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Abstract

We study the problem of learning revenue-optimal multi-bidder auctions from
samples when the samples of bidders’ valuations can be adversarially corrupted
or drawn from distributions that are adversarially perturbed. First, we prove tight
upper bounds on the revenue we can obtain with a corrupted distribution under a
population model, for both regular valuation distributions and distributions with
monotone hazard rate (MHR). We then propose new algorithms that, given only
an “approximate distribution” for the bidder’s valuation, can learn a mechanism
whose revenue is nearly optimal simultaneously for all “true distributions” that
are α-close to the original distribution in Kolmogorov-Smirnov distance. The
proposed algorithms operate beyond the setting of bounded distributions that have
been studied in prior works, and are guaranteed to obtain a fraction 1−O(α) of
the optimal revenue under the true distribution when the distributions are MHR.
Moreover, they are guaranteed to yield at least a fraction 1−O(

√
α) of the optimal

revenue when the distributions are regular. We prove that these upper bounds
cannot be further improved, by providing matching lower bounds. Lastly, we
derive sample complexity upper bounds for learning a near-optimal auction for
both MHR and regular distributions.

1 Introduction

Optimal auctions play a crucial role in economic theory, with a wide range of applications across
various industries, public sectors, and online platforms [Myerson, 1981, Bykowsky et al., 2000, Roth
and Ockenfels, 2002, Klemperer, 2002, Milgrom and Milgrom, 2004, Lahaie et al., 2007]. In such
auctions, pricing mechanisms need to be determined by the auction designer so as to satisfy various
desired goals, such as revenue maximization and incentive compatibility. Often this determination is
made based on information about the buyers that is assumed to be available a priori. For example, in
a standard valuation model, each bidder has a valuation over the available items, and if the sellers
knows the distribution of these valuations, they could design an optimal auction which maximizes the
revenue.

Arguably the fundamental difficulty in the design of optimal auctions is that real valuations are
private and unknown to the auction designer. Consider specifically the problem of selling one item to
multiple buyers. Suppose that we model the buyers’ valuations as arising as independent draws from
buyer-specific prior distributions. In this scenario, what is the optimal mechanism in terms of the
expected revenue? This problem was solved by Myerson [1981] through a characterization of virtual
value functions. In particular, we can define a virtual value function of each buyer based on their
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prior distributions. An optimal auction then lets the buyer with the largest non-negative virtual value
win the item, and charges the winner a price that equals the threshold value above which she wins.1

Unfortunately, there is a further fundamental challenge in deploying these theoretical results in
practice, which is that in real-world settings the auction designer may not even know the prior
distributions on valuations. Instead, what the designer might hope for is that there is a stream
of previous transactions, or some other relevant auxiliary data, that is helpful in inferring the
buyers’ private distributions. This perspective has motivated an active recent literature learning
optimal auctions from samples [Cole and Roughgarden, 2014, Devanur et al., 2016, Morgenstern and
Roughgarden, 2015, 2016, Syrgkanis, 2017, Dudík et al., 2017, Gonczarowski and Nisan, 2017, Huang
et al., 2018, Roughgarden and Schrijvers, 2016, Balcan et al., 2018, Guo et al., 2019, Roughgarden
and Wang, 2019, Gonczarowski and Weinberg, 2021]. In this line of work, the central question is:
suppose we are only able to access the prior distributions in the form of independent samples, how
many samples are sufficient and necessary for finding an approximately optimal auction?

While this merging of mechanism design and learning theory is appealing, a further concern arises.
Given the potentially adversarial setting of auction design, do we really believe that the data that
we observe are drawn in accord with our assumptions? More concretely, is the learning of optimal
auctions robust to adversarial corruptions of the samples? This problem is arguably at the core
of what it means to learn an optimal auction. It is a challenging problem; indeed, as we show in
Counterexample 1 in Section 4, auction designs that are optimal in the absence of corruptions can
become arbitrarily bad even if a small portion of the samples are corrupted. Building on earlier work
by Cai and Daskalakis [2017] and Brustle et al. [2020], we tackle a key open problem—what is the
best approximation to the optimal revenue for arbitrary levels of corruption for distributions with
unbounded support? And what is the mechanism that achieves it?

