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ABSTRACT

Flexible modal Face Anti-spoofing (FAS) aims to aggregate all the
available training modalities’ data to train a model and enables
flexible testing of any given modal samples. In this work, borrow-
ing a solution from the large-scale vision-language models (VLMs)
instead of directly removing modality-specific signals from visual
features, we propose a novel Flexible Modal CLIP (FM-CLIP) for
flexible modal FAS, that can utilize text features to dynamically ad-
just visual features to be modality independent. In the visual branch,
considering the huge visual differences of the same attack in dif-
ferent modalities, which makes it difficult for classifiers to flexibly
identify subtle spoofing clues in different test modalities, we pro-
pose Cross-Modal Spoofing Enhancer (CMS-Enhancer). It includes
a Frequency Extractor (FE) and Cross-Modal Interactor (CMI), aim-
ing to map different modal attacks in a shared frequency space to
reduce interference from modality-specific signals and enhance
spoofing clues by leveraging cross-modal learning from the shared
frequency space. In the text branch, we introduce a Language-
Guided Patch Alignment (LGPA) based on prompt learning, which
further guides the image encoder to focus on patch-level spoof-
ing representations through dynamic weighting by text features.
Thus, our FM-CLIP can flexibly test different modal samples by
identifying and enhancing modality-agnostic spoofing cues. Finally,
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extensive experiments show that FM-CLIP is effective and outper-
forms state-of-the-art methods on multiple multi-modal datasets.
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1 INTRODUCTION

The task of Face Anti-spoofing (FAS) is to protect face recognition
systems from physical media-based presentation attacks, such as
print [53, 54], replay [3] and mask [4, 21]. With the increasing
advancement of attack mediums and spoofing methods, FAS algo-
rithms [14, 20, 29, 30, 50, 51] designed based on RGB modality have
become challenging for realistic spoofing clues. The multi-modal
algorithms [8, 9, 17, 53] target these clues by leveraging the com-
plementary advantages of multi-modal samples, which insist that
the same attack is difficult to evade detection from multiple spectra
simultaneously. However, these multi-modal fusion methods need
to provide samples of the same modality during training and testing.
When any modality disappears during testing, these methods will
not be able to differentiate between real and fake faces, resulting in
poor performance. Due to hardware cost and space constraints, it
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Figure 1: (a) The pure visual encoder scheme for flexible
modal tasks requires setting up an image encoder indepen-
dently for each modality sample to learn modality-related
features and establishing a shared cross-modal attention
mechanism between them to learn modality-agnostic fea-
tures. (b) FM-CLIP avoids redundant network design by in-
serting cross-modal enhancers in the visual branch for cross-
modal mutual learning to enhance feature generalization.
At the same time, in the text branch, introduce a Language-
Guided Alignment based on the prompt learning to focus on
spoofing cues through dynamic weighting by text features.

is not always possible to provide consistent modal samples in prac-
tical applications, which makes these systems difficult to deploy
widely. Recently, flexible modality FAS [16, 19, 47, 48] has attracted
widespread discussion in the community because it can be flexibly
deployed in any given test modality environment without provid-
ing the same modal type as in the training stage. A type method
in this field is FM-ViT [19], which sets up an independent encoder
for each modality. After learning individual modality features from
different branches, a shared cross-modal block is established be-
tween them to guide each branch to learn potential and modality
agnostic active features by summarizing multi-modal information
as shown in Fig. 1 (a). Due to the significant differences in the same
attack type in different modalities, classifiers are highly susceptible
to interference from modality-related information.

Inspired by CLIP [36], in this work, borrowing a solution from
the large-scale vision-language models (VLMs) instead of directly
removing modality-specific signals from visual features, we pro-
pose a novel Flexible Modal CLIP (FM-CLIP) for flexible modal
FAS as shown in Fig. 1 (b), that can utilize text features to dynam-
ically adjust visual features to be modality independent. In the
visual branch, considering the huge spatial domain differences of
the same attack in different modalities, which makes it difficult
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for classifiers to flexibly identify subtle spoofing clues in different
test modalities, we propose Cross-Modal Spoofing Enhancer (CMS-
Enhancer). Specifically, it includes a Frequency Extractor (FE) and
Cross-Modal Interactor (CMI). FE converts visual features into the
frequency domain through discrete cosine transform (DCT) and fur-
ther adaptively adjusts the distribution of spatial domain features
to mine essential spoofing clues. CMI conducts cross-modal mutual
learning of effective cues in each modality to enhance the features
of a single modality. FE and CMI work together to map different
modal attacks in a shared frequency space to reduce interference
from modality-specific signals and enhance spoofing clues by lever-
aging cross-modal learning from the shared frequency space. In
the text branch, considering the alignment between image features
and text feature embeddings can lead to non-trivial generalization
improvements, so we introduce a Language-Guided Patch Align-
ment (LGPA) based on the prompt learning, which further guides
the image encoder to focus on patch level spoofing representations
through dynamic weighting by text features. Specifically, we follow
CoOp [57] initializes learnable content embeddings, which are fed
into a text encoder along with handcrafted categories to produce
text supervision signals. The LGPA aligns the local image patch
tokens with global text prompt embeddings. Finally, we combine vi-
sual patch-based alignment and visual CLS token-based alignment
to supervise model training. The main contributions of this paper
are summarized as follows:

e We borrowed CLIP to propose a Flexible Modal CLIP (FM-
CLIP) for FAS, which can utilize text features to dynamically
adjust visual features to make them independent of modality.

