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ABSTRACT

Pre-training decoder-only language models relies on vast amounts of high-quality
data, yet the availability of such data is increasingly reaching its limits. While
metadata is commonly used to create and curate these datasets, its potential as a
direct training signal remains under-explored. We challenge this status quo and
propose LIME (Linguistic Metadata Embeddings), a method that enriches token
embeddings with metadata capturing syntax, semantics, and contextual properties.
LIME substantially improves pre-training efficiency. Specifically, it adapts up to
56% faster to the training data distribution, while introducing only 0.01% additional
parameters at negligible compute overhead. Beyond efficiency, LIME improves
tokenization, leading to remarkably stronger language modeling capabilities and
generative task performance. These benefits persist across model scales (5S00M
to 2B). In addition, we develop a variant with shifted metadata, LIME*?, that can
guide token generation. Given prior metadata for the next token, LIME ! improves
reasoning performance by up to 38% and arithmetic accuracy by up to 35%.

1 INTRODUCTION

Autoregressive language models have emerged as a prominent area of research due to their impressive
capabilities. However, training these large language models (LLMs) is computationally expensive
and highly data-intensive. Smaller LLMs are particularly attractive because of their reduced resource
requirements and accessibility. Nonetheless, models up to 2B parameters require the same—or
even increased—amount of training data, as their language modeling performance tends to regress
(Hoffmann et al .| [2022).

At the same time, the availability of novel human-generated high-quality training data is decreasing
(Xue et al., 2023} [Villalobos et al.,[2024), emphasizing the need of improving the utility of existing
datasets. To compensate this shortcoming, methods of accumulating LLM pre-training datasets
shift from mere quality filtering to synthetization through earlier model generations and staging of
increasing data quality buckets (Su et al., [2025). In order to determine the stage and quality bucket,
existing document-level metadata is used, along with more complex—and even model-based—scores
that reflect attributes such as educational value, or factual reliability (Schuhmann et al.| |2022; |L1
et al.| 2024; [Penedo et al., 2024; |Wettig et al., 2025)).

However, neither pre-existing nor created metadata are typically propagated downstream into the
model during training. Modern LLM tokenizers are typically trained on yet another blended dataset
with solely text compression as objective, neglecting linguistic research entirely. As such, tokenization
can fragment meaningful content, distort sequence relationships, and ultimately degrade the efficiency
and quality of model learning. Recent work indicate that linguistically motivated segmentation can
improve model training (Hou et al.||2023; |Schmidt et al.}|2024)). Moreover, early work suggests that
linguistic token annotation can improve certain modeling capabilities such as in machine translation
(Sennrich & Haddow, 2016).

To this end, we introduce a method which rigorously integrates token-grained linguistic metadata into
LLM pre-training at negligible complexity and computational overhead: LIME (Linguistic Metadata
Embeddings for LLMs). Our method augments pre-trained subword tokenizer with linguistically
informed annotations, namely POS and NER tags, extending its standard output of raw tokens with
token-aligned metadata. We propagate metadata downstream by incorporating it as additional input
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signals to shift the token embedding space. As a guidance variant, with LIME ™! we shift the metadata
embeddings by one to guide the generation with look-ahead metadata.

In our experiments, we demonstrate that LIME substantially enhances language modeling perfor-
mance. By incorporating metadata, LIME improves data efficiency during training, enabling models
to adapt up to 56% faster to the training data distribution. Additionally, LIME mitigates issues
caused by artificial tokenization splits, keeping the meaning of subword tokens together, as supported
by both qualitative and quantitative analyses. Finally, with LIME"! we demonstrate that models
achieve up to 35% higher accuracy when the metadata class of the token to be predicted is revealed
in advance. Crucially, we apply this guidance in tasks such as for reasoning and arithmetic, where the
relevant metadata is naturally available rather than artificially constructed. These benefits of metadata
annotations persist consistently throughout our scaling ablations of 500M, 1B and 2B parameter
models. Our results raise important questions about inefficient pre-training data usage in standard
causal language model training.

Our main contributions and findings are summarized as follows:

1. We introduce LIME and LIME™!, our approach to augment token embeddings with linguistic
metadata in Sec.

2. We demonstrate how LIME improves language modeling capabilities, in particular next-
token prediction, consistently across various model sizes (Sec. [4.2).

3. LIME models excel in generative downstream tasks (Sec. d.3)) and keep split word tokens
together by improving natural language word cohesion (Sec. 4.4).

4. LIME'! enables inference-time metadata steering which improves reasoning and arithmetic
capabilities (Sec. 4.5).

2 RELATED WORK

Before introducing LIME, we outline key areas of prior work that motivate and inform our approach.
Specifically, we review tokenization strategies and their implications for model efficiency, the role of
metadata in LLM pre-training, the use of linguistic annotations as auxiliary supervision, and recent
efforts to integrate metadata directly at the embedding level.

Pre-Tokenization and Tokenizers. Pre-tokenization defines segment boundaries for subword
tokenization by normalizing and splitting text (e.g., on whitespace or punctuation) into coherent
units. Subword tokenizers, trained with compression-based methods like BPE (Sennrich et al.| [2016)),
inherit biases from their training data: |Ahia et al.|(2023)) report large cross-lingual disparities, with
some languages requiring up to five times more tokens for the same content. Tokenizers optimized for
one distribution may become inefficient under distribution shifts (Ahia et al.| 2023} Deiseroth et al.|
2024; Neitemeier et al.l 2025). Thus, fragmentation, or more tokens per word, correlates with poorer
model performance. Linguistically informed segmentation can improve results: [Hou et al.| (2023)
find morphological splits reduce perplexity and maintain or improve downstream accuracy, while
Schmidt et al.[(2024) show ignoring morphology in pre-tokenization can harm performance. Recent
work explores byte-level or tokenizer-free models such as ByT5 (Xue et al.l2023) and MegaByte
(Yu et al}2023), and T-FREE (Deiseroth et al.,|2024)), which embeds words via character trigrams,
capturing morphological overlaps with smaller embeddings.

Metadata in LLM Pre-training. Pre-training refers to an LLM learning from scratch on large
corpora to establish a foundation for downstream adaptation. LLM downstream performance is
strongly influenced by the quality of pre-training data (Longpre et al.l 2024; |Wettig et al.,|2024). To
improve quality, pre-training data is filtered and deduplicated using metadata typically derived from
heuristic approaches (Raffel et al.l|2020; Rae et al.,|2021) or model-based classifiers (Brown et al.|
2020; | Xie et al., [2023; |Penedo et al., 2024 [Li et al., 2024} Su et al., 2025)). Further, several approaches
have been proposed that, instead of leveraging metadata solely to improve data quality, propagate
metadata directly into model training. For example, CTRL (Keskar et al.,|2019) prepends source-
domain metadata, [Dhingra et al.|(2022) prepend timestamps to improve memorization, |[Liu et al.
(2020) add language identifiers for multilingual training, and Khalifa et al.|(2024) include document
identifiers to improve source attribution. Most recently, |Allen-Zhu & Li (2025) demonstrated
that prepending a special token to useful data significantly increases the model’s capacity ratio,
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Figure 1: LIME and LIME'! architecture. (1) Input text S is split by the linguistic tokenizer (7};).
(2) Linguistic splits are annotated, e.g. with POS and NER tags. (3) Subword tokenization (T,,) is
applied to the linguistic tokens and annotations are aligned to the new splits. (4) Tokens and metadata
are embedded, fused together and passed into consecutive transformer blocks.

while |Gao et al.[(2025)) provided empirical evidence by showing a 33% improvement in pre-training
efficiency when URL metadata was prepended. While effective, these methods rely on the existing
vocabulary to encode metadata, which consumes valuable input token space, and they typically
operate at the document level, limiting annotation granularity.

