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Abstract

Learning predictive world models is crucial for enhancing the planning capabilities of
reinforcement learning (RL) agents. Recently, MuZero-style algorithms, leveraging the value
equivalence principle and Monte Carlo Tree Search (MCTS), have achieved superhuman
performance in various domains. However, these methods struggle to scale in heterogeneous
scenarios with diverse dependencies and task variability. To overcome these limitations,
we introduce UniZero, a novel approach that employs a transformer-based world model to
effectively learn a shared latent space. By concurrently predicting latent dynamics and
decision-oriented quantities conditioned on the learned latent history, UniZero enables joint
optimization of the long-horizon world model and policy, facilitating broader and more
efficient planning in the latent space. We show that UniZero significantly outperforms
existing baselines in benchmarks that require long-term memory. Additionally, UniZero
demonstrates superior scalability in multitask learning experiments conducted on Atari
benchmarks. In standard single-task RL settings, such as Atari and DMControl, UniZero
matches or even surpasses the performance of current state-of-the-art methods. Finally,
extensive ablation studies and visual analyses validate the effectiveness and scalability of
UniZero’s design choices. Our code is available at https://github.com/opendilab/LightZero.

1 Introduction
Reinforcement Learning (RL) has emerged as one of the pivotal approaches for achieving artificial general
intelligence (AGI). Despite significant advancements in this field, traditional RL methods often struggle with
complex tasks (Ni et al., 2024; Samsami et al., 2024). To address this limitation, researchers have focused on
developing predictive world models to enhance the planning capabilities and sample efficiency (Janner et al.,
2019; Hafner et al., 2020; Hansen et al., 2023; Assran et al., 2023; Sutton et al., 2022). Notably, MuZero-style
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algorithms (Schrittwieser et al., 2019; Antonoglou et al., 2021; Hubert et al., 2021b; Niu et al., 2024) leverage
the value equivalence principle (Grimm et al., 2020) and Monte Carlo Tree Search (MCTS) (Świechowski
et al., 2023) to facilitate planning within learned latent spaces, achieving exceptional performance in domains
such as board games (Schrittwieser et al., 2019; Silver et al., 2017) and Atari (Schrittwieser et al., 2019).
However, these achievements are largely restricted to settings requiring short-term memory and single-task
learning (Ni et al., 2024; Hausknecht & Stone, 2017). Significant challenges still persist in scaling these
methods to heterogeneous scenarios, such as environments requiring long-term memory, diverse action spaces,
or multitask learning, which limits their applicability to broader and more complex domains.

In the fields of language and vision, the emergence of multi-head attention mechanisms (Vaswani et al., 2017)
has fundamentally transformed the development of general-purpose foundation models. By leveraging large-
scale and diverse datasets (Jia et al., 2024) in a simple next-token prediction framework, these mechanisms
have driven significant advancements across a wide range of applications (Brown et al., 2020; Peebles & Xie,
2023). Recently, there has been growing interest in extending these techniques to decision-making domains.
Notably, some studies (Chen et al., 2021; Janner et al., 2021; Reed et al., 2022) treat reinforcement learning
as a sequence modeling problem, focusing on the supervised offline training of return-conditioned policies.
Meanwhile, other works propose a two-stage online learning paradigm, where the policy and dynamics model
are optimized independently (Hafner et al., 2023; Micheli et al., 2022; Robine et al., 2023).

Empirical studies (Parisotto et al., 2019; Ni et al., 2024) demonstrate the effectiveness of transformer-based
architectures in capturing diverse backward memory capabilities within a unified, generalized framework.
Similarly, Monte Carlo Tree Search (MCTS) is widely recognized for its efficiency in forward planning.
Integrating these two paradigms offers a promising pathway for enhancing both retrospective and prospective
cognitive functions in artificial intelligence. However, research on the seamless combination of transformers
and MCTS remains sparse. This gap raises a critical question: Can transformer architectures enhance the
efficiency and scalability of planning in complex, heterogeneous decision-making tasks characterized by diverse
dependencies and variability? This paper represents an initial exploration of this question.

We first systematically analyze the limitations of MuZero-style architectures using a representative Atari
game under stacked or non-stacked input conditions, simulating varying dependency ranges required for
optimal control. Our findings, summarized in Table 1 and Figure 1, reveal two core limitations inherent to
MuZero-style algorithms. First, the recurrent design introduces an intrinsic entanglement between latent
representations and historical information, resulting in a bottleneck that impedes efficient information
propagation. This entanglement further complicates the integration of self-supervised regularization losses
(elaborated in Section 2 and 3.1). Second, the architecture suffers from an under-utilization of trajectory data
during training, which restricts its ability to fully exploit the accumulated experiential data. Consequently,
these limitations reduce data efficiency and scalability, particularly in heterogeneous scenarios characterized
by diverse dependencies and task variability. A comprehensive analysis and experimental validation of these
limitations is presented in Section 3.1.

To tackle these challenges, we introduce UniZero, a novel framework depicted on the right part of Figure
1. UniZero leverages a transformer-based world model to efficiently learn a task-agnostic shared latent
space by disentangling latent states from implicit latent histories (see Section 3.2). Specifically, UniZero
integrates domain-specific encoders to map diverse inputs—such as images, proprioceptive data, and discrete
or continuous actions—into a unified latent representation. The unified latent states and actions across
varying time steps and tasks are then processed by a transformer backbone, enabling temporal and contextual
modeling. To support decision-making, UniZero employs specialized heads, which model both latent dynamics
(e.g., the predicted next latent state and reward) and decision-critical quantities (e.g., policy and value)
conditioned on the latent history produced by the transformer backbone. This unified design allows for the
joint optimization of long-horizon world models and policies (Schrittwieser et al., 2019; Eysenbach et al.,
2022), effectively mitigating the inconsistencies inherent to two-stage learning frameworks (Hafner et al.,
2023). With its unified and modularized architecture and training paradigm, UniZero holds the promise of
becoming a scalable foundational model for decision-making in various heterogeneous scenarios.

To validate the effectiveness of UniZero, we conduct extensive experiments on the VisualMatch benchmark,
which requires long-term memory. UniZero significantly outperforms multiple baseline algorithms across
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various memory lengths, demonstrating its capability to model long-term dependencies. Additionally, we
investigate UniZero’s multitask learning capabilities on 26 Atari games, demonstrating its potential as a
versatile and general-purpose agent. In standard RL tasks, such as Atari and DMControl environments,
UniZero also achieves comparable performance, underscoring its broad applicability. Comprehensive ablation
studies and visual analyses further affirm the effectiveness and scalability of UniZero’s design choices.

The main contributions of this paper are summarized as follows:

• We identify key limitations in existing MuZero-style architectures and introduce UniZero, a unified and
modular approach that addresses these shortcomings. UniZero leverages a transformer-based latent world
model to learn a task-agnostic and shared latent representation, facilitating more robust and generalizable
decision-making across diverse and heterogeneous environments.

• UniZero significantly outperforms existing baselines in benchmarks that require long-term memory. To
the best of our knowledge, UniZero is the first online MCTS-based agent to achieve performance
comparable to single-task settings on the full Atari 100K benchmark using a single model.

• UniZero achieves comparable results on standard RL benchmarks, including Atari and DMControl
environments, rivaling leading algorithms. Extensive ablation studies and visual analyses validate the
effectiveness and scalability of its design choices.

2 Background
Reinforcement Learning (RL) Sutton & Barto (2018) is a foundational framework for addressing sequential
decision-making problems, typically formalized as Markov Decision Processes (MDPs). An MDP is defined
by the tuple M = (S,A,P,R, γ, ρ0), where S represents the state space, and A denotes the action space.
The transition dynamics P : S × A × S → [0, 1] specify the probability of transitioning from one state
to another given an action. The reward function R : S × A → R assigns scalar rewards to state-action
pairs. The discount factor γ ∈ [0, 1) regulates the trade-off between immediate and future rewards, while
ρ0 defines the initial state distribution. The objective of RL is to derive an optimal policy π∗ : S → A that
maximizes the expected cumulative discounted return: π∗ = arg maxπ Eπ [

∑∞
t=0 γtrt]. In many real-world

scenarios, the Markov property is often violated, necessitating the use of Partially Observable Markov
Decision Processes (POMDPs) Sondik (1971). POMDPs generalize MDPs by introducing an observation
space O, where the agent receives observations o ∈ O(s) that provide partial information about the underlying
state. In environments characterized by long-term dependencies, optimal decision-making requires leveraging
the observation history τ1:t := (o1:t, a1:t−1) Ni et al. (2024). To manage computational complexity, it is
common to use a truncated history of length H rather than the complete observation history. Consequently,
policies and value functions are defined over this truncated history and are expressed as π (at | τt−H+1:t) and
v (at | τt−H+1:t) = Eπ,M

[∑∞
i=t γi−tri | τt−H+1:t

]
, respectively.

MuZero Schrittwieser et al. (2019) achieves superhuman performance in complex visual domains Bellemare
et al. (2013) without requiring prior knowledge of the environment’s dynamics. It combines MCTS with a
learned model comprising 3 networks: 1 Encoder : s0

t = hθ(o1, . . . , ot). At time step t and hypothetical (also
called recurrent/unroll) step 0 (omitting t when clear), this network encodes past observations (o1, . . . , ot) into
a latent representation (or equivalently latent state), which initializes the root node of MCTS. 2 Dynamics
Network: r̂k, sk = gθ(sk−1, ak). This network predicts the next latent state sk and reward r̂k based on the
current latent state sk−1 and action ak. 3 Prediction Network: pk, vk = fθ(sk). Given a latent state sk, this
network outputs a policy pk (action probabilities) and a value vk. MuZero performs MCTS in the learned
latent space, with the encoder generating the root node s0. Each edge in the search tree stores statistics,
including N(s, a), P (s, a), Q(s, a), R(s, a), S(s, a), representing visit counts, policy, value, reward, and state
transitions, respectively. The MCTS process consists of three phases: Selection, Expansion, and Backup
(Appendix B.1.1). After search, the visit counts N(s, a) at the root node s0 are normalized to derive an
improved policy π. An action is sampled from this policy for interaction with the environment. During
training, MuZero optimizes the following end-to-end loss function, incorporating separate terms for policy,
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value, and reward losses (lp, lv, and lr, respectively), along with a regularization term for weight decay:

lt(θ) =
K∑

k=0

[
lp(pk

t , πt+k) + lv(vk
t , zt+k) + lr(r̂k

t , rt+k)
]

+ c||θ||2. (1)

Notably, MuZero and its variants (Danihelka et al., 2022; Antonoglou et al., 2021; Hubert et al., 2021b;
Ye et al., 2021) exhibit two key characteristics: (1) during training, only the initial step of the sequence
observation is used, (2) predictions at each time step rely on a latent representation obtained recursively. We
refer to architectures adhering to these principles as MuZero-style architectures.