In summary, in this work we explore the problem of the robust learning of optimal auctions, where the
samples of bidders’ valuations are subject to corruption and their support is unbounded. In particular,
we consider having access to samples that are drawn from some distribution D̃ which is within a
Kolmogorov-Smirnov (KS) distance α of the true distribution D∗. Denote OPT as the maximum
revenue we can achieve under the true valuation distributions. Our goal is to design mechanisms that
are guaranteed to achieve a revenue of at least (1− ρ(α)) ·OPT for the smallest possible error ρ(α)
and with the use of a minimal number of samples.

1.1 Our results

We study the problem of learning revenue-optimal multi-bidder auctions from samples when the
samples of bidders’ valuations can be adversarially corrupted or drawn from distributions that are
adversarially perturbed. We summarize our main results as follows:

1. We derive tight upper bounds on the revenue we can obtain with a corrupted distribution
under a population model. For distributions with monotone hazard rate (MHR), and with
total corruption α, we obtain an approximation ratio of 1−O(α) compared to the optimal
revenue under the true distribution (see Theorem 3.6). For regular valuation distributions,
where for total corruption α, we get an approximation ratio of 1−O(

√
α) (see Theorem 3.8).

2. To achieve these upper bounds, we propose a new theoretical algorithm for the population
model (see Algorithm 1) that, given only an “approximate distribution” for the bidder’s
valuation, can learn a mechanism whose revenue is nearly optimal simultaneously for
all “true distributions” that are α-close to the given distribution in Kolmogorov-Smirnov
distance. The proposed algorithm operates beyond the setting of bounded distributions that
have been studied in prior works; indeed, they apply to general unbounded MHR and regular
distributions.

3. We further show that these upper bounds under the population model cannot be further
improved (up to constant log factors), by providing matching lower bounds for both the
MHR and regular distributions (see Theorem 3.7 and Theorem 3.9).

4. Lastly, we derive sample complexity upper bounds for learning a near-optimal auction for
both MHR and regular distributions with multiple bidders (Theorem 4.3 and Theorem 4.4),
and propose a practical algorithm (see Algorithm 2) which takes samples as input. We also

1More generally, the optimal auction picks the winner based on the virtual value after an “ironing” procedure.
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provide accompanying sample complexity lower bounds (Theorem 4.5), and demonstrate a
small gap relative to the corresponding upper bounds.

1.2 Related work

Designing revenue optimal auctions is a classic problem in economic theory that has attracted much
research attention. We survey the most closely related work in two main areas.

Learning optimal auctions from samples. Recent work has explored settings of learning approx-
imately optimal auction from samples, both for single-item auctions [Cole and Roughgarden, 2014],
and multi-item auctions [Balcan et al., 2018, 2016, Morgenstern and Roughgarden, 2015, Syrgkanis,
2017]. Most recently, Guo et al. [2019] provide a complete set of sample complexity bounds for
single-item auctions, by deriving matching upper and lower bounds up to a poly-logarithmic factor.
While these approaches have obtained fruitful results on the sample complexity of learning optimal
auctions, a key assumption that is commonly made in this work is that the samples are independently
and identically drawn from the bidders’ valuation distributions, with the goal of learning an auction
which maximizes the expected revenue on the underlying, unknown distribution over bidder valua-
tions. A major difference in our work is that we consider that the samples can suffer from potential
corruptions, which is a significantly more challenging setting.

Robustness of learning optimal auctions. Our paradigm on the robust learning of optimal auctions
is closely related to recent work that considers the learning of auctions from mismatched distributions
or corrupted samples. Cai and Daskalakis [2017] consider a multi-item auction setting, where
there is a given “approximate distribution,” and the goal is to compute an auction whose revenue is
approximately optimal simultaneously for all “true distributions" that are close to the given one. They
provide an algorithm that achieves a poly-α additive loss compared to the true optimal revenue. More
recently, Brustle et al. [2020] consider learning multi-item auctions where bidders’ valuations are
drawn from correlated distributions that can be captured by Markov random fields. However, they
make a key simplifying assumption—that the bidders’ valuation for the items lie in some bounded
interval. Our results, by contrast, apply to the general setting of unbounded valuation distributions, a
setting that requires new theoretical machinery. To the best of our knowledge, our work constitutes
the first analysis of the learnability of single-item optimal auctions from corrupted samples for
unbounded distributions.

