIX**
865866 The appendix includes training curves and numerical results from pre-training, along with the
867 hyperparameters used for both the model architectures and training procedures. We further show the
868 impact of LIME tokenization, and present extended benchmark results corresponding to Sec. 4.3.
869 Sec. 4.4 is supplemented with comprehensive token accuracy tables, while Sec. 4.5 is supplemented
870 with detailed FLenQA and ARI-ADD results together with examples of prompts and completions
871 for each task. Finally, we provide the metadata annotator vocabularies employed throughout our
872 experiments.873 **A.1 LLM USAGE**
874875 We used LLMs to aid and polish writing our paper. The ideation, methodological design, and
876 execution of experiments were solely the responsibility of the authors.
877878 **A.2 LIME PRE-TRAINING SETUP DETAILS**
879880 Our 2B model architecture is derived from a Gemma-1 architecture with 2.43B parameters⁵. The
881 1B model architecture follows a Gemma-3-inspired design with 0.92B parameters⁶. Finally, the
882 500M architecture is based on a Gemma-3-style architecture with 0.50B trainable parameters. Tab. 4
883 presents a complete list of hyperparameter values. Exact parameter count can be found in Tab. 6.
884 Training was conducted on 64 NVIDIA A100 GPUs (80GB each) across 8 nodes and required
885 approximately 60 hours per model.886
887 Table 4: Detailed list of hyperparameter values used for models and training.888
889

Category	Hyperparameters	500M	1B	2B
Architecture	num_layers	12	26	18
	d_model	768	1024	2048
	mlp_factor	6	6	8
	num_heads	4	4	8
	num_kv_heads	1	1	1
	norm_type	RMS, $\epsilon = 1e-06$		
	vocab_size	256,000		
	position_embedding_type	rotary complex		
	rotary_embedding_base	10,000		
	activation_function	GELU		
Optimization	mlp_bias	no		
	loss_fn	Cross-Entropy		
	optimizer	AdamW		
	beta1, beta2, epsilon	[0.9, 0.95, 1.e-8]		
	learning_rate	3.e-3		
	lr_schedule	cosine decay to 3.e-4		
	warmup_steps	3,600 (5%)		
	weight_decay	0.033		
Stabilization	gradient_clipping	no		
	dropout	no		
	attention_dropout	no		
	embedding_dropout	no		
	embedding_grad_scaling	inverse mini_batch freq.		
Training	precision	bf16		
	global_batch_size	2048	2048	512
	sequence_length	2048	2048	8192
	micro_batch_size	4	4	1
	tokens_per_step	4,194,304		
	steps	72,000		
	packing_strategy	concatenation		

915
916 ⁵<https://huggingface.co/google/gemma-2b/blob/main/config.json>
917 ⁶<https://huggingface.co/google/gemma-3-1b-pt/blob/main/config.json>

918 A.3 THE IMPACT OF LIME TOKENIZATION
919

920 We quantify the case where $n_{li} > n_{sw}$, meaning that T_{li} produces more tokens from an input sequence
921 than T_{sw} (the Gemma tokenizer). By preserving the finer-grained pre-tokenization boundaries of T_{li} ,
922 Lime Tokenization may produce slightly more tokens. However, this tokenization maintains
923 linguistically meaningful boundaries while reducing the effective vocabulary size by 1.03%. For
924 instance, encoding 1,000 randomly selected DCLM-BASELINE samples (12.77M tokens) results in a
925 1.19% increase (12.90M tokens). Tab. 5 lists the most frequent sequences in this dataset where Lime
926 Tokenization introduces additional granularity.
927

928 Table 5: Top 15 most frequent sequences where Lime Tokenization produces higher granularity
929 when encoding 1,000 DCLM-BASELINE samples. Together, these sequences account for 54.18% of
930 all cases with increased granularity.
931

Gemma Tokenizer	Lime Tokenization	%
•	•	8.67
don	don	6.53
) .) .	6.32
) ,) ,	6.07
."	."	4.17
."	."	3.71
didn	didn	3.64
doesn	does n	2.47
can	can	2.45
,"	,"	2.29
,"	,"	1.92
isn	isn	1.73
cannot	cannot	1.59
.)	.)	1.33
		1.26

946 **Computational Cost.** The computational overhead of LIME Tokenization is dominated by the
947 inference cost of the spaCy word-classification models we employ. These models are lightweight
948 and run efficiently on CPUs, achieving throughput of up to 10,000 words per second⁷. Assuming
949 pre-tokenization and annotation of 302B pre-training tokens and a conservative estimate of 1.5 tokens
950 per word, this corresponds to roughly 5,583 CPU hours. Assuming preprocessing were performed
951 prior to training, it would require approximately 10.9 hours of wall time on 8 nodes with 64 AMD
952 EPYC 7F52 cores each, ahead of our 60-hour pre-training run. However, our training was not
953 data-pipeline-bound and therefore we executed labeling on-the-fly and fully distributed the workload
954 across data workers, resulting in virtually no additional pre-training wall time.
955