Self-supervised Regularization. The visualization of latent representations learned by the MuZero agent,
as presented in de Vries et al. (2021), indicates that in the absence of a specific training objective to align
latent representations with observations, mismatches may emerge between the latent representations sk

t

predicted by the dynamics network and the observation embeddings zt+k (or equivalently zk
t ) generated by

the encoder. These discrepancies make the planning process unstable. Moreover, since the primary training
objective in RL is based on scalar rewards, this information can be insufficient, particularly in sparse-reward
scenarios (Badia et al., 2020). In contrast, observation embeddings, typically encoded as compact tensors,
provide richer training signals than scalars. Integrating auxiliary self-supervised objectives into MuZero
to regularize the latent representations is crucial to improving sample efficiency and stability. Specifically,
de Vries et al. (2021) proposed a contrastive regularization loss: lz(θ) =

∑H
k=0 ∥zk

t − sk
t ∥2

2 which penalizes the
error between the observation embeddings zk

t = sg {hθ(ok
t )} and their corresponding dynamics predictions

sk
t . Inspired by the Sim-Siam framework (Chen & He, 2021), EfficientZero (Ye et al., 2021) introduced a

self-supervised consistency loss (SSL), defined as the negative cosine similarity between the projections of
predicted latent representations sk

t and the actual observation embeddings zk
t .

3 UniZero
In this section, we begin by analyzing the two main limitations of MuZero-style architectures, as discussed
in Section 3.1, especially in their ability to handle tasks that require capturing long-term dependencies.
To address these limitations, in Section 3.2, we introduce a novel approach termed UniZero, which is
fundamentally a modular latent world model. We provide a comprehensive description of its architectural
design, along with the joint optimization procedure for both the model and the policy. In Section 3.3, we
explore how to conduct efficient MCTS from a long-term perspective within the learned latent space. For
more details on the algorithm’s implementation, please refer to Appendix B.

3.1 Main Limitations in MuZero-style Architectures

As shown in left of Figure 1, during training, MuZero-style architectures encode only the initial observation
ot (which may include stacked frames) and the entire sequence of actions (omitting actions when context
is clear) into the first latent state. In effect, no additional information beyond the first step is explicitly
provided. This design results in an under-utilization of trajectory data, particularly in scenarios with long
trajectories or long-term dependencies. Additionally, MuZero employs dynamics heads to unroll several
hypothetical steps during training, i.e., r̂k, sk = gθ(sk−1, ak−1), as depicted in the dark gray section of Figure
1. Consequently, the recursively unrolled latent representation sk

t becomes tightly coupled with historical
information, a phenomenon we term as entanglement. This entanglement is fundamentally incompatible
with the SSL loss, as discussed later. During inference, MuZero encodes the current observation ot into
a latent representation, which subsequently serves as the root node in the MCTS. While this approach is
effective in MDPs, it is likely to fail in POMDP due to the lack of historical information in the root state.
Another alternative extension is to employ the recursively predicted latent representation, sk

t−k, as the root
node. Here, zt−k (also denoted as z0

t−k) represents the observation embedding obtained by encoding the true
observation at time t−k. The state sk

t−k is then computed by recursively predicting k steps forward using the
dynamics network while following the sequence of actions in the trajectory. For clarity, the case of k = 2 is
illustrated in Figure 1. However, this design introduces accumulative errors, ultimately leading to suboptimal
performance. To systematically investigate the limitations of MuZero and the impact of different designs, we
propose three variants of the MuZero-style algorithm and compare them with our UniZero architecture:
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Figure 1: Comparison between the UniZero (Ours) and MuZero-style architectures during training
and inference. Left: In the MuZero-style architecture, the recursively unrolled latent representation sk

t is tightly
entangled with historical information. During training, it solely utilizes the initial observation of the sequence,
resulting in inefficient utilization of information (under-utilization). During inference, the recursively predicted latent
representation sk

t−k (with k = 2 for clarity) serves as the root node in MCTS, which is prone to inaccuracies due
to accumulated errors. These issues are particularly pronounced in tasks requiring long-term dependency modeling.
Right: UniZero employs a modular latent world model comprising an encoder, a unified transformer backbone,
and decision/dynamics heads. This design explicitly disentangles latent states from implicit latent history and leverages
all observations during training (full-utilization). During inference, the directly encoded latent state zt is used as the
root node. By utilizing a more complete and accessible context M = (zt−Hinfer , at−Hinfer , . . . , zt, at), UniZero improves
prediction accuracy and enables more effective long-term planning in the latent space.

• (Original) MuZero: This baseline does not employ any self-supervised regularization. During inference,
the root latent state zt is generated by encoding only the current observation ot via the encoder.

• MuZero w/ SSL: As described in Section 2, this variant introduces an auxiliary self-supervised regular-
ization loss during MuZero’s training process. Theoretically, it aims to enhance sample efficiency while
enabling the latent state to better retain historical information. However, the self-supervised objective
focuses on accurately predicting subsequent latent states, which deviates from the fundamental requirement
of the primary loss function—preserving the full historical context necessary for optimal decision-making.
We refer to this misalignment as incompatibility. As a result, while this design performs well in MDP
tasks, its effectiveness may be constrained in environments characterized by long-term dependencies or
partial observability.

• MuZero w/ Context: This variant adopts the same training procedure as MuZero but modifies the
inference phase by using a k-step recursively predicted latent representation, sk

t−k, as the root node.
However, the compounding prediction errors (Janner et al., 2019) inherent in recurrent unrolling result in
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Table 1: Qualitative comparison of MuZero variants. The original MuZero employs only its first observation
as input during training, which limits its ability to model long-term dependencies. MuZero w/ SSL incorporates a
state regularization loss to enhance sample efficiency. Both MuZero w/ Context and UniZero (RNN) provide only
partially accessible contexts due to their reliance on recurrent architectures. In contrast, UniZero, employing a
transformer-based decoupled architecture, fully leverages the entire observation sequence during training and inference
to ensure complete contextual accessibility.

Algorithm Obs. Full Utilization State Regularization Context Access
MuZero × × ×
MuZero w/ SSL × ✓ ×
MuZero w/ Context × × Partially Accessible
UniZero (RNN) ✓ ✓ Partially Accessible
UniZero ✓ ✓ Fully Accessible
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Figure 2: Performance comparison of UniZero and MuZero variants in Pong under approximate MDP
and POMDP settings. Left: Results in the MDP setting. Right: Results in the POMDP setting. UniZero
consistently outperforms all baselines across both scenarios, highlighting its robustness and adaptability. MuZero
w/ SSL achieves superior sample efficiency in the MDP setting but fails to converge in the POMDP setting due to
representation entanglement issues. Both MuZero w/ Context and UniZero (RNN) exhibit limited performance in
both settings, primarily due to prediction errors caused by incomplete context representation.

an inaccurate root state. This issue, which we term as incomplete context, leads to significant degradation
in MCTS accuracy and task performance.

• UniZero: Our proposed UniZero (illustrated on Figure 1) disentangles the latent states zt from the
implicit latent history by leveraging a modular transformer-based world model. This architecture enables
the model to fully utilize trajectory data during training while ensuring the prediction of the next latent
state at every timestep. During inference, UniZero maintains a relatively complete historical context by
employing a Key-Value (KV) cache mechanism over the most recent Hinfer steps. This design not only
enriches learning with self-supervised regularization but also captures long-term dependencies effectively.

• UniZero (RNN): This variant retains the same training scheme as UniZero but replaces the transformer
backbone with a GRU (Chung et al., 2014). During inference, the GRU’s hidden state is reset every Hinfer
steps. However, due to the complexity of GRU training Kapturowski et al. (2019), this variant also suffers
from the incomplete context problem. Further details are provided in Appendix B.2.

For a clearer comparison, Table 1 summarizes the qualitative differences among these variants. Furthermore,
Figure 2 illustrates their performance in Pong under two settings: frame_stack=4 and frame_stack=1,
which approximately correspond to MDP and POMDP scenarios, respectively, as described in Hausknecht &
Stone (2017). In the stack4 setting, MuZero w/ SSL achieves good sample efficiency due to the auxiliary
self-supervised regularization. However, in the stack1 setting, it fails to converge within 500k environment
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steps, largely due to the aforementioned entanglement issue. Similarly, both MuZero w/ Context and
UniZero (RNN) struggle to learn effectively because of prediction errors arising from the incomplete context
phenomenon. Specifically, for the former, these errors stem from the recurrent unrolling of latent states, while
for the latter, they originate from the complexity of GRU training Kapturowski et al. (2019). In contrast,
UniZero consistently outperforms all other variants, highlighting its robustness and adaptability in handling
heterogeneous scenarios. Our preliminary experiments also evaluated a hybrid architecture that integrates
historical and current observations via a Transformer-based history encoder to generate the initial latent
state, while keeping all other training procedures identical to those of MuZero. However, its performance was
poor, so we excluded it from later comparisons. We plan to revisit this variant in future research.

3.2 Scalable Latent World Models

Building on the insights outlined earlier, we propose the UniZero method to address the entanglement of
latent representations with historical information and the under-utilization of trajectory data. This section
describes the architecture of UniZero and details its training procedure for joint optimization of the model
and policy.

