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ABSTRACT

Recent work has shown that first order methods like SAM which implicitly penal-
ize second order information can improve generalization in deep learning. Seem-
ingly similar methods like weight noise and gradient penalties often fail to provide
such benefits. We show that these differences can be explained by the structure of
the Hessian of the loss. First, we show that a common decomposition of the Hes-
sian can be quantitatively interpreted as separating the feature exploitation from
feature exploration. The feature exploration, which can be described by the Non-
linear Modeling Error matrix (NME), is commonly neglected in the literature since
it vanishes at interpolation. Our work shows that the NME is in fact important as
it can explain why gradient penalties underperform for certain architectures. Fur-
thermore, we provide evidence that challenges the long held equivalence of weight
noise and gradient penalties. This equivalence relies on the assumption that the
NME can be ignored, which we find does not hold for modern networks since
they involve significant feature learning. Intriguingly, we find that regularizing
feature exploitation but not feature exploration yields performance comparable to
SAM. This suggests that properly controlling regularization on the two parts of
the Hessian is important for the success of many second order methods.

1 INTRODUCTION

There is a long history in machine learning of trying to use information about the loss landscape
geometry to improve gradient-based learning. This has ranged from attempts to use the Fisher infor-
mation matrix to improve optimization (Martens & Grosse, 2015), to trying to regularize the Hessian
to improve generalization (Moosavi-Dezfooli et al., 2019). More recently, first order methods which
implicitly use or penalize second order quantities have been used successfully, including the sharp-
ness aware minimization (SAM) algorithm (Foret et al., 2020). On the other hand, there are many
approaches to use second order information which once seemed promising but have had limited
success (Dean et al., 2012). These include methods like weight noise (An, 1996) and gradient norm
penalties, which have shown mixed success.

Part of the difficulty of using second order information is the difficulty of working with the Hessian
of the loss. With the large number of parameters in deep learning architectures, as well as the
large number of datapoints, many algorithms use stochastic methods to approximate statistics of the
Hessian Martens & Grosse (2015); Liu et al. (2023). However, there is a conceptual difficulty as
well which arises from the complicated structure of the loss Hessian itself. Methods development
often involves approximating the Hessian via the Gauss-Newton (GN) matrix - which is PSD for
convex losses. The indefinite part of the Hessian is often neglected, in part due to the complexity of
both its eigenstructure and computation.

In this work we show that it is important to consider both parts of the Hessian in order to design good
second order methods. We show that the GN part of the Hessian is related to exploiting existing
linear structure, while the indefinite part of the Hessian, which we dub the Nonlinear Modeling
Error matrix (NME), is related to exploring the effects of switching to different linear regions.
We show that the NME depends heavily on the choice of activation, and in particular the second
derivative of that activation function. This suggests that second order methods may be more sensitive
to the choice of activation functions than first order methods, and that second order methods might
be improved by deliberately choosing which parts of the Hessian to penalize.
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We then use our theoretical insights to guide experiments which show the following:

• We explain the inconsistencies between the success of SAM and failure of gradient penalty
regularizers in certain architectures to the choice of activation functions, and rescue the
performance of the gradient penalty by switching ReLU to GELU. To our knowledge we
are the first to show that methods using second order information are more sensitive to the
choice of activation function.

• We show that weight noise does not perform as well as the gradient penalty it is thought to
approximate. We provide evidence that this is due to the analysis neglecting the important
effect of the NME matrix, which weight noise implicitly penalizes.

• Furthermore, we show that penalizing the GN part of the Hessian directly while ignoring
the Nonlinear Modeling Error does seem to improve generalization.

We conclude with a discussion about how these insights might be used to design activation functions
not with an eye towards forward or backwards passes (Pennington et al., 2017; Martens et al., 2021),
but for compatibility with second order methods (implicit or explicit).

2 UNDERSTANDING THE STRUCTURE OF THE HESSIAN

The key hypothesis of this paper is that the structure of the Hessian can be used to explain the
empirical phenomena of Sections 4 and 5. In this section, we lay the ground work by explaining this
structure. Given a model z(θ,x) defined on parameters θ and input x, and a loss function L(z,y)
on the model outputs and labels y, we can write the gradient of the training loss with respect to θ as

∇θL = JT(∇zL) (1)

where the Jacobian J ≡ ∇θz. The Hessian ∇2
θL can be decomposed as:

∇2
θL = JTHzJ︸ ︷︷ ︸

GN

+∇zL · ∇2
θz︸ ︷︷ ︸

NME

(2)

where Hz ≡ ∇2
zL. The first term is often called the Gauss-Newton (GN) part of the Hessian (Jacot

et al., 2020; Martens, 2020). If the loss function is convex with respect to the model outputs/logits
(such as for MSE and CE losses), then the GN matrix is positive semi-definite. This term often
contributes large eigenvalues. The second term to our knowledge does not have a name so we call
it the Nonlinear Modeling Error matrix (NME). It is in general indefinite and vanishes to zero at
an interpolating minimum θ∗ where the model “fits”the data (∇zL(θ∗) = 0), as can happen in
overparameterized settings. Due to this, it is quite common for studies to drop this term entirely
when dealing with the Hessian. For example, many second order optimizers approximate the Hes-
sian∇2

θL with only the Gauss-Newton term (Martens & Sutskever, 2011; Liu et al., 2023). It is also
common to neglect this term in theoretical analysis of the Hessian∇2

θL (Bishop, 1995; Sagun et al.,
2017). However, we will show why this term should not be ignored.

While the NME term can become small late in training, it encodes significant information during
training. More precisely, it is the only part of Hessian that contains second order information from
the model features∇2

θz. The GN matrix only contains second order information about the loss w.r.t.
the logits with the term Hz. All the information about the model function in the GN matrix is first-
order. In fact, the GN matrix can be seen as the Hessian of an approximation of the loss where a
first-order approximation of the model z(θ′,x) ≈ z(θ,x) + Jδ (δ = θ′ − θ) is used (Martens &
Sutskever, 2011)

∇2
δL(z(θ,x) + Jδ,y)|θ′=θ = JTHzJ (3)

Thus we can see the GN matrix as the result of a linearization of the model and the NME as the
part that takes into account the non-linear part of the model. The GN matrix exactly determines the
linearized (NTK) dynamics of training, and therefore controls learning over small parameter changes
when the features can be approximated as fixed (see Appendix A.1). In contrast, the NME encodes
information about the changes in the NTK (Agarwala et al., 2022). For example given a piecewise
defined loss surface, we can think of the GN part of the Hessian as exploiting the linear (NTK)
structure, while the NME gives information on exploration - namely, the benefits of switching to a
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different region (and thus modifying the NTK). See Figure 1 for an illustration of this with ReLU
model. We discuss this aspect further in Section 4.4.

The GN part may seem like it must contain this second order information due to its equivalence to
the Fisher information matrix for losses that can be written as negative log-likelihoods, like MSE
and cross-entropy. For these, the Fisher information itself can be written as the Hessian of a slightly
different loss (Pascanu & Bengio, 2013):

F = Eŷ∼pz

[
∇2

θL(z, ŷ)
]

(4)

where the only difference is that the labels ŷ are sampled from the model instead of the true labels.
However, the NME is 0 for this loss. For example, in the case of MSE using Equation 2 we have

Eŷ∼pz

[
∇2

θL(z, ŷ)
]
= Eŷ∼N (z,I)

[
JTHzJ+∇zL(z, ŷ) · ∇2

θz
]

(5)

= JTHzJ+((((((((
Eŷ∼N (z,I)[z− ŷ] · ∇2

θz (6)

The second term in Equation 6 (NME) vanishes because we are at the global minimum for this loss.

2.1 EFFECT OF ACTIVATION FUNCTIONS ON THE NME

One important feature of the NME is that it depends heavily on the choice of activation function -
and in particular the second derivatives of the activation function. This means that for activations
like ReLU with poorly-defined second derivatives, pointwise computation of the NME can fail to
capture the effects of taking activations in and out of saturation.

Given an activation function ϕ, a feedforward network with L layers on an input x0 defined itera-
tively by

hl = Wlxl, xl+1 = ϕ(hl) (7)
The gradient of the model output xL with respect to a weight matrix Wl is given by

∂xL

∂Wl
= JL(l+1) ◦ ϕ′(hl)⊗ xl, Jl′l ≡

l′−1∏
m=l

ϕ′(hm) ◦Wm (8)

where ◦ is the Hadamard (elementwise) product. The second derivative can be written as:

∂2xL

∂Wl∂Wm
=

[
∂JL(l+1)

∂Wm
◦ ϕ′(hl) + JL(l+1) ◦

∂ϕ′(hl)

∂Wm

]
⊗ xl (9)

where without loss of generality m ≥ l. The full analysis of this derivative can be found in Appendix
A.2. The key feature is that the majority of the terms have a factor of the form

∂ϕ′(ho)

∂Wm
= ϕ′′(ho) ◦

∂ho

∂Wm
(10)

via the product rule - a dependence on ϕ′′. On the diagonal m = l, all the terms depend on ϕ′′. We
note that a similar analysis can be found in Section 8.1.2 of Martens (2020).