e In the visual branch, we propose Cross-Modal Spoofing En-
hancer (CMS-Enhancer), including Frequency Extractors (FE)
and Cross-Modal Interactors (CMI), aiming to map differ-
ent modal attacks into a shared frequency space to perform
cross-modal learning so that the model can effectively pay
attention to subtle spoofing cues.

e In the text branch, we introduce language-guided patch align-
ment (LGPA) based on prompt learning, which further guides
the image encoder to focus on patch-level spoofing repre-
sentation through dynamic weighting of text features.

o Extensive experiments demonstrate FM-CLIP’s effectiveness
and superior performance over state-of-the-art results on
WMCA, CASIA-SURF, and CASIA-SURF CeFA datasets.

2 RELATED WORK

Single-Modal FAS Methods. With the rise of deep learning frame-
works, Some CNN-based methods [13, 31] design a unified frame-
work for feature extraction and classification in an end-to-end
manner. Another works [29, 38, 45, 51] utilize physical-based depth
information as a supervisory signal instead of binary classification
loss, improving the model’s ability to perceive and understand scene
depth more effectively. Although these algorithms have achieved
astonishing results in intra-datasets experiments, their performance
deteriorates severely when faced with unknown domains.

To solve these limits, domain generalization-based FAS is in-
creasingly receiving attention from researchers. Some Domain
Adaptation-based methods [25, 26, 42, 44, 52] aim to minimize the
distribution discrepancy between the source and target domain
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by leveraging the unlabeled target data. Another Domain Gener-
alization based methods [10, 14, 20, 23, 24, 37, 39-41, 43, 50] can
conquer this by taking the advantage of multiple source domains.
MFAE [56] randomly masks the low-frequency spectrum of im-
ages and reconstructs the images for self-supervised pre-training
of Vision Transformers, and also integrates an auxiliary content-
regularization decoder to further enhance the model’s insensitivity
to low-frequency features. CIFAS [27] addresses the challenge of
domain bias by introducing causal intervention techniques. Liu et
al. [28] propose UDG-FAS, the first Unsupervised DG framework
for FAS. CFPL-FAS [20] targets DG FAS via textual prompt learning
for the first time, which utilizes two lightweight models to learn
the different semantic prompts conditioned on content and style
features. CA-MoEiT [14] introduces professional experts and super
expert to solve DG FAS.

Multi-Modal Fusion Methods. Multi-modal FAS has gained atten-
tion due to the increasing sophistication of high-quality 2D attacks,
such as those present in datasets like OULU-NPU [1], SiW [29],
CelebA-Spoof [55] as well as high-fidelity mask attacks, including
MARsV2 [22], and HiFiMask [21]. These attacks exhibit realistic
color, and texture making it challenging to detect spoofing clues
using only the visible spectrum. To address this issue, multi-modal
fusion methods [8, 9, 17, 18, 53] have proven effective by leveraging
different modalities that may reveal distinct properties of fake faces.
However, these multi-modal fusion-based algorithms require the
testing phase to provide the same modal types as the training phase,
limiting their deployment scenarios.

Flexible-Modal Methods. To alleviate the limitation of consis-
tency between testing and training modalities, flexible modality-
based methods [8, 12, 16, 19, 47, 48] aim to improve the performance
of any single modality by leveraging available multi-modal data.
George et al. [8] presents a framework for PAD that uses RGB and
depth channels supervised by the proposed cross-modal focal loss
(CMFL), which makes it possible to train models using all the avail-
able channels and to deploy with a subset of channels. MA-ViT [16]
adopts the early fusion to aggregate all the available training modal-
ities’ data and enables flexible testing of any given modal samples
with a Modality-Agnostic Transformer Block. Yu et al. [47, 48] in-
troduce a flexible-modal benchmark aimed at training a unified
model capable of deployment across various modality scenarios.
FM-VIiT [19] retains a specific branch for each modality to capture
different modal information and introduces the Cross-Modal Trans-
former Block, which consists of two cascaded attentions named
Multi-headed Mutual-Attention and Fusion-Attention. MMDG [12]
proposes a multi-modal domain generalization framework MMDG,
which addresses modal unreliability and imbalance issues through
uncertainty-guided U-Adapter and ReGrad strategy.

