
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LIME: MAKING LLM DATA MORE EFFICIENT WITH
LINGUISTIC METADATA EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pre-training decoder-only language models relies on vast amounts of high-quality
data, yet the availability of such data is increasingly reaching its limits. While
metadata is commonly used to create and curate these datasets, its potential as a
direct training signal remains under-explored. We challenge this status quo and
propose LIME (Linguistic Metadata Embeddings), a method that enriches token
embeddings with metadata capturing syntax, semantics, and contextual properties.
LIME substantially improves pre-training efficiency. Specifically, it adapts up to
56% faster to the training data distribution, while introducing only 0.01% additional
parameters at negligible compute overhead. Beyond efficiency, LIME improves
tokenization, leading to remarkably stronger language modeling capabilities and
generative task performance. These benefits persist across model scales (500M
to 2B). In addition, we develop a variant with shifted metadata, LIME+1, that can
guide token generation. Given prior metadata for the next token, LIME+1 improves
reasoning performance by up to 38% and arithmetic accuracy by up to 35%.

1 INTRODUCTION

Autoregressive language models have emerged as a prominent area of research due to their impressive
capabilities. However, training these large language models (LLMs) is computationally expensive
and highly data-intensive. Smaller LLMs are particularly attractive because of their reduced resource
requirements and accessibility. Nonetheless, models up to 2B parameters require the same—or
even increased—amount of training data, as their language modeling performance tends to regress
(Hoffmann et al., 2022).

At the same time, the availability of novel human-generated high-quality training data is decreasing
(Xue et al., 2023; Villalobos et al., 2024), emphasizing the need of improving the utility of existing
datasets. To compensate this shortcoming, methods of accumulating LLM pre-training datasets
shift from mere quality filtering to synthetization through earlier model generations and staging of
increasing data quality buckets (Su et al., 2025). In order to determine the stage and quality bucket,
existing document-level metadata is used, along with more complex—and even model-based—scores
that reflect attributes such as educational value, or factual reliability (Schuhmann et al., 2022; Li
et al., 2024; Penedo et al., 2024; Wettig et al., 2025).

However, neither pre-existing nor created metadata are typically propagated downstream into the
model during training. Modern LLM tokenizers are typically trained on yet another blended dataset
with solely text compression as objective, neglecting linguistic research entirely. As such, tokenization
can fragment meaningful content, distort sequence relationships, and ultimately degrade the efficiency
and quality of model learning. Recent work indicate that linguistically motivated segmentation can
improve model training (Hou et al., 2023; Schmidt et al., 2024). Moreover, early work suggests that
linguistic token annotation can improve certain modeling capabilities such as in machine translation
(Sennrich & Haddow, 2016).

To this end, we introduce a method which rigorously integrates token-grained linguistic metadata into
LLM pre-training at negligible complexity and computational overhead: LIME (Linguistic Metadata
Embeddings for LLMs). Our method augments pre-trained subword tokenizer with linguistically
informed annotations, namely POS and NER tags, extending its standard output of raw tokens with
token-aligned metadata. We propagate metadata downstream by incorporating it as additional input

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

signals to shift the token embedding space. As a guidance variant, with LIME+1 we shift the metadata
embeddings by one to guide the generation with look-ahead metadata.

In our experiments, we demonstrate that LIME substantially enhances language modeling perfor-
mance. By incorporating metadata, LIME improves data efficiency during training, enabling models
to adapt up to 56% faster to the training data distribution. Additionally, LIME mitigates issues
caused by artificial tokenization splits, keeping the meaning of subword tokens together, as supported
by both qualitative and quantitative analyses. Finally, with LIME+1 we demonstrate that models
achieve up to 35% higher accuracy when the metadata class of the token to be predicted is revealed
in advance. Crucially, we apply this guidance in tasks such as for reasoning and arithmetic, where the
relevant metadata is naturally available rather than artificially constructed. These benefits of metadata
annotations persist consistently throughout our scaling ablations of 500M, 1B and 2B parameter
models. Our results raise important questions about inefficient pre-training data usage in standard
causal language model training.

Our main contributions and findings are summarized as follows:

1. We introduce LIME and LIME+1, our approach to augment token embeddings with linguistic
metadata in Sec. 3.

2. We demonstrate how LIME improves language modeling capabilities, in particular next-
token prediction, consistently across various model sizes (Sec. 4.2).

3. LIME models excel in generative downstream tasks (Sec. 4.3) and keep split word tokens
together by improving natural language word cohesion (Sec. 4.4).

4. LIME+1 enables inference-time metadata steering which improves reasoning and arithmetic
capabilities (Sec. 4.5).

2 RELATED WORK

Before introducing LIME, we outline key areas of prior work that motivate and inform our approach.
Specifically, we review tokenization strategies and their implications for model efficiency, the role of
metadata in LLM pre-training, the use of linguistic annotations as auxiliary supervision, and recent
efforts to integrate metadata directly at the embedding level.

Pre-Tokenization and Tokenizers. Pre-tokenization defines segment boundaries for subword
tokenization by normalizing and splitting text (e.g., on whitespace or punctuation) into coherent
units. Subword tokenizers, trained with compression-based methods like BPE (Sennrich et al., 2016),
inherit biases from their training data: Ahia et al. (2023) report large cross-lingual disparities, with
some languages requiring up to five times more tokens for the same content. Tokenizers optimized for
one distribution may become inefficient under distribution shifts (Ahia et al., 2023; Deiseroth et al.,
2024; Neitemeier et al., 2025). Thus, fragmentation, or more tokens per word, correlates with poorer
model performance. Linguistically informed segmentation can improve results: Hou et al. (2023)
find morphological splits reduce perplexity and maintain or improve downstream accuracy, while
Schmidt et al. (2024) show ignoring morphology in pre-tokenization can harm performance. Recent
work explores byte-level or tokenizer-free models such as ByT5 (Xue et al., 2023) and MegaByte
(Yu et al., 2023), and T-FREE (Deiseroth et al., 2024), which embeds words via character trigrams,
capturing morphological overlaps with smaller embeddings.

Metadata in LLM Pre-training. Pre-training refers to an LLM learning from scratch on large
corpora to establish a foundation for downstream adaptation. LLM downstream performance is
strongly influenced by the quality of pre-training data (Longpre et al., 2024; Wettig et al., 2024). To
improve quality, pre-training data is filtered and deduplicated using metadata typically derived from
heuristic approaches (Raffel et al., 2020; Rae et al., 2021) or model-based classifiers (Brown et al.,
2020; Xie et al., 2023; Penedo et al., 2024; Li et al., 2024; Su et al., 2025). Further, several approaches
have been proposed that, instead of leveraging metadata solely to improve data quality, propagate
metadata directly into model training. For example, CTRL (Keskar et al., 2019) prepends source-
domain metadata, Dhingra et al. (2022) prepend timestamps to improve memorization, Liu et al.
(2020) add language identifiers for multilingual training, and Khalifa et al. (2024) include document
identifiers to improve source attribution. Most recently, Allen-Zhu & Li (2025) demonstrated
that prepending a special token to useful data significantly increases the model’s capacity ratio,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A bobcat in Japan,

DT NNP

<> <> GPE

A in Japan

INNN

<>

bob cat

∑

Nx

+ TNN

<>

(4a) LIME

Aligned
Token

POS

NER

(4) Embeddings

(1) Pre-Tokenization

(2) Annotation

Target

Lime Tokenization

S

ShiftDT

<>

NNP

<> GPE

NN

<>

INNN

<>

A bob cat in Japan

DT

<> Shift

(3) Subword
Tokenization

&
Granularity
Alignment

(4b) LIME+1

A bobcat ,in Japan

DT NN DTIN NNP

<> <> <><> GPE

,

,

Figure 1: LIME and LIME+1 architecture. (1) Input text S is split by the linguistic tokenizer (Tli).
(2) Linguistic splits are annotated, e.g. with POS and NER tags. (3) Subword tokenization (Tsw) is
applied to the linguistic tokens and annotations are aligned to the new splits. (4) Tokens and metadata
are embedded, fused together and passed into consecutive transformer blocks.

while Gao et al. (2025) provided empirical evidence by showing a 33% improvement in pre-training
efficiency when URL metadata was prepended. While effective, these methods rely on the existing
vocabulary to encode metadata, which consumes valuable input token space, and they typically
operate at the document level, limiting annotation granularity.