Organization. In Section 2, we provide background on auction models and formally state our
problem. Section 3 contains our main theoretical statements for the population model. We propose
an algorithm that achieves optimal theoretical upper bounds, by providing matching lower bounds.
Section 4 contains our main results on learning with finite samples. We provide a practical algorithm
that takes samples from the corrupted distribution, and provides sample complexity upper and lower
bounds for both the regular and MHR distributions cases. We conclude in Section 5.

2 Preliminaries

We begin by formally defining the setting we study for robust learning of optimal auctions, which
includes the revenue objective and the general classes of valuation distributions that we consider.

2.1 Auction models

Single-bidder setting. Consider one item for sale to one bidder. The bidder has a private valuation
v ∈ R+ for this item. We assume that v is a random variable distributed according to the distribution
D∗, with support R+, cumulative distribution function F , and probability density function f .

It is well known that the optimal auction in this setting is a reserve price auction, such that the task
for the seller is to compute a reserve price p that optimizes revenue [Myerson, 1981]. We assume
that the bidder has a quasi-linear utility that is equal to u(p) = v − p if she decides to buy the item
and u(p) = 0 otherwise. The seller aims to set p such that her expected revenue—i.e., the received
payment—is maximized. We consider the setting where both v and D∗ are unknown to the seller.
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However, the seller can access i.i.d. samples that are drawn from a distribution D̃, which is α-close to
D with regard to the Kolmogorov distance:
Definition 2.1. (Kolmogorov-Smirnov distance) For probability measures µ and ν on R, define

dk(µ, ν) = sup
x∈R
|µ((−∞, x))− ν((−∞, x))|.

It is well known that dk(µ, ν) 6 dTV (µ, ν), where dTV denotes the total variation (TV) distance
between µ and ν. The closeness of D̃ to D∗ is thus formalized as follows:

dk(D∗, D̃) 6 α,

for some α > 0.

Multi-bidder setting. Consider one item for sale to n bidders. Each bidder has a private valuation,
vi ∈ R+, where vi is independently drawn from the corresponding prior distribution D∗i . Thus, the
valuations v = (v1, v2, · · · , vn) follow a product distribution D∗ = D∗1 × · · · × D∗n. Each bidder
submits a bid bi > 0. Denote all the bids as b = (b1, · · · , bn). A mechanism in this setting consists
of two rules: the allocation rule x(b) that takes the bids b and outputs the probability xi(b) that
each bidder i will receive the item, and the payment rule p(b) that takes the bids b and outputs the
payment of bidder i. Bidder i’s utility is then ui(b) = vi · xi(b)− pi(b). The goal of the seller is
to find a mechanism that maximizes the expected revenue E[

∑
i∈[n] pi(b)], where the expectation

is over v ∼ D∗, under the following Dominant Strategy Incentive Compatibility (DSIC) and the
Individual Rationality (IR) constraints:

ui(vi,b−i) > ui(bi,b−i) for all vi, bi ∈ R+ and all b−i ∈ Rn−1
+ (DSIC)

ui(vi,b−i) > 0 for all vi ∈ R+ and all b−i ∈ Rn−1
+ . (IR)

We consider the setting in which the valuations and the prior distributions are unknown to the seller.
Instead, the seller has access to a finite number of i.i.d. samples drawn from the product distribution
D̃ = D̃1 × · · · × D̃n, where each D̃i satisfies

dk(D∗i , D̃i) 6 αi,
for some αi > 0,∀i ∈ [n].