3 METHOD

CLIP. We adopt CLIP [36] as the pre-trained model with a ViT
image encoder and transformer text encoder, respectively. Given
an image x € R3XHXW, the vision encoder converts it into a D-
dimensional image feature fig € RI+N)IXD yhere 1 represents
the CLS token and N denotes the patch tokens. Meanwhile, the text
encoder g (.) takes text descriptions ¢ and generates the text feature
frext € REXD from the appended EOS tokens, where K denotes
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the number of classes. Formally, let cls token fisgf)} extracted for a
testing image x, and given the text prompts P, we have the predicted
similarity of class i € {0, 1}, where 0 represents ‘real’ and 1 is ‘fake’:

exp (< g(Py) ’fl'('(')lil > /T)

Zﬁlexp (< g(Pj),fl.(::l)g > /7,'),

where 7 is a temperature coefficient, and y denotes the label.

p(ylx) = (1)

3.1 Cross-Modal Spoofing Enhancer

To cope with the difficulty of classifiers in identifying subtle spoof-
ing clues caused by the huge difference in the representation of
the same attack type in different modalities, we introduce a Cross-
Modal Spoofing Enhancer (CMS-Enhancer) to bridge the adjacent
ViT stage in the image encoder as shown in Fig. 2. CMS-Enhancer
divides sample features into spatial and frequency domain features
and allows cross-modal interactive learning of frequency domain
features of different modalities in a shared frequency domain band
to enhance the model’s capture of spoofing clues.

Spatial Extractor (SE). Benefiting from the hard-coded inductive
bias of convolutional layers, inserting lightweight convolutional
layers in the ViT encoder is more suitable for vision tasks. Inspired
by this, we construct a lightweight Spatial Extractor (SE) in the
spatial domain, comprising three convolution layers and two GELU
layers for capturing subtle spoofing clues, as follows

FéJE-)_output = Convl (GELU (Conv3 (GELU (Convl (Fi(r{;l)lut))))) s
ﬁ(j) _ F(j) ® F(j) g;

spatial ~— * SE_output input’
where Conv1l and Conv3 represent the 1x1 and 3x3 convolution

kernel respectively; F () and FY) represent the vanilla

input SE_output
transformer layer features and output features extracted by the
SE module in j-th ViT stage respectively; F ) represents the

spatial
spatial feature; @ represents element-wise summation.
Frequency Extractor (FE). As is known, RGB images and depth
maps contain various information. Depth maps contain more con-
tours, while RGB images convey rich detailed information, such as
texture and color. Huge differences in representations of different
modalities can cause classifiers to overly focus on modal content
information. In the frequency domain, an image is represented as a
superposition of its different frequency components. Inspired by
FcaNet [35], we construct a lightweight Frequency Extractor (FE)
in the frequency domain, comprising Discrete Cosine Transform
(DCT), two convolution layers, and one GELU layers, as follows

ngjé)_output i (CODV] (GELU (COHVl (DCT (Fi(r{;z))ut))))) . (@)
ﬁ](f{)equency = Igi')_output ® Fi(r{;ut 4 (5)

where o is the sigmoid function, and ® represents element-wise
multiplication. The 2D DCT is mathematically defined as follows:
B A h 1 W 1
DCT (F) = XZ:;) yZ:;) F*COS(E (x+5))cos (W (y+ 5))
he{0,1,---,H-1L,we{0,1,--- , W -1},
(6)
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Figure 2: An overview of the FM-CLIP Framework is based on the frozen CLIP model. In the visual branch, the ViT image

encoder integrates the CMS-Enhancer. Taking RGB as an example, use RGB features Frgp as input to obtain F;gg’ and Fggg'

through Spatial Extractor and Frequency Extractor respectively. Using Fggg' and Ff):;(ih as input through the CMI module, RGB

and Depth can be complementary learned in the frequency domain to obtain enhanced features FﬁGB and F%ep ;- The final

Image Encoder outputs CLS token flsz; and Patch token f;grllgN) In the text branch, The learnable content vectors and manual
)

are input to

the LGPA module together, fi.x; guides the patch token f;E;gN> to calculate the similarity matrix S, and further obtains f:(rrlng)

category vectors are used as input together with Text Encoder to extract text features fiox;. The fiex; and The flgrllgN

The EOS (real, fake) in the last dimension of the text feature f;.x; performs cosine similarity with CLS token fifr(l); and Patch

token f;grllgN) respectively, and then uses cross-entropy function with label y € {0, 1} to calculate loss £ and £€.