956 A.4 LIME PRE-TRAINING RESULT DETAILS
957

958 Pre-training proceeded smoothly, with the loss decreasing consistently and gradient norms remaining
959 stable. LIME_{1B} required 44.64% fewer tokens to fit the training data distribution, while LIME_{2B}
960 required 34.76% fewer tokens (Fig. 5). As shown in Tab. 6, LIME⁺¹ consistently improves accuracy
961 by approximately 19.50% across all model sizes, with perplexity reductions more pronounced at
962 500M (13.95%) than at 2B (8.54%). As model size increases, the proportion of learnable parameters
963 introduced by LIME decreases, reaching as little as 0.006% for the 2B model.
964
965
966
967
968
969
970
971

⁷<https://spacy.io/usage/facts-figures#benchmarks-speed>

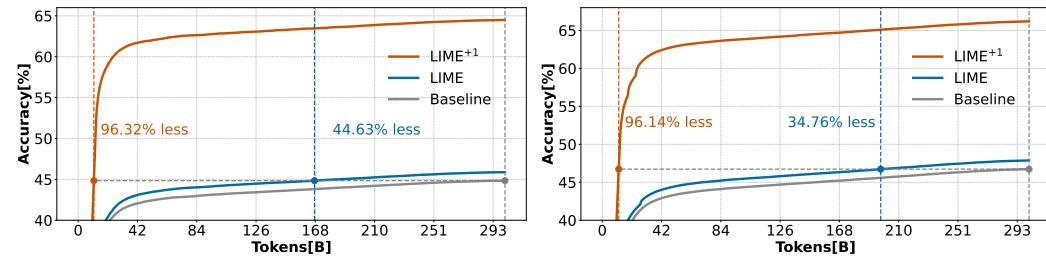
Figure 5: Next token prediction accuracy during Pre-training. **Left:** 1B models **Right:** 2B models.

Table 6: Overview of pre-training metrics and parameter scaling across model sizes.

Size	Model	Token Accuracy	Perplexity	Total Parameters	LIME Parameters
500M	Baseline	41.90	19.72	495,864,576	
	LIME	42.91 \uparrow 1.01	18.50 \downarrow 1.22	495,919,104	+54,528 $+0,0110\%$
	LIME ⁺¹	61.83 \uparrow 19.93	5.77 \downarrow 13.95	495,919,104	+54,528 $+0,0110\%$
1B	Baseline	45.20	14.84	919,655,424	
	LIME	46.21 \uparrow 1.01	14.02 \downarrow 0.82	919,728,128	+72,704 $+0,0079\%$
	LIME ⁺¹	64.86 \uparrow 19.65	4.73 \downarrow 10.11	919,728,128	+72,704 $+0,0079\%$
2B	Baseline	46.92	12.82	2,426,480,640	
	LIME	47.95 \uparrow 1.03	12.10 \downarrow 0.72	2,426,626,048	+145,408 $+0,0060\%$
	LIME ⁺¹	66.40 \uparrow 19.48	4.28 \downarrow 8.54	2,426,626,048	+145,408 $+0,0060\%$

A.5 DETAILED BENCHMARK RESULTS

Benchmark results across all model sizes are listed in Tab. 7. All tasks are evaluated using a randomly selected 5-shot context on 10,000 samples, with standard errors reported.

Table 7: Detailed benchmark results across all model sizes. Improvements relative to the respective Baseline are indicated by \uparrow , relative to LIME with $\uparrow\uparrow$. Generative-format tasks are highlighted.