3.2.1 Modular Latent World Models

Architecture. As shown in the top-right corner of Figure 1, UniZero is composed of four key components:
the encoders hθ, the transformer-based backbone, the dynamics head gθ, and the decision head fθ. The
encoders include both the observation and action encoders, but for simplicity, the term encoder refers solely
to the observation encoder unless otherwise specified. Additionally, the transformer backbone is implicitly
integrated into the dynamics and decision heads in certain contexts. Formally, at each time step t, the
environmental observations and actions are denoted as ot and at, respectively. For discrete action spaces, at

may refer to an action embedding obtained via a learned embedding table, while for continuous actions, it is
derived from a two-layer MLP. The latent state is represented as zt, the predicted subsequent latent state as
ẑt+1, and the predicted reward as r̂t. The policy logits and state value are denoted as pt and vt, respectively.
These outputs guide the MCTS procedure to enable regularized policy optimization (Grill et al., 2020). The
UniZero world model W encompasses the following components:

Encoder: zt = hθ(ot) ▷ Maps observations to latent states
Dynamics Head : ẑt+1, r̂t = gθ(z≤t, a≤t) ▷ Models latent dynamics and reward
Decision Head : pt, vt = fθ(z≤t, a≤t−1) ▷ Predicts policy and value

(2)

Training. Each time step is represented by two tokens: a latent state and an action. Details on data prepro-
cessing and architecture are provided in Appendix B.2. The dynamics head predicts the subsequent latent
state and reward, conditioned on the sequence of prior latent states and actions (z≤t, a≤t). Simultaneously,
the decision head predicts the policy and value based on latent states and actions up to time steps t and t− 1,
i.e., (z≤t, a≤t−1). In MuZero-style methods, the k-th latent state sk

t is recursively derived from the initial
observation via a dynamic network. In contrast, UniZero employs a transformer backbone to model the latent
history ht = {hz

t , hz,a
t } at each time step. This design explicitly separates the latent state zt from the latent

history ht, mitigating two key limitations of MuZero-like algorithms. Unlike prior approaches (e.g., Hafner
et al. (2023)), UniZero does not include a decoder to reconstruct zt back into ôt. While reconstruction losses
are often used to regularize representations, our empirical results (see Section 4.5) suggest that omitting this
decoding loss does not degrade performance. This supports the hypothesis that latent states only need to
encode decision-relevant information, rendering reconstruction unnecessary for decision-making tasks.

Inference. During inference, UniZero’s latent world model leverages the complete long-term memory stored
in the KV cache alongside information from the current observation to produce accurate internal predictions
as root and internal nodes in the tree search. This synergistic use of components significantly improves
UniZero’s scalability and efficiency. Further details are provided in Section 3.3.

7



Published in Transactions on Machine Learning Research (05/2025)

3.2.2 Joint Optimization of Model and Policy

In this paper, our primary focus is on online reinforcement learning settings. Algorithm 1 presents the pseudo-
code for the entire training pipeline. This subsection will present the core process of joint optimization of the
model and policy (behavior). UniZero maintains a replay buffer B that stores trajectories {ot, at, rt, ot+1, πt}
(where πt is the MCTS improved policy, Section 3.3) and iteratively performs the following two steps:

1. Experience Collection: Collect experiences into the replay buffer B by interacting with the environment.
Notably, the agent employs a policy derived from MCTS, which operates within the learned latent space.

2. Model and Policy Joint Update: Concurrent with data collection, UniZero performs joint updates on
the decision-oriented world model, including the policy and value functions, using data sampled from B.

The joint optimization objective for the model-policy can be written as:

LUniZero(θ) .= E
(ot,at,rt,ot+1,πt)H−1

0 ∼B

[ H−1∑
t=0

(
βz ∥ẑt+1 − sg(h̄(ot+1))∥2

2︸ ︷︷ ︸
next-latent prediction

+βr CE(r̂t, rt)︸ ︷︷ ︸
reward prediction

+βp CE(pt, πt)︸ ︷︷ ︸
policy prediction

+βv CE(vt, v̂t)︸ ︷︷ ︸
value prediction

)] (3)

Note that we also maintain a soft target world model (Mnih et al., 2013) W̄ = (h̄θ, ḡθ, f̄θ), which is
an exponential moving average of current world model W 2. In Equation 3, H is the training context
length, sg is the stop-grad operator, CE denotes cross-entropy loss function, h̄(ot+1) = z̄t+1 is the target
latent state generated by the target encoder h̄θ, and v̂t signifies the bootstrapped n-step TD target: v̂t =∑n−1

k=0{γkrt+k}+ γnf̄θ (z≤t, a≤t−1) . As the magnitudes of rewards across different tasks vary greatly, UniZero
adopts reward and value predictions as discrete regression problems (Bellemare et al., 2017) and optimizes by
minimizing the cross-entropy loss. πt represents the improved policy through MCTS shown in Section 3.3.
We optimize the dynamics head to predict πt, which essentially seems a policy distillation process. Compared
to policy gradient methods (Zhang et al., 2023; Hafner et al., 2019; Schulman et al., 2017), this approach
potentially offers better stability (Schrittwieser et al., 2019; Grill et al., 2020). The coefficients βz, βr, βp, βv

are constant coefficients used to balance different loss items. Inspired by Hansen et al. (2023), UniZero has
adopted the SimNorm technique, which is implemented after the final layer of the encoder and the last
component of the dynamics head that predicts the next latent state. Essentially, this involves applying the
L1 norm constraint to regularize the latent state space. As detailed in Section 4.5, latent normalization has
been empirically proven to be crucial for enhancing the stability and robustness of training.

3.3 MCTS in the Unified Latent Space

RL agents need a memory M (or equivalently context) to accurately model future in tasks that require
long-term dependencies. To effectively implement this memory mechanism, as depicted in Figure 3 (for
simplicity, we use 1 as the starting timestep in this figure), we establish a KV Cache (Ge et al., 2023) for the
memory, denoted by: KVM = {KV (zt−H , at−H , . . . , zt, at)}. When the agent encounters a new observation ot

and needs to make a decision, it first utilizes the encoder to transform this observation into the corresponding
latent state zt, which serves as the root node of the search tree. By querying the KV Cache, the keys
and values from the recent memory (zt−Hinfer , at−Hinfer , . . . , zt, at) are retrieved for the transformer-based
latent world model. This model recursively predicts the next latent state ẑt+1, the reward r̂t, the policy pt,
and the value vt. The newly generated next latent state ẑt+1 functions as an internal node in the MCTS
process. Subsequently, MCTS is executed within this latent space. Further details can be found in B.1.1.
Upon completion of the search, the visit count set {N(zt, at)} is obtained at the root node zt. These visit
counts are then normalized to derive the improved policy πt: πt = N(zt,at)1/T∑

bt
N(zt,bt)1/T

. Here, T denotes the

temperature, which modulates the extent of exploration (Badia et al., 2020). Actions are then sampled
from this distribution for interactions with the environment. After each interaction, we save the transition
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Figure 3: MCTS in the learned latent space. The process begins with a new observation o1, which is encoded
into a latent state z1. This latent state serves as the root node. The previous keys and values of recent memory are
retrieved from the transformer’s KV Cache KVM . Subsequently, the search tree utilizes the world model to predict
the next latent state ẑ (which serves as an internal node), reward r̂, policy p, and value v, conditioned on the retrieved
KV, recursively. These predictions are used to conduct MCTS, ultimately resulting in an improved policy π.

(ot, at, rt, dt, ot+1) along with the improved policy πt into the buffer, with the latter serving as the policy
target in Eq. 3. By leveraging backward memory and forward search, UniZero demonstrates the potential to
perform generalized and efficient long-term planning across a wide range of scenarios.

4 Experiments

To demonstrate the generality and scalability of UniZero, we conduct extensive evaluations across a diverse
set of environments characterized by long-term and short-term dependencies, discrete and continuous action
spaces, as well as single-task and multitask learning scenarios. Specifically, we evaluate UniZero on the
Atari 100k benchmark (short-term dependency, discrete actions) (Bellemare et al., 2013; Kaiser et al., 2024),
DMControl (short-term dependency, continuous actions) (Tunyasuvunakool et al., 2020), and VisualMatch
(long-term dependency, discrete actions) (Ni et al., 2024). Through comprehensive experiments and in-depth
analyses (Appendix E.1 and E.2), we aim to address the following key questions:

1 How does UniZero perform on VisualMatch tasks that require long-term memory? (Section 4.2)
2 In multi-task learning on Atari, how does UniZero compare to MuZero? Does it capture meaningful

semantic information in the learned embeddings? (Section 4.2)
3 On single-task settings, can UniZero achieve performance on par with MuZero in the Atari 100k benchmark

and the DMControl continuous control benchmark? (Section 4.4)
4 How effective and scalable are UniZero’s core design choices? (Section 4.5)

4.1 Experimental Setup

Environments and Baselines. (1) Atari 100k: This benchmark comprises 26 Atari games, providing
a diverse evaluation suite. The agent interacts for 100,000 steps (4 million frames with frame skipping of
4). Sometimes environment steps are abbreviated as Env Steps. (2) DMControl: We consider the Proprio
Control Suite, including 18 continuous control tasks with a budget of 500k environment steps. Tasks include
classical control, locomotion, and robotic manipulation. (3) VisualMatch: Designed to evaluate long-term
dependencies, it tests memory through adjustable memory lengths. These grid-world tasks are divided into
exploration, distraction, and reward phases, requiring the agent to recall an observed color in the exploration
phase to select the correct color in the reward phase. Detailed task descriptions are provided in Appendix
D.1. For the details of algorithm baselines, please refer to Appendix B.
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Figure 4: Performance comparison on VisualMatch with increased memory lengths. MuZero consistently
underperformed across all tasks, primarily due to insufficient context information. The performance of SAC-GPT
significantly deteriorated as the memory length increased. In contrast, UniZero maintained a high success rate even
with extended memory lengths, demonstrating its superior capacity for modeling long-term dependencies. Solid lines
denote means; shaded areas represent 95% confidence intervals.

4.2 Visual Match Benchmark

In Figure 4, we compare the performance of UniZero and MuZero on the VisualMatch benchmark, which
requires long-term memory. The green horizontal dashed line represents the final success rate of SAC-GPT (Ni
et al., 2024) after training on 3 million environment steps. Due to its lack of contextual information, MuZero
performs poorly across all tasks, while SAC-GPT’s performance degrades significantly as the memory length
increases. In contrast, UniZero achieves consistently high success rates with increasing memory lengths due
to its robust long-term dependency capabilities, validating the analysis presented in Section 3.1. Additional
analysis of the predictions and attention maps of the trained world model is provided in Appendix E.2.

4.3 Multitask Learning on Atari Environments

Table 2: Performance comparison of UniZero and MuZero across eight Atari environments in the
different learning setting. MT means multitask setting, ST means single-task setting. UniZero (MT) outperforms
MuZero (MT) in most environments and achieves higher overall human normalized scores than UniZero (ST),
demonstrating its scalability potential. The results on 26 Atari games can be found in Appendix 13.