Therefore the second derivative of the activation function is key to controlling the statistics of the
NME. Due to the popularity of first order optimizers, activation functions have been designed to
have well behaved first derivatives, but not second derivatives. For example, ReLU became popular
as a way to deal with gradient propagation issues from activations like tanh; however, it suffers
from a “missing curvature” phenomenology - the ReLU second derivative is 0 everywhere except
the origin, where it is undefined. This implies that the diagonal of the NME matrix is 0 for ReLU
almost everywhere. We will discuss the implications of this dependence more in Section 4.4.

3 EXPERIMENTAL SETUP

Our analysis of the Hessian begs an immediate question: when does the NME affect learning al-
gorithms? We conducted experimental studies to answer this question in the context of curvature
regularization algorithms which seek to promote convergence to flat areas of the loss landscape. We
use the following two setups for the remainder of the paper:
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Figure 1: Loss (left) and Nonlinear Modeling Error matrix (NME) norm (right) as a function of 2
parameters in the same hidden layer of an MLP (MSE loss, one datapoint). For ReLU activation
model is piecewise multilinear, and piecewise linear for parameters in same layer. Loss is piecewise
quadratic for parameters in same layer (left). There is little NME information accessible pointwise
and the main features are the boundaries of the piecewise linear regions (blue, right). For β-GELU,
NME magnitude is high only within distance 1/β of those boundaries. Therefore the NME encodes
information about the utility of switching between piecewise multilinear regions.

Imagenet We conduct experiments on the popular Imagenet dataset (Deng et al., 2009). All ex-
periments use the Resnet-50 architecture with the same setup and hyper-parameters as Goyal et al.
(2018), except that we use cosine learning rate decay (Loshchilov & Hutter, 2016) over 300 epochs.

CIFAR-10 We also provide results on the CIFAR-10 dataset (Krizhevsky et al., 2009). All experi-
ments use the Resnet-18 architecture with the same setup and hyper-parameters as He et al. (2016),
except for the use of cosine learning rate decay.

4 PITFALLS FOR SEEKING FLAT MINIMA VIA GRADIENT PENALTY

In this section we leverage our argument about the critical dependence of the NME on activation
functions to explain why despite the link between gradient penalty regularizers (Barrett & Dherin,
2021; Smith et al., 2021; Du et al., 2022; Zhao et al., 2022; Reizinger & Huszár, 2023) and Sharpness
Aware Minimization (SAM) (Foret et al., 2020), there are conditions in which one performs well but
not the other.

4.1 SAM

The ideas behind the SAM algorithm originates from seeking a minimum with a uniformly low loss
in its neighborhood (hence flat). This is formulated in Foret et al. (2020) as a minmax problem,

min
θ

max
ϵ
L(θ + ϵ) s.t. ∥ϵ∥ ≤ ρ . (11)

For computational tractability, Foret et al. (2020) approximates the inner optimization by linearizing
L w.r.t. ϵ around the origin. Plugging the optimal ϵ into the objective function yields

min
θ
L
(
θ + ρ

∇θL(θ)
∥∇θL(θ)∥

)
. (12)

To minimize the above by gradient descent, we would need to compute1:

∂

∂θ
L
(
θ+ρ

g(θ)

∥g(θ)∥

)
=

(
I+ρ

H

∥g∥

(
I− g

∥g∥
gT

∥g∥

)
︸ ︷︷ ︸
Hessian related term

)
∇θL

(
θ + ρ

g

∥g∥

)
, g ≡ ∇θL(θ), H ≡ ∇2

θL(θ)

(13)
1In our notation the gradient and Hessian operators ∇ and ∇2 precede function evaluation, e.g. ∇θL(f(θ))

means
(

∂
∂τ

L(τ )
)
τ=f(θ)

.
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This can still be computationally demanding as it involves the computation of a Hessian-vector
product Hg. The SAM algorithm drops the Hessian related term in (13) giving the update rule:

θ ← θ − η∇θL (θ + ρg̃) , g̃ ≡ ∇θL(θ)/||∇θL(θ)|| (14)

for some step-size parameter η > 0. A related learning algorithm is unnormalized SAM (USAM) with
update rule

θ ← θ − η∇θL (θ + ρg) , g ≡ ∇θL(θ) (15)
USAM has similar performance to SAM and is easier to analyze (Agarwala & Dauphin, 2023).