	500M			1B			2B		
	Base	LIME	LIME ⁺¹	Base	LIME	LIME ⁺¹	Base	LIME	LIME ⁺¹
ARC-Easy [7]	57.00 \pm 1.57 $\uparrow\uparrow$	57.20 \pm 1.57 $\uparrow\uparrow$	58.10 \pm 1.56 $\uparrow\uparrow$	67.30 \pm 1.48 $\uparrow\uparrow$	68.40 \pm 1.47 $\uparrow\uparrow$	68.80 \pm 1.47 $\uparrow\uparrow$	71.20 \pm 1.43 $\uparrow\uparrow$	73.40 \pm 1.40 $\uparrow\uparrow$	72.50 \pm 1.41 $\uparrow\uparrow$
BoolQ [6]	49.50 \pm 1.58 $\uparrow\uparrow$	47.90 \pm 1.58 $\uparrow\uparrow$	59.40 \pm 1.55 $\uparrow\uparrow$	51.60 \pm 1.58 $\uparrow\uparrow$	51.60 \pm 1.58 $\uparrow\uparrow$	60.70 \pm 1.55 $\uparrow\uparrow$	64.10 \pm 1.52 $\uparrow\uparrow$	63.10 \pm 1.53 $\uparrow\uparrow$	60.30 \pm 1.55 $\uparrow\uparrow$
COPA [35]	62.00 \pm 4.88 $\uparrow\uparrow$	64.00 \pm 4.82 $\uparrow\uparrow$	61.00 \pm 4.90 $\uparrow\uparrow$	72.00 \pm 4.51 $\uparrow\uparrow$	67.00 \pm 4.73 $\uparrow\uparrow$	71.00 \pm 4.56 $\uparrow\uparrow$	77.00 \pm 4.23 $\uparrow\uparrow$	81.00 \pm 3.94 $\uparrow\uparrow$	83.00 \pm 3.78 $\uparrow\uparrow$
HellaSwag [51]	36.20 \pm 1.52 $\uparrow\uparrow$	37.00 \pm 1.53 $\uparrow\uparrow$	43.10 \pm 1.57 $\uparrow\uparrow$	52.90 \pm 1.58 $\uparrow\uparrow$	53.20 \pm 1.58 $\uparrow\uparrow$	55.60 \pm 1.57 $\uparrow\uparrow$	63.30 \pm 1.52 $\uparrow\uparrow$	61.50 \pm 1.54 $\uparrow\uparrow$	64.40 \pm 1.51 $\uparrow\uparrow$
LAMBADA [30]	26.50 \pm 1.40 $\uparrow\uparrow$	29.80 \pm 1.45 $\uparrow\uparrow$	49.00 \pm 1.58 $\uparrow\uparrow$	41.00 \pm 1.56 $\uparrow\uparrow$	46.00 \pm 1.58 $\uparrow\uparrow$	66.00 \pm 1.50 $\uparrow\uparrow$	48.00 \pm 1.58 $\uparrow\uparrow$	49.50 \pm 1.58 $\uparrow\uparrow$	73.40 \pm 1.40 $\uparrow\uparrow$
OpenBookQA [26]	31.00 \pm 2.07 $\uparrow\uparrow$	32.60 \pm 2.10 $\uparrow\uparrow$	34.20 \pm 2.12 $\uparrow\uparrow$	36.40 \pm 2.15 $\uparrow\uparrow$	37.80 \pm 2.17 $\uparrow\uparrow$	39.20 \pm 2.19 $\uparrow\uparrow$	39.80 \pm 2.19 $\uparrow\uparrow$	42.00 \pm 2.21 $\uparrow\uparrow$	43.00 \pm 2.22 $\uparrow\uparrow$
PIQA [4]	69.90 \pm 1.45 $\uparrow\uparrow$	69.40 \pm 1.46 $\uparrow\uparrow$	68.20 \pm 1.47 $\uparrow\uparrow$	72.60 \pm 1.41 $\uparrow\uparrow$	73.20 \pm 1.40 $\uparrow\uparrow$	71.20 \pm 1.43 $\uparrow\uparrow$	74.10 \pm 1.39 $\uparrow\uparrow$	75.10 \pm 1.37 $\uparrow\uparrow$	73.70 \pm 1.39 $\uparrow\uparrow$
TriviaQA [16]	8.20 \pm 0.87 $\uparrow\uparrow$	9.80 \pm 0.94 $\uparrow\uparrow$	19.50 \pm 1.25 $\uparrow\uparrow$	17.90 \pm 1.21 $\uparrow\uparrow$	19.70 \pm 1.26 $\uparrow\uparrow$	33.90 \pm 1.50 $\uparrow\uparrow$	25.80 \pm 1.38 $\uparrow\uparrow$	25.00 \pm 1.37 $\uparrow\uparrow$	42.20 \pm 1.56 $\uparrow\uparrow$
Winogrande [36]	51.70 \pm 1.58 $\uparrow\uparrow$	52.60 \pm 1.58 $\uparrow\uparrow$	54.60 \pm 1.58 $\uparrow\uparrow$	57.40 \pm 1.56 $\uparrow\uparrow$	57.60 \pm 1.56 $\uparrow\uparrow$	59.20 \pm 1.55 $\uparrow\uparrow$	64.20 \pm 1.52 $\uparrow\uparrow$	62.60 \pm 1.53 $\uparrow\uparrow$	62.00 \pm 1.54 $\uparrow\uparrow$
Mean	43.56 \pm 1.88 $\uparrow\uparrow$	44.48 \pm 1.89 $\uparrow\uparrow$	49.68 \pm 1.95 $\uparrow\uparrow$	52.12 \pm 1.90 $\uparrow\uparrow$	52.71 \pm 1.90 $\uparrow\uparrow$	58.40 \pm 1.92 $\uparrow\uparrow$	53.52 \pm 2.19 $\uparrow\uparrow$	53.95 \pm 2.18 $\uparrow\uparrow$	63.83 \pm 1.82 $\uparrow\uparrow$