Algorithm Alien Boxing Chopper Hero MsPacman Pong RoadRunner Seaquest Mean Median

UniZero (MT) 1003 5 3501 3003 989 19 6300 713 0.4554 0.4085
MuZero (MT) 590 1 1989 1999 999 -1 5803 600 0.2192 0.0895
UniZero (ST) 580 3 2802 2991 1012 18 5503 750 0.3223 0.1739

UniZero’s decoupled-yet-unified architecture proves highly effective across diverse environments with varying
dependencies, enabling seamless extension to multitask learning scenarios. We first evaluate UniZero on eight
Atari games: Alien, Boxing, ChopperCommand, Hero, MsPacman, Pong, RoadRunner, and Seaquest.

In the multitask setting (MT), a single model is trained to perform all the considered tasks, where all tasks
share a common observation space represented as a (3, 64, 64) image. To ensure consistency across tasks, we
set full_action_space=True (Bellemare et al., 2013), which results in a unified action space of 18 discrete
actions for each task. In the single-task setting (ST), a separate model is trained independently for each task,
with full_action_space=False (Bellemare et al., 2013), leading to task-specific action spaces. Unless otherwise
specified, the multitask hyperparameters are consistent with those listed in Table 8, with only minimal
adjustments to accommodate the larger model architecture. Specifically, the encoder uses num_channel=256,
while the transformer backbone incorporates nlayer=12 and nhead=12.

Architecture and Training in Multitask Learning. Unlike single-task configurations, the multitask
setup employs independent decision and dynamics heads for each task, following the approach of Kumar
et al. (2022). This design introduces minimal additional parameters while preserving efficiency. The shared
transformer backbone and encoder promote parameter reuse and generalization across tasks. Each task is
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handled by a separate data collector that gathers trajectories and stores them in individual buffers. During
training, we sample task_batch_size=32 samples from different tasks, aggregate them into a minibatch,
and apply the loss function defined in Equation 3 for each task. The task-specific losses are averaged to
compute the total loss, which is used to perform backpropagation and network updates.

Results. Table 2 and Figure 10 demonstrate that UniZero (MT) outperforms both UniZero (ST) and
MuZero (MT) in terms of normalized mean and median scores across the evaluated environments within
the 400K Env Steps setting. This result underscores the enhanced efficiency and scalability of UniZero as a
latent world model for multitask training. To examine the influence of model size on multi-task learning
performance, we analyze the effect of varying the transformer backbone size (nlayer=4, 8, 12) across eight
Atari games (see Appendix Figure 11). Our findings reveal that increasing model size consistently improves
sample efficiency across all tasks, highlighting UniZero’s potential in multitask learning.

To further explore the benefits of multi-task learning, we conduct T-SNE visualizations of UniZero’s latent
states (Figure 12). The latent spaces exhibit distinct clustering for each game, reflecting the dynamic
variations among environments. Notably, the representations of Alien are more dispersed, likely due to its
similarity to other games, such as MsPacman, which belongs to the Maze category. This overlap may promote
cross-task information sharing, contributing to the substantial performance improvements observed for Alien
in the multi-task setting. Moreover, we extended our evaluation to full 26 games in Atai 100k benchmark in
Appendix C. As shown in Figure 13 and Table 10, UniZero’s multi-task model achieves normalized human
scores comparable to its single-task version, whereas MuZero struggles with multi-task learning, showing
little progress in most games. More analysis is provided in Appendix C.3.

4.4 Single Task Results in Non-Memory Domains

Figure 5: Performance on the Atari 100K. UniZero
achieves a higher human-normalized median score com-
pared to MuZero (Reproduced), demonstrating its ability
to effectively model short-term dependencies. Detailed
scores and curves are available in Appendix D.2.

Atari We also compare the original MuZero algo-
rithm (Schrittwieser et al., 2019), our reproduced
MuZero, and UniZero, on the Atari 100K bench-
mark in the single-task setting, as illustrated in Fig-
ure 5. Our results show that UniZero achieves a
higher human-normalized median score compared to
MuZero (Reproduced) with the same code implemen-
tation framework, which indicates that UniZero effec-
tively models short-term dependencies and demon-
strates its versatility across discrete action decision-
making tasks. To provide further insights, we present
the complete scores and learning curves for 26 games
in Appendix D.2. Additional analysis of the predic-
tions and attention maps of the trained world model
on the Pong game is provided in Appendix E.2.

4.5 Ablation Study

This subsection and Appendix E.1 evaluate key UniZero design choices:

• Model Size: Varies num_layers with training context lengths (H = 5, 10, 20, 40), keeping inference
context length at Hinfer = 4 to handle POMDP in Atari (Mnih et al., 2013).

• Latent Normalization: Comparison of normalization techniques that employed in the latent state,
including SimNorm (Hansen et al., 2023), Softmax, and Sigmoid. Details can be found in Appendix B.

• Decode Regularization: Integrate a decoder on top of the latent state: ôt = dθ(zt) (where zt = hθ(ot))
with additional training objective: Ldecode_reg = ∥ot − dθ(zt)∥1 + Lperceptual(ot, dθ(zt)), the first term is
the reconstruction loss, and the second term is the perceptual loss (Micheli et al., 2022).
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Task UniZero DreamerV3

acrobot-swingup 400.3 154.5
cartpole-balance 952.2 990.5
cartpole-balance_sparse 1000.0 996.8
cartpole-swingup 801.3 850.0
cartpole-swingup_sparse 752.5 468.1
cheetah-run 517.6 585.9
ball_in_cup-catch 961.6 958.2
finger-spin 810.7 937.2
finger-turn_easy 1000.0 745.4
finger-turn_hard 884.5 841.0
hopper-hop 120.5 111.0
hopper-stand 602.6 573.2
pendulum-swingup 865.6 766.0
reacher-easy 993.3 947.1
reacher-hard 988.8 936.2
walker-run 587.9 632.7
walker-stand 976.4 956.9
walker-walk 954.6 935.7

Mean 787.2 743.7
Median 875.1 845.5

DMControl UniZero leverages the principles of
Sampled Policy Iteration (Hubert et al., 2021b), al-
lowing for a seamless extension to continuous action
spaces. Training details are provided in Appendix B.
We evaluate UniZero on 18 tasks from the Proprio
Control Suite in DMC, which include continuous
control tasks with low-dimensional inputs and a bud-
get of 500,000 environment steps. When compared
against the state-of-the-art DreamerV3 (Hafner et al.,
2023), UniZero demonstrates superior performance,
achieving a higher human-normalized score, and thus
showcasing its robust potential in handling diverse
action spaces. Detailed learning curves for the DMC
Proprio Control Suite are provided in Appendix D.3.

Table 3: Performance between UniZero and
DreamerV3 across various tasks in the DMCon-
trol. The best performance for each task is indicated in
bold. UniZero’s higher human-normalized scores high-
light its strong performance across continuous action
spaces. Details are available in Appendix D.3.
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Figure 6: Effect of model size across training context lengths (H = 5, 10, 20, 40) with fixed inference
context length (Hinfer = 4) on Pong.

Figure 6 and Figure 7 show different performance impacts for several ablation designs on Pong and VisualMatch.
Additional results for VisualMatch are in Appendix E.1. Based on these results, we can conclude the following
key findings: (1) Training Context Length (H): Longer H doesn’t always improve performance, likely
due to MCTS inference errors. In Pong, larger H needs more layers to maintain performance. Consistent
with prior work (Fang & Stachenfeld, 2023), longer contexts aid representation learning if prediction remains
accurate. (2) SimNorm: Outperforms Softmax and Sigmoid, emphasizing effective latent normalization for
stable training by enforcing sparsity through fixed L1 norm. (3) Decode Regularization: Negligible effect
on both settings, indicating decision-relevant latent information matters more than observation reconstruction.
Further details and visualizations are available in Appendix E.1 and Appendix E.2.

5 Related Work

MCTS-based RL. Algorithms like AlphaGo and AlphaZero (Silver et al., 2016; 2017), which combine
MCTS with deep neural networks, have significantly advanced board game AI. Extensions such as MuZero
(Schrittwieser et al., 2019), Sampled MuZero (Hubert et al., 2021b), and Stochastic MuZero (Antonoglou
et al., 2021) have adapted this framework for environments with complex action spaces and stochastic
dynamics. EfficientZero (Ye et al., 2021) and GumbelMuZero (Danihelka et al., 2022) have further increased
the algorithm’s sample efficiency. MuZero Unplugged (Schrittwieser et al., 2021; Xuan et al., 2024) introduced
reanalyze techniques, enhancing performance in both online and offline settings. LightZero (Niu et al., 2024)
addresses real-world challenges and introduces a open-source MCTS+RL benchmark. Studies like RAP
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Figure 7: Effect of Latent Normalization and Decode Regularization on Pong and VisualMatch
(memlen=60). SimNorm consistently outperforms Softmax and Sigmoid, emphasizing the critical role of proper
normalization in ensuring training stability. Decode regularization exhibits a minimal effect on performance.

(Hao et al., 2023) and SearchFormer (Lehnert et al., 2024) have applied MCTS to enhance the reasoning
capabilities of language models (Brown et al., 2020). We analyze the challenges MuZero faces in modeling
long-term dependencies in POMDPs and propose a transformer-based latent world model to address them.