Revenue objective. Letting D, D′ be product or single bidder distributions as described above, we
define MD to be the mechanism that achieves the optimal revenue for the value distributions D and
OPT(D) its expected revenue. Let also Rev(MD,D

′) be the expected revenue of the mechanism
MD when applied to a setting where the values are drawn with respect to D′.

2.2 Monotone hazard rate (MHR) and regular distributions

For any bidder i with a valuation vi ∼ Di, define the virtual value function for this bidder as
φi(v)

def
= v − 1−Fi(v)

fi(v) , where Fi and fi are the CDF and PDF of Di. The hazard rate of the

distribution Di is defined as the function fi(v)
1−Fi(v) . Then, the distribution Di is said to be regular if

the virtual value φi(v) is monotonically non-decreasing in v. Further, distribution Di has monotone
hazard rate (MHR) if fi(v)

1−Fi(v) is monotone non-decreasing.

3 The Population Model

In this section, we study the problem of learning optimal auction assuming that we have the exact
knowledge of the adversarially perturbed distributions D̃. We relax this assumption in Section 4
where we show how to learn optimal auctions when we only have sample access to D̃.

We begin in Section 3.1 with the description of our mechanism in the population model. Then,
in Section 3.2, we present our analysis for the population mechanism for Monotone Hazard Rate
distributions and we also present the sketch of our proof for the single-bidder case. Similarly, in
Section 3.3 we state our analysis for the population mechanism for regular distributions and we
present a proof sketch for the single-bidder case. Finally, we show that our proposed mechanism
achieves optimal (up to constants) guarantees among any mechanism in the population model.
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3.1 Robust Myerson auction in the population model

Our algorithm assumes as an input the exact knowledge of a product distribution, D̃ = D̃1×· · ·×D̃n,
such that the dk(D∗i , D̃i) 6 αi and its goal is to find a mechanism that achieves approximately optimal
revenue for D∗, where D∗ = ΠiD∗i . Without further assumptions, this is an impossible task, as we
explain in Section 4 via an example. Thus we assume that the algorithm possesses some additional
knowledge regarding D∗i , either that it is MHR or regular, and the mechanism needs to exploit this
additional property.

To utilize the additional property of the distributions D∗i , our mechanism uses the important concept
of the link function for MHR and regular distributions.
Definition 3.1 (Link Function). The link function hM (x;F ) for MHR distributions is defined as
hM (x;F ) = − ln(1− F (x)) and the link function hr(x;F ) for regular distributions is defined as
hr(x;F ) = 1/(1 − F (x)). We also define the corresponding inverse link functions h−1

M (x;h) =

1 − exp(−h(x)) and h−1
r (x;h) = 1 − 1/h(x). Observe that h−1

M (x;hM (x;F )) = F (x) and
h−1
r (x;hr(x;F )) = F (x). We may write hM (x) or hr(x) when F is clear from the context.

We provide some intuition on the link function. First, by construction, the link function of either an
MHR distribution or a regular distribution is convex and non-decreasing. Second, the link function
is monotone with regard to F . These two properties are important when we define the notion of
a minimal MHR/regular distribution in a Kolmogorov ball, momentarily, which will be used as a
necessary step in our algorithm.

Importantly, the link function provides a convenient characterization of the optimal reserve price and
optimal revenue for a distribution F that is MHR or regular. To see this, first consider a single bidder
with a valuation distribution F . Denote the optimal reserve price for selling one item to her as x∗,
and the optimal expected revenue as OPT(F ). Then, when F is MHR, we show that x∗ is also the
unique minimizer of (hM (x)− log(x)). On the other hand, when F is regular, v∗ is the point where
hr(x) intersects with its tangent line kx, with k = 1/OPT(F ) (proof details in Appendix). Figure 1
illustrates such a useful property for hM and hr explicitly, for a single-item, single-bidder auction.

hM(F)

x

log(x) − log(OPT(F))

x

hr(F)

x x
(0,1)

x
OPT(F)

Figure 1: Optimal reserve price x∗ with regard to the link function, for a single-item single-bidder
auction with a valuation distribution F . (left) F is MHR; (right) F is regular.