A.6 TOKEN COUPLING DETAILS

Fig. 6 illustrates that summing all positive and negative token prediction accuracy changes from our qualitative analysis in Sec. 4.4 reproduces the overall LIME_{500M} accuracy improvement of 1.01% reported in Sec. 4.2.

In our experiments, we define natural language words as sequences of x alphabetic character tokens ([A-Za-z]) enclosed by whitespaces. Additionally, we include hyphenated compound words, e.g. *long-term* and words bound by the apostrophe ' covering possessions and contractions, e.g., *Murphy's* and *We'll*. Tab. 8 provides a detailed view of how token prediction accuracy varies for words of up to $x = 6$ tokens. Additionally, Tab. 9 presents accuracies calculated in the same way but *includes* the first token of each word. While the absolute values and improvements are smaller, the trend across word lengths remains consistent, and no outliers are observed. This suggests that the observed coupling improvements are not notably influenced by the model correctly predicting the first token of a word.

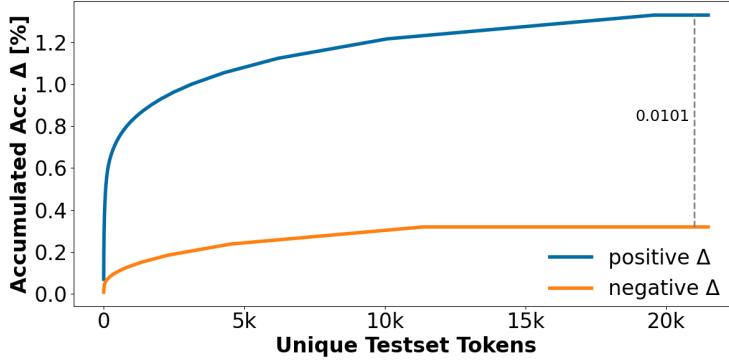


Figure 6: Accuracy shifts resemble the initially observed accuracy improvement of our qualitative analysis of $\text{LIME}_{500\text{M}}$ and Baseline.

Table 8: Token accuracy within words of length x improves across all model sizes.

Model Size	x	n	Baseline	LIME	LIME^{+1}
500M	2	164,256	69.63	76.34 $\uparrow 6.71$	79.80 $\uparrow 10.17$
500M	3	174,852	68.48	71.81 $\uparrow 3.33$	80.84 $\uparrow 12.36$
500M	4	61,947	75.36	76.94 $\uparrow 1.58$	82.09 $\uparrow 6.73$
500M	5	16,152	66.98	68.57 $\uparrow 1.59$	80.18 $\uparrow 13.20$
500M	6	2,840	55.95	56.65 $\uparrow 0.70$	67.82 $\uparrow 11.87$
1B	2	164,256	73.94	80.23 $\uparrow 6.29$	83.31 $\uparrow 9.37$
1B	3	174,852	71.87	75.13 $\uparrow 3.26$	83.49 $\uparrow 11.62$
1B	4	61,947	77.88	79.61 $\uparrow 1.73$	84.68 $\uparrow 6.80$
1B	5	16,152	70.38	72.91 $\uparrow 2.53$	83.36 $\uparrow 12.98$
1B	6	2,840	60.39	63.24 $\uparrow 2.85$	71.97 $\uparrow 11.58$
2B	2	164,256	76.46	82.24 $\uparrow 5.78$	85.06 $\uparrow 8.60$
2B	3	174,852	73.77	76.78 $\uparrow 3.01$	84.72 $\uparrow 10.95$
2B	4	61,947	79.92	81.00 $\uparrow 1.08$	86.34 $\uparrow 6.42$
2B	5	16,152	72.46	74.41 $\uparrow 1.95$	84.73 $\uparrow 12.27$
2B	6	2,840	64.61	66.20 $\uparrow 1.59$	74.82 $\uparrow 10.21$
500M	≥ 2	424,960	69.68	73.95 $\uparrow 4.27$	80.41 $\uparrow 10.73$
1B	≥ 2	424,960	73.32	77.48 $\uparrow 4.16$	83.43 $\uparrow 10.11$
2B	≥ 2	424,960	75.51	79.24 $\uparrow 3.73$	84.95 $\uparrow 9.44$
500M	1	5,049,553	33.91	34.59 $\uparrow 0.68$	55.10 $\uparrow 21.19$
1B	1	5,049,553	37.23	37.89 $\uparrow 0.66$	58.35 $\uparrow 21.12$
2B	1	5,049,553	39.08	39.80 $\uparrow 0.72$	59.94 $\uparrow 20.86$

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

Table 9: The trend of token-level accuracy improvements for words of length x persists even when the first token of each word is included.