where H and W are the height and width of the input feature map. gate maps can be represented as ﬁ;gg “and Kdgr:gt'h as follows:
Different modal features are mapped in a shared frequency domain,
and the Cross-Modal Interactor module is used to complementarily mired — 1 _mires. mfrer -1 - mires (8)
} X RGB RGB> "'Depth Depth °
enhance the spoofing-related representation of each modality.
Cross-Modal Interactor (CMI). Inspired by [46] and [5], we use Two unimodal features ’f}fz gg and ﬁg reqd- . re obtained by:
c e o . epth
a gate network to extract discriminative information from each
: ; A ()
modal feature. Specifically, the input frequency feature Ffrequency Freq. _ yfreq. o pfreq. greq. _\iFreq. o preq. o)
is fed into a gate consisting of a 3x3 convolutional layer and a RGB RGB RGB > " Depth Depth = " Depth °
Sigmoid activation func??‘i‘i and then we c??e;btaln the value Through such calculations, the model can effectively learn useful
probability gate maps Mp 5" € [0,1] and M Depth € [0,1]. Since information from features, thereby suppressing the interference of
the calculation of each ViT stage is the same, in the subsequent useless information on the model. To utilize the cross-modal com-
formulas, we omit the ViT stage mark (). The formulation is plementary relationships, we perform the same operation between
. . ~Freq. =~Freq. c e
the uninformative gate maps (M5, M Dep ) and discriminatory
... Freq. ©Freq. .
MmEred- _ (C 3 (FFreq.)) pFred _ (C 5 (FFreq. )) features from another modality (Fp, .5 ’FDepth) to get complimen-
RGB = 9 \C0M03 \Ypgp )| Depth — P \“OM2 \Ypepin)) tary cross-modal features:
)
. . . o =Freq. _ xFreq. _&Freq. = TFreq. _ 1xFreq. _TFreq.
The larger the value in this ma}), the more discriminative infor- FRGBiDepth = MRGB ®F£epth’ FDeptthGB = MDepth®FRGB R
. . req. . .
mation the feature vectors in Fj, .. have at their corresponding (10)
positions. On the contrary, the smaller the value, the smaller the Please note that the complementary information from the deep

amount of valuable information. Furthermore, the uninformative modality is selected by the uninformative gate map of the RGB
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modality, which means it propagates to positions with little infor-
mation in the RGB features. In addition, we adopt residual connec-
tions to preserve the original feature of each modality. Therefore,
we can capture the complementary features across modalities. So
we can obtain these two features in the following way:

E_Freq. Freq. _ TFreq. _ TFreq.
Ffreq:Frqu;Freq@Freq

RGB RGB RGB RGB_Depth
(11)
E_Freq. _ Freq. =Freq. =Freq.
FDepth - FDepth ® FDepth ® FJI;epth,RGB ’

Furthermore, the frequency domain enhanced features and spatial
domain features corresponding to each modal sample are fused

FEfFreq. @FSpat.. FE

E _ _ E_Freq. Spat.
Fres = Froa RGB F ®F

Depth — " Depth Depth’ (12)

Spat

E E . .
where FRGB and FDep h represent enhanced features; FRGB and

t
Spat.

FDepth

represent the spatial feature extracted by SE model.

3.2 Vision-Language Alignment

In the text branch, we introduce a Language-Guided Patch Align-
ment based on prompt learning, which further guides the image
encoder to focus on patch-level spoofing cues through dynamic
weighting by text features. In a bit more detail, prompt learning
initializes learnable content embeddings, which are fed into a text
encoder along with handcrafted categories to produce text supervi-
sion signals. The LGPA aligns image patches with text embedding
features. Finally, we combine patch-based and CLS token-based
alignment to supervise model training.

Prompt learning. We follow CoOp [57] to avoid prompt engineer-
ing to further enhance the migration capabilities of CLIP models.
Different from the zero-shot transfer that used a fixed hand-craft
prompt, we construct and fine-tune a set of M continuous context
vectors v = {v1,v2,...,0)} as the turntable prompt. Specifically,
the prompt t; = {v1,v2, ...,vp1, ¢i} combines the learnable context
vectors v and the class embedding c;, and is fed to the text encoder
g(+). The probability for y-th class is obtained as

exp (< g (ty) ,fl.('(:li] > /r)

K exp (< g (t)). Sy > /7)

Language-Guided Patch Alignment (LGPA). We propose a
Language-Guided Patch Alignment, which aligns the image patch
with text features to guide visual networks to attend to spoofing
cues adaptively inspired by [33]. Specifically, given the text prompt
embeddings fexs € RK*P from text encoder and image patch to-

, (13)

Pels_token (ylx)=

kens fl.grll;N) € RN*D our Language-guided calculates the similarity
matrix S between them by

= fam (frex)" - (14)

where - represents matrix multiplication, and S € RN*K, We fuse
textual features with similar visual representations in image patches,

F(LN :N
figrllg ) = softmax (S) - frext +fi§111g ): (15)
where f:(nllgN) denotes the language-guided image patch tokens.

For the loss calculation, we combine visual patch-based align-
ment and visual CLS token-based alignment to supervise model
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training. For visual CLS token-based alignment, we apply Eq. 13 to
calculate probability. For visual patch-based alignment, we calculate
image patch tokens probability, as follows

(ylx =~ i xp (<9 (t4) Simy > 17)
Ppatch_token \Y | X) = = - s
N = 25(:1 exp (< g (tj) ,fi(m"; > /r)
(16)
In this paper, we adopt the cross entropy loss on Eq. 13 and Eq.
16 with label y € {0, 1} to calculate loss, as follows
L=-y-logp(y|x)—(1-y)-log(1-p(y|x)), (17)
the total loss is as follows

Ltotal — £P+£C , (18)
where £ and £C represent patch loss and CLS loss respectively.