Auxiliary Supervision with Linguistic Annotations. Incorporating fine-grained linguistic token
annotations into neural NLP models has been widely studied. For example, Sennrich & Haddow
(2016) showed that features such as POS tags and dependency relations can improve neural machine
translation. These ideas have since been extended to pre-training: ERNIE (Sun et al., 2021) leverages
entity-aware masking guided using NER, while syntax-aware pre-training models incorporate depen-
dency structures into attention mechanisms (Zhang et al., 2022). Knowledge-enhanced pre-trained
language models (KEPLMs) (Hu et al., 2024) integrate structured information, such as knowledge
graphs. Yet, these approaches substantially increase architectural complexity and computational cost.

Embedding-Level Metadata Integration. Embedding layers serve as an effective mechanism for
metadata injection, enabling structured information to be incorporated directly into the model’s
representational space. For instance, (Guu et al., 2020) propose retrieval-augmented pre-training
using a knowledge-enriched encoder. The joint learning of language and knowledge embeddings
within a masked language modeling framework has been investigated by Sun et al. (2020). CUE
(Novotney et al., 2022) incorporates metadata, such as author and date, into LLMs through a separate
context encoder. Furthermore, McLeish et al. (2024) showed that embedding positional cues into
the representations of numerical tokens can enhance performance on arithmetic tasks. Yet, enriching
token embeddings with fine-grained linguistic metadata remains an open frontier. We address this
gap with LIME, showing that it delivers scalable improvements in both efficiency and performance.

3 LIME: LINGUISTIC METADATA FOR LLMS

In this section, we present LIME which integrates linguistic metadata for LLMs. LIME consists of
four stages: (1) linguistic pre-tokenization, (2) metadata annotation, (3) subword tokenization &
granularity alignment, (4) and metadata embedding, as shown in Fig. 1.

Illustrative Example. Before introducing technical details, we summarize LIME(+1). The method
enriches input text with linguistic metadata (e.g., POS or NER tags) before passing it to an LLM.
As illustrated in Fig. 1, a sentence is first split into linguistic tokens (e.g., A bobcat in Japan → four
tokens), which are then annotated with metadata such as POS tags. Since LLMs operate on subword
units, the metadata is aligned with the subword tokenizer output to preserve dimensions. The tokens
and metadata are then embedded, combined, and fed into the transformer. LIME applies each token’s
own metadata, while LIME+1 shifts embeddings to use the next token’s metadata, giving the model
richer linguistic context. These stages are further illustrated in Tab. 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Illustrating LIME and LIME+1 with the example of Fig. 1. {} denote embeddings.

(0) Input Sequence A bobcat in Japan

(1) Linguistic Pre-Tokenization A bobcat in Japan
(2) Metadata Annotation DT NN IN NNP

(3) Subword Tokenization & A bob cat in Japan
Granularity Alignment DT NN NN IN NNP

(4a) Metadata Embeddings LIME { A } { bob } { cat } { in } { Japan }
+{ DT } +{ NN } +{ NN } +{ IN } +{ NNP }

(4b) Metadata Embeddings LIME+1 { A } { bob } { cat } { in } { Japan }
+{ NN } +{ NN } +{ IN } +{ NNP } +{ X }

(1) Linguistic Pre-Tokenization. We define a tokenizer on the alphabet Σ as the tuple T = (f, V)
consisting of the function f : Σ∗ → V ∗ that splits a given text s ∈ Σ∗ into a sequence of tokens of the
token vocabulary V (Minixhofer et al., 2024). A token sequence is denoted as T (s) = t1, t2, ..., tn
of length n. Unlike the conventional approach of using only a statistically learned subword tokenizer
Tsw, we introduce a rule-based linguistic tokenizer Tli for pre-tokenization. Introducing Tli allows
for effective and linguistically-informed segmentation into minimal meaningful text units, enabling
the assignment of fine-grained metadata labels.

(2) Metadata Annotation. The metadata annotation process is defined by an annotator A = (g, C)
with the annotation function g : V n → Cn that, for a given token sequence T (s) of length n produces
an annotation sequence A(T (s)) = a1, a2, ..., an with a ∈ C and C being the set of pre-defined
annotation symbols. The annotation function g can consist of rule-based methods, heuristics or
classification models. As illustrated in Fig. 1, our method allows to define and integrate multiple
annotators, e.g., POS and NER annotations.

(3) Subword Tokenization & Granularity Alignment. Given the subsequent subword tokenizer
Tsw = (fsw, Vsw), its vocabulary and annotation function will naturally differ from those of the
rule-based word tokenizer Tli used in the first stage, as shown in Fig. 1. This entails that nli =
|Tli(s)| ̸= |Tsw(s)| = nsw has to be aligned for an input text s. In the case of nli < nsw, we define
the annotation function g′ : V nli → Cnsw that resolves this granularity mismatch as follows: g′

tracks for every token in Tsw(s) its word context defined by Tli(s) and repeats the relevant annotation
until a granularity match is achieved. In the case of nli > nsw, where Tli splits a input sequence
in more tokens than Tsw, we keep the finer granularity of Tli by expressing every token in Tli(s)
with tokens from the vocabulary Vsw. For example, the word “don’t” could linguistically be split
as Tli(s) = do n ’ t while the subword tokenizer may produce Tsw = don ’ t. In that case we
keep the slightly less compressed word boundaries of Tli(s) and their corresponding annotations
as the subsequent tokenization of Tsw, to not lose annotation precision. Now, for a set of metadata
domains D, and |D| metadata annotators, the final output of this stage is a granularity aligned
sequence consisting of tuple (ti, (ai,d)d∈D) for token index i. We refer to these first three stages as
LIME Tokenization.

(4) Metadata Embeddings. In our output tuple (ti, (ai,d)d∈D) at index i, token ti is one-hot encoded
to a vector of length |Vsw| and multiplied with the embedding matrix WL ∈ R|Vsw|×h, h being
the hidden size hyperparameter, producing the language token embedding EL(ti). From here we
introduce two variants to blend in token annotations. The first, termed LIME (see Fig. 1 top), uses
metadata embeddings Ed

M originating from the same token:

E(ti) = EL(ti) +
∑

d∈D
wdE

d
M (ai,d) . (1)

Note that the annotation embedding process is applied to individual respective matrices W (d) ∈
R|Cd|×h producing Ed

M (ai,d). EL combined with the weighted sum of |D| metadata embeddings
creates the final embedding and LLM input E(ti).

The second implementation (see Fig. 1 bottom), termed LIME+1, is tailored for scenarios where the
metadata annotation of the next token (ai+1) is known in advance, such as demonstrated in Sec. 4.5.
During training and inference (Fig. 4), the base embedding EL is augmented using the metadata

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 42 84 126 168 210 251 293
Tokens[B]

40

45

50

55

60
Ac

cu
ra

cy
[%

]

56.35% less96.48% less

LIME+1

LIME
Baseline

500M 1B 2B
Model Size

45

50

55

60

65

Ac
cu

ra
cy

[%
]

Baseline LIME LIME+1

5

10

15

20

Pe
rp

le
xi

ty

Figure 2: Left: Next-token accuracy improves with metadata embedding layers. Our LIME500M model
requires 56% less pre-training data to achieve the same token prediction accuracy as Baseline.
Right: Accuracy and perplexity improvements translate consistently across model sizes.

embeddings of the next token, rather than the current one. This look-ahead embedding is defined as:

E(ti) = EL(ti) +
∑

d∈D
wdE

d
M (ai+1,d) . (2)

Note, that we modify only the token embeddings; all other transformer components, including the
LLM head and the cross-entropy loss applied during training, remain unaltered and fully agnostic to
the metadata.

4 EXPERIMENTS

We now present empirical evidence demonstrating the benefits of LIME and LIME+1. We start
with the experimental setup followed by an investigation of model prediction qualities (Sec. 4.2)
and evaluations on popular benchmarks (Sec. 4.3). We then provide qualitative and quantitative
analyses that LIME models improve token coupling (Sec. 4.4) and finally show that LIME+1 excels
in reasoning as well as arithmetic performance (Sec. 4.5).

4.1 EXPERIMENTAL SETUP

In our experiments, we followed the Gemma architecture (Mesnard et al., 2024) and pre-trained
LIME models in three sizes, 500M, 1B, 2B, on 302 billion tokens of the DCLM-BASELINE (Li
et al., 2024) dataset (cf. App. A.2). We applied the three-stage LIME Tokenization process
described in Sec. 3, with Tli being the english spaCy tokenizer1 and Tsw the SentencePiece (Kudo &
Richardson, 2018) Gemma tokenizer, and otherwise optimizing the standard cross-entropy loss L on
the language head (disregarding metadata). As mentioned in Sec. 3, extending tokenization with Tli

increases token count, in our case by 1.19%, but compresses the used vocabulary by 1.03%, and as
such frees embedding parameters (cf. App. A.3). Models trained with Lime Tokenization but
no additional metadata embedding layers are referred to as Baseline in the following.