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Model Size	x	n	Baseline	LIME	LIME ⁺¹
500M	1	5,049,553	33.91	34.59 $\uparrow 0.68$	55.10 $\uparrow 21.19$
	2	328,512	43.28	46.86 $\uparrow 3.58$	54.15 $\uparrow 10.87$
	3	262,278	51.89	54.29 $\uparrow 2.40$	66.23 $\uparrow 14.34$
	4	82,596	60.97	62.32 $\uparrow 1.35$	69.80 $\uparrow 8.83$
	5	20,190	55.88	57.29 $\uparrow 1.41$	69.36 $\uparrow 13.48$
	6	3,408	49.32	50.15 $\uparrow 0.83$	61.30 $\uparrow 11.98$
1B	1	5,049,553	37.23	37.89 $\uparrow 0.66$	58.35 $\uparrow 21.12$
	2	328,512	47.35	50.79 $\uparrow 3.44$	58.57 $\uparrow 11.22$
	3	262,278	55.27	57.66 $\uparrow 2.39$	69.67 $\uparrow 14.40$
	4	82,596	63.67	65.14 $\uparrow 1.47$	72.73 $\uparrow 9.06$
	5	20,190	59.26	61.37 $\uparrow 2.11$	72.97 $\uparrow 13.71$
	6	3,408	53.58	55.96 $\uparrow 2.38$	65.02 $\uparrow 11.44$
2B	1	5,049,553	39.08	39.80 $\uparrow 0.72$	59.94 $\uparrow 20.86$
	2	328,512	49.79	53.00 $\uparrow 3.21$	60.87 $\uparrow 11.08$
	3	262,278	57.25	59.42 $\uparrow 2.17$	71.21 $\uparrow 13.96$
	4	82,596	65.68	66.63 $\uparrow 0.95$	74.59 $\uparrow 8.91$
	5	20,190	61.26	62.98 $\uparrow 1.72$	74.57 $\uparrow 13.31$
	6	3,408	57.28	58.74 $\uparrow 1.46$	68.10 $\uparrow 10.83$

1134 A.7 EXTENSIVE FLENQA AND ARI-ADD RESULTS
11351136 Here, we present the complete results for reasoning and arithmetic tasks across all model sizes.
1137 Tab. 10 shows that the evaluated arithmetic capabilities begin to emerge at the 1B scale, with LIME
1138 providing slight improvements and LIME⁺¹ yielding a substantial increase of 12.9%.1139
1140 Table 10: Complete ARI-ADD results.
1141

Size	Baseline	LIME	LIME ⁺¹
2B	22.6	26.9 \uparrow 4.3	58.7 \uparrow 36.1
1B	4.1	5.2 \uparrow 1.1	17.0 \uparrow 12.9
500M	0.5	0.1 \downarrow 0.4	1.3 \uparrow 0.8

1142
1143
1144
1145
1146
1147 Tab. 11 reports FLenQA results for all model sizes and applicable noise lengths. Variations in spaces
1148 and dashes between two words are ignored when matching the ground truth to avoid penalizing
1149 correctly predicted but differently formatted completions. LIME⁺¹ consistently improves reasoning
1150 performance across scales, with the 500M model showing the largest gain of 51.8% on FLQA-500.1151
1152 Table 11: Detailed FLenQA results across model sizes. While Baseline and LIME match the first
1153 eight generated words, LIME⁺¹ generates and matches only one word.

Size	Task	Baseline	LIME	LIME ⁺¹
2B	FLQA-250	42.0	52.0 \uparrow 10.0	80.0 \uparrow 38.0
2B	FLQA-500	49.5	65.3 \uparrow 15.8	73.5 \uparrow 24.0
2B	FLQA-1000	34.8	47.0 \uparrow 12.2	65.3 \uparrow 30.5
2B	FLQA-2000	40.3	44.3 \uparrow 4.0	52.5 \uparrow 12.2
2B	FLQA-3000	28.2	30.0 \uparrow 1.8	39.3 \uparrow 11.1
1B	FLQA-250	36.0	28.0 \downarrow 8.0	80.0 \uparrow 44.0
1B	FLQA-500	39.0	32.0 \downarrow 7.0	74.0 \uparrow 35.0
1B	FLQA-1000	32.4	33.0 \uparrow 0.6	78.5 \uparrow 46.1
500M	FLQA-250	22.0	40.0 \uparrow 18.0	70.0 \uparrow 48.0
500M	FLQA-500	22.0	48.8 \uparrow 26.8	73.8 \uparrow 51.8
500M	FLQA-1000	12.5	30.5 \uparrow 18.0	72.5 \uparrow 42.0