4.2 PENALTY SAM

If ρ is very small, we may approximate L in (12) by its first order Taylor expansion around the point
ρ = 0 as below.

LPSAM(θ) ≜ L(θ)ρ=0 + ρ
( ∂

∂ρ
L
(
θ + ρ

∇θL(θ)
∥∇θL(θ)∥

))
ρ=0

= L(θ) + ρ

〈
∇θL(θ) ,

∇θL(θ)
∥∇θL(θ)∥

〉
(16)

= L(θ) + ρ ∥∇θL(θ)∥ . (17)

Under this approximation, minimizing LPSAM amounts to minimizing the loss L while penalizing
its gradient norm. If ρ is not close to zero, then loss landscape of LPSAM provides a very poor
approximation to that of 12. We refer to this specific gradient penalty as Penalty SAM and denote its
associated objective function (17) by PSAM. The unnormalized equivalent PUSAM is

LPUSAM(θ) ≜ L(θ) + ρ ∥∇θL(θ)∥2 . (18)

4.3 PENALTY SAM VS ORIGINAL SAM

Figure 2 shows our experimental results comparing PSAM and SAM across two datasets and networks
with different activation functions. Surprisingly, we see that PSAM behaves differently between the
two activation functions while SAM is insensitive to them. PSAM does not tolerate larger values for
ρ with ReLU networks so well as it does with GELU networks. However, SAM performs well with
both activation functions and in fact benefits from larger ρ. Thus the networks with GELU are able
to reach higher accuracies because they can benefit from larger ρ.

This difference between the two methods with different activations is unexpected because switching
between these activations does not significantly influence the accuracy of networks trained with
SGD: both networks reach roughly 76.7 in our experiments on ImageNet with SGD.

The crucial difference between PSAM and SAM (or even with SGD) is that the gradient of PSAM
involves explicit computation of the Hessian-gradient product. However, SAM obtains the same
second order information implicitly by taking steps in the gradient direction away from the current
point as per Equation 14. As we will see in the next section, the choice of activation function has
a strong effect on pointwise estimates of the Hessian, and we hypothesize that the failure of ReLU
networks to surface this higher order information means that PSAM with ReLU has poor information
on further away points.

4.4 NONLINEAR MODELING ERROR AND ACTIVATION FUNCTIONS

We can study this difference using the β-GELU which can interpolate between the two activation
functions. It is given by

β-GELU(x) = xΦ(βx) (19)
where Φ is the standard Gaussian CDF. We can recover GELU by setting β = 1, and ReLU is
recovered in the limit β →∞. The second derivative is given by

d2

dx2
β-GELU(x) =

1√
2πβ−2

e−x2/2β−2 [
2− (x/β−1)2

]
(20)

For large β, this function is exponentially small when x ≫ β−1, and O(β) when |x| = O(β−1).
As β increases the non-zero region becomes smaller while the non-zero value becomes larger such
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(c) Imagenet with GELU
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Figure 2: Test Accuracy as ρ increases across different datasets and activation functions averaged
over 2 seeds. For ReLU networks and large ρ, there is a significant difference between PSAM and
SAM. PSAM with GELU networks more closely follows the behavior of SAM.

that the integral is always 1. This suggests that rather than being uniformly 0, the ReLU second
derivative is better described by Dirac delta “function” (really a distribution) - 0 except at the origin,
where it is undefined, but still integrable to 1.

The choice of β determines how much information the NME can convey in a practical setting. This
second derivative is large only when the input to the activation is within distance 1/β of 0. In a deep
network this corresponds to being near the boundary of the piecewise multilinear regions where the
activations switch on and off. We can illustrate this using two parameters of an MLP in the same
layer, where the model is in fact piecewise linear with respect to those parameters (Figure 1). The
second derivative serves as an “edge detector” (more generally, hyperplane detector), and the NME
can be used to probe the usefulness of crossing these edges.

From Equation 9, this means that for intermediate β many terms of the diagonal of the NME will
be non-zero at a typical point. However as β increases, the probability of terms being non-zero
becomes low, but when they are non-zero they are large - giving a sparse, spiky structure to the
NME, especially on the diagonal. This leads to the NME becoming a high-variance estimator of
local structure. Therefore any methods seeking to use this information explicitly are doomed to fail.