We extended the Baseline models with two metadata domains available in spaCy: Syntactic
Part of Speech (POS), with |Cpos| = 51 (App. A.9), and semantic Named Entity Recognition
(NER), with |Cner| = 20 (App. A.10). Both annotation embedding layers are weighted equally with
wpos = wner = 1 (Eq. 1). For both LIME and LIME+1, the additional embedding layers, having 71
entries in total, add less than 0.01% to the total parameters. Since it requires only one vectorized
lookup and addition in the forward pass, it adds negligible runtime overhead. LIME(+1) inference is
illustrated in Fig. 4.

4.2 LINGUISTIC METADATA-EMBEDDINGS IMPROVE LANGUAGE MODELING

We first analyze the effect of metadata embeddings on general pre-training dynamics. Across all
three model sizes, LIME variants reach the same next-token accuracy as their baselines earlier in
training. Fig. 2 (left) illustrates these gains for the 500M model. First, we observe that LIME500M

1
https://spacy.io/api/tokenizer

5

https://spacy.io/api/tokenizer

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: LIME excels at generative tasks.
Improvements to Base are indicated by ↑,
to LIME with ⇑. We highlight (yellow)
generative-format tasks. Exemplified on 500M,
other model sizes in App. A.5.

Base500M LIME500M LIME+1500M
ARC-Easy [6] 57.00±1.57 ↑57.20±1.57 ⇑58.10±1.56

BoolQ [5] 49.50±1.58 47.90±1.58 ⇑59.40±1.55

COPA [34] 62.00±4.88 ↑64.00±4.82 61.00±4.90

HellaSwag [50] 36.20±1.52 ↑37.00±1.53 ⇑43.10±1.57

LAMBADA [29] 26.50±1.40 ↑29.80±1.45 ⇑49.00±1.58

OpenBookQA [25] 31.00±2.07 ↑32.60±2.10 ⇑34.20±2.12

PIQA [3] 69.90±1.45 69.40±1.46 68.20±1.47

TriviaQA [15] 8.20±0.87 ↑ 9.80±0.94 ⇑19.50±1.25

WinoGrande [35] 51.70±1.58 ↑52.60±1.58 ⇑54.60±1.58

Mean 43.56±1.88 ↑44.48±1.89 ⇑49.68±1.95

0.01 0.10 1.00 10.00
Token Share [%]

-0.03

0.04

0.11

0.18

0.25

0.32

Ac
cu

ra
cy

 [

%
pt

]

digits

ists

-

ly

 States

ll

\xa0
'

Figure 3: LIME500M token prediction accuracy in-
creases within semantic and syntactic metadata
class boundaries: Among the 100 most impactful
(share×∆) tokens, our model exhibits improved to-
ken coupling for suffix-, digit-tokens and an exem-
plary entity group token States .

achieves the final accuracy of its Baseline counterpart (41.90%) using 56.35% fewer tokens.
Specifically, both models follow the expected pre-training pattern of rapid early gains. For 500M,
gains begin plateauing after about 42B tokens. From that stage onward, LIME maintains a stable
accuracy advantage, suggesting that extended pre-training of the baseline cannot substitute for LIME
metadata embeddings. This training dynamic is consistent across all three model sizes.

Further, we evaluate model quality across sizes on a DCLM-BASELINE test set of 10,000 samples,
reporting next-token accuracy and perplexity on the same batches of data (Fig. 2 right). We observe
that all LIME models have improved accuracy and reduced perplexity relative to their Baseline
models. Accuracy increases by a constant magnitude of approximately +1 percentage points across
all model sizes. Perplexity reduction is, as expected in this range, more pronounced in smaller model
sizes. LIME+1 shows a substantial improvement in accuracy and perplexity. Relative to Baseline
models, accuracy increases by over 40% across model sizes, while perplexity is reduced by more
than 65%, enabling our LIME+12B model to achieve a perplexity of 4.30. Training was stable across all
methods and model sizes. For more detailed results and learning curves, please refer to App. A.4.
Next, we demonstrate that these results directly translate to downstream task performance.

4.3 LIME MODELS EXCEL IN GENERATIVE TASKS

We evaluate downstream transfer on standard benchmarks (Tab. 2), highlighting results for the 500M
model; comparable trends hold for all sizes, detailed in App. A.5. Each task was run with 1,000
samples using randomly selected 5-shot contexts.

The results show that LIME models on average slightly improve over their respective Baseline
models. On tasks that are evaluated using generative greedy sampling (e.g., LAMBADA/TriviaQA),
our method improves model performance substantially across sizes.2 LIME+1 models, on the other
hand, improve in 500M and 1B on 7 of 9 tasks, and on 5 tasks in 2B parameters, when being
compared to their respective Baseline and LIME. The substantial and constant improvement of
LIME models on greedily sampled tasks is further amplified by LIME+1 models: For TriviaQA, we
observe a relative improvement of 138%, 90%, and 64%, and in LAMBADA of 85%, 61%, 53% for
500M, 1B, 2B, compared to their respective Baseline.

4.4 LIME KEEPS TOKENS TOGETHER

Building on the previous finding that LIME boosts performance in generative tasks, we aim to better
understand where and how these improvements arise at the token level. To this end, we first conduct
a qualitative study of token-level accuracy shifts, followed by a detailed quantitative analysis across
word lengths, model sizes, and architectures.

2The remaining tasks are multiple-choice log-likelihood evaluations compared to argmax matching.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This morning a bobcat

DT NN DT

TIME TIME <>

This morning a

NN

<>

bob

LIME

/ / in

in

NN

<>

cat

LIME Tokenization

(a) LIME models receive metadata augmented input
signal via LIME Tokenization for auto-regressive
token prediction.

NN DT

TIME <>

This morning a

NN

<>

bob cat

NN

<>

/ /?

?

Steer to verb: VBZ

sits

This morning a bobcat

LIME Tokenization

sits

LIME+1

(b) LIME+1 models can steer in metadata directions.
Shifting metadata by one and injecting VBZand <>for
cat steers the model to generate a verb token next.

Figure 4: Inference with LIME and LIME+1 models.

Suffix Tokens, Entity-Groups & Digits. In the following, we take the dataset of Sec. 4.2 and
rank all unique tokens by their shift in prediction accuracy and weight them by their share in the set.
Illustrating accuracy shifts of the 100 most impactful tokens (Fig. 3) reveals: Suffix tokens such as
ing and ly, that finish words consisting of multiple tokens, exhibit large positive accuracy shifts.
This holds moreover for apostrophe and hyphen, as well as entity-group tokens, i.e. consecutive
tokens that share the same entity metadata class, such as States from “United States”. Finally,
we observe a constant accuracy improvement across all single-digit tokens 0-9. Accumulating all
positive and negative accuracy shifts resembles the total accuracy gain of LIME500M as reported in
Sec. 4.2 (more details in App. A.6).

Keeping Natural Language Word Tokens Together. Additionally, in Tab. 3 (left), we count
occurring words of certain token lengths and show their averaged accuracies.3 We observe that LIME
models outperform their baselines across all cases, and notably, for word lengths x≥2.4 For single-
word tokens (x=1), we still obtain gains of roughly 0.7%. This highlights that metadata embeddings
not only have a strong effect on the cohesion of subword sequences, but also help improving in-
context relevance. LIME+1 models further amplify the previously described improvements. As
expected, the look-ahead metadata of LIME+1 compellingly improve single-word token prediction
by +21%. Moreover, models trained that way even further double the token-coupling accuracies
improvements to +10%. These findings underline to what extent certainty on token metadata can still
improve next-token prediction, even on models with up to 2B parameters. More details in App. A.6.

4.5 METADATA GUIDANCE UNLOCKS HIDDEN REASONING AND ARITHMETIC ABILITIES

Finally, we demonstrate the impact of token-metadata on two common tasks, reasoning (FLenQA)
and symbolic addition arithmetic (ARI-ADD).

Task Definition. FLenQA (Levy et al., 2024) requires reasoning across multiple, increasingly noisy
contexts. As such it provides a measure of a model’s ability to robustly handle reasoning scenarios.
We use the FLenQA task ’People in Rooms’ (PIR) that prompts to combine two pieces of information
found in a given noisy context. Both facts are required to answer the question, as in the following
example: "John’s room is blue walled [...] Ethan is in John’s room [...] Is Ethan in a blue walled
room?" To evaluate our models that are trained on DCLM-BASELINE only, we convert the questions
into the following generative format: "John’s room is blue walled [...] Ethan is in John’s room [...]
Ethan is in a room. It has the following properties:" and greedily sample for the ground truth " blue
walled" to appear in the subsequent words. Note that using LIME+12B, we syntactically steer (Fig. 4b)
the model to, e.g., in the prior example, predict an adjective token (JJand <>) by overloading the last
token (a) of the context. The benchmark is grouped into 5 noise levels, adding irrelevant information
of 250, 500, 1000, 2000, and 3000 tokens, and each group consisting of 400 samples.