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
Additionally we present FLenQA results with a different prompt and stricter matching (Tab. 12). The
prompt is shorter and less specific (*Ethan is in a*), and the matching criteria are more stringent (first-
two words). Under these conditions, LIME_{1B} shows substantial improvement, while Baseline
and LIME perform generally lower. LIME⁺¹ improvements across model sizes are also amplified,
reaching +75.8% for LIME⁺¹_{500M}.Table 12: Additional FLenQA results evaluated with strict next-two-words matching using the prompt
'is in a'.

Size	Task	Baseline	LIME	LIME ⁺¹
2B	FLQA-250	12.0	22.0 \uparrow 10.0	76.0 \uparrow 64.0
2B	FLQA-500	12.5	15.3 \uparrow 2.8	62.3 \uparrow 49.8
2B	FLQA-1000	7.3	9.5 \uparrow 2.2	63.8 \uparrow 56.5
2B	FLQA-2000	5.0	7.0 \uparrow 2.0	55.8 \uparrow 50.8
2B	FLQA-3000	3.8	7.8 \uparrow 4.0	52.5 \uparrow 48.7
1B	FLQA-250	32.0	58.0 \uparrow 26.0	98.0 \uparrow 66.0
1B	FLQA-500	6.0	32.5 \uparrow 26.5	78.0 \uparrow 72.0
1B	FLQA-1000	4.3	24.8 \uparrow 20.5	68.8 \uparrow 64.5
500M	FLQA-250	10.0	14.0 \uparrow 4.0	80.0 \uparrow 70.0
500M	FLQA-500	3.5	4.0 \uparrow 0.5	79.3 \uparrow 75.8
500M	FLQA-1000	2.3	1.5 \downarrow 0.8	68.8 \uparrow 66.5

1188 A.8 ARI-ADD AND FLENQA COMPLETIONS
1189

1190 We illustrate FLenQA and ARI-ADD evaluations using example prompts and completions from the
1191 2B models (Tab. 13). In the two sampled tokens shown, the completions consist solely of digits, a
1192 pattern that holds for all completions across all model variants. This demonstrates that LIME and
1193 LIME⁺¹ enhance arithmetic capabilities rather than just predicting digits.

1194 Table 13: ARI-ADD prompt and completion examples generated by our 2B models.
1195

Prompt	Completion	Model
The result is: 12+15 =	27	Baseline
	27	LIME
	27	LIME ⁺¹
The result is: 18+26 =	36	Baseline
	44	LIME
	44	LIME ⁺¹
The result is: 48+45 =	10	Baseline
	91	LIME
	93	LIME ⁺¹

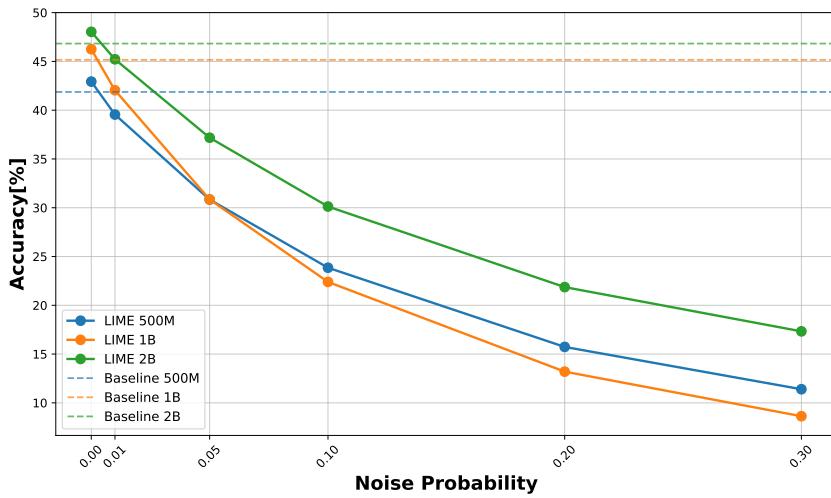
1208 Further, Tab. 14 contains prompt and completion examples from our FLenQA evaluation, specifically
1209 from the 2B model with 1,000 noise (FLQA-1000). Ground truth is matched within the first eight
1210 words, while LIME⁺¹ uses only one. For comparability, words such as *white walled* are counted as a
1211 single word, consistent with counting *marble-floored* as one word.
1212