Auxiliary Supervision with Linguistic Annotations. Incorporating fine-grained linguistic token
annotations into neural NLP models has been widely studied. For example, |Sennrich & Haddow
(2016) showed that features such as POS tags and dependency relations can improve neural machine
translation. These ideas have since been extended to pre-training: ERNIE (Sun et al.| 2021)) leverages
entity-aware masking guided using NER, while syntax-aware pre-training models incorporate depen-
dency structures into attention mechanisms (Zhang et al.,2022). Knowledge-enhanced pre-trained
language models (KEPLMs) (Hu et al.| 2024)) integrate structured information, such as knowledge
graphs. Yet, these approaches substantially increase architectural complexity and computational cost.

Embedding-Level Metadata Integration. Embedding layers serve as an effective mechanism for
metadata injection, enabling structured information to be incorporated directly into the model’s
representational space. For instance, (Guu et al.l [2020) propose retrieval-augmented pre-training
using a knowledge-enriched encoder. The joint learning of language and knowledge embeddings
within a masked language modeling framework has been investigated by |Sun et al.| (2020). CUE
(Novotney et al.| [2022) incorporates metadata, such as author and date, into LLMs through a separate
context encoder. Furthermore, [McLeish et al.| (2024)) showed that embedding positional cues into the
representations of numerical tokens can enhance performance on arithmetic tasks. |Armengol-Estapé
et al.| (2021) investigate the extension of token embeddings with linguistic information to improve
low-resource machine translation in bidirectional transformer models. Nevertheless, incorporating
fine-grained linguistic metadata into the token embeddings of autoregressive LLMs remains an open
research direction. We address this gap with LIME, showing that it delivers scalable improvements in
both efficiency and performance.

3 LIME: LINGUISTIC METADATA FOR LLMS

In this section, we present LIME which integrates linguistic metadata for LLMs. LIME consists of
four stages: (1) linguistic pre-tokenization, (2) metadata annotation, (3) subword tokenization &
granularity alignment, (4) and metadata embedding, as shown in Fig.

Illustrative Example. Before introducing technical details, we summarize LIME (T1). The method
enriches input text with linguistic metadata (e.g., POS or NER tags) before passing it to an LLM.
As illustrated in Fig. |1} a sentence is first split into linguistic tokens (e.g., A bobcat in Japan — four
tokens), which are then annotated with metadata such as POS tags. Since LLMs operate on subword
units, the metadata is aligned with the subword tokenizer output to preserve dimensions. The tokens
and metadata are then embedded, combined, and fed into the transformer. LIME applies each token’s
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Table 1: Illustrating LIME and LIME " with the example of Fig. 1| {} denote embeddings.

) Input Sequence A _bobcat,_in_Japan

(€)] Linguistic Pre-Tokenization A _bobcat _in _Japan

2) Metadata Annotation DT NN IN NNP

A3) Subword Tokenization & A _bob cat _in _Japan
Granularity Alignment DT NN NN IN NNP

{a} {_bob} {cat} {_in} {_Jdapan}

(4a) Metadata Embeddings LIME +{DT} +{NN} +{NN} +{IN} +{ NNP }

{a} { _bob} {cat} {_in} {_Japan}

. +1
(4b) Metadata Embeddings LIME NN} +{ NN} +IN] +(NNP) H X}

own metadata, while LTME*! shifts embeddings to use the next token’s metadata, giving the model
richer linguistic context. These stages are further illustrated in Tab. [I]

(1) Linguistic Pre-Tokenization. We define a tokenizer on the alphabet 3 as the tuple T' = (f, V)
consisting of the function f : ¥* — V* that splits a given text s € >* into a sequence of tokens of the
token vocabulary V' (Minixhofer et al.,2024). A token sequence is denoted as T'(s) = t1, ta, ..., Ly,
of length n. Unlike the conventional approach of using only a statistically learned subword tokenizer
T, we introduce a rule-based linguistic tokenizer 7j; for pre-tokenization. Introducing 7j; allows
for effective and linguistically-informed segmentation into minimal meaningful text units, enabling
the assignment of fine-grained metadata labels.

(2) Metadata Annotation. The metadata annotation process is defined by an annotator A = (g, C)
with the annotation function g : V™ — C™ that, for a given token sequence 7'(s) of length n produces
an annotation sequence A(T(s)) = a1, ag, ..., a, with a € C and C being the set of pre-defined
annotation symbols. The annotation function g can consist of rule-based methods, heuristics or
classification models. As illustrated in Fig.[I] our method allows to define and integrate multiple
annotators, e.g., POS and NER annotations.

(3) Subword Tokenization & Granularity Alignment. Given the subsequent subword tokenizer
Tsw = (fsw, Vsw), its vocabulary and annotation function will naturally differ from those of the
rule-based word tokenizer 7}; used in the first stage, as shown in Fig. (Il This entails that n;; =
|T1:(8)| # |Tsw(8)| = nsyw has to be aligned for an input text s. In the case of n;; < ng,, we define
the annotation function ¢’ : V™i — C"™sv that resolves this granularity mismatch as follows: ¢’
tracks for every token in T, (s) its word context defined by 7};(s) and repeats the relevant annotation
until a granularity match is achieved. In the case of n;; > ng,, where Tj; splits a input sequence
in more tokens than T,,, we keep the finer granularity of T}; by expressing every token in Tj;(s)
with tokens from the vocabulary V;,,. For example, the word “don’t” could linguistically be split
as T};(s) = don ’ t while the subword tokenizer may produce Ty, = don ’ t. In that case we
keep the slightly less compressed word boundaries of Tj;(s) and their corresponding annotations
as the subsequent tokenization of T,,, to not lose annotation precision. Now, for a set of metadata
domains D, and |D| metadata annotators, the final output of this stage is a granularity aligned
sequence consisting of tuple (¢;, (a;,4)acp) for token index i. We refer to these first three stages as
LIME Tokenization.

(4) Metadata Embeddings. In our output tuple (¢;, (a; 4)dep) at index ¢, token ¢; is one-hot encoded
to a vector of length |V,,| and multiplied with the embedding matrix W% € RIVswIX" '} being
the hidden size hyperparameter, producing the language token embedding E'f (¢;). From here we
introduce two variants to blend in token annotations. The first, termed LIME (see Fig. [I]top), uses
metadata embeddings E¢, originating from the same token:

E(t) = Er(t)+ ), walf(aia) . M

Note that the annotation embedding process is applied to individual respective matrices W (%) ¢
RICaxh producing E$,(a;.q). Er, combined with the weighted sum of | D| metadata embeddings
creates the final embedding and LLM input E(¢;).
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Figure 2: Left: Next-token accuracy improves with metadata embedding layers. Our LIME 5oy model
requires 56% less pre-training data to achieve the same token prediction accuracy as Baseline.
Right: Accuracy and perplexity improvements translate consistently across model sizes.

The second implementation (see Fig. I|bottom), termed LIME*!, is tailored for scenarios where the
metadata annotation of the next token (a;41) is known in advance, such as demonstrated in Sec. .5]
During training and inference (Fig. d)), the base embedding E, is augmented using the metadata
embeddings of the next token, rather than the current one. This look-ahead embedding is defined as:

B(ti) = Er(t:) + ), waBi(aic1a) - &)

Note, that we modify only the token embeddings; all other transformer components, including the
LLM head and the cross-entropy loss applied during training, remain unaltered and fully agnostic to
the metadata.