Our experiments are consistent with this intuition. In Figure 3, we show that accuracy suffers for
penalty SAM with larger ρ as we increase β but is unaffected for SGD. And in Figure 4 we confirm
that β effectively controls the sparsity of the activation function Hessian both at initialization and
after training. This is evidence that the difference between the different activation functions for
penalty SAM is explained by the statistics of the NME matrix.

Note that we are not claiming that the choice of the activation function is a sufficient condition for
penalty SAM to work with larger ρ. There are many architectural changes that can affect the NME
matrix and we have shown that the statistics of the activation function is a significant one.
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Figure 3: Accuracy vs β with 3 different settings of ρ for networks with β-GELU activations (aver-
age of 2 seeds). We can see that as the β-GELU starts to approximates the ReLU accuracy decreases
for ρ > 0. This effect is more pronounced with larger ρ and is not observe for SGD where ρ = 0
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Figure 4: Fraction of nonzeroes in∇2
xσ(x) as β increases across datasets for networks with β-GELU

activations (average of 2 seeds). We can see that the sparsity of this second derivative increase
dramatically as the β-GELU starts to approximates the ReLU.

5 WHY WEIGHT NOISE DOESN NOT WORK

In this section, we investigate why weight noise does not work even though it has long been thought
to be equivalent to a gradient penalty similar to 17 (Bishop, 1995). We will see that this connection
does not hold for non-linear models due in part to the neglect of the NME term of the Hessian.

5.1 WEIGHT NOISE IS SEEN AS A GRADIENT PENALTY

We first review the connection between training with noise and gradient penalty established by
Bishop (1995). Though the paper considers input noise, the same analysis can be applied to weight
noise. Adding Gaussian ϵ ∼ N (0, σ2) noise with strength hyper-parameter σ to the parameters can
be approximated to second order by

Eϵ[L(θ + ϵ)] ≈ L(θ) +������
Eϵ[∇θL · ϵ] + Eϵ[ϵ

THϵ] = L(θ) + σ2tr(H) (21)

where the second term has zero expectation since ϵ is mean 0, and the third term is a variation of
the Hutchison trace estimator (Hutchinson, 1989). (We note that though the second term vanishes in
expectation, it still can have large effects on the training dynamics.) In order to find the connection
to gradient penalties, (Bishop, 1995) argues that we can simplify the term related to the Hessian by
dropping the NME in Equation 2 for the purposes of minimization

tr(H) = tr
(
JTHzJ+∇zL · ∇2

θz
)
≈ tr(JTHzJ) (22)
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The argument is that for the purposes of training neural networks this term can be dropped because
it is zero at the global minimum. For models with mean squared error loss (MSE), this gives us

E[LMSE(θ + ϵ)] ≈ LMSE(θ) + σ2tr(JTHMSE
z J) = LMSE(θ) + σ2 ∥∇θz∥2 (23)

This is strikingly similar to the penalty form of SAM (Equation 17), with the key difference being
that it is a gradient penalty on the logits and not the loss. In fact for MSE there is no information
about the loss in this term.

More recent work has proposed a new estimator for the trace of the Gauss-Newton matrix for cross-
entropy loss Wei et al. (2020). Using this estimator, we can express weight noise with cross-entropy
loss as

LCE(θ + ϵ) ≈ LCE(θ) + σ2tr(JTHCE
z J) = LCE(θ) + σ2Eŷ∼Cat(z)

[
∥∇θL(θ, ŷ)∥2

]
. (24)

This is almost exactly the same as Equation 18, except for the fact that the labels are sampled from
the model instead of the ground-truth labels and the norm is squared.

This leads us to two questions: first, what’s the difference between a regularizer like Equation
18 and 24? And secondly, is the NME actually negligible? In Section 5.2 we design a series of
experiments to probe these questions, and provide evidence that the NME cannot be neglected for
modern networks, and there is a difference between penalizing the gradients of L and penalizing the
gradients of z.

5.2 WEIGHT NOISE IS NOT EQUIVALENT TO GRADIENT PENALTY

In order to better understand this difference in the two methods, we experimentally evaluated several
different variants of the methods to rule out other reasons for the difference in performance between
weight noise and SAM/PSAM. All the variants will have the form of an additive penalty

LVariant(θ) = L(θ) + ρΩVariant(θ) (25)

The variants we consider are

• Gauss-Newton penalty (Ω(θ) = Eŷ∼Cat(z)[∥∇θL(θ, ŷ)∥2]): This is the term that using
the analysis of (Bishop, 1995) would be equivalent to weight noise (Equation 24). Here
we directly penalize this term instead of relying on its regularization through the weight
noise, which also penalizes the Nonlinear Modeling Error matrix. We do not pass gradients
through the sampling of the labels ŷ, but we find similar results if we pass gradients using
the straight-through estimator (Bengio et al., 2013). This variant allows to test if training
with weight noise is indeed a good approximation of this more costly term.