Next, we formally define stochastic dominance between two distributions, and state the property of
strong revenue monotonicity.
Definition 3.2 (Stochastic dominance). Given two distributions D1 and D2 with CDFs as F1 and F2.
Then, we say D1 (first-order) stochastically dominates D2 if for every x ∈ X ,

F1(x) 6 F2(x),

denoted as D1 � D2. We say a product distribution D = ΠiDi (component-wise) stochastically
dominates another product distribution D′ = ΠiD′i if for every i, we have Di � D′i.
Lemma 3.3 (Strong revenue monotonicity [Guo et al., 2019]). Let D, D′ be two product distributions
such that D′ � D, then, for M that is the optimal mechanism for D, we have:

Rev(M,D) 6 Rev(M,D′).
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Algorithm 1 Robust Myerson Auction in the Population
Model

1: Input: α1 . . . αn > 0, link function h(·), possibly cor-
rupted valuation distribution F̃ = Πn

i=1F̃i.
2: for i = 1. . . n do
3: Compute a minimal regular / MHR distribution in

Bdk,αi(F̃i) according to Eq (1), denote as F̂i.
4: end for
5: Set F̂ = Πn

i=1F̂i.
6: Output Myerson’s optimal auction MF̂ w.r.t. the distri-

bution F̂ .

(0,1)

hr(F̃)

d(F, F̃) ≤ α

ĥ

x
Figure 2: A minimal regular distri-
bution in Bdk,α, in the space trans-
formed by applying the link func-
tion.

The following lemma illustrates the importance of the link functions as well as their connection with
first-order stochastic dominance. The proof of this lemma is given in Appendix A.
Lemma 3.4. A distribution with CDF F is MHR if and only if hM (x;F ) is a convex function of x.
Similarly, F is regular if and only if hr(x;F ) is a convex function of x. Moreover, for two MHR (resp.
regular) distributions F1 and F2, such that F1 � F2, we have that hM (x;F1) 6 hM (x;F2) (resp.
hr(x;F1) 6 hr(x;F2)) for all x.

A key idea used in our algorithm is the minimal MHR/regular distribution within a Kolmogorov
distance divergence ball. Formally,
Definition 3.5. For a given distribution with its cumulative distribution function as F , denote the set
of all the distributions that are α-close to F in Kolmogorov distance as Bdk,α(F ):

Bdk,α(F )
def
= {F ′ : dk(F ′, F ) 6 α}.

Further, define a minimal MHR/regular distribution within Bdk,α(F ) as:

F̂ (x) = h−1(x; ĥ), where ĥ(x)
def
= max

F̃∈Bdk,α(F )

F̃ is MHR / regular

h
(
F̃ (x)

)
∀x ∈ R+. (1)

Figure 2 gives an illustration of a minimal regular distribution within Bdk,α(F ), in the space trans-
formed by the link function of regular distributions.

3.2 Analysis for MHR distributions

In this section we state the results for the performance of Algorithm 1 for MHR distributions and
we provide a proof sketch for the single-bidder case. The full proof of the following theorem can be
found in Appendix B.
Theorem 3.6. Let D∗ = D∗1 × · · · × D∗n be a product distribution where every D∗i is MHR. Let also
D̃ = D̃1 × · · · D̃n be any product distribution such that for all i ∈ [n] it holds that dk(D∗i , D̃i) 6 αi.
If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds that

Rev(M̃,D∗) >

(
1− Õ

(
n∑
i=1

αi

))
·OPT(D∗).

In particular for n = 1, if α = α1, then we have that Rev(M̃,D∗) > (1−O (α)) ·OPT(D∗).

Proof sketch for n = 1. The first key step in our proof is the observation that, by construction,
Algorithm 1 runs the Myerson optimal auction on an MHR distribution F̂ , such that F̂ is stochastically
dominated by any other MHR distribution that is within Bdk,α(F̃ ′). On the other hand we have
dk(F ∗(x), F̃ (x)) 6 α. Applying the triangle inequality, we have dk(F ∗(x), F̂ (x)) 6 2α. It is then
sufficient for us to bound the ratio of the optimal revenue for any two MHR distributions F1 and F2,
with dk(F1, F2) 6 2α, and where F1 is stochastically dominated by F2.
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The key part of our proof then considers such F1, F2, and due to the fact that the ratio of the revenues,
OPTF1/OPTF2 , is scale invariant, we assume without loss of generality that OPTF1 = 1. We
then prove that this leads to h(P ∗F1

) 6 1. The result then follows from two further key lemmas.