Second, for the arithmetic task, we again try to leverage the already obtained arithmetic performance
from DCLM-BASELINE without further finetuning. We found the prompt "The result is: {num-
ber}+{number} = " performs best. The greedily sampled completion is then compared with the
correct numerical result, thus testing basic symbolic arithmetic capabilities in a generative setting.
We randomly sample 5 ≤ {number} ≤ 49 and average the results over 500 unique number pairs.

3Details are found in App. A.6.
4Note that, the category of tokens in words of x≥2 accounts for 10% of the number of single-word tokens,

since we apply an English-optimized tokenizer to a primarily English corpus.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Left: LIME models have improved prediction accuracies on tokens within natural language
words of length x≥2 (in tokens) and slightly improve on words consisting of one token (x=1). n
denotes the total token count of the respective length. Right: Reasoning and arithmetic capabilities
are significantly improved with LIME+12B. Evaluated on FLenQA and ARI-ADD, an addition task.
More details in App. A.7.

size x n Base LIME LIME+1

500M ≥2 424,960 69.68 73.95 ↑ 4.27 80.41 ↑ 10.73

1B ≥2 424,960 73.32 77.48 ↑ 4.16 83.43 ↑ 10.11

2B ≥2 424,960 75.51 79.24 ↑ 3.73 84.95 ↑ 9.44

500M 1 5,049,553 33.91 34.59 ↑ 0.68 55.10 ↑ 21.19

1B 1 5,049,553 37.23 37.89 ↑ 0.65 58.35 ↑ 21.12

2B 1 5,049,553 39.08 39.80 ↑ 0.72 59.94 ↑ 20.86

Task Base2B LIME2B LIME+12B

FLQA-250 42.0 52.0 ↑ 10.0 80.0 ↑ 38.0

FLQA-500 49.5 65.3 ↑ 15.8 73.5 ↑ 24.0

FLQA-1000 34.8 47.0 ↑ 12.2 65.3 ↑ 30.5

FLQA-2000 40.3 44.3 ↑ 4.0 52.5 ↑ 12.2

FLQA-3000 28.2 30.0 ↑ 1.8 39.3 ↑ 11.1

ARI-ADD 22.6 26.9 ↑ 4.3 58.7 ↑ 36.1

Results. In Tab. 3 (right), we report performances across the different FLenQA variants and the
ARI-ADD task. For all tasks we only show the 2B accuracies, as the other model sizes further
degenerated. Nevertheless, the described behavior is consistent across sizes and found in App. A.7
for completion.

In FLenQA we first observe a clear trend of decreasing performance with increasing noise context
across all models, as it is expected. LIME already yields notable improvements over Baseline,
especially for shorter contexts (e.g., +15.8 on FLQA-500). This again indicates that enriching the
embedding with metadata is already helpful to improve next-token accuracy. In contrast, LIME+1
consistently delivers two-digit improvements across all variants, still achieving 39.3% on FLQA-3000
and improving even 38% on FLQA-250. This trend highlights the effectiveness of syntactic steering
in reasoning scenarios when the target class is clear. It is moreover beneficial as noise mitigation,
maintaining robust performance even in more challenging settings.

For ARI-ADD, we first want to highlight that all generated outputs, across all models, were numbers.
The drop in accuracy therefore refers to generation of the wrong digits. Simply annotating the single
digits with number metadata already improves accuracy by 4.3%. Through syntactic steering, i.e.
prioring the model to continue with digits at the token of the prompt, proves crucial in unlocking
the full potential of the model on the arithmetic task and improves accuracy by 36.1%.

5 DISCUSSION

Building on the promising results presented above, we now discuss key observations and potential
directions for future work with LIME models.

Pre-Training Efficiency. LIME models consistently reach baseline token accuracy and perplexity
with substantially fewer training tokens. This suggests that linguistic metadata provides meaningful
information that default embeddings would otherwise need to learn expensively, and moreover
do not converge to for 302 billion tokens. The observed benefits scale to larger model sizes; we
conducted experiments with models of up to 2B parameters. LIME metadata embeddings reshape the
inductive biases of LLMs. Whereas standard approaches compress linguistic and metadata signals
into a single embedding space, LIME keeps them disentangled at the embedding mapping, offering
weak supervision. Furthermore, we find that the language modeling improvements of LIME do not
consistently generalize to standard downstream predictive tasks, i.p. those based on logit comparison,
which is consistent with the observations of Tay et al. (2022) and Wettig et al. (2024). Providing the
LLM with accurate look-ahead metadata, as in LIME+1, acts as a constraint on the search space for
the next token, leading to substantial improvements in accuracy and perplexity across model sizes.

Token Coupling. Linguistic metadata helps models maintain coherence both within subword
boundaries and beyond single-word tokens (Sec. 4.4). Our analyses show that LIME strengthens
token coupling across words of all lengths and improves predictions for digits and entities. Using look-
ahead metadata, as with LIME+1, further amplifies accuracy gains. By binding fragmented tokens
into coherent units, metadata embeddings not only boost accuracy but also resolve inconsistencies
inherent to subword tokenization, such as handling prefixes, suffixes, and numbers, which even
renders reasoning abilities more robust and precise. These results highlight metadata as a powerful

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

inductive bias and a potential complement to tokenizer architectures, providing structural guidance
that would otherwise be missing.

Tokenizer’s Language Bias. Tokenization inherently introduces language-specific biases. Due
to the fixed vocabulary size and the challenges of modifying embedding layers after training, un-
derrepresented languages often undergo suboptimal segmentation. Such segmentations frequently
misalign with semantic boundaries, which can negatively impact overall model performance. Lime
Tokenization provides a simple yet effective way to extract a richer data signal per token by
leveraging lightweight annotation models. As previously stated this has in particular been beneficial to
keep split tokens together. Future work should explore augmenting the embedding space with explicit
language identifiers to further improve multilingual robustness. Additionally, the tokenizer-agnostic
nature of our method opens the door to extending it beyond subword-based tokenizers, including
byte-level, character-level, or even tokenizer-free models (Deiseroth et al., 2024).

Metadata Steering. Metadata inference-time steering with LIME+1 enables controllable generation.
In our generative use cases (Sec. 4.5), metadata guidance leads to substantial improvements in
reasoning and arithmetics. This indicates that metadata is not only a meaningful training signal
but also a useful mechanism at inference, providing a new, interpretable interface for controllable
token generation. Unlike fine-tuning methods or steering vector methods, metadata steering operates
directly at the embedding layer, requiring no retraining or fine-tuning. The improvements of both
LIME and LIME+1 models on the addition task suggest that heterogeneity in the Baseline latent
space hinders the early emergence of arithmetic capabilities. While this study focuses on linguistic
metadata, our approach can be readily adapted to other domains. In some cases, non-linguistic
domains may provide even more informative look-ahead metadata for language modeling. This
should particularly be useful in the current research trend towards smaller agentic experts.

Predicting Metadata. Throughout this work we applied spaCy as a metadata annotator for POS
and NER tags. Being a model itself, it achieves an accuracy of roughly 97% on POS and F-score
of 86% on NER. Albeit not being perfect, we demonstrated consistently improved performance
when applying these annotations during training. LIME+1 leverages look-ahead metadata to achieve
even stronger performance. Metadata steering, however, relies on knowledge of the next token. We
demonstrated common use cases where this information is naturally available, allowing LIME+1

to capitalize on these gains. However, in tasks where such information is absent, either additional
supervision is required, or the model must learn to predict the appropriate next-token metadata itself.
To show feasibility of the latter, we extended the language modeling head of a LIME+12B model with an
additional metadata head tasked to predict look-ahead POS tags. After pre-training with a balanced
loss on both heads, the metadata head achieves a top-3 accuracy of 82.32%, without affecting the
language head’s performance. Prior work has also explored prediction using intermediate internal
representations of large language models (Popovic & Färber, 2024; Ghandeharioun et al., 2024).
This demonstrates that simultaneous autoregressive prediction of look-ahead metadata holds strong
potential, and, by further steering with it as shown with LIME+1, leverages gains in token accuracy.