4 EXPERIMENTS

We now present empirical evidence demonstrating the benefits of LIME and LIME*!. We start
with the experimental setup followed by an investigation of model prediction qualities (Sec.
and evaluations on popular benchmarks (Sec. d.3). We then provide qualitative and quantitative
analyses that LTME models improve token coupling (Sec. and finally show that LIME*! excels
in reasoning as well as arithmetic performance (Sec. 4.3)).

4.1 EXPERIMENTAL SETUP

In our experiments, we followed the Gemma architecture (Mesnard et al., |2024) and pre-trained
LIME models in three sizes, SO0M, 1B, 2B, on 302 billion tokens of the DCLM-BASELINE (Li
et al.| [2024) dataset (cf. App.[A.2). We applied the three-stage LIME Tokenization process
described in Sec. 3] with 7;; being the english spaCy tokenizec[ﬂgzmd T the SentencePiece (Kudo &
Richardson, 2018) Gemma tokenizer, and otherwise optimizing the standard cross-entropy loss £ on
the language head (disregarding metadata). As mentioned in Sec. [3] extending tokenization with T;;
increases token count, in our case by 1.19%, but compresses the used vocabulary by 1.03%, and as
such frees embedding parameters (cf. App.[A.3). Models trained with Lime Tokenization but
no additional metadata embedding layers are referred to as Baseline in the following.

We extended the Baseline models with two metadata domains available in spaCy: Syntactic
Part of Speech (POS), with |Cy.s| = 51 (App. , and semantic Named Entity Recognition
(NER), with |Cher| = 20 (App.|A.12). Both annotation embedding layers are weighted equally with
Wpos = Wner = 1 (Eq. . For both LTME and L.IME'?, the additional embedding layers, having 71
entries in total, add less than 0.01% to the total parameters. Since it requires only one vectorized
lookup and addition in the forward pass, it adds negligible runtime overhead. For details, see App.[A.3]
LIME (') inference is illustrated in Fig. E}

1https ://spacy.io/api/tokenizer
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4.2 LINGUISTIC METADATA-EMBEDDINGS IMPROVE LANGUAGE MODELING

We first analyze the effect of metadata embeddings on general pre-training dynamics. Across all
three model sizes, LIME variants reach the same next-token accuracy as their baselines earlier in
training. Fig. E] (left) illustrates these gains for the 500M model. First, we observe that LIMEsqqy
achieves the final accuracy of its Baseline counterpart (41.90%) using 56.35% fewer tokens.
Specifically, both models follow the expected pre-training pattern of rapid early gains. For 500M,
gains begin plateauing after about 42B tokens. From that stage onward, LIME maintains a stable
accuracy advantage, suggesting that extended pre-training of the baseline cannot substitute for LIME
metadata embeddings. This training dynamic is consistent across all three model sizes.

Further, we evaluate model quality across sizes on a DCLM-BASELINE test set of 10,000 samples,
reporting next-token accuracy and perplexity on the same batches of data (Fig. 2] right). We observe
that all LIME models have improved accuracy and reduced perplexity relative to their Baseline
models. Accuracy increases by a constant magnitude of approximately +1 percentage points across
all model sizes. Perplexity reduction is, as expected in this range, more pronounced in smaller model
sizes. LIME"! shows a substantial improvement in accuracy and perplexity. Relative to Baseline
models, accuracy increases by over 40% across model sizes, while perplexity is reduced by more
than 65%, enabling our LIME ;% model to achieve a perplexity of 4.30. Training was stable across all
methods and model sizes. For more detailed results and learning curves, please refer to App.[A.4]
Next, we demonstrate that these results directly translate to downstream task performance.

4.3 LIME MODELS EXCEL IN GENERATIVE TASKS

We evaluate downstream transfer on standard benchmarks (Tab. [2), highlighting results for the 500M
model; comparable trends hold for all sizes, detailed in App. @ Each task was run with 1,000
samples using randomly selected 5-shot contexts.

The results show that LIME models on average slightly improve over their respective Baseline
models. These LIME improvements appear modest due to the use of multiple-choice logit compar-
isons, which may not fully capture the LIME benefits. On tasks that are evaluated using generative
greedy sampling (e.g., LAMBADA/TriviaQA), our method improves model performance substan-
tially across sizesE] Specifically, for our S00M model, LAMBADA increased from 26.50 to 29.80
and TriviaQA from 8.20 to 9.80. LIME"! models, on the other hand, improve in 500M and 1B on 7
of 9 tasks, and on 5 tasks in 2B parameters, when being compared to their respective Baseline
and LIME. The substantial and constant improvement of LIME models on greedily sampled tasks is
further amplified by LIME"! models: For TriviaQA, we observe a relative improvement of 138%,
90%, and 64%, and in LAMBADA of 85%, 61%, 53% for S00M, 1B, 2B, compared to their respective
Baseline.

’The remaining tasks are multiple-choice log-likelihood evaluations compared to argmax matching.
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Figure 4: Inference with LIME and LIME"! models.

4.4 LIME KEEPS TOKENS TOGETHER

Building on the previous finding that LIME boosts performance in generative tasks, we aim to better
understand where and how these improvements arise at the token level. To this end, we first conduct
a qualitative study of token-level accuracy shifts, followed by a detailed quantitative analysis across
word lengths, model sizes, and architectures.

Suffix Tokens, Entity-Groups & Digits. In the following, we take the dataset of Sec. and
rank all unique tokens by their shift in prediction accuracy and weight them by their share in the set.
Iustrating accuracy shifts of the 100 most impactful tokens (Fig. [3) reveals: Suffix tokens such as
ingand ly, that finish words consisting of multiple tokens, exhibit large positive accuracy shifts.
This holds moreover for apostrophe and hyphen, as well as entity-group tokens, i.e. consecutive
tokens that share the same entity metadata class, such as _States from “United States”. Finally,
we observe a constant accuracy improvement across all single-digit tokens 0-9. Accumulating all
positive and negative accuracy shifts resembles the total accuracy gain of LIMEsqqy as reported in

Sec.[4.2] (more details in App.[A.6).

Keeping Natural Language Word Tokens Together. Additionally, in Tab. [3| (left), we count
occurring words of certain token lengths and show their averaged accuracies We observe that LIME
models outperform their baselines across all cases, and notably, for word lengths z > QEI For single-
word tokens (z =1), we still obtain gains of roughly 0.7%. This highlights that metadata embeddings
not only have a strong effect on the cohesion of subword sequences, but also help improving in-
context relevance. LIME™ models further amplify the previously described improvements. As
expected, the look-ahead metadata of LIME"! compellingly improve single-word token prediction
by +21%. Moreover, models trained that way even further double the token-coupling accuracies
improvements to +10%. These findings underline to what extent certainty on token metadata can still
improve next-token prediction, even on models with up to 2B parameters. More details in App.

4.5 METADATA GUIDANCE UNLOCKS HIDDEN REASONING AND ARITHMETIC ABILITIES

Finally, we demonstrate the impact of token-metadata on two common tasks, reasoning (FLenQA)
and symbolic addition arithmetic (ARI-ADD).