• Hessian-trace penalty (Ω(θ) = Eϵ∼N (0,1)[ϵ
THϵ]): This is the term that appears in Equa-

tion 21 before we drop the NME term and is an efficient estimator of the trace of the
Hessian. This allows to us to single out the second order effect of weight noise, as it’s
possible the higher order terms from weight noise are detrimental to generalization.

• Unnormalized penalty SAM (Ω(θ) = ∥∇θL(θ,y)∥2): This is the penalty form of USAM,
and allows us to test if the difference between PSAM and weight noise is due to the norm
being squared for weight noise.

We only draw a single sample to estimate the expectations in the Gauss-Newton and Hessian-trace
penalty. We find the additional hyper-parameter ρ for each method with cross-validation on Ima-
genet. A smaller hyper-parameter search on CIFAR-10 showed the optimal values to remain stable
across the two datasets. For the Gauss-Newton penalty, the grid was {10−3, 5 · 10−3, 10−2, 10−1},
for Unnormalized PSAM {10−4, 10−3, 10−2, 10−1} and {10−7, 10−6, 10−5, 10−4} for Hessian-
trace (higher values were highly unstable). For weight noise, the standard deviation of the noise
is chosen from {10−3, 10−2, 10−1}.
Table 1 shows that weight noise does not work as well as PSAM on either dataset. On Imagenet,
the improvement from PSAM is +2.2% but it is +0.3% for weight noise. However, we can see that
the performance of the Gauss-Newton is consistently greater than weight noise. It’s improvement
on Imagenet is a more significant 1.6%. The difference between Gauss-Newton and weight noise
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Approach Penalty form Imagenet CIFAR-10
SGD 76.8± 0.0 95.2± 0.1
Original SAM (Equation 14) 78.9± 0.1 95.9± 0.0
Penalty SAM ∥∇θL(θ,y)∥ 79.0± 0.1 95.7± 0.1
Unnormalized Penalty SAM ∥∇θL(θ,y)∥2 79.0± 0.0 95.6± 0.0
Gauss-Newton Penalty Eŷ∼Cat(z)[

∥∥∇θL(θ, ŷ)∥2
]

78.4± 0.1 96.2± 0.1
Hessian-trace Penalty Eϵ∼N (0,1)[ϵ

THϵ] 75.5± 0.3 95.2± 0.1
Weight Noise 77.1± 0.1 95.3± 0.0

Table 1: Accuracy of different penalties averaged over 2 seeds with GELU networks. We can see
that weight noise does not match the results of the Gauss-Newton penalty. Instead it roughly matches
the results of the Hessian trace penalty, which shows that the Nonlinear Modeling Error term should
not be ignored in regularization.

cannot be explained by the first or higher order terms in weight noise since the Hessian-trace penalty
does not perform well either. Further, we can see with unnormalized PSAM that squaring the norm
has little effect on final accuracy.

These results are evidence that the NME term of the Hessian should not be dropped when applying
the analysis of (Bishop, 1995) to weight noise for modern networks. Indeed there is a significant
difference between the Hessian trace, which is sensitive to the NME, and the Gauss-Newton penalty,
which is not.

6 DISCUSSION

Our theoretical analysis gives some understanding of the structure of the Hessian - in particular, the
Nonlinear Modeling Error matrix. This piece of the Hessian is often neglected as it is indefinite and
tends not to generate large eigenvalues which are the focus of many regularization and optimization
efforts. However, the NME can encode important information about nearby regions. It also suggests
that pointwise estimates of this function require well-designed activation functions, or else the NME
will tend to be sparse.

It is illustrative that SAM is relatively insensitive to the difference between GELU and ReLU, par-
ticularly for large β, but penalty SAM is quite sensitive to the differences. Regular SAM can use
the ρ-step to effectively “integrate” over the relevant second order information without ever having
to compute it explicitly, which makes it less sensitive to architectural choices. This suggests that
designing explicit second order methods should involve careful selection, and even tuning, of the
activation function second derivatives.