1213 Table 14: FLQA-1000 prompt and completion examples generated by our 2B models.
1214

Prompt	Completion	Model
Eric George is in a room. It has the following properties:	\n • It is a white walled . \n • It is it is white walled , it is a room, and white walled	Baseline LIME LIME ⁺¹
Kathleen Russo is in a room. It has the following properties:	\n - it is a room \n - it is a room It is marble-floored . \n It is a foyer. It marble-floored	Baseline LIME LIME ⁺¹
Rachel Hancock is in a room. It has the following properties:	it is a room, it is a room it is a room, it is a room wooden-floored	Baseline LIME LIME ⁺¹

1242 A.9 NOISE ROBUSTNESS OF LIME MODELS
1243

1244 We investigate the role of label noise further by introducing controlled POS and NER noise levels
1245 of $0.001 \leq p \leq 0.3$ during teacher-forced next-token accuracy evaluation. The spaCy-predicted
1246 label was replaced with a randomly selected label with probability p . Note that this form of noise
1247 is out-of-distribution, since our models were trained solely on spaCy-generated labels without any
1248 artificial label noise. We observe that LIME_{500M} and LIME_{2B} exhibit comparable robustness under
1249 increasing noise, whereas the LIME_{1B} model degrades more rapidly, an observation we consider
1250 particularly noteworthy (see App. 7). We assume that this may relate to skewed architectural
1251 differences, specifically the larger number of transformer blocks (see App. A.2) in the 1B model
1252 compared to the 500M and 2B models. Further, we want to emphasize, that the model has already
1253 been trained with imperfect labels, exposing it to some noise. While the overall noise was small,
1254 adding artificial noise at inference quickly pushes token predictions out of distribution. This behavior
1255 is not only common for POS or NER labels but also for standard LLM token prediction. Large
1256 noise levels (over a few percent) are unrealistic and shown only for illustration; smaller amounts are
1257 more typical, and within this range the model remains relatively robust. Given the imperfection of
1258 annotation models, improving them could further enhance both token-level accuracy and downstream
1259 performance, benefiting LIME as well.

1276 Figure 7: LIME next token prediction accuracy under increasingly noisy metadata labels.
12771278 Table 15: Accuracy (%) under artificial noise levels for different model sizes.
1279

p	0	0.01	0.05	0.1	0.2	0.3
LIME 500M	42.93	39.55	30.84	23.85	15.73	11.40
LIME 1B	46.25	42.04	30.85	22.39	13.20	8.63
LIME 2B	48.03	45.22	37.18	30.13	21.86	17.33

1285 A.10 STRICTLY CAUSAL EVALUATION
1286

1288 Bidirectional metadata annotators such as spaCy’s POS and NER models can assign labels that depend
1289 on surrounding tokens, which may introduce inconsistencies in a strictly causal, one-by-one token
1290 generation setting. Thus, we investigated the impact of causal information in metadata annotations on
1291 LIME models. To this end, we re-evaluated training metrics (Sec. 4.2) and downstream benchmarks
1292 (Sec. 4.3), ensuring that each token’s metadata was not influenced by future tokens. First, we observe
1293 that LIME models remain on par with the baseline, even in this out-of-training-distribution setting,
1294 although the improvements are marginally reduced (see Tab. 16), demonstrating strong robustness
1295 and adaptability. Second, downstream performance is similarly unaffected (see Tab. 17). Finally, in
the Q/A setting, we observed noise in spaCy-generated metadata; for example, Edmund is labeled

1296 as an Adjective when preceded by `Answer`; but as a Noun otherwise. This highlights that LIME
 1297 maintains strong performance even under suboptimal labeling conditions. Importantly, our work does
 1298 not focus on metadata retrieval but instead establishes valid upper bounds for performance when such
 1299 data is available, particularly highlighted by our LIME[†] models.
 1300

1301 Table 16: Next token prediction accuracy in a strictly causal setting.
 1302

	500M		1B		2B	
	Baseline	LIME	Baseline	LIME	Baseline	LIME
Accuracy [%]	41.458	41.640	44.756	44.803	46.379	46.430