Task Definition. FLenQA (Levy et al.l 2024)) requires reasoning across multiple, increasingly noisy
contexts. As such it provides a measure of a model’s ability to robustly handle reasoning scenarios.
We use the FLenQA task *People in Rooms’ (PIR) that prompts to combine two pieces of information
found in a given noisy context. Both facts are required to answer the question, as in the following
example: "John’s room is blue walled [...] Ethan is in John’s room [...] Is Ethan in a blue walled
room?" To evaluate our models that are trained on DCLM-BASELINE only, we convert the questions
into the following generative format: "John’s room is blue walled [...] Ethan is in John’s room [...]
Ethan is in a room. It has the following properties:" and greedily sample for the ground truth " blue
walled" to appear in the subsequent words. Note that using LIME}L, we syntactically steer (Fig.
the model to, e.g., in the prior example, predict an adjective token (JJand <>) by overloading the last

3Details are found in App.
“Note that, the category of tokens in words of x > 2 accounts for 10% of the number of single-word tokens,
since we apply an English-optimized tokenizer to a primarily English corpus.
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Table 3: Left: L.TME models have improved prediction accuracies on tokens within natural language
words of length = > 2 (in tokens) and slightly improve on words consisting of one token (z=1). n
denotes the total token count of the respective length. Right: Reasoning and arithmetic capabilities
are significantly improved with LIME}. Evaluated on FLenQA and ARI-ADD, an addition task.

More details in App.

size | = n Base LIME LIME" Task | Basess LIME;z  LIME};

500M | >2 424960 69.68 73.95+4.27 80.41+10.73 FLQA-250 42,0 52.0t100 80.0 1380
1B >2 424960 7332 7748 +4.16 83.43 1 10.11 FLQA-500 49.5 6531158 73.5124.0
2B >2 424960 75.51 7924 +373 8495+ 9.44 FLQA-1000 | 34.8 47.0+122 6534305
500M 1 5,049,553 3391 34.59 1068 55.10121.19 FLQA-2000 | 403 443+ 40 5251122
1B 1 5,049,553 37.23 37.89+t0.65 58.35+21.12 FLQA-3000 | 282 300+ 1.8 393+11.1
2B 1 5,049,553 39.08 39.80+0.72 59.94 + 20.56 ARI-ADD ‘ 22.6 269+ 43 58.7136.1

token (&) of the context. The benchmark is grouped into 5 noise levels, adding irrelevant information
of 250, 500, 1000, 2000, and 3000 tokens, and each group consisting of 400 samples.

Second, for the arithmetic task, we again try to leverage the already obtained arithmetic performance
from DCLM-BASELINE without further finetuning. We found the prompt "The result is: {num-
ber}+{number} = " performs best. The greedily sampled completion is then compared with the
correct numerical result, thus testing basic symbolic arithmetic capabilities in a generative setting.
We randomly sample 5 < {number} < 49 and average the results over 500 unique number pairs.

Results. In Tab. [3] (right), we report performances across the different FLenQA variants and the
ARI-ADD task. For all tasks we only show the 2B accuracies, as the other model sizes further
degenerated. Nevertheless, the described behavior is consistent across sizes and found in App.
for completion.

In FLenQA we first observe a clear trend of decreasing performance with increasing noise context
across all models, as it is expected. LIME already yields notable improvements over Baseline,
especially for shorter contexts (e.g., +15.8 on FLQA-500). This again indicates that enriching the
embedding with metadata is already helpful to improve next-token accuracy. In contrast, LIME*?
consistently delivers two-digit improvements across all variants, still achieving 39.3% on FLQA-3000
and improving even 38% on FLQA-250. This trend highlights the effectiveness of syntactic steering
in reasoning scenarios when the target class is clear. It is moreover beneficial as noise mitigation,
maintaining robust performance even in more challenging settings.

For ARI-ADD, we first want to highlight that all generated outputs, across all models, were numbers.
The drop in accuracy therefore refers to generation of the wrong digits. Simply annotating the single
digits with number metadata already improves accuracy by 4.3%. Through syntactic steering, i.e.
prioring the model to continue with digits at the ., token of the prompt, proves crucial in unlocking
the full potential of the model on the arithmetic task and improves accuracy by 36.1%.

5 DISCUSSION

Building on the promising results presented above, we now discuss key observations and potential
directions for future work with LIME models.

Pre-Training Efficiency. LIME models consistently reach baseline token accuracy and perplexity
with substantially fewer training tokens. This suggests that linguistic metadata provides meaningful
information that default embeddings would otherwise need to learn expensively, and moreover
do not converge to for 302 billion tokens. The observed benefits scale to larger model sizes; we
conducted experiments with models of up to 2B parameters. LIME metadata embeddings reshape the
inductive biases of LLMs. Whereas standard approaches compress linguistic and metadata signals
into a single embedding space, LIME keeps them disentangled at the embedding mapping, offering
weak supervision. Furthermore, we find that the language modeling improvements of L.IME do not
consistently generalize to standard downstream predictive tasks, i.p. those based on logit comparison,
which is consistent with the observations of Tay et al.|(2022)) and Wettig et al.|(2024). Providing the
LLM with accurate look-ahead metadata, as in LIME*, acts as a constraint on the search space for
the next token, leading to substantial improvements in accuracy and perplexity across model sizes.
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Scaling LIME Models. The computational overhead of LIME models demonstrates robust scaling
characteristics, as it increases linearly with the context length while remaining independent of all other
architectural hyperparameters. Specifically, it runs on CPU at negligible costs compared to model
execution, as described in App.[A.3] When scaling model parameters, we observe a modest reduction
in relative gains on training metrics such as perplexity as model size increases (see App.[A.4). This
may be due to the logarithmic nature of the scales. At the same time, metadata embeddings provide
substantial benefits for larger models, including the LIME,5 model, on tasks that involve emerging
capabilities such as arithmetic (see App.[A.5)), even when trained solely on the base pre-training
dataset without instruction tuning. These findings suggest that LIME scales effectively to larger
models while still offering meaningful advantages in training data efficiency.

Token Coupling. Linguistic metadata helps models maintain coherence both within subword
boundaries and beyond single-word tokens (Sec.[4.4). Our analyses show that LIME strengthens
token coupling across words of all lengths and improves predictions for digits and entities. Using look-
ahead metadata, as with LIME*!, further amplifies accuracy gains. By binding fragmented tokens
into coherent units, metadata embeddings not only boost accuracy but also resolve inconsistencies
inherent to subword tokenization, such as handling prefixes, suffixes, and numbers, which even
renders reasoning abilities more robust and precise. These results highlight metadata as a powerful
inductive bias and a potential complement to tokenizer architectures, providing structural guidance
that would otherwise be missing.

Tokenizer’s Language Bias. Tokenization inherently introduces language-specific biases. Due
to the fixed vocabulary size and the challenges of modifying embedding layers after training, un-
derrepresented languages often undergo suboptimal segmentation. Such segmentations frequently
misalign with semantic boundaries, which can negatively impact overall model performance. Lime
Tokenization provides a simple yet effective way to extract a richer data signal per token by
leveraging lightweight annotation models. As previously stated this has in particular been beneficial to
keep split tokens together. Future work should explore augmenting the embedding space with explicit
language identifiers to further improve multilingual robustness. Additionally, the tokenizer-agnostic
nature of our method opens the door to extending it beyond subword-based tokenizers, including
byte-level, character-level, or even tokenizer-free models (Deiseroth et al., [2024)).