All of our experiments show that the NME should not be neglected when designing second order
methods. This applies to methods where second order terms are computed explicitly in the reg-
ularizer, those where the regularizer implicitly penalizes second order information as well as first
order methods where second order information is computed explicitly while taking gradients. In
our experimental setting, we generally found that direct penalization of the NME was detrimental.
Similarly, penalty SAM worked worse when the NME information was missing due to the activa-
tion function. We hypothesize that this is because the Nonlinear Modeling Error matrix encodes
information about loss-relevant feature learning.

7 CONCLUSION

Our work sheds light on the complexities of using second order information in deep learning. It is
important to consider the effects of both the Gauss-Newton and Nonlinear Modeling Error terms,
and design algorithms and architectures with that in mind. Designing activation functions for com-
patibility with second order methods may also be an interesting avenue of future research.
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A HESSIAN STRUCTURE

A.1 GAUSS-NEWTON AND NTK LEARNING

In the large width limit (width/channels/patches increasing while dataset is fixed), the learning dy-
namics of neural networks are well described by the neural tangent kernel, or NTK (Jacot et al.,
2018; Lee et al., 2019). Consider a dataset size D, with outputs z(θ,X) over the inputs X with
parameters θ. The (empirical) NTK Θ̂ is the D ×D matrix given by

Θ̂ ≡ 1

D
JJT, J ≡ ∂z

∂θ
(26)

For wide enough networks, the learning dynamics can be written in terms of the model output z and
the NTK Θ̂ alone. For small learning rates we can study the gradient flow dynamics. The gradient
flow dynamics on the parameters θ with loss function L (averaged over the dataset) is given by

θ̇ = − 1

D
∇θL = − 1

D
JT∇zL (27)

We can use the chain rule to write down the dynamics of z:

ż =
∂z

∂θ
θ̇ = − 1

D
JJT∇zL = −Θ̂∇zL (28)

In the limit of infinite width, the overall changes in individual parameters become small, and the
Θ̂ is fixed during training. This corresponds to the linearized or lazy regime Chizat et al. (2019);
Agarwala et al. (2020). The NTK encodes the linear response of z to small changes in θ, and the
dynamics is closed in terms of z. For finite width networks, this can well-approximate the dynamics
for a number of steps related to the network width amongst other properties Lee et al. (2019).

In order to understand the dynamics of Equation 28 at small times, or around minima, we can
linearize with respect to z. We have:

∂ż

∂z
= −∂Θ̂

∂z
∇zL − Θ̂Hz (29)

where Hz = ∂2L
∂z∂z′ . In the limit of large width, the NTK is constant and the first term vanishes. The

local dynamics depends on the spectrum of Θ̂Hz. From the cyclic property of the trace, the non-zero
part of the spectrum is equal to the non-zero spectrum of 1

DJTHzJ - which is the Gauss-Newton
matrix.

Therefore the eigenvalues of the Gauss-Newton matrix control the short term, linearized dynamics
of z, for fixed NTK. It is in this sense that the Gauss-Newton encodes information about exploiting
the local linear structure of the model.

A.2 NONLINEAR MODELING ERROR AND SECOND DERIVATIVES OF FCNS

We can explicitly compute the Jacobian and second derivative of the model for a fully connected
network. We write a feedforward network as follows:

hl = Wlxl, xl+1 = ϕ(hl) (30)

The gradient of xL with respect to Wl can be written as:

∂xL

∂Wl
=

∂xL

∂hl

∂hl

∂Wl
(31)

which can be written in coordinate-free notation as
∂xL

∂Wl
=

∂xL

∂hl
⊗ xl (32)

If we define the partial Jacobian Jl′l ≡ ∂xl′
∂xl

, l′ > l

∂xL

∂Wl
= JL(l+1) ◦ ϕ′(hl)⊗ xl (33)
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Here ◦ denotes the Hadamart product, in this case equivalent to matrix multiplication by
diag(ϕ′(hm)).

The Jacobian can be explicitly written as

Jl′l =

l′−1∏
m=l

ϕ′(hm) ◦Wm (34)

Therefore, we can write:

∂xL

∂Wl
=

[
L−1∏

m=l+1

ϕ′(hm) ◦Wm

]
◦ ϕ′(hl)⊗ xl (35)

The second derivative is more complicated. Consider

∂2xL

∂Wl∂Wm
=

∂

∂Wm

[
JL(l+1) ◦ ϕ′(hl)⊗ xl

]
(36)

for weight matrices Wl and Wm. Without loss of generality, assume m ≥ l.