4 EXPERIMENTS

Datasets & Protocols. We use three commonly used multi-modal
FAS datasets for experiments, including CASIA-SURF (SURF) [53],
CASIA-SURF CeFA (CeFA) [17], WMCA [9]. SURF [53] consists of
1,000 subjects with 21, 000 videos and each sample has 3 modalities,
and we follow a protocol to evaluate the performance against un-
known attack types. CeFA [17] covers 3 modalities, 1, 607 subjects,
and provides five protocols. We select the Protocols 1, 2, and 4 for
experiments. WMCA [9] contains a wide variety of presentation at-
tacks, which introduces 2 protocols: the grandest protocol emulates
the “seen” attack scenario and the “unseen” protocol evaluates the
generalization of an unseen attack.

Test Scenario Settings&Evaluation Metrics. We follow the test
scenarios of FM-ViT [19]. The first is a commonly used setting
where the test modalities need to be consistent with the training
stage. The second is a flexible modal test scenario, which means
the user can provide any single-modal sample. Attack Presentation
Classification Error Rate (APCER), Bonafide Presentation Classifi-
cation Error Rate (BPCER), and ACER [11] are used for the metrics.

Implementation Details. We utilize ViT-B/16 as an image encoder,
whose output embedding dimension is 768. Meanwhile, we employ
a transformer-based text encoder. In the training stage, the input
images are cropped and resized to 224 x 224 x3. We apply random
cropping and random horizontal flipping at training, while center
cropping at testing, both with no other augmentations. We use an
Adam optimizer with an initial learning rate of le-6 and weight
decay of 1e-6. We train all methods with a maximum of 200 epochs,
and FM-CLIP is trained with a batch size of 12. Unless otherwise
stated, all ablation experiments are conducted with WMCA (‘seen’)
data in the flexible modality test scenario.

4.1 Experimental Result

Fixed Modal Scenario Evaluations. The fixed modal scenario
setting evaluates the fusion ability of the FM-CLIP framework ap-
proach to multi-modal information. We verified the performance of
the CMS-Enhancer and the FM-CLIP overall framework. (SURF): As
shown in Tab. 1, after adding CMS-Enhancer to the visual network
ViT, compared to FM-ViT, the ACER was reduced from 0.45 to 0.44.
Further, we added LGPA to form the final FM-CLIP, and the ACER
was further reduced to 0.43. VisioinLabs used additional datasets,
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Table 1: The results on SURF. A large TPR(%) and a lower ACER (%) indicate better performance. The best results are bolded.

TPR

Method GFPR-10-7 | GFPR-10=3 | GFPRT0™" APCER | BPCER | ACER
MS-SEF [53] 99.70 97.40 92.40 190 | 0.10 | 1.00
VisionLabs [34] 99.98 99.95 99.87 001 | 015 | 0.08
ViT 87.58 63.09 27.05 3.94 448 | 421
FM-ViT [19] 99.83 99.13 98.23 0.39 050 | 045
CMS-Enhancer 99.84 99.14 98.22 0.41 047 | 0.44
FM-CLIP 99.84 99.12 98.25 0.42 045 | 043

Table 2: Comparison of ACER (%) values on Protocol “seen” and “unseen" for the WMCA. The best results are bolded.

unseen

Method S€€N "Flexiblemask [ Replay [ Fakehead [ Prints [ Glasses [ Papermask [ Rigidmask [ Mean=+Std
MC-PixBiS [6] 1.80 49.70 3.70 0.70 0.10 16.00 0.20 3.40 10.50+16.70
MCCNN-OCCL-GMM (7] | 3.30 22.80 31.40 1.90 30.00 50.00 4.80 18.30 22.74+15.30
CMFL [8] 1.70 12.40 1.00 2.50 0.70 33.50 1.80 1.70 7.60£11.20

ViT 2.71 11.95 1.44 3.78 0.00 18.02 0.58 4.43 5.74%6.75

FM-ViT [19] 1.0 3.56 0.72 0.00 0.00 12.00 0.43 0.73 2.49+4.37
CMS-Enhancer 1.06 3.23 0.70 0.00 0.00 11.2 0.39 0.69 2.36+4.08
FM-CLIP 1.05 3.35 0.69 0.00 0.00 11.0 0.38 0.66 2.29+4.00

Table 3: Evaluation results (%) on the Protocol 1, 2, and 4 of
CeFA dataset.