Metadata Steering. Metadata inference-time steering with LIME'* enables controllable generation.
In our generative use cases (Sec. [4.5)), metadata guidance leads to substantial improvements in
reasoning and arithmetics. This indicates that metadata is not only a meaningful training signal
but also a useful mechanism at inference, providing a new, interpretable interface for controllable
token generation. Unlike fine-tuning methods or steering vector methods, metadata steering operates
directly at the embedding layer, requiring no retraining or fine-tuning. The improvements of both
LIME and LIME "' models on the addition task suggest that heterogeneity in the Baseline latent
space hinders the early emergence of arithmetic capabilities. While this study focuses on linguistic
metadata, our approach can be readily adapted to other domains. In some cases, non-linguistic
domains may provide even more informative look-ahead metadata for language modeling. This
should particularly be useful in the current research trend towards smaller agentic experts.

Predicting Metadata. Throughout this work we applied spaCy as a metadata annotator for POS
and NER tags. Being a model itself, it achieves an accuracy of roughly 97% on POS and F-score
of 86% on NER. Albeit not being perfect, we demonstrated consistently improved performance
when applying these annotations during training. LIME"* leverages look-ahead metadata to achieve
even stronger performance. Metadata steering, however, relies on knowledge of the next token. We
demonstrated common use cases where this information is naturally available, allowing LIME*!
to capitalize on these gains. However, in tasks where such information is absent, either additional
supervision is required, or the model must learn to predict the appropriate next-token metadata itself.
To show feasibility of the latter, we extended the language modeling head of a LIME}L model with an
additional metadata head tasked to predict look-ahead POS tags. After pre-training with a balanced
loss on both heads, the metadata head achieves a top-3 accuracy of 82.32%, without affecting the
language head’s performance. Prior work has also explored prediction using intermediate internal
representations of large language models (Popovic & Firber, 2024} (Ghandeharioun et al.| [2024]).
This demonstrates that simultaneous autoregressive prediction of look-ahead metadata holds strong
potential, and, by further steering with it as shown with LIME"!, leverages gains in token accuracy.
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Flexibility of Metadata. Our method deliberately adopts a simple and transparent training con-
figuration in which full input sequences are annotated at once without imposing constraints on
how metadata is generated. The LIME method’s design highlights the flexibility of this paradigm.
Specifically, despite the absence of strict causality in our training experiments, when being evaluated
under an enforced strictly causal regime (a condition outside its training distribution where failure is
expected), the model exhibited robustness, maintaining performance parity with or demonstrating
clear advantages over baseline models (see [A.T0). If strict causality of Metadata is desired, it can be
incorporated through several straightforward strategies in model training. Subsets of tokens during
training may be intentionally re-labeled or noised to improve robustness, and metadata predictors can
be strengthened and jointly optimized as previously discussed. In practice, predictive metadata further
reduces the relevance of strict causality by enabling models to infer reliable anticipatory signals on
their own. It is also likely that LIME*! may be used in constrained generation or settings where
next-token information is naturally available or by running auxiliary models alongside it. Finally, we
observed that the spaCy models used may occasionally fail, e.g., on Q/A-style templates (see [A.9).
We left these errors uncorrected; addressing them would likely further improve the benchmark results.
Overall, the design space for strictly causal or hybrid metadata-steered models is broad and supports
multiple paths toward further improvement.

6 CONCLUSION

In this work, we introduced LIME, a novel method to overload token embeddings with linguistic
metadata capturing syntax, semantics, and contextual information. Our approach demonstrates
improvements in language modeling capabilities across various model sizes, while requiring minimal
additional computational resources. We show that LIME models keep split word tokens together
and improve cohesion of entities spanning tokens. Our method shows significant improvements on
generative tasks. Furthermore, by pre-training with look-ahead metadata embeddings in LIME*! |
we show that token generation can effectively be steered, which is particularly beneficial for noisy
reasoning and arithmetic tasks. These results highlight that LIME is a seamless way of integrating
metadata as an auxiliary data signal, enhancing both model efficiency and controllability. The gains
observed with LIME and LIME*! demonstrates that models substantially benefit from access to
lightweight metadata. As this benefit occurs even in models up to the 2-billion-parameter scale, it
implies that linguistic features are not yet easily or exhaustively learned. This limitation suggests that
performance gains could be considerably amplified if models were equipped with reliable predictors
for upcoming token classes. Thus, our results emphasize the current efficacy of metadata steering
while pointing to the substantial performance headroom achievable through the integration of richer
anticipatory signals.

Future work could explore alternative methods for generating the look-ahead metadata used in
LIME"!, such as recovering it from the internal states of LLMs, to further enhance autoregressive
capabilities. Additionally, evaluating LIME ’s compatibility with different tokenization strategies and
extending the approach beyond language modeling could unlock broader applications and capabilities.
Further, the experiments in this work focused on English, as the DCLM-Baseline dataset is
predominantly English. However, multilingual LIME models offer an interesting direction for future
work. Several promising avenues include: (1) replacing language-specific POS embeddings with
UPOS, a universal part-of-speech scheme with 17 labels designed for cross-linguistic consistency
and applicable to many languages, which we expect to generalize well with appropriate taggers;
(2) extending the POS layer to incorporate tag sets from additional languages; and (3) adding
supplementary embedding layers, for instance, grouped by language or language family.
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7  REPRODUCIBILITY

We are committed to ensuring the reproducibility of our work. Upon publication, we will release
the code, the final pre-trained models, and detailed instructions necessary to reproduce all final
experiments and results presented in this paper.

Meanwhile we have the modified python tokenizer class, the core of this research, attached. Further-
more, we report all hyperparameters in App.
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A APPENDIX

The appendix includes training curves and numerical results from pre-training, along with the
hyperparameters used for both the model architectures and training procedures. We further show the
impact of LIME tokenization, and present extended benchmark results corresponding to Sec. [4.3]
Sec.[d.4]is supplemented with comprehensive token accuracy tables, while Sec. is supplemented
with detailed FLenQA and ARI-ADD results together with examples of prompts and completions
for each task. Finally, we provide the metadata annotator vocabularies employed throughout our
experiments.

A.1 LLM USAGE

We used LLMs to aid and polish writing our paper. The ideation, methodological design, and
execution of experiments were solely the responsibility of the authors.

A.2 LIME PRE-TRAINING SETUP DETAILS

Our 2B model architecture is derived from a Gemma-1 architecture with 2.43B parameterﬂ The
1B model architecture follows a Gemma-3-inspired design with 0.92B parametersﬂ Finally, the
500M architecture is based on a Gemma-3-style architecture with 0.50B trainable parameters. Tab. ]
presents a complete list of hyperparameter values. Exact parameter count can be found in Tab. 6]
Training was conducted on 64 NVIDIA A100 GPUs (80GB each) across 8 nodes and required
approximately 60 hours per model.

Table 4: Detailed list of hyperparameter values used for models and training.

Category Hyperparameters 500M 1B 2B
num_layers 12 26 18
d_model 768 1024 2048
mlp_factor 6 6 8
num_heads 4 4 8
Architecture | num_kv_heads 1 1 1
norm_type RMS, € = le-06
vocab_size 256,000
position_embedding_type rotary complex
rotary_embedding_base 10,000
activation_function GELU
mlp_bias no
loss_fn Cross-Entropy
optimizer AdamW
betal, beta2, epsilon [0.9,0.95, 1.e-8]
Optimization | learning_rate 3.e-3
lr_schedule cosine decay to 3.e-4
warmup_steps 3,600 (5%)
weight_decay 0.033
gradient_clipping no
dropout no
attention_dropout no
e embedding_dropout no
Stabilization embedding_grad_scaling inverse mini_batch freq.
precision bf16
global_batch_size 2048 2048 512
sequence_length 2048 2048 8192
micro_batch_size 4 4 1
Training tokens_per_step 4,194,304
steps 72,000
packing_strategy concatenation

Shttps://huggingface.co/google/gemma-2b/blob/main/config. json
®https://huggingface.co/google/gemma-3-1b-pt/blob/main/config. json
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A.3 THE IMPACT OF LIME TOKENIZATION

We quantify the case where n;; > ng,,, meaning that 7;; produces more tokens from an input sequence
than Ty, (the Gemma tokenizer). By preserving the finer-grained pre-tokenization boundaries of 77,
Lime Tokenization may produce slightly more tokens. However, this tokenization maintains
linguistically meaningful boundaries while reducing the effective vocabulary size by 1.03%. For
instance, encoding 1,000 randomly selected DCLM-BASELINE samples (12.77M tokens) results in a
1.19% increase (12.90M tokens). Tab. [5]lists the most frequent sequences in this dataset where Lime
Tokenization introduces additional granularity.