6 CONCLUSION

In this work, we introduced LIME, a novel method to overload token embeddings with linguistic
metadata capturing syntax, semantics, and contextual information. Our approach demonstrates
improvements in language modeling capabilities across various model sizes, while requiring minimal
additional computational resources. We show that LIME models keep split word tokens together
and improve cohesion of entities spanning tokens. Our method shows significant improvements on
generative tasks. Furthermore, by pre-training with look-ahead metadata embeddings in LIME+1 ,
we show that token generation can effectively be steered, which is particularly beneficial for noisy
reasoning and arithmetic tasks. These results highlight that LIME is a seamless way of integrating
metadata as an auxiliary data signal, enhancing both model efficiency and controllability.

Future work could explore alternative methods for generating the look-ahead metadata used in
LIME+1, such as recovering it from the internal states of LLMs, to further enhance autoregressive
capabilities. Additionally, evaluating LIME ’s compatibility with different tokenization strategies and
extending the approach beyond language modeling could unlock broader applications and capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY

We are committed to ensuring the reproducibility of our work. Upon publication, we will release
the code, the final pre-trained models, and detailed instructions necessary to reproduce all final
experiments and results presented in this paper.

Meanwhile we have the modified python tokenizer class, the core of this research, attached. Further-
more, we report all hyperparameters in App. A.2.

REFERENCES

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David R. Mortensen, Noah A. Smith,
and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, pp. 9904–9923, 2023. URL https://doi.org/10.
18653/v1/2023.emnlp-main.614.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. In The Thirteenth International Conference on Learning Representations, ICLR 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=FxNNiUgtfa.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, pp. 7432–7439, 2020. URL https://doi.org/10.1609/aaai.
v34i05.6239.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019. URL https://doi.org/10.18653/v1/n19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Björn Deiseroth, Manuel Brack, Patrick Schramowski, Kristian Kersting, and Samuel Weinbach.
T-FREE: subword tokenizer-free generative llms via sparse representations for memory-efficient
embeddings. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, pp. 21829–21851, 2024. URL https://doi.org/10.18653/
v1/2024.emnlp-main.1217.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein,
and William W. Cohen. Time-aware language models as temporal knowledge bases. Trans.
Assoc. Comput. Linguistics, 10:257–273, 2022. URL https://doi.org/10.1162/tacl_
a_00459.

Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, and Danqi Chen. Metadata
conditioning accelerates language model pre-training, 2025. URL https://arxiv.org/
abs/2501.01956.

10

https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://openreview.net/forum?id=FxNNiUgtfa
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/2024.emnlp-main.1217
https://doi.org/10.18653/v1/2024.emnlp-main.1217
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://arxiv.org/abs/2501.01956
https://arxiv.org/abs/2501.01956

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes: A
unifying framework for inspecting hidden representations of language models. In Forty-first Inter-
national Conference on Machine Learning, ICML 2024, 2024. URL https://openreview.
net/forum?id=5uwBzcn885.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, volume 119 of Proceedings of Machine Learning Research, pp. 3929–3938,
2020. URL http://proceedings.mlr.press/v119/guu20a.html.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. URL
https://doi.org/10.48550/arXiv.2203.15556.

Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman Yangarber. Effects of sub-word segmentation
on performance of transformer language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2023, pp. 7413–7425, 2023. URL
https://doi.org/10.18653/v1/2023.emnlp-main.459.

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. A survey of knowledge
enhanced pre-trained language models. IEEE Trans. Knowl. Data Eng., 36(4):1413–1430, 2024.
URL https://doi.org/10.1109/TKDE.2023.3310002.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017, Volume 1: Long Papers, pp.
1601–1611, 2017. URL https://doi.org/10.18653/v1/P17-1147.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. CTRL:
A conditional transformer language model for controllable generation. CoRR, abs/1909.05858,
2019. URL http://arxiv.org/abs/1909.05858.

Muhammad Khalifa, David Wadden, Emma Strubell, Honglak Lee, Lu Wang, Iz Beltagy, and
Hao Peng. Source-aware training enables knowledge attribution in language models. CoRR,
abs/2404.01019, 2024. URL https://doi.org/10.48550/arXiv.2404.01019.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, pp.
66–71, 2018. URL https://doi.org/10.18653/v1/d18-2012.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, pp.
15339–15353, 2024. URL https://doi.org/10.18653/v1/2024.acl-long.818.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,
Etash Kumar Guha, Sedrick Scott Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff,
Reinhard Heckel, Jean Mercat, Mayee F. Chen, Suchin Gururangan, Mitchell Wortsman, Alon
Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,
Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M. Pratt, Sunny Sanyal, Gabriel
Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Raghavi Chandu,
Thao Nguyen, Igor Vasiljevic, Sham M. Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri,
Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev,
Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar,
Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm:
In search of the next generation of training sets for language models. In Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, 2024. URL http://papers.nips.cc/paper_files/paper/

11

https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.18653/v1/2023.emnlp-main.459
https://doi.org/10.1109/TKDE.2023.3310002
https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/1909.05858
https://doi.org/10.48550/arXiv.2404.01019
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/2024.acl-long.818
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_
and_Benchmarks_Track.html.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis,
and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. Trans.
Assoc. Comput. Linguistics, 8:726–742, 2020. URL https://doi.org/10.1162/tacl_
a_00343.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, pp.
3245–3276, 2024. URL https://doi.org/10.18653/v1/2024.naacl-long.179.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein.
Transformers can do arithmetic with the right embeddings. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/c35986bc1ee29b31c1011481b77fe540-Abstract-Conference.html.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Am-
brose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai,
Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George
Tucker, George-Cristian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney,
Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma:
Open models based on gemini research and technology. CoRR, abs/2403.08295, 2024. URL
https://doi.org/10.48550/arXiv.2403.08295.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018. URL
https://doi.org/10.18653/v1/d18-1260.

Benjamin Minixhofer, Edoardo Maria Ponti, and Ivan Vulic. Zero-shot tok-
enizer transfer. In Advances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
532ce4fcf853023c4cf2ac38cbc5d002-Abstract-Conference.html.

Pit Neitemeier, Björn Deiseroth, Constantin Eichenberg, and Lukas Balles. Hierarchical autoregres-
sive transformers: Combining byte- and word-level processing for robust, adaptable language
models. In The Thirteenth International Conference on Learning Representations, ICLR 2025,
2025. URL https://openreview.net/forum?id=tU074jg2vS.

Scott Novotney, Sreeparna Mukherjee, Zeeshan Ahmed, and Andreas Stolcke. CUE vectors:
Modular training of language models conditioned on diverse contextual signals. In Findings
of the Association for Computational Linguistics: ACL 2022, pp. 3368–3379, 2022. URL
https://doi.org/10.18653/v1/2022.findings-acl.265.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016, Volume 1: Long Papers, 2016. URL
https://doi.org/10.18653/v1/p16-1144.

12

http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/2024.naacl-long.179
http://papers.nips.cc/paper_files/paper/2024/hash/c35986bc1ee29b31c1011481b77fe540-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c35986bc1ee29b31c1011481b77fe540-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2403.08295
https://doi.org/10.18653/v1/d18-1260
http://papers.nips.cc/paper_files/paper/2024/hash/532ce4fcf853023c4cf2ac38cbc5d002-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/532ce4fcf853023c4cf2ac38cbc5d002-Abstract-Conference.html
https://openreview.net/forum?id=tU074jg2vS
https://doi.org/10.18653/v1/2022.findings-acl.265
https://doi.org/10.18653/v1/p16-1144

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
Colin A. Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting
the web for the finest text data at scale. In Advances in Neural Information Process-
ing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_
Benchmarks_Track.html.

Nicholas Popovic and Michael Färber. Embedded named entity recognition using probing classifiers.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2024, pp. 17830–17850, 2024. URL https://doi.org/10.18653/v1/2024.
emnlp-main.988.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-
Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li,
Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Chris Jones, James Bradbury, Matthew J. Johnson, Blake A. Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Edward Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher.
CoRR, abs/2112.11446, 2021. URL https://arxiv.org/abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL https://jmlr.org/
papers/v21/20-074.html.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In Logical Formalizations of Commonsense
Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, 2011. URL
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021. URL
https://doi.org/10.1145/3474381.

Craig W. Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
Chris Tanner. Tokenization is more than compression. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2024, pp. 678–702, 2024. URL
https://doi.org/10.18653/v1/2024.emnlp-main.40.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kacz-
marczyk, and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next
generation image-text models. In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_
Benchmarks.html.

Rico Sennrich and Barry Haddow. Linguistic input features improve neural machine translation. In
Proceedings of the First Conference on Machine Translation, WMT 2016, colocated with ACL
2016, pp. 83–91, 2016. URL https://doi.org/10.18653/v1/w16-2209.