World Models. The concept of world models, as discussed in Schmidhuber (2015); Chiappa et al. (2017);
Ha & Schmidhuber (2018), enables agents to predict and plan future states by learning a compressed
spatiotemporal representation. Subsequent research (Hafner et al., 2023; Micheli et al., 2022; Robine et al.,
2023; Zhang et al., 2023; Hansen et al., 2023; Schrittwieser et al., 2019) has enhanced world models in both
architecture and training paradigms. These studies generally follow three main routes based on training
paradigms: (1) The Dreamer series (Hafner et al., 2020; 2023) adopts an actor-critic paradigm, optimizing
policy and value functions based on internally simulated predictions. Note that the model and behavior
learning in this series are structured in a two-stage manner. Building on this, Micheli et al. (2022); Robine et al.
(2023); Zhang et al. (2023) leverage Transformer-based architectures to enhance sequential data processing,
achieving significant sample efficiency and robustness. (2) The TD-MPC series (Hansen et al., 2022; 2023)
demonstrates substantial performance gains in large-scale tasks by learning policies through local trajectory
optimization within the latent space of the learned world model, specifically utilizing the model predictive
control algorithm (Kouvaritakis & Cannon, 2016). The model and behavior learning in this series also follow
a two-stage structure. (3) Research stemming from MuZero (Ye et al., 2021; de Vries et al., 2021), grounded
in the value equivalence principle (Grimm et al., 2020), achieves joint optimization of the world model and
policy (Eysenbach et al., 2022; Ghugare et al., 2022a) and employs MCTS for policy improvement. Despite
these advancements, the effective integration of these approaches remains under-explored. In our paper, we
provide a preliminary investigation into integrating scalable architectures and joint model-policy optimization
training paradigms. A detailed qualitative comparison is presented in Appendix 12.
6 Conclusion and Future work
In this paper, we investigate the efficiency of MuZero-style algorithms in heterogeneous scenarios characterized
by diverse dependencies and task variability. Through qualitative analysis, we identify two key limitations
of MuZero stemming from its recurrent training paradigm. To address these limitations and enhance the
scalability of MuZero, we propose UniZero, a modular approach that integrates a transformer-based latent
world model with MCTS. Experimental results demonstrate that UniZero consistently outperforms baseline
methods across a wide range of settings, including discrete and continuous control, single-task and multi-task
learning, as well as short- and long-term dependency modeling. Moreover, UniZero exhibits strong potential
as a foundational model for large-scale multi-modal, multi-task learning, paving the way for exciting future
research directions, which we aim to explore further.
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A Environment Details

Figure 8: VisualMatch Long-Term Dependency Benchmark: Each task is segmented into three distinct
phases—Exploration, Distraction, and Reward. As illustrated, the duration of Phase 2 (Distraction) varies and is
denoted by the parameter memory_length, while the durations of Phases 1 and 3 remain constant. The agent (depicted
in purple) operates within a partially observable Markov decision process (POMDP) environment, restricted to a 5×5
grid field of view outlined by white borders and impeded by black walls. During the Exploration Phase (Phase 1), the
agent observes a room with a randomly assigned target color (e.g., blue). In the subsequent Distraction Phase (Phase
2), the environment introduces random distractions such as green apples. Finally, in the Reward Phase (Phase 3), the
agent must navigate to the grid corresponding to the initially observed target color. Increasing the memory_length
intensifies the requirement for the agent to retain and utilize long-term dependencies to successfully complete the task.

A.1 VisualMatch Long-Term Dependency Benchmark

The VisualMatch benchmark is meticulously designed to evaluate an agent’s capacity for handling long-term
dependencies with adjustable memory lengths. As depicted in Figure 8, each task within this benchmark is
structured as a grid-world environment and is divided into three sequential phases: Exploration, Distraction,
and Reward.

• Exploration Phase: The agent observes a room exhibiting a randomly assigned RGB color.

• Distraction Phase: The environment introduces randomly appearing apples, serving as distractions for the
agent.

• Reward Phase: The agent is required to select a block that matches the initial room color observed during
the Exploration Phase.

In our experimental configuration, the duration of Phase 1 (Exploration) is fixed at 1 step, while Phase 3
(Reward) is fixed at 15 steps. The target colors in the Reward Phase are randomly selected from a predefined
set of three colors: blue, red, and green.

Our setup diverges from that of Ni et al. (2024) primarily in the reward structure:

• Collecting apples during the Distraction Phase yields no reward.

• A reward of 1 is granted solely upon the successful completion of the goal in the Reward Phase, ren-
dering the environment characterized by entirely sparse rewards. And in the Reward Phase, we use a
fixed_symbol_colour_map.

• Additionally, in VisualMatch, the duration of the Exploration Phase is condensed to 1 step, compared to
the 15 steps employed in Ni et al. (2024).

The VisualMatch task is thus intricately designed to test an agent’s proficiency in managing long-term
dependencies within its decision-making processes. The partially observable nature of the environment, with
the agent confined to a 5×5 grid field of view at each step, necessitates strategic decision-making based on
incomplete information, effectively simulating numerous real-world scenarios.
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A.2 Benchmark in Non-Memory Domains

Atari 100k Benchmark The Atari 100k benchmark, introduced by SimPLe (Kaiser et al., 2024),
is extensively utilized in research focused on sample-efficient reinforcement learning. This benchmark
encompasses 26 diverse Atari games with image-based inputs and discrete action spaces, accommodating
up to 18 possible actions per game. The diversity of games ensures a comprehensive and robust evaluation
of algorithmic performance across a wide range of environments. In the Atari 100k benchmark, agents are
permitted to interact with each game environment for a total of 100,000 steps per game, which corresponds
to 400,000 environment frames when considering frame skipping at every 4 frames. This setup emphasizes the
importance of sample efficiency, as agents must learn effective policies with a limited number of interactions.

DeepMind Control Suite We utilize a collection of 18 continuous control tasks from the DMControl
suite, specifically selected from the proprioceptive inputs domain. These tasks exhibit significant variability
in objectives, observation spaces, and action dimensions, providing a comprehensive testbed for evaluating
continuous control algorithms. All tasks are modeled as infinite-horizon continuous control environments;
however, for the purpose of evaluation, we impose a fixed episode length of 1,000 steps and eliminate any
termination conditions to maintain consistency across tasks.

Consistent with the methodology outlined in Hansen et al. (2023), we apply an action repeat value of 2 across
all tasks. This results in an effective episode length of 500 decision steps. The primary performance metric
employed is the cumulative episode return, which quantifies the agent’s ability to achieve objectives across
the varied control tasks. This metric provides a clear and quantifiable measure of an agent’s proficiency in
navigating and manipulating the diverse environments presented by the DMControl suite.

B Implementation Details

B.1 Algorithm Details

Here, we present the complete training pipeline of UniZero in Algorithm 1. The training_loop of the
UniZero algorithm consists of two primary procedures:

1. collect_experience: This procedure gathers experiences (trajectories) {ot, at, rt, dt} and the improved
policy πt derived from Monte Carlo Tree Search (MCTS) into the replay buffer B. The agent interacts
with the environment by sampling actions at from the MCTS policy πt, which is generated by performing
MCTS in the learned latent space.

2. update_world_model: This procedure jointly optimizes the world model and the policy. UniZero updates
the decision-oriented world model, policy, and value using samples from B.

collect_steps in Algorithm 1 is defined as num_episodes_each_collect × episode_length. In our
experiments, num_episodes_each_collect is typically set to 8. The parameter world_model_iterations
in Algorithm 1 is calculated as collect_steps × replay_ratio (the ratio between collected environment
steps and model training steps) (Schwarzer et al., 2023). In our experiments, replay_ratio is usually set to
0.25.
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Algorithm 1: UniZero
Procedure training_loop():

for train_iterations do
Create a Key-Value Cache for the memory: KVM = {}
collect_experience(collect_steps)
for world_model_iterations do

update_world_model()
// Due to the variations in the parameters of the world model. We need clear the

old Key-Value Cache
Clear the Key-Value Cache: KVM = {}

Procedure collect_experience(n):
o0 ← env.reset()
for t = 0 to n− 1 do

zt ← hθ(ot)
Sample at ∼ πt = π(at|zt), which is obtained through MCTS(zt, KVM , W)
Add the latest Key-Value Cache KV (zt, at) to KVM

ot+1, rt, dt ← env.step(at)
if dt = 1 then

ot+1 ← env.reset()

B ← B ∪ {ot, at, rt, ot+1, πt}n−1
t=0

Procedure update_world_model():
Sample a mini-batch of sequences {(ot, at, rt, ot+1, πt)i+H−1

t=i } ∼ B // where H is the training
context length.

Compute target TD-value v̂t, and target next latent state z̄t+1 according to the target world model W̄
Optimize the world model and policy jointly according to Equation 3

Procedure MCTS(zt, KVM , W, sim):
// The following process will repeat sim iterations/simulations, where i represents

the current simulation step.
Require : Ni(ẑ, a), Qi(ẑ, a), Pi(ẑ, a), Ri(ẑ, a), Zi(ẑ, a)
Initialize root node← zt

repeat
a∗ ← PUCT(Q, P, N) as in Equation 4

until Ni(ẑl
t, al) = 0

Evaluate the leaf root node ẑl
t using W: pl

t, vl
t ← fθ(ẑl

t, KVM ), ẑl+1
t , r̂l

t ← gθ(ẑl
t, al, KVM ) and stored

the dynamics and decision quantities into the corresponding tables Ri(ẑ, a), Zi(ẑ, a), Pi(ẑ, a)
for each ẑ along the search path do

Qi+1(ẑ, a) = Ni(ẑ,a)·Qi(ẑ,a)+v̂(ẑ)
Ni(ẑ,a)+1

Ni+1(ẑ, a) = Ni(ẑ, a) + 1
return πt = Normalization({Ni+1(zt, at)|at ∈ A})

B.1.1 MCTS in the Learned Latent Space

As delineated in Algorithm 1, the MCTS procedure (Schrittwieser et al., 2019) within the learned latent space
comprises 3 phases in each simulation step i. The total iterations/simulation steps in a single search process
is denoted as sim:

• Selection: Each simulation initiates from the internal root state zt, which is the latent state encoded
by the encoder hθ given the current observation ot. The simulation proceeds until it reaches a leaf node
ẑl

t, where t signifies the search root node is at timestep t, and l indicates it’s a the leaf node. For each
hypothetical timestep k = 1, ..., l of the simulation, actions are chosen based on the Predictor Upper
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Confidence Bound applied on Trees (PUCT) (Rosin, 2011) formula:

ak,∗ = arg max
a

[
Q(ẑ, a) + P (ẑ, a)

√∑
b N(ẑ, b)

1 + N(ẑ, a)

(
c1 + log

(∑
b N(ẑ, b) + c2 + 1

c2

))]
(4)

where N represents the visit count, Q denotes the estimated average value, and P is the policy’s prior
probability. The constants c1 and c2 regulate the relative weight of P and Q. For the specific values,
please refer to Table 8. For k < l, the next state and reward are retrieved from the latent state transition
and reward table as ẑk+1 = S

(
ẑk, ak

)
and r̂k = R

(
ẑk, ak

)
.

• Expansion: At the final timestep l of the simulation i, the predicted reward and latent state are
computed by the dynamics network gθ: r̂l, ẑl+1 = gθ

(
ẑl, al, KVM

)
, and stored in the corresponding tables,

R
(
ẑl, al

)
= rl and S

(
ẑl, al

)
= ẑl+1. The policy and value are computed by the decision network fθ:

pl, vl = fθ

(
ẑl, KVM

)
. A new internal node, corresponding to state zl, is added to the search tree. Each

edge
(
ẑl, a

)
from the newly expanded node is initialized to {N

(
sl, a

)
= 0, Q

(
sl, a

)
= 0, P

(
sl, a

)
= pl}.