[Pro. | Method [ APCER(%) [ BPCER(%) | ACER(%) |
PSMM [17] [ 2.40+0.60 [ 4.60+2.30 | 3.50+1.30
) ViT 142051 | 1.58+1.88 | 150+0.77
FM-ViT [19] | 1.29+1.21 | 0.67+0.95 | 0.98+0.31
CMS-Enhancer | 1.25+1.05 | 0.68+1.05 | 0.97+0.32
FM-CLIP | 1.25+1.03 | 0.66+0.99 | 0.95+0.32
PSMM [17] [ 7.70£9.00 | 3.10£1.60 | 5.40%5.30
) ViT 2824120 | 125059 | 1.67+0.83
FM-ViT [19] | 0.46+0.09 | 1.08+0.83 | 0.30+0.07
CMS-Enhancer | 0.47+0.13 | 1.05+0.79 | 0.33+0.06
FM-CLIP 0.4720.12 | 1.04::0.80 | 0.30+0.06
PSMM [17] [ 7.80+2.90 | 5.5043.00 | 6.70+2.20
Hulking [15] | 3.25+1.98 [ 1.16+1.12 | 2.21x1.26
Super [15] [ 0.62+0.43 | 275150 | 1.68+0.54
4 BOBO [49] | 1.05+0.62 | 1.00+0.66 | 1.02+0.59
ViT 3.172.15 | 6.83£6.08 | 5.00+2.19
FM-VIT [19] | 0.87+1.16 | 0.93+1.53 | 0.90+1.34
CMS-Enhancer | 0.79£1.24 | 0.95:1.41 | 0.88+131
FM-CLIP 0.77+1.28 | 0.93+1.45 | 0.87=1.25

and secondly, the CMI in our framework FM-CLIP uses cross-modal
complementarity and does not fuse features, so it is inferior to the
VisioinLabs method. (WMCA): As shown in Tab. 2, Compared with
FM-VIT, the average ACER of CMS-Enhancer on the WMCA ‘un-
seen’ protocol dropped from 2.49+4.37 to 2.36+4.08. On this basis,

FM-CLIP further dropped to 2.29+4.00. Since the number of train-
able parameters of FM-CLIP is 5.34M, which is 17.43M less than FM-
ViT’s 22.77M, as shown in the Tab. 9, its performance on the WMCA
‘seen’ protocol is inferior to FM-ViT. (CeFA): As shown in Tab. 3,
compared to FM-ViT, FM-CLIP has decreased in three indicators:
APCER, BPCER, and ACER from 1.29+1.21, 0.67+0.95, and 0.98+0.31
to 1.25+1.03, 0.66+0.99, and 0.95+0.32, respectively, on Protocol 1.
Compared to FM-ViT, FM-CLIP has decreased in two indicators:
BPCER, and ACER from 1.08+0.83, and 0.30+0.07 to 1.04+0.80, and
0.30+0.06, respectively, on Protocol 2. Compared to FM-ViT, FM-
CLIP has decreased in three indicators: APCER, BPCER, and ACER
from 0.87+1.16, 0.93+1.53, and 0.90+1.34, to 0.77+1.28, 0.93+1.45,
and 0.87+1.25, respectively, on Protocol 4. For fixed modal scenario
evaluations, extensive experiments demonstrate FM-CLIP’s effec-
tiveness and superior performance over SOTA results on SURF,
WMCA, and CeFA datasets.

Flexible Modal Scenario Evaluations. We conducted experi-
ments under flexible modal scenarios on SURF, CeFA (Protocol 4),
and WMCA (Protocol ‘seen’) data as shown in Tab. 4. Similarly, we
verified the performance of CMS-Enhancer and FM-CLIP Frame-
work respectively. SURF: Compared with FM-ViT, the ACER of
CMS-Enhancer in RGB, Depth, and IR decreased from 12.38, 3.49,
and 2.59 to 10.3, 3.18, and 2.23 respectively. Furthermore, FM-CLIP
achieves 10.21, 3.02, and 2.01 and reduces 2.17, 0.47, and 0.58 com-
pared to FM-ViT respectively. CeFA (Protocol 4): Compared with
FM-ViT, the ACER of CMS-Enhancer in RGB, and IR decreased from
21.06+4.90, and 2.88+2.23 to 14.57+1.41, and 2.59+2.24 respectively.
Furthermore, FM-CLIP achieves 11.87+3.14, and 2.07+1.36 and re-
duces 9.19, and 8.1 compared to FM-ViT respectively. WMCA (pro-
tocol ‘seen’): Compared with FM-ViT, the ACER of CMS-Enhancer
in RGB, Depth, and IR decreased from 2.87, 2.32, and 2.13 to 2.23,
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Table 4: Comparison of flexible modal results (%) based on multi-modal datasets. The ‘SOTA’ means the method with public
results on the corresponding dataset. R&D&I indicates the method receives RGB (R), Depth (D), and IR (I) paired samples.