13

http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.18653/v1/2024.emnlp-main.988
https://doi.org/10.18653/v1/2024.emnlp-main.988
https://arxiv.org/abs/2112.11446
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418
https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/2024.emnlp-main.40
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/w16-2209

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, Volume 1: Long Papers, 2016. URL https://doi.org/10.18653/
v1/p16-1162.

Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary,
Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into
a refined long-horizon pretraining dataset. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, pp. 2459–2475,
2025. URL https://aclanthology.org/2025.acl-long.123/.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuanjing Huang, and Zheng
Zhang. Colake: Contextualized language and knowledge embedding. In Proceedings of the 28th
International Conference on Computational Linguistics, COLING 2020, pp. 3660–3670, 2020.
URL https://doi.org/10.18653/v1/2020.coling-main.327.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu,
Xuyi Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu, Weibao Gong, Jianzhong Liang,
Zhizhou Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao Tian, Hua Wu, and Haifeng
Wang. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and
generation. CoRR, abs/2107.02137, 2021. URL https://arxiv.org/abs/2107.02137.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from pre-
training and finetuning transformers. In The Tenth International Conference on Learning Represen-
tations, ICLR 2022, 2022. URL https://openreview.net/forum?id=f2OYVDyfIB.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? limits of LLM scaling based on human-generated data. In
Forty-first International Conference on Machine Learning, ICML 2024, 2024. URL https:
//openreview.net/forum?id=ViZcgDQjyG.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
data for training language models. In Forty-first International Conference on Machine Learning,
ICML 2024, 2024. URL https://openreview.net/forum?id=GLGYYqPwjy.

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini. Orga-
nize the web: Constructing domains enhances pre-training data curation. CoRR, abs/2502.10341,
2025. URL https://doi.org/10.48550/arXiv.2502.10341.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for lan-
guage models via importance resampling. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not
to repeat: Insights from scaling LLM under token-crisis. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/b9e472cd579c83e2f6aa3459f46aac28-Abstract-Conference.html.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and
Mike Lewis. MEGABYTE: predicting million-byte sequences with multiscale
transformers. In Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
f8f78f8043f35890181a824e53a57134-Abstract-Conference.html.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Volume 1: Long Papers, pp. 4791–4800, 2019. URL
https://doi.org/10.18653/v1/p19-1472.

14

https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://aclanthology.org/2025.acl-long.123/
https://doi.org/10.18653/v1/2020.coling-main.327
https://arxiv.org/abs/2107.02137
https://openreview.net/forum?id=f2OYVDyfIB
https://openreview.net/forum?id=ViZcgDQjyG
https://openreview.net/forum?id=ViZcgDQjyG
https://openreview.net/forum?id=GLGYYqPwjy
https://doi.org/10.48550/arXiv.2502.10341
http://papers.nips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b9e472cd579c83e2f6aa3459f46aac28-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b9e472cd579c83e2f6aa3459f46aac28-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f8f78f8043f35890181a824e53a57134-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f8f78f8043f35890181a824e53a57134-Abstract-Conference.html
https://doi.org/10.18653/v1/p19-1472

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shuai Zhang, Lijie Wang, Xinyan Xiao, and Hua Wu. Syntax-guided contrastive learning for pre-
trained language model. In Findings of the Association for Computational Linguistics: ACL 2022,
pp. 2430–2440, 2022. URL https://doi.org/10.18653/v1/2022.findings-acl.
191.

15

https://doi.org/10.18653/v1/2022.findings-acl.191
https://doi.org/10.18653/v1/2022.findings-acl.191

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

The appendix includes training curves and numerical results from pre-training, along with the
hyperparameters used for both the model architectures and training procedures. We further show the
impact of LIME tokenization, and present extended benchmark results corresponding to Sec. 4.3.
Sec. 4.4 is supplemented with comprehensive token accuracy tables, while Sec. 4.5 is supplemented
with detailed FLenQA and ARI-ADD results together with examples of prompts and completions
for each task. Finally, we provide the metadata annotator vocabularies employed throughout our
experiments.

A.1 LLM USAGE

We used LLMs to aid and polish writing our paper. The ideation, methodological design, and
execution of experiments were solely the responsibility of the authors.

A.2 LIME PRE-TRAINING SETUP DETAILS

Our 2B model architecture is derived from a Gemma-1 architecture with 2.43B parameters5. The
1B model architecture follows a Gemma-3-inspired design with 0.92B parameters6. Finally, the
500M architecture is based on a Gemma-3-style architecture with 0.50B trainable parameters. Tab. 4
presents a complete list of hyperparameter values. Exact parameter count can be found in Tab. 6.
Training was conducted on 64 NVIDIA A100 GPUs (80GB each) across 8 nodes and required
approximately 60 hours per model.

Table 4: Detailed list of hyperparameter values used for models and training.

Category Hyperparameters 500M 1B 2B

Architecture

num_layers 12 26 18
d_model 768 1024 2048
mlp_factor 6 6 8
num_heads 4 4 8
num_kv_heads 1 1 1
norm_type RMS, ϵ = 1e-06
vocab_size 256,000
position_embedding_type rotary complex
rotary_embedding_base 10,000
activation_function GELU
mlp_bias no

Optimization

loss_fn Cross-Entropy
optimizer AdamW
beta1, beta2, epsilon [0.9, 0.95, 1.e-8]
learning_rate 3.e-3
lr_schedule cosine decay to 3.e-4
warmup_steps 3,600 (5%)
weight_decay 0.033
gradient_clipping no

Stabilization

dropout no
attention_dropout no
embedding_dropout no
embedding_grad_scaling inverse mini_batch freq.
precision bf16

Training

global_batch_size 2048 2048 512
sequence_length 2048 2048 8192
micro_batch_size 4 4 1
tokens_per_step 4,194,304
steps 72,000
packing_strategy concatenation

5https://huggingface.co/google/gemma-2b/blob/main/config.json
6https://huggingface.co/google/gemma-3-1b-pt/blob/main/config.json

16

https://huggingface.co/google/gemma-2b/blob/main/config.json
https://huggingface.co/google/gemma-3-1b-pt/blob/main/config.json

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 THE IMPACT OF LIME TOKENIZATION

We quantify the case where nli > nsw, meaning that Tli produces more tokens from an input sequence
than Tsw (the Gemma tokenizer). By preserving the finer-grained pre-tokenization boundaries of Tli,
Lime Tokenization may produce slightly more tokens. However, this tokenization maintains
linguistically meaningful boundaries while reducing the effective vocabulary size by 1.03%. For
instance, encoding 1,000 randomly selected DCLM-BASELINE samples (12.77M tokens) results in a
1.19% increase (12.90M tokens). Tab. 5 lists the most frequent sequences in this dataset where Lime
Tokenization introduces additional granularity.

Table 5: Top 15 most frequent sequences where Lime Tokenization produces higher granularity
when encoding 1,000 DCLM-BASELINE samples. Together, these sequences account for 54.18% of
all cases with increased granularity.

Gemma Tokenizer Lime Tokenization %

8.67
• • 6.53

don don 6.32
).). 6.07
),), 4.17
.” .” 3.71
." ." 3.64
didn didn 2.47
doesn doesn 2.45
can can 2.29
," ," 1.92
,” ,” 1.73
isn isn 1.59

cannot cannot 1.33
.) .) 1.26

A.4 LIME PRE-TRAINING RESULT DETAILS

Pre-training proceeded smoothly, with the loss decreasing consistently and gradient norms remaining
stable. LIME1B required 44.64% fewer tokens to fit the training data distribution, while LIME2B
required 34.76% fewer tokens (Fig. 5). As shown in Tab. 6 , LIME+1 consistently improves accuracy
by approximately 19.50% across all model sizes, with perplexity reductions more pronounced at
500M (13.95%) than at 2B (8.54%). As model size increases, the proportion of learnable parameters
introduced by LIME decreases, reaching as little as 0.006% for the 2B model.

0 42 84 126 168 210 251 293
Tokens[B]

40

45

50

55

60

65

Ac
cu

ra
cy

[%
]

44.63% less96.32% less

LIME+1

LIME
Baseline

0 42 84 126 168 210 251 293
Tokens[B]

40

45

50

55

60

65

Ac
cu

ra
cy

[%
]

34.76% less96.14% less

LIME+1

LIME
Baseline

Figure 5: Next token prediction accuracy during Pre-training. Left: 1B models Right: 2B models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Overview of pre-training metrics and parameter scaling across model sizes.