First, for any reserve price x < P ∗F1
, |h1(x)− h2(x)| =

∣∣∣log
(

1−F2(x)
1−F1(x)

)∣∣∣. Further applying the fact
that by assumption |F1(x) − F2(x)| 6 α we show that |h1(x) − h2(x)| = O(α) for any reserve
price x < P ∗F1

. Second, using the fact that F1 is stochastically dominated by F2, we derive that
P ∗F2
6 P ∗F1

. The conclusion then follows from bounding the ratio of s1(x) = h1(x)− log(x), and
s2(x) = h2(x)− log(x), based on the definition of P ∗F1

and P ∗F2
. �

Next we show that the information-theoretic Algorithm 1 is optimal up to constants for MHR
distributions. We provide the proof of the following theorem in Appendix C.

Theorem 3.7. Let M be any DSIC and IR mechanism that takes as input a product distribution
D̃ = D̃1 × · · · × D̃n. Then there exists a product distribution D∗ = D∗1 × · · · × D∗n such that
dk(D∗i , D̃i) 6 α, D∗i is MHR for every i, and

Rev(M,D∗) 6 (1− Ω̃(n · α)) ·OPT(D∗).

3.3 Analysis for regular distributions

In this section we state the results for the performance of Algorithm 1 for regular distributions and
we provide a proof sketch for the single-bidder case. The full proof of the following theorem can be
found in Appendix B.

Theorem 3.8. Let D∗ = D∗1×· · ·×D∗n be a product distribution where everyD∗i is regular. Let also
D̃ = D̃1 × · · · D̃n be any product distribution such that for all i ∈ [n] it holds that dk(D∗i , D̃i) 6 αi.
If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds that

Rev(M̃,D∗) >

1− 5 ·

√√√√ n∑
i=1

αi

 ·OPT(D∗).

Proof sketch for n = 1. We first prove a general result that for two regular distributions F and
F̄ , such that dk(F, F̄ ) 6 α, where F (x) is stochastically dominated by F̄ (x) for x ∈ R+. The
optimal revenue of these two distributions is close, formally OPT(F )

OPT(F̄ )
> 1 − O(

√
α). The first

key step replies on using the link function hr(x) = 1
1−F (x) for regular distributions. Since hr(x)

preserves the same monotonicity property as F (x), we first derive a lower bound on h̄r(x, F̄ ) that
is h̄r(x, F̄ ) > hr(x, F )− αh2

r(x, F ), using the fact that dk(F, F̄ ) 6 α. This bound gives us useful
constraints to discuss in different cases in the following part of the proof. Denote the corresponding
optimal reserve prices for F and F̄ as P and P̄ . We discuss separately two cases for h(P̄ ), where, for
case 1 we have h(P̄ ) 6 1√

α
, and for case 2, we have h(P̄ ) > 1√

α
. Using the connection from the link

function to the revenue (see Figure 1), case 1 directly leads to the conclusion that OPT(F )
OPT(F̄ )

> 1−
√
α.

Case 2 is more subtle and requires a more careful argument. Lastly, by construction, Algorithm 1 runs
the Myerson optimal auction on a regular distribution F̂ , such that F̂ > F̂ ′(x) for all x ∈ R+, for
any other regular distribution F ′(x) such that dk(F ′(x), F̃ (x)) 6 α. Applying the triangle inequality
and combining with the conclusions obtained from the two cases concludes the proof. �

Finally, we show that the information-theoretic Algorithm 1 is optimal up to constants for regular
distributions. We provide the proof of the following theorem in Appendix C.