Method Train | Test SURF CeFA (Protocol 4) WMCA (Protocol “seen”)
APCER | BPCER | ACER APCER | BPCER | ACER APCER | BPCER | ACER
Fixed modal testing

SOTA R R 40.30 1.60 21.00 9.96+5.41 2.08+0.88 6.02+2.33 65.65 0.00 32.83

[7, 49, 53] D D 6.00 1.20 3.60 4.29+1.37 1.17+0.63 2.73+0.97 11.77 0.31 6.04
T I I 38.60 0.40 19.40 19.61£15.66 | 0.58+0.38 | 10.10+7.66 5.03 0.00 2.51

R R 23.39 22.50 22.95 25.08+1.46 | 25.06+1.41 | 25.07+1.44 6.33 13.91 10.12

ResNet50 [19] D D 2.46 7.33 4.90 9.67+4.54 8.71+4.33 9.19+4.43 9.50 4.35 6.93
I I 26.02 16.33 21.18 6.12+6.95 5.13+2.91 5.65%+3.25 4.75 6.96 5.85

R R 16.64 17.17 16.90 34.74+5.44 | 13.67+3.25 | 24.20+2.34 4.30 4.35 4.32

ViT [19] D D 4.30 3.72 4.01 8.41%+5.36 3.83+3.76 6.12+2.91 5.66 0.00 2.83

I I 7.15 9.33 8.44 7.90£6.53 2.50%2.65 5.20+3.74 2.94 1.74 2.34

Flexible modal testing

R&D&I R 8.77 16.00 12.38 36.61+9.51 5.50+1.32 | 21.06+£4.90 2.26 3.48 2.87

FM-ViT [19] R&D&I | D 5.14 1.83 3.49 2.79+0.44 1.71+1.13 2.25%0.36 2.04 2.61 2.32
R&D&I I 1.34 3.83 2.59 3.43+2.73 2.33+£1.91 2.88+2.23 3.39 0.87 2.13

R&D&I R 18.09 2.5 10.3 21.56+2.99 | 12.53+3.51 | 14.57+1.41 2.71 1.74 2.23

CMS-Enhancer | R&D&I | D 3.35 3 3.18 3.5+£1.95 2+0.75 2.42+0.79 4.3 0 2.15
R&D&I I 4.13 0.33 2.23 2.94+3.42 2.25+1.09 2.59+2.24 2.04 1.74 1.89

R&D&I R 18.59 1.83 10.21 14.4+3.37 9.3+£2.98 11.87+3.14 2.49 0.87 1.68

FM-CLIP R&D&I | D 3.21 2.83 3.02 4.16+2.08 1.08+1.01 2.29+0.68 3.85 0 1.92

R&D&I I 2.01 2 2.01 2.15+1.37 2+1.39 2.07+1.36 3.39 0 1.7

Table 5: In the flexible modality scenario, the effectiveness
of each component of FM-CLIP is verified, and ablation ex-
periments are performed on three data sets WMCA (‘seen’),
SURF, and CeFA (Prot.4).

CMS-Enhancer VLA WMCA SURF CeFA(Prot. 4)
X X 3.16 9.78 11.84
v X | 209(-1.07) 524 (-454)  6.52(-5.32)
X /| 189(-127) 558(-42)  7.11(-4.73)
v v 1.77 (-1.39) 1.47 (-8.31) 2.99 (-8.85)

Table 6: Ablation experiments to verify the effectiveness of
Spt.&Freq.-Extra and CMI on WMCA (‘seen’) data.

Spt.&Freq.-Extra. CMI | APCER BPCER ACER
v X 4.51 1.67 3.09
X v 3.82 1.86 2.84
v v 3.01 1.16 2.09

Table 7: Ablation experiments to verify the effectiveness of
Spatial Extra. and Frequency Extra. on WMCA (‘seen’) data.

Spatial Extra. Frequency Extra. | APCER BPCER ACER
v X 4.81 2.03 3.42
X v 4.68 1.81 3.25
v v 4.51 1.67 3.09

2.15, and 1.89 respectively. Furthermore, FM-CLIP achieves 1.68,
1.92, and 1.7 and reduces 1.19, 0.4, and 0.43 compared to FM-ViT

Table 8: Ablation experiments

to verify the effectiveness of

Prompt Learning and LGPA on WMCA (‘seen’) data.

Prompt Learning LGPA | APCER BPCER ACER
v X 2.89 2.33 2.60
X v 2.24 1.81 2.10
v v 2.05 1.73 1.89

Table 9: Comparison of learnable parameters and Flops be-
tween the FM-CLIP framework and other methods.

Methods # Parameters FLOPs ACER
FM-ViT [19] 22.77 M 385G 244
FM-CLIP (Ours) 534 M 2651G  1.76

respectively. For flexible modal scenario evaluations, extensive ex-

periments demonstrate FM-CLIP’

s effectiveness and superior per-

formance over SOTA results on SURF, WMCA, and CeFA datasets.