Size Model Token Accuracy Perplexity Total Parameters LIME Parameters

500M
Baseline 41.90 19.72 495,864,576
LIME 42.91 ↑ 1.01 18.50 ↓ 1.22 495,919,104 +54,528 +0, 0110%

LIME+1 61.83 ↑ 19.93 5.77 ↓ 13.95 495,919,104 +54,528 +0, 0110%

1B
Baseline 45.20 14.84 919,655,424
LIME 46.21 ↑ 1.01 14.02 ↓ 0.82 919,728,128 +72,704 +0, 0079%

LIME+1 64.86 ↑ 19.65 4.73 ↓ 10.11 919,728,128 +72,704 +0, 0079%

2B
Baseline 46.92 12.82 2,426,480,640
LIME 47.95 ↑ 1.03 12.10 ↓ 0.72 2,426,626,048 +145,408 +0, 0060%

LIME+1 66.40 ↑ 19.48 4.28 ↓ 8.54 2,426,626,048 +145,408 +0, 0060%

A.5 DETAILED BENCHMARK RESULTS

Benchmark results across all model sizes are listed in Tab. 7. All tasks are evaluated using a randomly
selected 5-shot context on 1,000 samples, with standard errors reported.

Table 7: Detailed benchmark results across all model sizes. Improvements relative to the respective
Baseline are indicated by ↑, relative to LIME with ⇑. Generative-format tasks are highlighted.

500M 1B 2B
Base LIME LIME+1 Base LIME LIME+1 Base LIME LIME+1

ARC-Easy [6] 57.00±1.57 ↑ 57.20±1.57 ⇑58.10±1.56 67.30±1.48 ↑ 68.40±1.47 ⇑68.80±1.47 71.20±1.43 ↑ 73.40±1.40 ↑ 72.50±1.41

BoolQ [5] 49.50±1.58 47.90±1.58 ⇑59.40±1.55 51.60±1.58 51.60±1.58 ⇑60.70±1.55 64.10±1.52 63.10±1.53 60.30±1.55

COPA [34] 62.00±4.88 ↑ 64.00±4.82 61.00±4.90 72.00±4.51 67.00±4.73 71.00±4.56 77.00±4.23 ↑ 81.00±3.94 ⇑83.00±3.78

HellaSwag [50] 36.20±1.52 ↑ 37.00±1.53 ⇑43.10±1.57 52.90±1.58 ↑ 53.20±1.58 ⇑55.60±1.57 63.30±1.52 61.50±1.54 ⇑64.40±1.51

LAMBADA [29] 26.50±1.40 ↑ 29.80±1.45 ⇑49.00±1.58 41.00±1.56 ↑ 46.00±1.58 ⇑66.00±1.50 48.00±1.58 ↑ 49.50±1.58 ⇑73.40±1.40

OpenBookQA [25] 31.00±2.07 ↑ 32.60±2.10 ⇑34.20±2.12 36.40±2.15 ↑ 37.80±2.17 ⇑39.20±2.19 39.80±2.19 ↑ 42.00±2.21 ⇑43.00±2.22

PIQA [3] 69.90±1.45 69.40±1.46 68.20±1.47 72.60±1.41 ↑ 73.20±1.40 71.20±1.43 74.10±1.39 ↑ 75.10±1.37 73.70±1.39

TriviaQA [15] 8.20±0.87 ↑ 9.80±0.94 ⇑19.50±1.25 17.90±1.21 ↑ 19.70±1.26 ⇑33.90±1.50 25.80±1.38 25.00±1.37 ⇑42.20±1.56

WinoGrande [35] 51.70±1.58 ↑ 52.60±1.58 ⇑54.60±1.58 57.40±1.56 ↑ 57.60±1.56 ⇑59.20±1.55 64.20±1.52 62.60±1.53 62.00±1.54

Mean 43.56±1.88 ↑ 44.48±1.89 ⇑49.68±1.95 52.12±1.90 ↑ 52.71±1.90 ⇑58.40±1.92 53.52±2.19 ↑ 53.95±2.18 ⇑63.83±1.82

A.6 TOKEN COUPLING DETAILS

Fig. 6 illustrates that summing all positive and negative token prediction accuracy changes from our
qualitative analysis in Sec. 4.4 reproduces the overall LIME500M accuracy improvement of 1.01%
reported in Sec. 4.2 .

Figure 6: Accuracy shifts resemble the initially observed accuracy improvement of our qualitative
analysis of LIME500M and Baseline.

In our experiments, we define natural language words as sequences of x alphabetic character tokens
([A-Za-z]) enclosed by whitespaces. Additionally, we include hyphenated compound words, e.g.
long-term and words bound by the apostrophe ’ covering possessions and contractions, e.g., Murphy’s

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and We’ll. Tab. 8 provides a detailed view of how token prediction accuracy varies for words of up
to x = 6 tokens. Additionally, Tab. 9 presents accuracies calculated in the same way but includes
the first token of each word. While the absolute values and improvements are smaller, the trend
across word lengths remains consistent, and no outliers are observed. This suggests that the observed
coupling improvements are not notably influenced by the model correctly predicting the first token of
a word.

Table 8: Token accuracy within words of length x improves across all model sizes.

Model Size x n Baseline LIME LIME+1

500M 2 164,256 69.63 76.34 ↑ 6.71 79.80 ↑ 10.17

500M 3 174,852 68.48 71.81 ↑ 3.33 80.84 ↑ 12.36

500M 4 61,947 75.36 76.94 ↑ 1.58 82.09 ↑ 6.73

500M 5 16,152 66.98 68.57 ↑ 1.59 80.18 ↑ 13.20

500M 6 2,840 55.95 56.65 ↑ 0.70 67.82 ↑ 11.87

1B 2 164,256 73.94 80.23 ↑ 6.29 83.31 ↑ 9.37

1B 3 174,852 71.87 75.13 ↑ 3.26 83.49 ↑ 11.62

1B 4 61,947 77.88 79.61 ↑ 1.73 84.68 ↑ 6.80

1B 5 16,152 70.38 72.91 ↑ 2.53 83.36 ↑ 12.98

1B 6 2,840 60.39 63.24 ↑ 2.85 71.97 ↑ 11.58

2B 2 164,256 76.46 82.24 ↑ 5.78 85.06 ↑ 8.60

2B 3 174,852 73.77 76.78 ↑ 3.01 84.72 ↑ 10.95

2B 4 61,947 79.92 81.00 ↑ 1.08 86.34 ↑ 6.42

2B 5 16,152 72.46 74.41 ↑ 1.95 84.73 ↑ 12.27

2B 6 2,840 64.61 66.20 ↑ 1.59 74.82 ↑ 10.21

500M ≥2 424,960 69.68 73.95 ↑ 4.27 80.41 ↑ 10.73

1B ≥2 424,960 73.32 77.48 ↑ 4.16 83.43 ↑ 10.11

2B ≥2 424,960 75.51 79.24 ↑ 3.73 84.95 ↑ 9.44

500M 1 5,049,553 33.91 34.59 ↑ 0.68 55.10 ↑ 21.19

1B 1 5,049,553 37.23 37.89 ↑ 0.66 58.35 ↑ 21.12

2B 1 5,049,553 39.08 39.80 ↑ 0.72 59.94 ↑ 20.86

Table 9: The trend of token-level accuracy improvements for words of length x persists even when
the first token of each word is included.

Model Size x n Baseline LIME LIME+1

500M 1 5,049,553 33.91 34.59 ↑ 0.68 55.10 ↑ 21.19

500M 2 328,512 43.28 46.86 ↑ 3.58 54.15 ↑ 10.87

500M 3 262,278 51.89 54.29 ↑ 2.40 66.23 ↑ 14.34

500M 4 82,596 60.97 62.32 ↑ 1.35 69.80 ↑ 8.83

500M 5 20,190 55.88 57.29 ↑ 1.41 69.36 ↑ 13.48

500M 6 3,408 49.32 50.15 ↑ 0.83 61.30 ↑ 11.98

1B 1 5,049,553 37.23 37.89 ↑ 0.66 58.35 ↑ 21.12

1B 2 328,512 47.35 50.79 ↑ 3.44 58.57 ↑ 11.22

1B 3 262,278 55.27 57.66 ↑ 2.39 69.67 ↑ 14.40

1B 4 82,596 63.67 65.14 ↑ 1.47 72.73 ↑ 9.06

1B 5 20,190 59.26 61.37 ↑ 2.11 72.97 ↑ 13.71

1B 6 3,408 53.58 55.96 ↑ 2.38 65.02 ↑ 11.44

2B 1 5,049,553 39.08 39.80 ↑ 0.72 59.94 ↑ 20.86

2B 2 328,512 49.79 53.00 ↑ 3.21 60.87 ↑ 11.08

2B 3 262,278 57.25 59.42 ↑ 2.17 71.21 ↑ 13.96

2B 4 82,596 65.68 66.63 ↑ 0.95 74.59 ↑ 8.91

2B 5 20,190 61.26 62.98 ↑ 1.72 74.57 ↑ 13.31

2B 6 3,408 57.28 58.74 ↑ 1.46 68.10 ↑ 10.83

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.7 EXTENSIVE FLENQA AND ARI-ADD RESULTS

Here, we present the complete results for reasoning and arithmetic tasks across all model sizes.
Tab. 10 shows that the evaluated arithmetic capabilities begin to emerge at the 1B scale, with LIME
providing slight improvements and LIME+1 yielding a substantial increase of 12.9%.