1307 Table 17: Benchmark results in a strictly causal, one-by-one token generation setting.
 1308

	500M		1B		2B	
	Baseline	LIME	Baseline	LIME	Baseline	LIME
ARC-Easy	56.80 ± 1.57	56.10 ± 1.57	67.50 ± 1.48	66.70 ± 1.49	71.30 ± 1.43	70.50 ± 1.44
BoolQ	49.50 ± 1.58	47.90 ± 1.58	51.60 ± 1.58	51.60 ± 1.58	64.10 ± 1.52	63.20 ± 1.53
COPA	62.00 ± 4.88	66.00 ± 4.76	72.00 ± 4.51	71.00 ± 4.56	77.00 ± 4.23	77.00 ± 4.23
HellaSwag	36.20 ± 1.52	37.50 ± 1.53	53.40 ± 1.58	52.00 ± 1.58	63.80 ± 1.52	58.00 ± 1.56
LAMBADA	26.50 ± 1.40	28.70 ± 1.43	41.00 ± 1.56	42.70 ± 1.56	48.00 ± 1.58	46.10 ± 1.58
OpenBookQA	31.00 ± 2.07	29.20 ± 2.04	36.60 ± 2.16	34.00 ± 2.12	39.80 ± 2.19	38.00 ± 2.17
PIQA	69.50 ± 1.46	68.10 ± 1.47	72.70 ± 1.41	70.40 ± 1.44	74.60 ± 1.38	72.80 ± 1.41
TriviaQA	8.20 ± 0.87	7.90 ± 0.85	17.90 ± 1.21	16.20 ± 1.17	25.80 ± 1.38	20.10 ± 1.27
WinoGrande	50.90 ± 1.58	50.90 ± 1.58	57.50 ± 1.56	56.20 ± 1.57	64.20 ± 1.52	60.80 ± 1.54
Mean	43.40 ± 1.88	43.59 ± 1.87	52.24 ± 1.89	51.20 ± 1.90	58.73 ± 1.86	56.28 ± 1.86

1350
1351

A.11 METADATA ANNOTATOR VOCABULARY: POS (ENGLISH)

1352
1353
1354

For POS metadata embeddings, we use the spaCy `en_core_web_sm` model containing a lightweight CPU-based POS tagger that returns 50 tags (Tab. 18). Lime Tokenization augments its vocabulary with one additional special token.

1355

1356

Table 18: Glossary of 51 POS tags with their respective descriptions.

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

.	punctuation mark, sentence closer
,	punctuation mark, comma
-LRB-	left round bracket
-RRB-	right round bracket
"	opening quotation mark
"	closing quotation mark
:	punctuation mark, colon or ellipsis
\$	symbol, currency
AFX	affix
CC	conjunction, coordinating
CD	cardinal number
DT	determiner
EX	existential there
FW	foreign word
HYPH	punctuation mark, hyphen
IN	conjunction, subordinating or preposition
JJ	adjective (English), other noun-modifier (Chinese)
JJR	adjective, comparative
JJS	adjective, superlative
LS	list item marker
MD	verb, modal auxiliary
NN	noun, singular or mass
NNP	noun, proper singular
NNPS	noun, proper plural
NNS	noun, plural
PDT	predeterminer
POS	possessive ending
PRP	pronoun, personal
PRP\$	pronoun, possessive
RB	adverb
RBR	adverb, comparative
RBS	adverb, superlative
RP	adverb, particle
TO	infinitival “to”
UH	interjection
VB	verb, base form
VBD	verb, past tense
VBG	verb, gerund or present participle
VBN	verb, past participle
VBP	verb, non-3rd person singular present
VBZ	verb, 3rd person singular present
WDT	wh-determiner
WP	wh-pronoun, personal
WP\$	wh-pronoun, possessive
WRB	wh-adverb
SP	space (English), sentence-final particle (Chinese)
ADD	email
NFP	superfluous punctuation
XX	unknown
_SP	whitespace
SPECIAL	special token

1404
1405

A.12 METADATA ANNOTATOR VOCABULARY: NER

1406
1407
1408

For NER metadata embeddings, we employ the spaCy `en_core_web_sm` model, using its lightweight CPU-based NER tagger. The tagger outputs 20 tags (Tab. 19) and LIME Tokenization extends its vocabulary with one additional special token.

1409
1410

Table 19: Glossary of 20 NER tags with their respective descriptions.

1411

PERSON	People, including fictional
NORP	Nationalities or religious or political groups
FAC	Buildings, airports, highways, bridges, etc.
ORG	Companies, agencies, institutions, etc.
GPE	Countries, cities, states
LOC	Non-GPE locations, mountain ranges, bodies of water
PRODUCT	Objects, vehicles, foods, etc. (not services)
EVENT	Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART	Titles of books, songs, etc.
LAW	Named documents made into laws
LANGUAGE	Any named language
DATE	Absolute or relative dates or periods
TIME	Times smaller than a day
PERCENT	Percentage, including "%"
MONEY	Monetary values, including unit
QUANTITY	Measurements, as of weight or distance
ORDINAL	"first", "second", etc.
CARDINAL	Numerals that do not fall under another type
"	No entity
SPECIAL	special token

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457