Table 5: Top 15 most frequent sequences where Lime Tokenization produces higher granularity
when encoding 1,000 DCLM-BASELINE samples. Together, these sequences account for 54.18% of
all cases with increased granularity.

Gemma Tokenizer | Lime Tokenization | %

8.67

. . 6.53
don don 6.32

) o ) . 6.07
W N7 4.17
R B 3.71
L JE 3.64
didn didn 2.47
doesn doesn 2.45
can can 2.29
" , " 1.92
R i 1.73
isn isn 1.59
cannot cannot 1.33
) ) 1.26

Computational Cost. The computational overhead of LIME Tokenization is dominated by the
inference cost of the spaCy word-classification models we employ. These models are lightweight
and run efficiently on CPUs, achieving throughput of up to 10,000 words per secondm Assuming
pre-tokenization and annotation of 302B pre-training tokens and a conservative estimate of 1.5 tokens
per word, this corresponds to roughly 5,583 CPU hours. Assuming preprocessing were performed
prior to training, it would require approximately 10.9 hours of wall time on 8 nodes with 64 AMD
EPYC 7F52 cores each, ahead of our 60-hour pre-training run. However, our training was not
data-pipeline-bound and therefore we executed labeling on-the-fly and fully distributed the workload
across data workers, resulting in virtually no additional pre-training wall time.

A.4 LIME PRE-TRAINING RESULT DETAILS

Pre-training proceeded smoothly, with the loss decreasing consistently and gradient norms remaining
stable. LIME5 required 44.64% fewer tokens to fit the training data distribution, while LIME 5
required 34.76% fewer tokens (Fig. . As shown in Tab. E], LIME'! consistently improves accuracy
by approximately 19.50% across all model sizes, with perplexity reductions more pronounced at
500M (13.95%) than at 2B (8.54%). As model size increases, the proportion of learnable parameters
introduced by LIME decreases, reaching as little as 0.006% for the 2B model.

"nttps://spacy.io/usage/facts-figures#benchmarks-speed
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Figure 5: Next token prediction accuracy during Pre-training. Left: 1B models Right: 2B models.

Table 6: Overview of pre-training metrics and parameter scaling across model sizes.

Size  Model Token Accuracy Perplexity | Total Parameters ~ LIME Parameters
Baseline 41.90 19.72 495,864,576

500M LIME 4291 + 1.01 18.50 | 1.22 495,919,104  +54,528 +0,0110%
LIME'! 61.83 1+19.93 5.77 113.95 495919,104  +54,528 +0,0110%
Baseline 45.20 14.84 919,655,424

1B LIME 46.21 + 1.01 14.02 | o0.82 919,728,128  +72,704 +0,0079%
LIME'! 64.86 119.65 473 110.11 919,728,128  +72,704 +0,0079%
Baseline 46.92 12.82 2,426,480,640

2B LIME 4795+ 1.03 12.10 | o0.72 2,426,626,048 +145,408 +0,0060%
LIME'! 66.40 1 19.48 428 | 8.54 2,426,626,048 +145,408 +0,0060%

A.5 DETAILED BENCHMARK RESULTS

Benchmark results across all model sizes are listed in Tab.[7] All tasks are evaluated using a randomly
selected 5-shot context on 10,000 samples, with standard errors reported.

Table 7: Detailed benchmark results across all model sizes. Improvements relative to the respective
Baseline are indicated by 7, relative to LIME with ;. Generative-format tasks are highlighted.

500M 1B 2B
Base LIME LIMEJrl Base LIME LIME'! Base LIME LIME'!
ARC-Easy [7l 57.00+1s1 T 57.20+157  1M58.10=156 67.30+148 T 68.40+147 168.80=147 71.20+143 T 73.40+140 T 72.50+141
BoolQ [6] 49.50+158 47.90+158  159.40=155 51.60+158 51.60+158  1160.70+155 64.10+152 63.10+153 60.30+155
COPA [35] 62.00+488 T 64.00+48 61.00+49 72.00+451 67.00+473 71.00+456 77.00+423 T 81.00+394  183.00+378
HellaSwag [51] 36.20+152 T 37.00+153  143.10=157 52.90+1s8 T 53.20+158  155.60=157 63.30+1.52 61.50+154  164.40+151
LAMBADA [30] 26.50+1490 T 29.80+145  1149.00+158 41.00+1s6 T 46.00+158  1166.00+150 48.00+158 T 49.50+158 AM73.40+140
OpenBookQA [26] 31.00+207 T 32.60+210 {134.20+212 36.40+215 T 37.80+217  139.20+219 39.80+219 T 42.00+221  1M43.00+222
PIQA [4] 69.90+145 69.40+146 68.20+147 72.60+141 T 73.20+140 71.20+143 74.10+1% T 75.10+137 73.70+139
TriviaQA [16] 8.20+087 T 9.80+094 1/19.50+125 17.90+121 T 19.70+126  1133.90+150 25.80+138 25.00+137  1142.20+156
WinoGrande [36] 51.70+158 T 52.60+158 154.60+158 57.40+156 T 57.60+15% 159.20+155 64.20+1.52 62.60+153 62.00+154
Mean 43.56+188 T 44.48+1%9 ﬂ49.68t|us‘ 52.12+190 T 52.71+19% TT584401192‘ 53.52+210 T 53.95+218  1163.83+18

A.6 TOKEN COUPLING DETAILS

Fig. [6]illustrates that summing all positive and negative token prediction accuracy changes from our
qualitative analysis in Sec. f.4]reproduces the overall LIMEsqqy accuracy improvement of 1.01%
reported in Sec.[d.2)].

In our experiments, we define natural language words as sequences of = alphabetic character tokens
([A-Za-z]) enclosed by whitespaces. Additionally, we include hyphenated compound words, e.g.
long-term and words bound by the apostrophe ’ covering possessions and contractions, e.g., Murphy’s
and We’ll. Tab. 8] provides a detailed view of how token prediction accuracy varies for words of up
to z = 6 tokens. Additionally, Tab. [D]presents accuracies calculated in the same way but includes
the first token of each word. While the absolute values and improvements are smaller, the trend
across word lengths remains consistent, and no outliers are observed. This suggests that the observed
coupling improvements are not notably influenced by the model correctly predicting the first token of
a word.
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Figure 6: Accuracy shifts resemble the initially observed accuracy improvement of our qualitative
analysis of LIMEsqoy and Baseline.

Table 8: Token accuracy within words of length x improves across all model sizes.