Theorem 3.9. Let M be any DSIC and IR mechanism that takes as input a product distribution
D̃ = D̃1 × · · · × D̃n. Then there exists a product distribution D∗ = D∗1 × · · · × D∗n such that
dk(D∗i , D̃i) 6 α, D∗i is regular for every i, and

Rev(M,D∗) 6 (1− Ω(
√
n · α)) ·OPT(D∗).
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4 Finite Samples

We provide a practical algorithm that takes samples from the corrupted distribution D̃ as an input.
We show that this algorithm achieves almost optimal sample complexity for the MHR distribution
case and the single-bidder regular distribution case, whereas for the multi-bidder regular distributions
there is a small gap between our upper and lower bounds.

An important notion to explain our algorithm for the finite-sample case is the following notion of the
convex envelope.
Definition 4.1 (Convex Envelope). The convex envelope Conv(f) of a function f is a function with
the following property

Conv(f)(x) = sup{g(x) | g is convex and g 6 f over R+}.

In words, Conv(f) is the maximum convex function that is below f .

For our algorithm one important property of the convex envelope is expressed in the following lemma
whose proof is presented in Appendix A.
Lemma 4.2. Let f be a non-decreasing piecewise constant function with k pieces, then Conv(f)
can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.

Algorithm 2 Robust Empirical Myerson Auction

1: Input: m i.i.d. samples from (possibly corrupted) value distribution D = Πn
i=1Di, link function

h(·).
2: Let E = Πn

i=1Ei be the empirical distribution, i.e., the uniform distribution over the samples.
3: for i = 1 . . . n do

4: Construct Êi as following: let qEi(v) be the quantile of Ei; the quantile of Êi is as follows:

qÊi(v) =

max

{
0, qEi(v)−

√
2qEi (v)(1−qEi (v)) ln(2mnδ−1)

m − 4 ln(2mnδ−1)
m − αi

}
if v > 0

1 if v = 0

5: Construct Ẽi such that h
(
Ẽi(·)

)
is the convex envelope of h

(
Ê(·)

)
, i.e.

Ẽi(·) = h−1
(
Conv

(
h(Êi(·))

))
6: end for
7: Set Ẽ = Πn

i=1Ẽi
8: Output Myerson’s optimal auction MẼ w.r.t. Ẽ.

The above algorithm resembles the main algorithm of Guo et al. [2019] with the addition of step 5.
We first show that step 5 is necessary if we wish to obtain any non-trivial result in the robust auction
learning setting that we explore in this paper.
Counterexample 1. Imagine we have just one agent, i.e., n = 1, with true distribution D∗ equal to
an exponential distribution with parameter λ = 1. Also, to strengthen our counterexample imagine
that we have available an infinite number of samples, i.e., m → ∞. Now consider D̃ to be the
corrupted distribution where probability mass α is removed from the mass closer to 0 and it is placed
as a point mass at the point c/α for some number c. In this case, running Algorithm 2 without step 5
will result is implementing an auction with reserve price that is very close to c/α. The probability
though that the true agent with distribution D∗ will buy this item goes to zero with a rate exp(−c/α)
as c→∞. Hence, the total revenue will be at most (c/α) · exp(−c/α) and therefore we can make
the total revenue to go to zero as we increase c→∞. Observe that this counterexample works even
though we assumed that the initial distribution D∗ is MHR.

We next provide the analysis of the performance of Algorithm 2 for MHR and regular distributions.
The proof of the following result can be found in Appendix D.
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Theorem 4.3 (Finite samples, Regular distribution). Let D∗ = D∗1 × · · · × D∗n be a product
distribution where every D∗i is regular. Let also D̃ = D̃1 × · · · D̃n be any product distribution such
that for all i ∈ [n] it holds that dk(D∗i , D̃i) 6 αi. If M̃ is the mechanism that Algorithm 2 outputs
with input m samples from D̃ and assume that m = Ω̃

(
maxi∈[n]

{
log( 1

δ )/α2
i

})
then it holds that

Pr

Rev(M̃,D∗) >

1−O

√√√√ n∑
i=1

αi

 ·OPT(D∗)

 > 1− δ.