4.2 Ablation Study

Effectiveness of each component in the FM-CLIP. To verify
the effectiveness of the component of FM-CLIP on dataset WMCA
(‘seen’), SURF, CeFA (Prot.4), we conducted ablation experiments
in flexible modality scenarios as shown in Tab. 5. Specifically, CMS-
Enhancer achieved ACER of 2.09, 5.24, and 6.52 on WMCA, SURF,
and CeFA data respectively, compared with the baseline ACER of
3.16, 9.78, and 11.84, which were reduced by 1.07, 4.54, and 5.32.
VLA achieved 1.89, 5.58, and 7.11 respectively, compared with the
baseline were reduced by 1.27, 4.2, and 4.73. Finally, the combination
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Figure 3: Comparing the linear divisibility of visual features.

of CMS-Enhancer and VLA achieved 1.77, 1.47, and 2.99 for CM-
CLIP, compared with the baseline were reduced by 1.39, 8.31, and
8.85 respectively.

Effectiveness of each component in the CMS-Enhancer. To
verify the effectiveness of the component of CMS-Enhancer on
dataset WMCA (‘seen’), we conducted ablation experiments in flex-
ible modality scenarios as shown in Tab. 6. Specifically, Spt.&Freq.-
Extra achieved APCER, BPCER, and ACER of 4.51, 1.67, and 3.09
respectively. CMI achieved APCER, BPCER, and ACER of 3.82, 1.86
and 2.84 respectively. Finally, the combination of Spt.&Freq.-Extra
and CMI achieved APCER, BPCER, and ACER of 3.01, 1.16, and 2.09
respectively. In addition to this, we also verify the performance of
the spatial extractor and the frequency extractor as shown in Tab.
7. Specifically, only the spatial extractor achieved APCER, BPCER,
and ACER of 4.81, 2.03, and 3.42 respectively; only the frequency
extractor achieved APCER, BPCER, and ACER of 4.68, 1.81, and
3.25 respectively. Finally, the combination of the spatial extractor
and frequency extractor achieved 4.51, 1.67, and 3.09 respectively.

Effectiveness of each component in the VLA. To verify the
effectiveness of the component of VLA on dataset WMCA (‘seen’),
we conducted ablation experiments in flexible modality scenar-
ios as shown in Tab. 8. Specifically, Prompt Learning achieved
APCER, BPCER, and ACER of 2.89, 2.33, and 2.60 respectively;
LGPA achieved APCER, BPCER, and ACER of 2.24, 1.81, and 2.10 re-
spectively; Finally, the combination of Prompt Learning and LGPA
achieved 2.05, 1.73, and 1.89 respectively.

Model parameter analysis. We conducted a complexity analysis
on the FM-CLIP framework as shown in Tab. 9. Specifically, the
FLOPs of FM-VIT [19] is 3.85, and FM-CLIP is modeled based on
CLIP so FM-CLIP is 26.61. Compared with the amount of learnable
parameters of FM-ViT which is 22.77M, FM-CLIP is only 5.34M
mainly because we freeze the parameter updates of the visual and
text backbone networks. Although the number of learnable parame-
ters is much smaller than that of FM-ViT, the ACER of FM-CLIP on
WMCA’s Seen is 1.76, which is 0.68 lower than FM-ViT’s 2.44, which
fully demonstrates FM-CLIP’s ability to handle flexible modal tasks.

Ajian Liu and Hui Ma, et al.
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Figure 4: Compare the distribution of feature activations.

Visualization Analysis. As shown in Fig 3, we use the UMAP
tool [32] to reduce the dimensionality of the output of the features
by the visual encoder to observe the linear distinguishability of
categories. Compared with ViT, FM-CLIP intuitively shows that
features of different categories are more compact in space and
linearly separable. As shown in Fig 4, we visualized the feature
activation maps of FM-CLIP on three datasets with attention-model
explainability tool [2]. we verify the superiority of the proposed
FM-CLIP framework from visual attention maps. Intuitively, the
FM-CLIP framework not only focuses on the facial area, but also
pays more attention to local facial details such as eyes, nose, and
mouth. In addition, thanks to cross-modal feature enhancement,
depth modality samples in faceless areas can still capture spoofing
clues.

5 CONCLUSION

In this paper, we borrowed large-scale visual language models
(VLM) to propose a novel Flexible Modal CLIP (FM-CLIP) for FAS,
which can utilize text features to dynamically adjust visual features
to make them independent of modality. In the vision branch, we
propose a cross-modal spoofing enhancer (CMS-Enhancer), includ-
ing a frequency extractor (FE) and a cross-modal interactor (CMI),
aiming to map different modal attacks into a shared frequency space
to perform cross-modal learning and suppress large differences be-
tween different modalities, allowing the model to effectively focus
on subtle spoofing cues. In the text branch, we introduce language-
guided patch alignment (LGPA) based on prompt learning, which
further guides the image encoder to focus on patch-level spoofing
representation through dynamic weighting of text features. Exten-
sive experiments show that FM-CLIP is effective and outperforms
SOTA methods on multiple multi-modal datasets.
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