Model Size | x n Baseline LIME | LIME"

500M 2 164,256 69.63 76.34 +6.71 | 79.80 + 10.17
500M 3 174,852 68.48 71.81 +3.33 | 80.84 1 12.36
500M 4 61,947 75.36 7694 1+ 1.58 | 82.09 + 6.73
500M 5 16,152 66.98 68.57 +1.59 | 80.18 1+ 13.20
500M 6 2,840 55.95 56.65 1 0.70 | 67.82 1 11.87
1B 2 164,256 73.94 80.23 1+ 6.29 | 83.31 + 9.37
1B 3 174,852 71.87 75.13 +3.26 | 83.49 1 11.62
1B 4 61,947 77.88 79.61 +1.73 | 84.68 + 6.80
1B 5 16,152 70.38 7291 1 2.53 | 83.36 1 12.98
1B 6 2,840 60.39 63.24 1+ 2.85 | 71.97 1 11.58
2B 2 164,256 76.46 82.24 +5.78 | 85.06 1+ 8.60
2B 3 174,852 73.77 76.78 1+ 3.01 | 84.72 1 10.95
2B 4 61,947 79.92 81.00 + 1.08 | 86.34 + 6.42
2B 5 16,152 72.46 7441 1+ 1.95 | 84.73 1 12.27
2B 6 2,840 64.61 66.20 + 1.59 | 74.82 1 10.21
500M >2 424,960 69.68 73.95 1+ 4.27 | 80.41 1 10.73
1B >2 424,960 73.32 7748 1 4.16 | 83.43 +10.11
2B >2 424,960 75.51 79.24 1+ 3.73 | 84.95 1+ 9.44
500M 1 5,049,553 33.91 34.59 +0.68 | 55.10 1 21.19
1B 1 5,049,553 37.23 37.89 +0.66 | 58.35 1+ 21.12
2B 1 5,049,553 39.08 39.80 1+ 0.72 | 59.94 + 20.86
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Table 9: The trend of token-level accuracy improvements for words of length x persists even when
the first token of each word is included.

Model Size | x n Baseline LIME | LIME"

500M 1 5,049,553 33.91 34.59 4 0.68 | 55.10 1 21.19
500M 2 328,512 43.28 46.86 1 3.58 | 54.15 + 10.87
500M 3 262,278 51.89 54.29 1 2.40 | 66.23 1 14.34
500M 4 82,596 60.97 62.3211.35 | 69.80 1+ s.83
500M 5 20,190 55.88 57.29 1+ 1.41 | 69.36 1 13.48
500M 6 3,408 49.32 50.1510.83 | 61.30 1 11.98
1B 1 5,049,553 37.23 37.89 1 0.66 | 58.35 1 21.12
1B 2 328,512 47.35 50.79 1 3.44 | 58.57 1+ 11.22
1B 3 262,278 55.27 57.66 1 2.39 | 69.67 + 14.40
1B 4 82,596 63.67 65.14 1+ 1.47 | 72.73 1+ 9.06
1B 5 20,190 59.26 61.37 +2.11 | 72.97 + 13.71
1B 6 3,408 53.58 55.96 +2.38 | 65.02 4 11.44
2B 1 5,049,553 39.08 39.80 1+ 0.72 | 59.94 + 20.86
2B 2 328,512 49.79 53.00 1 3.21 | 60.87 1 11.08
2B 3 262,278 57.25 59.42 1+ 2.17 | 71.21 1 13.96
2B 4 82,596 65.68 66.63 1+ 0.95 | 74.59 1+ s.91
2B 5 20,190 61.26 6298 1+ 1.72 | 74.57 + 13.31
2B 6 3,408 57.28 58.74 1 1.46 | 68.10 1 10.83
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A.7 EXTENSIVE FLENQA AND ARI-ADD RESULTS

Here, we present the complete results for reasoning and arithmetic tasks across all model sizes.
Tab. [I0shows that the evaluated arithmetic capabilities begin to emerge at the 1B scale, with LIME
providing slight improvements and LIME ! yielding a substantial increase of 12.9%.

Table 10: Complete ARI-ADD results.

Size | Baseline LIME LIME"?

2B 22.6 269+ 4.3 5871 36.1
1B 4.1 52+11 17.01 129
500M 0.5 0.140.4 1.3+ o8

Tab. [TT] reports FLenQA results for all model sizes and applicable noise lengths. Variations in spaces
and dashes between two words are ignored when matching the ground truth to avoid penalizing
correctly predicted but differently formatted completions. LIME*! consistently improves reasoning
performance across scales, with the S00M model showing the largest gain of 51.8% on FLQA-500.

Table 11: Detailed FLenQA results across model sizes. While Baseline and LIME match the first
eight generated words, LIME** generates and matches only one word.

Size  Task | Baseline LIME LIME"?
2B FLQA-250 42.0 52.0 + 10.0 80.0 1 38.0
2B FLQA-500 49.5 65.31+15.8 73.5+24.0

2B FLQA-1000 34.8 47.0+12.2 653+ 305
2B FLQA-2000 40.3 443+ 40 5251122
2B FLQA-3000 28.2 300+ 1.8 3931111

1B FLQA-250 36.0 28.01 8.0 80.0144.0
1B FLQA-500 39.0 3201 7.0 74.0+35.0
1B FLQA-1000 32.4 33.0+ 0.6 78.5146.1
500M FLQA-250 22.0 40.0 +18.0 70.0 1 48.0
500M FLQA-500 22.0 48.8 +26.8 73.8 +51.8

500M FLQA-1000 12.5 30.5 +18.0 72.5 1420

Additionally we present FLenQA results with a different prompt and stricter matching (Tab. [I2). The
prompt is shorter and less specific (Ethan is in a), and the matching criteria are more stringent (first-
two words). Under these conditions, LIME;z shows substantial improvement, while Baseline
and LIME perform generally lower. LTME*! improvements across model sizes are also amplified,
reaching +75.8% for LIME} .

Table 12: Additional FLenQA results evaluated with strict next-two-words matching using the prompt
isina’ .

Size  Task | Baseline LIME LIME"

2B FLQA-250 12.0 22.0110.0 76.0164.0
2B FLQA-500 12.5 153+ 28 62.3 1498
2B FLQA-1000 73 95+ 22 63.8156.5
2B FLQA-2000 5.0 7.0+ 2.0 55.8150.8
2B FLQA-3000 3.8 7.8+ 4.0 52.5148.7
1B FLQA-250 32.0 58.0 +126.0 98.0 1 66.0
1B FLQA-500 6.0 3251265 78.0172.0
1B FLQA-1000 43 24.8 1205 68.8 1645
500M FLQA-250 10.0 14.0 + 4.0 80.0 1+ 70.0
500M FLQA-500 3.5 40+ 05 7931758
500M FLQA-1000 2.3 1.5, 08 68.8166.5
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A.8 ARI-ADD AND FLENQA COMPLETIONS

We illustrate FLenQA and ARI-ADD evaluations using example prompts and completions from the
2B models (Tab.[T3). In the two sampled tokens shown, the completions consist solely of digits, a
pattern that holds for all completions across all model variants. This demonstrates that LIME and
LIME*! enhance arithmetic capabilities rather than just predicting digits.

Table 13: ARI-ADD prompt and completion examples generated by our 2B models.

Prompt Completion Model
27 Baseline
The resultis: 12+15 = 27 LIME
27 LIME™
36 Baseline
The result is: 18+26 = 44 LIME
44 LIME"™!
10 Baseline
The result is: 48+45 = 91 LIME
93 LIME™!

Further, Tab. [I4] contains prompt and completion examples from our FLenQA evaluation, specifically
from the 2B model with 1,000 noise (FLQA-1000). Ground truth is matched within the first eight
words, while LIME*! uses only one. For comparability, words such as white walled are counted as a
single word, consistent with counting marble-floored as one word.