Table 10: Complete ARI-ADD results.

Size Baseline LIME LIME+1

2B 22.6 26.9 ↑ 4.3 58.7 ↑ 36.1

1B 4.1 5.2 ↑ 1.1 17.0 ↑ 12.9

500M 0.5 0.1 ↓ 0.4 1.3 ↑ 0.8

Tab. 11 reports FLenQA results for all model sizes and applicable noise lengths. Variations in spaces
and dashes between two words are ignored when matching the ground truth to avoid penalizing
correctly predicted but differently formatted completions. LIME+1 consistently improves reasoning
performance across scales, with the 500M model showing the largest gain of 51.8% on FLQA-500.

Table 11: Detailed FLenQA results across model sizes. While Baseline and LIME match the first
eight generated words, LIME+1 generates and matches only one word.

Size Task Baseline LIME LIME+1

2B FLQA-250 42.0 52.0 ↑ 10.0 80.0 ↑ 38.0

2B FLQA-500 49.5 65.3 ↑ 15.8 73.5 ↑ 24.0

2B FLQA-1000 34.8 47.0 ↑ 12.2 65.3 ↑ 30.5

2B FLQA-2000 40.3 44.3 ↑ 4.0 52.5 ↑ 12.2

2B FLQA-3000 28.2 30.0 ↑ 1.8 39.3 ↑ 11.1

1B FLQA-250 36.0 28.0 ↓ 8.0 80.0 ↑ 44.0

1B FLQA-500 39.0 32.0 ↓ 7.0 74.0 ↑ 35.0

1B FLQA-1000 32.4 33.0 ↑ 0.6 78.5 ↑ 46.1

500M FLQA-250 22.0 40.0 ↑ 18.0 70.0 ↑ 48.0

500M FLQA-500 22.0 48.8 ↑ 26.8 73.8 ↑ 51.8

500M FLQA-1000 12.5 30.5 ↑ 18.0 72.5 ↑ 42.0

Additionally we present FLenQA results with a different prompt and stricter matching (Tab. 12). The
prompt is shorter and less specific (Ethan is in a), and the matching criteria are more stringent (first-
two words). Under these conditions, LIME1B shows substantial improvement, while Baseline
and LIME perform generally lower. LIME+1 improvements across model sizes are also amplified,
reaching +75.8% for LIME+1500M.

Table 12: Additional FLenQA results evaluated with strict next-two-words matching using the prompt
’is in a’ .

Size Task Baseline LIME LIME+1

2B FLQA-250 12.0 22.0 ↑ 10.0 76.0 ↑ 64.0

2B FLQA-500 12.5 15.3 ↑ 2.8 62.3 ↑ 49.8

2B FLQA-1000 7.3 9.5 ↑ 2.2 63.8 ↑ 56.5

2B FLQA-2000 5.0 7.0 ↑ 2.0 55.8 ↑ 50.8

2B FLQA-3000 3.8 7.8 ↑ 4.0 52.5 ↑ 48.7

1B FLQA-250 32.0 58.0 ↑ 26.0 98.0 ↑ 66.0

1B FLQA-500 6.0 32.5 ↑ 26.5 78.0 ↑ 72.0

1B FLQA-1000 4.3 24.8 ↑ 20.5 68.8 ↑ 64.5

500M FLQA-250 10.0 14.0 ↑ 4.0 80.0 ↑ 70.0

500M FLQA-500 3.5 4.0 ↑ 0.5 79.3 ↑ 75.8

500M FLQA-1000 2.3 1.5 ↓ 0.8 68.8 ↑ 66.5

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.8 ARI-ADD AND FLENQA COMPLETIONS

We illustrate FLenQA and ARI-ADD evaluations using example prompts and completions from the
2B models (Tab. 13). In the two sampled tokens shown, the completions consist solely of digits, a
pattern that holds for all completions across all model variants. This demonstrates that LIME and
LIME+1 enhance arithmetic capabilities rather than just predicting digits.

Table 13: ARI-ADD prompt and completion examples generated by our 2B models.

Prompt Completion Model

The result is: 12+15 =
27 Baseline
27 LIME
27 LIME+1

The result is: 18+26 =
36 Baseline
44 LIME
44 LIME+1

The result is: 48+45 =
10 Baseline
91 LIME
93 LIME+1

Further, Tab. 14 contains prompt and completion examples from our FLenQA evaluation, specifically
from the 2B model with 1,000 noise (FLQA-1000). Ground truth is matched within the first eight
words, while LIME+1 uses only one. For comparability, words such as white walled are counted as a
single word, consistent with counting marble-floored as one word.

Table 14: FLQA-1000 prompt and completion examples generated by our 2B models.

Prompt Completion Model

Eric George is in a room.
It has the following properties:

\n • It is a white walled. \n • It is Baseline
it is white walled, it is a room, and LIME

white walled LIME+1

Kathleen Russo is in a room.
It has the following properties:

\n - it is a room \n - it is a room Baseline
It is marble-floored.\n It is a foyer. It LIME

marble-floored LIME+1

Rachel Hancock is in a room.
It has the following properties:

it is a room, it is a room Baseline
it is a room, it is a room LIME

wooden-floored LIME+1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.9 METADATA ANNOTATOR VOCABULARY: POS (ENGLISH)

For POS metadata embeddings, we use the spaCy en_core_web_sm model containing a
lightweight CPU-based POS tagger that returns 50 tags (Tab. 15). Lime Tokenization augments
its vocabulary with one additional special token.

Table 15: Glossary of 51 POS tags with their respective descriptions.

. punctuation mark, sentence closer
, punctuation mark, comma

-LRB- left round bracket
-RRB- right round bracket
“ opening quotation mark
” closing quotation mark
: punctuation mark, colon or ellipsis
$ symbol, currency

AFX affix
CC conjunction, coordinating
CD cardinal number
DT determiner
EX existential there
FW foreign word

HYPH punctuation mark, hyphen
IN conjunction, subordinating or preposition
JJ adjective (English), other noun-modifier (Chinese)

JJR adjective, comparative
JJS adjective, superlative
LS list item marker
MD verb, modal auxiliary
NN noun, singular or mass

NNP noun, proper singular
NNPS noun, proper plural
NNS noun, plural
PDT predeterminer
POS possessive ending
PRP pronoun, personal

PRP$ pronoun, possessive
RB adverb

RBR adverb, comparative
RBS adverb, superlative
RP adverb, particle
TO infinitival “to”
UH interjection
VB verb, base form

VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
WDT wh-determiner
WP wh-pronoun, personal

WP$ wh-pronoun, possessive
WRB wh-adverb

SP space (English), sentence-final particle (Chinese)
ADD email
NFP superfluous punctuation
XX unknown
_SP whitespace

SPECIAL special token

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.10 METADATA ANNOTATOR VOCABULARY: NER

For NER metadata embeddings, we employ the spaCy en_core_web_sm model, using
its lightweight CPU-based NER tagger. The tagger outputs 20 tags (Tab. 16) and LIME
Tokenization extends its vocabulary with one additional special token.

Table 16: Glossary of 20 NER tags with their respective descriptions.

PERSON People, including fictional
NORP Nationalities or religious or political groups
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, etc. (not services)
EVENT Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws

LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day

PERCENT Percentage, including "%"
MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance
ORDINAL "first", "second", etc.

CARDINAL Numerals that do not fall under another type
” No entity

SPECIAL special token

23

	Introduction
	Related Work
	LIME: Linguistic Metadata for LLMs
	Experiments
	Experimental Setup
	Linguistic Metadata-Embeddings Improve Language Modeling
	LIME Models Excel In Generative Tasks
	LIME Keeps Tokens Together
	Metadata Guidance Unlocks Hidden Reasoning and Arithmetic Abilities

	Discussion
	Conclusion
	Reproducibility
	Appendix
	LLM usage
	LIME Pre-training Setup Details
	The impact of Lime Tokenization
	LIME Pre-training Result Details
	Detailed Benchmark Results
	Token Coupling Details
	Extensive FlenQA and ARI-ADD results
	ARI-ADD and FlenQA Completions
	Metadata Annotator Vocabulary: POS (English)
	Metadata Annotator Vocabulary: NER