Additionally, in the single-bidder case with n = 1 and α = α1 the sample requirement becomes
m = Ω̃

(
log( 1

δ )/α3/2
)
.

The corresponding theorem for MHR distributions is the following, whose proof can be found in
Appendix D.
Theorem 4.4 (Finite samples, MHR distribution). Let D∗ = D∗1×· · ·×D∗n be a product distribution
where every D∗i is MHR. Let also D̃ = D̃1 × · · · D̃n be any product distribution such that for all
i ∈ [n] it holds that dk(D∗i , D̃i) 6 αi. If M̃ is the mechanism that Algorithm 2 outputs with input m
samples from D̃ and assume that m = Ω̃

(
maxi∈[n]

{
log
(

1
δ

)
/α2

i

})
then it holds that

Pr

(
Rev(M̃,D∗) >

(
1− Õ

(
n∑
i=1

αi

))
·OPT(D∗)

)
> 1− δ.

We make a few remarks about the sample complexity upper bounds in the sequel.

First, in both Theorem 4.3 and Theorem 4.4, the sample complexity upper bounds depend in a
simple way on the sum of all the fractions of corruptions for each bidder; i.e.,

∑n
i=1 αi, indicating the

important effect of the total amount of corruption. Second, for regular distributions, in Theorem 4.3 we
obtain a tight sample complexity bound for the single-bidder case, with m = Ω̃

(
log( 1

δ )/α3/2
)
. For

multi-bidder settings, our upper bound contains a small gap, with m = Ω̃
(
maxi∈[n]

{
log( 1

δ )/α2
i

})
.

Whether such a gap can be matched is an interesting open question for future work. Lastly, comparing
Theorem 4.3 and Theorem 4.4, it appears that for the multi-bidder settings the sample complexity
bounds are of the same order, but we emphasize the key difference that for regular distributions
this sample size is needed to provide a much weaker guarantee on the revenue objective, which is a(

1−O
(√∑n

i=1 αi

))
fraction of the optimal revenue, while the guarantee for MHR distributions

is a (1−O (
∑n
i=1 αi)) fraction of the optimal revenue.

We next provide an information-theoretic lower bound that establishes the tightness of our upper
bounds for the single-bidder single-item case with regular and MHR distributions.
Theorem 4.5 (Sample complexity lower bounds). Let M be any DSIC and IR mechanism for a
single-item single-buyer setting that takes as input m samples from a distribution D̃. If

Rev(M,D∗) > (1−O(
√
α)) ·OPT(D∗),

for all distributions D∗ such that dk(D∗, D̃) 6 α, where D∗ is regular, then m > Ω̃
(
log( 2

δ )/α3/2
)
.

Additionally, if
Rev(M,D∗) > (1−O(α)) ·OPT(D∗),

for all distributionsD∗ such that dk(D∗, D̃) 6 α, whereD∗ is MHR, we havem > Ω̃
(
log( 2

δ )/α3/2
)
.

Theorem 4.5 provides a general sample complexity lower bound on learning a near-optimal auction
with at least a (1−O(

√
n · α)) fraction of the optimal revenue under the true valuation distribution.

In comparison to our upper bounds (see Theorem 4.3 and Theorem 4.4), there is a small gap and we
leave the nature of this gap as an open question for future work.

5 Conclusions

We have studied the learning of revenue-optimal auctions for multiple bidders, in a setting in which
the samples can be corrupted adversarially. We first consider the information-theoretic limit in a
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population model, assuming exact knowledge of the adversarially perturbed valuation distribution.
We develop a theoretical algorithm which obtains a tight upper bound on the revenue for the MHR
and regular distributions, obtaining the information-theoretic limit of the robustness guarantee. We
then relax the population model and derive sample complexity bounds for learning optimal auctions
from samples. We propose a practical algorithm which takes the corrupted samples as input, and
provide the sample complexity upper bounds for the MHR distribution case and the single-bidder
regular distribution case. We also provide accompanying sample complexity lower bounds, and
demonstrate a small gap relative to the corresponding upper bounds.
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