We first consider the case where m > l. In this case, we have

∂ϕ′(hl)

∂Wm
= 0,

∂xl

∂Wm
= 0 (37)

since Wm comes after hl. If we write down the derivative of JL(l+1), there are two types of terms.
The first comes from the direct differentiation of Wm; the others come from differentation of ϕ′(hn)
for n ≥ m. We have:

∂JL(l+1)

∂Wm
= JL(m+1)ϕ

′(hm)
∂Wm

∂Wm
J(m−1)(l+1) +

L−1∑
o=m

JL(o+1)
∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1) (38)

The Wm derivative projected into a direction B can be written as:

∂JL(l+1)

∂Wm
·B = JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)

+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦Wo

∂xo−1

∂Wm
·B
)
WoJ(o−1)(l+1)

(39)

From our previous analysis, we have:

∂JL(l+1)

∂Wm
·B = JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)

+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1)

(40)

In total, the second derivative projected into the (A,B) direction for m > l is given by:

∂2xL

∂Wl∂Wm
· (A⊗B) =

[
JL(m+1)ϕ

′(hm)BJ(m−1)(l+1)+

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(l+1)

]
◦ ϕ′(hl)Axl

(41)
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Now consider the case m = l. Here there is no direct differentiation with respect to Wm, but there
is a derivative with respect to ϕ′(hm). The derivative is written as:

∂2xL

∂Wm∂Wm
· (A⊗B) = JL(m+1) ◦ [ϕ′′(hm) ◦Bxl]Axm+[

L−1∑
o=m

JL(o+1)

(
ϕ′′(ho) ◦

[
WoJo(m+1) ◦ ϕ′(hm+1) ◦Bxm

]) ∂ϕ′(ho)

∂Wm
WoJ(o−1)(m+1)

]
◦ ϕ′(hm)Axm

(42)

There are two key points: first, all but one of the terms in the off-diagonal second derivative depend
on only first derivatives of the activation; for a deep network, the majority of the terms depend on
ϕ′′. Secondly, on the diagonal, all terms depend on ϕ′′. Therefore if ϕ′′(x) = 0, the diagonal of the
model second derivative is 0 as well.

B DYNAMICS OF PENALTY SAM

B.1 PENALTY SAM VS. IMPLICIT REGULARIZATION OF SGD

The analysis of Smith et al. (2021) suggested that SGD with learning rate η is similar to gradient
flow (GF) with PUSAM with ρ = η/4. In this section we use a linear model to highlight some key
differences between PUSAM and the discrete effects from finite stepsize.

Consider a quadratic loss L(θ) = 1
2θ

THθ for some parameters θ and PSD Hessian H. It is illus-
trative to consider gradient descent (GD) with learning rate η and (unnormalized) penalty SAM with
radius ρ.

The gradient descent update rule is

θt+1 − θt = −η(H+ ρH2)θt (43)

The “effective Hessian” is given by H + ρH2 (see [cite ICML 2023 paper] for more analysis).
Solving the linear equation gives us

θt =
(
1− η(H+ ρH2)

)t
θ0 (44)

This dynamics is well described by the eigenvalues of the effective Hessian - λ+ ρλ2, where λ are
the eigenvalues of H. The effect of the regularizer is therefore to introduce eigenvalue-dependent
modifications into the Hessian.

There is a special setting of ρ which can be derived from the calculations in Smith et al. (2021).
Consider ρ = η/2, and consider the dynamics after 2t steps. We have:

θ2t =

(
1− η(H+

1

2
ηH2)

)2t

θ0 (45)

which can be re-written as

θ2t =

(
1− 2ηH+ η3H3 +

1

4
η4H4

)t

θ0 (46)

To leading order in ηH, this is the same as the dynamics for learning rate 2η, ρ = 0 after t steps:

θt = (1− 2ηH)
t
θ0 (47)

We note that these two are similar only if ηH ≪ 1. Under this condition, ηρH2 = 1
2η

2H2 ≪ ηH,
and the gradient penalty only has a small effect on the overall dynamics. In many practical learning
scenarios, including those involving SAM, ηλ can become O(1) for many eigenvalues during training
[cite our ICML]. In these scenarios there will be qualitative differences between using penalty SAM
and training with a different learning rate.

In addition, when ρ is set arbitrarily, the dynamics of η and 2η will no longer match to second
order in ηH. This provides further theoretical evidence that combining SGD with penalty SAM is
qualitatively and quantitatively different from training with a larger learning rate.
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