• Backup: At the end of the simulation, the statistics along the simulation path are updated. The estimated
cumulative reward at step k is calculated based on v̄l, i.e., an (l − k)-TD bootstrapped value:

v̂k =
l−1−k∑

i=0
γir̂k+1+i + γl−kv̄l (5)

where r̂ are predicted rewards obtained from the dynamics network gθ, and v̄ are obtained from the target
decision network f̄θ. Subsequently, Q and N are updated along the search path, following the equations in
the MCTS procedure described in 1.

Upon completion of the search, the visit counts N(ẑ, a) at the root node zt are normalized to derive the
improved policy:

πt = Iπ(a|zt) = N(zt, a)1/T∑
b N(zt, b)1/T

(6)

where T is the temperature coefficient controlling exploration. Finally, an action is sampled from this
distribution for interaction with the environment. UniZero leverages key-value (KV) caching and attention
mechanisms to enhance backward memory capabilities and employs MCTS to improve forward planning
efficiency. By integrating these two technological directions, UniZero significantly advances more general and
efficient planning.

B.2 Architecture Details

Encoder. In the Atari 100k experiment, our observation encoder architecture principally follows the
framework described in Niu et al. (2024), utilizing the convolutional networks. A notable modification in
UniZero is the addition of a linear layer at the end, which maps the original three-dimensional features to
a one-dimensional latent state of length 768 (denoted as latent state dim, D), facilitating input into the
transformer backbone network. Additionally, we have incorporated a SimNorm operation, similar to the
details described in the TD-MPC2 paper (Hansen et al., 2023). Let V (=8 in all our experiments) be the
dimensionality of each simplex g, constructed from L (= D / V ) partitions of z. SimNorm applies the
following transformation:

zsim_norm .= [g1, . . . , gi, . . . , gL] , gi = ezi:i+V /τ∑V
j=1 ezi:i+V /τ

, (7)

where zsim_norm is the simplicial embedding (Lavoie et al., 2022) of z, [·] denotes concatenation, and τ > 0 is
a temperature parameter that modulates the sparsity of the representation. We set τ to 1. As demonstrated
in 4.5, SimNorm is crucial for the training stability of UniZero.
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Table 4: Architecture of the encoder for VisualMatch. The size of the submodules is omitted and can be
derived from the shape of the tensors. LeakyReLU refers to the leaky rectified linear units used for activation, while
Linear represents a fully-connected layer. SimNorm (Hansen et al., 2023) operations introduces natural sparsity by
constraining the L1 norm of the latent state to a fixed constant, thereby ensuring stable gradient magnitudes. Conv
denotes a CNN layer, characterized by kernel = 3, stride = 1, and padding = 1. BN denotes the batch normalization
layer.

Submodule Output shape
Input image (ot) 3× 5× 5

Conv1 + BN1 + LeakyReLU 16× 5× 5
Conv2 + BN2 + LeakyReLU 32× 5× 5
Conv3 + BN3 + LeakyReLU 64× 5× 5

AdaptiveAvgPool2d 64× 1× 1
Linear 64

SimNorm 64

For the encoder used in the Long-Dependency Benchmark, we employed a similar conv. network architecture,
with a latent state of length 64. Specifics can be found in the related table (see Table 4).

Dynamics Head and Decision Head. Both the dynamics head and the decision head utilize two-layer
linear networks with GELU (Hendrycks & Gimpel, 2016) activation functions. Specifically, the final layer’s
output dimension for predicting value and reward corresponds to the support size (refer to B.4) (Schrittwieser
et al., 2019; Bellemare et al., 2017). For predicting policy, the output dimension matches the action space size.
For predicting the next latent state, the output dimension aligns with the latent state dimension, followed by
an additional SimNorm normalization operation. In the context of Atari games, this dimension is set to 768,
whereas for VisualMatch, it is configured to 64.

Transformer Backbone. Our transformer backbone is based on the nanoGPT project, as detailed in Table
7. For each timestep input, UniZero processes two primary modalities. The first modality involves latent
states derived from observations, normalized in the final layer using SimNorm, as discussed above. The
second modality pertains to actions, which are converted into embeddings of equivalent dimensionality to
the latent states via a learnable nn.Embedding layer. For continuous action spaces, these can alternatively
be embedded using a learnable linear layer. Notably, rewards are not incorporated as inputs in our current
framework. This choice is based on the rationale that rewards are determined by observations and actions,
and thus do not add additional insight into the decision-making process. Furthermore, our approach does not
employ a return-conditioned policy (Chen et al., 2021; Lee et al., 2022), leaving the potential exploration of
reward conditions to future work. Each timestep’s observed results and corresponding action embeddings are
added with a learnable positional encoding, implemented through nn.Embedding, as shown in Table 5. While
advanced encoding methods like rotary positional encoding (Su et al., 2023) and innovate architectures of
transformer (Dao et al., 2022) exist, their exploration is reserved for future studies. Detailed hyper-parameters
can be found in Appendix B.4.

Table 5: Positional encoding module. w1:H is a learnable parameter matrix with shape H × D, and H refers to
the sequence length and D refers to the latent state dimension, 768 for the Atari, 64 for the VisualMatch.

Submodule Output shape
Input ((z1:H , a1:H)) 2H ×DAdd ((z1:H , a1:H) + w1:H)

UniZero (RNN). This variant employs a training setup akin to UniZero but utilizes a GRU (Chung et al.,
2014) as the backbone network. During training, all observations are utilized. During inference, the hidden
state of the GRU is reset every Hinfer steps. The recursively predicted hidden state ht and observation
embedding zt serve as the root node of the MCTS. The recursively predicted hidden state ht and predicted
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Table 6: Details of Transformer block. MHSA refers to multi-head self-attention and F F N refers to feed-forward
networks. Dropout mechanism can prevent over-fitting.

Submodule Module alias Output shape
Input features (label as x1) - 2H ×D

Multi-head self attention + Dropout(p)

MHSA 2H ×D
Linear1 + Dropout(p)

Residual (add x1)
LN1 (label as x2)
Linear2 + GELU

FFN

2H ×D
Linear3 + Dropout(p) 2H ×D

Residual (add x2) 2H ×D
LN2 H ×D

Table 7: Transformer-based latent world model (p1:H , v1:H , ẑ1:H , r̂1:H , hz
1:H , hz,a

1:H) = fθ(z1:H , a1:H). The hidden
states (hz

1:H , hz,a
1:H) in the final layer of the transformer are referred to as the implicit latent history. Positional encoding

and Transformer block are explained in Table 5 and 6.

Submodule Output shape
Input ((z1:H , a1:H))

2 ∗H ×D

Positional encoding
Transformer blocks ×N

(implicit) Latent history ((hz
1:H , hz,a

1:H))
Decision head (p1:H , v1:H)
Dynamic head (ẑ1:H , r̂1:H)

latent state ẑt serve as the internal nodes. At the root node, due to the complexity of GRU training, the
recurrent hidden state ht may not fully capture the historical information. At the internal nodes, the issue
is exacerbated by the accumulation of errors, leading to inaccurate predictions and consequently limiting
performance. For an illustration of the training process, please refer to Figure 9.

B.3 Extension of UniZero to Continuous Action Spaces

To adapt UniZero for environments with continuous action spaces (Hubert et al., 2021b), we introduce several
key modifications to both the network architecture and the MCTS procedure. These adaptations are crucial
for accurate modeling and effective decision-making when actions are not confined to a discrete set but can
take any value within a continuous range.

B.3.1 Policy Network Modification

The policy network’s decision head is redesigned to accommodate continuous actions by outputting parameters
suitable for continuous distributions. Instead of producing logits for a finite set of discrete actions, the
network now generates the mean (µ) and standard deviation (σ) parameters of a Gaussian distribution for
each action dimension. Specifically, for each dimension i of the action space A, the network predicts µθ,i(s)
and σθ,i(s), enabling the representation of a continuous action space. Formally, the policy is defined as:

πθ(a|s) = N (µθ(s), σ2
θ(s)), (8)

where µθ(s) ∈ R|A| and σθ(s) ∈ R|A| are the mean and standard deviation vectors parameterized by θ, and
|A| denotes the dimensionality of the action space.
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Figure 9: Training pipeline of UniZero (RNN). During training, all observations are utilized. The recursively
predicted hidden state ht and observation embedding zt serve as the root node. The recursively predicted hidden
state ht and predict latent state ẑt serve as the internal nodes of MCTS. During inference, the GRU hidden state is
reset every Hinfer steps. However, potential inaccuracies may arise from the recursively predicted hidden state ht due
to the complexity of GRU training

.

B.3.2 MCTS Node Expansion Adaptation

In continuous action spaces, enumerating all possible actions is computationally infeasible. To address this
challenge, we modify the node expansion strategy within MCTS to sample a finite set of actions from a
proposal distribution derived from the policy network. Specifically, actions are sampled from the Gaussian
proposal distribution β(a|s) defined as:

β(a|s) = N (µθ(s), σ2
θ(s)). (9)

During each node expansion, a finite number K ≪ |A| of actions are sampled from β(a|s), with K = 20 in
our continuous action experiments. Each sampled action ai is associated with its corresponding probability
under the proposal distribution, β(ai|s) = πθ(ai|s).

B.3.3 PUCT Formula Adaptation

To maintain a balanced exploration-exploitation trade-off in continuous action spaces, the Predictor + UCT
(PUCT) formula is adjusted accordingly. In this adaptation, the prior policy distribution is transformed
from the original prior policy P (ẑ, a) in Equation 4 to a uniform policy u(ẑ, a). This modification leverages
the prior implicitly without introducing explicit bias, ensuring that exploration is not disproportionately
influenced by the policy.

B.3.4 Policy Distillation from MCTS Visit Counts

After the MCTS procedure, the visit counts N(s, a) at the root node are normalized to derive an improved
policy estimate π̂β(a|s):

π̂β(a|s) = N(s, a)∑
b N(s, b) . (10)

To integrate this improved policy into the policy network, we employ a projection operator P . Inspired by
MuZero, this projection minimizes the Kullback-Leibler (KL) divergence between the improved policy and
the network’s policy output:

LKL = KL (π̂β(·|s) ∥πθ(·|s)) . (11)
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B.3.5 Policy Loss Calculation for Continuous Actions

The policy loss for continuous actions is computed by minimizing the KL divergence between the improved
policy derived from MCTS and the policy network’s output distribution. The loss function is defined as:

Lpolicy = −
∑

i

π̂β(ai|s) · log πθ(ai|s), (12)

where ai are the sampled actions from the improved policy. This formulation ensures numerical stability by
operating directly with probabilities rather than log probabilities.