Table 14: FLQA-1000 prompt and completion examples generated by our 2B models.

Prompt Completion Model

\n ¢ It is a white walled. \n ° It is Baseline

Eric George is in a room. .. . ..
& it is white walled, it is a room, and LIME

It has the following properties:

white walled LIME™!
Kathleen Russo is in 4 room \n - it iS a room \n - it iS a room Baseline
It has the following propertieé: It is marble-floored.\n It is a foyer. It LIME
marble-floored LIME'!
Rachel Hancock is in a room it iS a room, it iS a room Baseline
- o it is a room, it is a room LIME
It has the following properties: ! 2
& prop wooden-floored LIME'!
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A.9 NOISE ROBUSTNESS OF LIME MODELS

We investigate the role of label noise further by introducing controlled POS and NER noise levels
of 0.001 < p < 0.3 during teacher-forced next-token accuracy evaluation. The spaCy-predicted
label was replaced with a randomly selected label with probability p. Note that this form of noise
is out-of-distribution, since our models were trained solely on spaCy-generated labels without any
artificial label noise. We observe that LIMEsqoy and LIME 5 exhibit comparable robustness under
increasing noise, whereas the LIME;z model degrades more rapidly, an observation we consider
particularly noteworthy (see App.[7). We assume that this may relate to skewed architectural
differences, specifically the larger number of transformer blocks (see App.[A.2) in the 1B model
compared to the 500M and 2B models. Further, we want to emphasize, that the model has already
been trained with imperfect labels, exposing it to some noise. While the overall noise was small,
adding artificial noise at inference quickly pushes token predictions out of distribution. This behavior
is not only common for POS or NER labels but also for standard LLLM token prediction. Large
noise levels (over a few percent) are unrealistic and shown only for illustration; smaller amounts are
more typical, and within this range the model remains relatively robust. Given the imperfection of
annotation models, improving them could further enhance both token-level accuracy and downstream
performance, benefiting LIME as well.
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Figure 7: LIME next token prediction accuracy under increasingly noisy metadata labels.

Table 15: Accuracy (%) under artificial noise levels for different model sizes.

D 0 0.01  0.05 0.1 0.2 0.3

LIME 500M 4293 3955 30.84 2385 1573 1140
LIME 1B 46.25 42.04 30.85 2239 1320 8.63
LIME 2B 48.03 4522 37.18 30.13 21.86 17.33

A.10 STRICTLY CAUSAL EVALUATION

Bidirectional metadata annotators such as spaCy’s POS and NER models can assign labels that depend
on surrounding tokens, which may introduce inconsistencies in a strictly causal, one-by-one token
generation setting. Thus, we investigated the impact of causal information in metadata annotations on
LIME models. To this end, we re-evaluated training metrics (Sec. @]) and downstream benchmarks
(Sec. @, ensuring that each token’s metadata was not influenced by future tokens. First, we observe
that LIME models remain on par with the baseline, even in this out-of-training-distribution setting,
although the improvements are marginally reduced (see Tab. [L6)), demonstrating strong robustness
and adaptability. Second, downstream performance is similarly unaffected (see Tab.[T7). Finally, in
the Q/A setting, we observed noise in spaCy-generated metadata; for example, Edmund is labeled
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as an Adjective when preceded by Answer : but as a Noun otherwise. This highlights that LIME
maintains strong performance even under suboptimal labeling conditions. Importantly, our work does
not focus on metadata retrieval but instead establishes valid upper bounds for performance when such
data is available, particularly highlighted by our LIME*! models.

Table 16: Next token prediction accuracy in a strictly causal setting.

500M 1B 2B
Baseline LIME Baseline LIME Baseline LIME

Accuracy [%] | 41.458 41.640 | 44756 44803 |  46.379 46.430

Table 17: Benchmark results in a strictly causal, one-by-one token generation setting.

500M 1B 2B
Baseline LIME Baseline LIME Baseline LIME
ARC-Easy 56.80 %157 56.10 %157 67.50 =148 66.70 149 71.30 %143 70.50 +1.44
BoolQ 49.50 +1.58 47.90 +1.58 51.60 +1.58 51.60 +1.58 64.10 £1.52 63.20 +1.53
COPA 62.00 +4s8 66.00 +4.76 72.00 +451 71.00 +4.56 77.00 +4.23 77.00 +423
HellaSwag 36.20 +1.52 37.50 +153 53.40 +1.58 52.00 +1.58 63.80 +1.52 58.00 +1.56
LAMBADA 26.50 +1.40 28.70 £1.43 41.00 +156 42.70 £1.56 48.00 +1.58 46.10 =158
OpenBookQA 31.00 +207 29.20 204 36.60 =216 34.00 £2.12 39.80 +2.19 38.00 217
PIQA 69.50 +1.46 68.10 +1.47 72.70 141 70.40 +1.44 74.60 +1.38 72.80 +1.41
TriviaQA 8.20 087 7.90 +o0ss 17.90 <121 16.20 £1.17 25.80 +1.38 20.10 #1227
WinoGrande 50.90 158 50.90 158 57.50 £1.56 56.20 £1.57 64.20 £1.52 60.80 +1.54

Mean 43.40 188 43.59 +187 52.24 +1.89 51.20 +1.90

58.73 £1:6 56.28 +1.86
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A.11 METADATA ANNOTATOR VOCABULARY: POS (ENGLISH)
For POS metadata embeddings, we use the spaCy en_core_web_sm model containing a

lightweight CPU-based POS tagger that returns 50 tags (Tab.[I8). Lime Tokenization augments
its vocabulary with one additional special token.

Table 18: Glossary of 51 POS tags with their respective descriptions.

punctuation mark, sentence closer
, punctuation mark, comma

-LRB- left round bracket

-RRB- right round bracket

" opening quotation mark
i closing quotation mark
: punctuation mark, colon or ellipsis
$ symbol, currency
AFX affix
CC conjunction, coordinating
CDh cardinal number
DT determiner
EX existential there

FwW foreign word
HYPH punctuation mark, hyphen

IN conjunction, subordinating or preposition
JJ adjective (English), other noun-modifier (Chinese)
JJR adjective, comparative
JIS adjective, superlative
LS list item marker
MD verb, modal auxiliary
NN noun, singular or mass
NNP noun, proper singular

NNPS noun, proper plural
NNS noun, plural

PDT predeterminer

POS possessive ending
PRP pronoun, personal

PRP$ pronoun, possessive
RB adverb

RBR adverb, comparative

RBS adverb, superlative
RP adverb, particle
TO infinitival “to”
UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle

VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
WDT wh-determiner

WP wh-pronoun, personal
WP$ wh-pronoun, possessive
WRB wh-adverb

SP space (English), sentence-final particle (Chinese)
ADD email

NFP superfluous punctuation

XX unknown

_SP whitespace

SPECIAL | special token
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A.12 METADATA ANNOTATOR VOCABULARY: NER

For NER metadata embeddings, we employ the spaCy en_core_web_sm model, using
its lightweight CPU-based NER tagger. The tagger outputs 20 tags (Tab. [[9) and LIME
Tokenization extends its vocabulary with one additional special token.

Table 19: Glossary of 20 NER tags with their respective descriptions.

PERSON People, including fictional
NORP Nationalities or religious or political groups
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water
PRODUCT Objects, vehicles, foods, etc. (not services)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART | Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage, including "%"
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL "first", "second", etc.
CARDINAL Numerals that do not fall under another type
” No entity
SPECIAL special token
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