B.3.6 Summary of Modifications

Extending UniZero to accommodate continuous action spaces involves the following key modifications:

• Policy Network Redesign: The policy network is modified to output the mean and standard
deviation parameters of Gaussian distributions for each action dimension, enabling the representation
of continuous actions.

• MCTS Node Expansion Adjustment: The node expansion strategy within MCTS is adapted to
sample a finite set of actions from the Gaussian proposal distribution, avoiding the infeasibility of
enumerating all possible continuous actions.

• PUCT Formula Adaptation: The PUCT formula is revised to appropriately balance exploration
and exploitation in the context of continuous actions, without introducing bias towards the prior
policy.

• Policy Distillation via KL Divergence Minimization: The visit counts obtained from MCTS
are distilled into the policy network by minimizing the KL divergence between the improved policy
and the network’s policy distribution.

These enhancements enable UniZero to effectively manage continuous control tasks, ensuring robust perfor-
mance across diverse and complex action spaces.

B.4 Baselines and Hyperparameters

Baselines. Our MuZero implementation is based on the LightZero (Niu et al., 2024) framework. Unless
otherwise stated, all references to MuZero in this work denote its variant augmented with self-supervised
learning regularization (MuZero w/ SSL), as discussed in Section 6. (1) VisualMatch Baselines: We
compare against MuZero and the SAC-Discrete variant combined with the GPT backbone, as proposed in
Ni et al. (2024), referred to as SAC-GPT. (2) Atari 100k Baselines: The baseline used is MuZero. (3)
DMControl Baselines: DreamerV3 (Hafner et al., 2023) is used as the baseline, a model-based approach
that optimizes a model-free policy using rollouts generated from a learned environment model. For a
comprehensive comparison with prior model-based RL algorithms such as TWM (Robine et al., 2023), IRIS
(Micheli et al., 2022), DreamerV3 (Hafner et al., 2023), STORM (Zhang et al., 2023), TDMPC2 (Hansen
et al., 2023) and MuZero (Schrittwieser et al., 2019), please refer to Table 12.

Hyperparameters. We maintain a consistent set of hyperparameters across all tasks unless explicitly
stated otherwise. Table 8 outlines the key hyperparameters for UniZero, which are closely aligned with those
reported in Niu et al. (2024). Furthermore, Table 9 provides the critical hyperparameters for MuZero w/
SSL, MuZero w/ Context, and UniZero (RNN).

B.5 Computational Cost

Compared to MuZero, although UniZero may have a slightly higher computational cost per step, the difference
in actual training time is not significant due to their different training paradigms—UniZero employs parallel
training, whereas MuZero requires executing a recursive for-loop during training.
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Table 8: UniZero Key Hyperparameters. Most hyperparameters are aligned with those in Niu et al. (2024) to
enable fair comparisons. For brevity, long-term denotes the long-term dependency benchmark, DMC refers to the
DeepMind Control Suite, and Atari refers to the Atari 100k benchmark.

Hyperparameter Value
Planning

Number of MCTS Simulations (sim) 50
Number of Sampled Actions (K) 20 (DMC only)
Inference Context Length (Hinfer) 4 (Atari); 2 (DMC); memory_length + 16 (long-term)
Temperature 0.25
Dirichlet Noise (α) 0.3
Dirichlet Noise Weight 0.25
Coefficient c1 1.25
Coefficient c2 19652
Environment and Replay Buffer

Replay Buffer Capacity 1, 000, 000
Sampling Strategy Uniform
Observation Shape (Atari) (3, 64, 64) (stack1); (4, 64, 64) (stack4)
Observation Shape (Long-term) (3, 5, 5)
Observation Shape (DMC) Varied across tasks
Reward Clipping True (Atari only)
Number of Frames Stacked 1 (stack1); 4 (stack4; Atari only)
Frame Skip 4 (Atari); 2 (DMC)
Game Segment Length 400 (Atari); 100 (DMC); memory_length + 16 (long-term)
Data Augmentation False
Architecture

Latent State Dimension (D) 768 (Atari, DMC); 64 (long-term)
Number of Transformer Heads 8 (Atari, DMC); 4 (long-term)
Number of Transformer Layers (N) 2
Dropout Rate (p) 0.1
Activation Function LeakyReLU (encoder); GELU (others)
Reward/Value Bins 101
SimNorm Dimension (V ) 8
SimNorm Temperature (τ) 1
Optimization

Training Context Length (H) 10
Replay Ratio 0.25
Buffer Reanalyze Frequency 0 (DMC, long-term); 1/50 (Atari); 0 in Figure 2
Batch Size 64
Optimizer AdamW
Learning Rate 1× 10−4

Next Latent State Loss Coefficient 10
Reward Loss Coefficient 0.1 (DMC); 1 (others)
Policy Loss Coefficient 0.1 (DMC); 1 (others)
Value Loss Coefficient 0.1 (DMC); 0.5 (others)
Policy Entropy Coefficient 1× 10−4

Weight Decay 10−4

Max Gradient Norm 5
Discount Factor 0.997
Soft Target Update Momentum 0.05
Hard Target Network Update Frequency 100
Temporal Difference (TD) Steps 5
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Table 9: Key Hyperparameters for MuZero w/ SSL, MuZero w/ Context, and UniZero (RNN) on Atari.

Hyperparameter Value
Planning

Number of MCTS Simulations (sim) 50
Inference Context Length (Hinfer) 0 (MuZero w/ SSL); 4 (for other two algo.)
Temperature 0.25
Dirichlet Noise (α) 0.3
Dirichlet Noise Weight 0.25
Exploration Coefficient (c1) 1.25
Visit Count Coefficient (c2) 19652
Environment and Replay Buffer

Replay Buffer Capacity 1, 000, 000
Sampling Strategy Uniform
Observation Shape (Atari) (3, 64, 64) (stack1); (4, 64, 64) (stack4)
Observation Shape (Long-term) (3, 5, 5)
Reward Clipping True (Atari only)
Number of Frames Stacked 1 (stack1); 4 (stack4; Atari only)
Frame Skip 4 (Atari only)
Game Segment Length 400 (Atari); memory_length + 16 (long-term)
Data Augmentation True
Optimization

Training Context Length (H) 10
Replay Ratio 0.25
Buffer Reanalyze Frequency 0
Batch Size 256
Optimizer SGD
Learning Rate Schedule 0.2→ 0.02→ 0.002 (Ye et al., 2021)
SSL Loss Coefficient 2
Reward Loss Coefficient 1
Policy Loss Coefficient 1
Value Loss Coefficient 0.25
Policy Entropy Loss Coefficient 0
Number of Reward/Value Bins 101
Discount Factor (γ) 0.997
Target Network Update Frequency 100
Weight Decay 10−4

Maximum Gradient Norm 5
Temporal Difference (TD) Steps 5
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The following computational overhead experiments were conducted on a Kubernetes cluster with the following
specifications: a single NVIDIA A100 80GB GPU, a 24-core CPU, and 100GB of memory. Under these
computational resources and the hyperparameter settings listed in Table 8, the training time required for
UniZero is as follows:

• Training an Atari agent for 100k steps takes approximately 4 hours (see Figure 14), which is
comparable to the previously reported training time for MuZero.

• On the VisualMatch task (with a memory length of 500), completing 1M training steps takes
approximately 30 hours (see Figure 4).

It is important to note that the above results were obtained using a single GPU without special computational
optimizations. Currently, we have implemented a multi-GPU version, and experiments indicate that its
speedup ratio is close to linear. In the future, we plan to further explore existing Transformer optimization
techniques to enhance computational efficiency.

C Multi-task Learning Details

In this section, we evaluate UniZero’s capability to seamlessly extend to a multi-task learning setting. While
UniZero demonstrates exceptional performance on single-task problems with varying levels of dependency
(Section 4.1), its decoupled-yet-unified design enables it to scale effectively to multi-task environments. By
leveraging a shared transformer backbone, UniZero adaptively captures diverse dependencies across tasks
within a unified architecture and training paradigm. To validate its multi-task learning potential, we present
results on eight Atari games: Alien, Boxing, ChopperCommand, Hero, MsPacman, Pong, RoadRunner, and
Seaquest. Unless explicitly stated, the multi-task hyperparameters remain consistent with those outlined in
Table 8.

C.1 Architecture

The observation space for all tasks is standardized and consists of (3, 64, 64) RGB images. We configure
full_action_space=True, following Bellemare et al. (2013), which yields a unified action space with 18
discrete actions across all tasks. The primary architectural difference from the single-task setup is the
introduction of independent decision heads and dynamics heads for each task (as described in Kumar et al.
(2022)), which requires only a minimal increase in parameters. The core transformer backbone and encoder,
however, are shared across all tasks, enhancing parameter efficiency and enabling shared representation
learning. In our initial experiments, we also tested the shared head setting. The results indicate that compared
to an independent head for each game, a shared head leads to an overall performance drop of around 50%.
Although a single, powerful head should theoretically handle these tasks, achieving this practically requires a
more complex design to address gradient conflict issues. Therefore, this paper mainly explores the independent
head setting.

C.2 Training

During training, each task is assigned its own data collector, responsible for sequentially gathering tra-
jectories and storing them in separate replay buffers. For gradient updates, we sample a batch of size
task_batch_size=32 from each task, aggregate the samples into a larger minibatch, and compute the loss
for each task using the objective function defined in Equation 3. The task-specific losses are averaged to
obtain the total loss, which is then backpropagated to update the shared network parameters.

C.3 Results

Performance Comparison. Table 2 and Figure 10 demonstrate that UniZero (multi-task) significantly
outperforms both UniZero (single-task) and MuZero (multi-task) in terms of normalized mean and median
scores across the evaluated environments. This improvement underscores UniZero’s scalability and effectiveness
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as a latent world model for generalized agent training. Notably, UniZero achieves comparable sample efficiency
across all tasks relative to single-task learning, highlighting its robust multi-task learning capabilities.

Latent State Analysis. To further investigate the success of multi-task learning, we analyze the latent
states learned by UniZero using T-SNE visualizations (Maaten & Hinton, 2008) (Figure 12). Specifically, we
sample 40 transitions from each game using the final model trained in the multi-task setup. The observation
samples are encoded into 768-dimensional latent states using UniZero’s representation network, which are
then reduced to two dimensions via T-SNE. The visualization reveals well-defined clustering tendencies in the
latent state spaces for each game, reflecting UniZero’s ability to effectively capture task-specific dynamics.
However, certain games, such as Alien, exhibit more dispersed latent representations. This dispersion may
arise from Alien’s similarity to other environments, such as MsPacman (both belonging to the Maze class),
allowing greater information sharing across tasks. This shared information likely contributes to Alien’s
significant performance improvement under the multi-task learning setup compared to the single-task scenario.

Effect of Model Size. To investigate the relationship between model size and multi-task learning per-
formance, and to explore whether a scaling law exists, we evaluate the impact of varying the transformer
backbone size (nlayer={4, 8, 12}) on eight Atari games in the multi-task setting. The encoder and head
architectures are kept constant across all configurations, while other hyperparameters remain consistent with
those outlined in Table 8. As illustrated in Figure 11, increasing the model size consistently improves sample
efficiency across all tasks, demonstrating the scalability of the model as its size grows. These results highlight
the potential of larger models to serve as robust latent world models for training generalized agents.

Extended Evaluation. To assess the scalability of UniZero, we expand our test scope to cover the full
evaluation set of 26 Atari games. As shown in Figure 13 and Table 10, the multi-task model of UniZero
achieves a normalized human score comparable to that of UniZero trained on single tasks. In contrast,
MuZero fails to scale effectively to a large number of tasks. Notably, MuZero performs poorly in multi-task
training across the 26 games, making little to no significant progress in most tasks. This limitation likely
stems from the substantial differences in dynamical properties across tasks, which make it difficult for
its recurrent training paradigm to adapt seamlessly to such variations. As a result, severe conflicts arise
during the learning process, ultimately hindering the model’s improvement. In contrast, UniZero effectively
leverages shared representations across tasks and models task dependencies through its Transformer backbone,
thereby maintaining performance levels comparable to dedicated single-task models and demonstrating strong
potential in multi-task learning.

Additional Insights. In our preliminary experiments, we explored several multi-task gradient correction
techniques, including PCGrad (Yu et al., 2020) and CAGrad (Liu et al., 2021). However, these methods
yielded minimal performance improvements in our experimental setup and were therefore excluded from
the reported results. Additionally, we tested multi-task minibatch sampling strategies, where the sampling
ratio for each task was inversely proportional to the average episode length of the respective task. We also
experimented with augmenting the latent state space by introducing task-specific, learnable embeddings.
Unfortunately, neither approach demonstrated significant benefits, and as such, they were omitted from the
final analysis.

Future Directions. To address the limitations identified, future work will focus on investigating advanced
learning dynamics and task-balancing techniques. Specifically, we plan to explore: (1) improved strategies
for balancing tasks during training, (2) optimizing information reuse in MCTS, and (3) integrating multiple
modalities and tasks within a unified framework. Furthermore, we aim to study advanced pretraining and
fine-tuning methodologies to enhance UniZero’s multi-task performance. These directions are expected to
provide deeper insights into the challenges of multi-task reinforcement learning and contribute to more robust
and scalable solutions.
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Figure 10: Performance comparison between UniZero and MuZero on eight Atari games in multi-task
settings. UniZero demonstrates comparable sample efficiency across all tasks relative to MuZero in multi-task
learning, underscoring its scalability as a latent world model for training generalized agents. The solid line represents
the mean of three runs, and the shaded areas indicate the 95% confidence intervals.

Figure 11: Effect of model size of UniZero on eight Atari games in multi-task settings. Increasing the
model size consistently improves sample efficiency across all tasks (nlayer={4, 8, 12}), demonstrating the potential of
UniZero as a scalable generalized agents.

D Additional Single Task Results

D.1 Experimental Setup

To evaluate the effectiveness and scalability of the proposed UniZero algorithm, we conducted experiments
on 26 games from the image-based Atari 100K benchmark. Detailed configuration settings for the Atari
environment are provided in Section B.4. Observations are represented as (3, 64, 64) for single-frame
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Figure 12: T-SNE visualization of latent states learned by UniZero on eight Atari games. The latent state
spaces for the same game exhibit pronounced clustering tendencies, reflecting UniZero’s ability to learn task-specific
representations effectively. A representative subset of states is shown for clarity.

Table 10: Performance comparison between UniZero and MuZero in both multi-task and single-task settings at
200k environment steps across 26 Atari games. The results indicate that UniZero exhibits higher scalability for
heterogeneous multi-task learning, achieving comparable performance to single-task learning, whereas MuZero fails to
extend effectively to a large number of tasks. MT denotes multi-task learning and ST denotes single-task learning.
Bold numbers indicate the best performance for each metric under the corresponding settings.

Algorithm Normalized Mean Normalized Median
UniZero (MT) 0.3133 0.1666
MuZero (MT) 0.0424 0.0004
UniZero (ST) 0.3865 0.2154
MuZero (ST) 0.5696 0.2009

RGB images (stack size = 1) or as (4, 64, 64) for grayscale images with four stacked frames (stack size
= 4). This configuration differs from the (4, 96, 96) observation format commonly adopted in previous
studies such as Ye et al. (2021); Niu et al. (2024). All implementations are based on the latest release of the
open-source LightZero framework (Niu et al., 2024).

Baselines. To benchmark the performance of UniZero on the Atari 100K benchmark, we compare it against
the following baselines:

• MuZero (Schrittwieser et al., 2019): The original MuZero algorithm utilizing a stack size of 4.

• MuZero (Reproduced): Our reimplementation of MuZero, enhanced with self-supervised learning
(SSL) and employing a stack size of 4. This variant is referred to as MuZero w/ SSL or MuZero
(Reproduced) (Niu et al., 2024).

To evaluate the capacity of different algorithms for modeling short-term dependencies, both MuZero and
MuZero (Reproduced) are configured with a stack size of 4, while the proposed UniZero operates without
stacked frames (stack size = 1). All implementations are trained using uniform hyperparameters across all
games, with no further game-specific tuning.
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Figure 13: Performance comparison between multi-task and single-task settings on 26 Atari games.
Multi-task training yields comparable sample efficiency across all tasks relative to single-task learning, further validating
UniZero’s efficacy as a scalable generalized agent.

For tasks that demand long-term dependency modeling, we extend the evaluation by comparing UniZero
against the original MuZero and the transformer-based SAC-GPT algorithm (Ni et al., 2024). The SAC-GPT
framework integrates transformer architectures with actor-critic methods, enabling the modeling of memory
and credit assignment in reinforcement learning, thereby highlighting its potential for addressing long-term
dependencies in complex RL environments.

D.2 Atari 100K Results

Table 11 provides a comprehensive comparison of three methods: UniZero (stack size = 1), MuZero (Re-
produced) (stack size = 4), and the original MuZero as reported in Schrittwieser et al. (2019). The results
demonstrate that UniZero achieves a higher human-normalized median score than MuZero (Reproduced), out-
performing the latter in 15 out of 26 Atari games, while maintaining comparable or slightly lower performance
in the remaining environments. Notably, both UniZero and MuZero (Reproduced) are implemented within the

33



Published in Transactions on Machine Learning Research (05/2025)

same LightZero framework, ensuring a fair and controlled comparison by using identical hyperparameters
across all games.

Figure 14 resents the full performance curves, further corroborating that UniZero consistently surpasses
MuZero (Reproduced) in terms of human-normalized median scores. These results highlight the ability of
UniZero to effectively model both short- and long-term dependencies, which is a critical factor in achieving
robust performance on the Atari 100K benchmark.

Table 11: Performance comparison of UniZero, MuZero (Reproduced), and the original MuZero on the Atari 100K
benchmark. UniZero achieves a higher human-normalized median score than MuZero (Reproduced), outperforming the
latter in 15 out of 26 Atari games. The results for the original MuZero are directly taken from Schrittwieser et al.
(2019) and are provided for reference. Both UniZero and MuZero (Reproduced) are reimplemented using the LightZero
framework under identical hyperparameter settings, ensuring fairness in comparison. Bold entries denote the superior
method between UniZero and MuZero (Reproduced), while underlined values indicate the overall best-performing
approach across all methods.

Game Random Human MuZero MuZero (Reproduced) UniZero (Ours)

Alien 227.8 7127.7 530.0 300 600
Amidar 5.8 1719.5 39 90 96
Assault 222.4 742.0 500 609 608
Asterix 210.0 8503.3 1734 1400 1216
BankHeist 14.2 753.1 193 223 400
BattleZone 2360.0 37187.5 2688 7587 11410
Boxing 0.1 12.1 15 20 7
Breakout 1.7 30.5 48 3 8
ChopperCommand 811.0 7387.8 1350 1050 2205
CrazyClimber 10780.5 35829.4 56937 22060 13666
DemonAttack 152.1 1971.0 3527 4601 991
Freeway 0.0 29.6 22 12 10
Frostbite 65.2 4334.7 255 260 310
Gopher 257.6 2412.5 1256 346 853
Hero 1027.0 30826.4 3095 3315 2005
Jamesbond 29.0 302.8 88 90 405
Kangaroo 52.0 3035.0 63 200 1885
Krull 1598.0 2665.5 4891 5191 4484
KungFuMaster 258.5 22736.3 18813 6100 11400
MsPacman 307.3 6951.6 1266 1010 900
Pong -20.7 14.6 -7 -15 -10
PrivateEye 24.9 69571.3 56 100 500
Qbert 163.9 13455.0 3952 1700 1056
RoadRunner 11.5 7845.0 2500 4400 1100
Seaquest 68.4 42054.7 208 466 620
UpNDown 533.4 11693.2 2897 1213 2823

Normalized Mean (↑) 0.000 1.000 0.56 0.44 0.39
Normalized Median (↑) 0.000 1.000 0.23 0.13 0.22

D.3 DMControl Results

Figure 15 shows the learning curves for all 18 tasks in the Proprio Control Suite of DMControl. Each
solid line represents the mean performance across three seed runs, and shaded regions indicate the 95%
confidence intervals. UniZero, leveraging sampled policy iteration (Hubert et al., 2021b), achieves a higher
human-normalized score compared to the state-of-the-art DreamerV3 (Hafner et al., 2023), highlighting its
ability to handle continuous action spaces and diverse control tasks.
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Figure 14: Performance Comparison on 26 Atari Games between UniZero and MuZero (Reproduced) in
single-task setting. UniZero achieves a higher human-normalized median score. Solid lines represent the mean of
three different seed runs, while shaded areas denote the 95% confidence intervals.
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Figure 15: Detailed Training Curves of UniZero on 18 DMControl Tasks. UniZero demonstrates superior
performance against DreamerV3, underscoring its effectiveness in continuous control settings. Solid lines denote the
mean performance over three different seed runs, while shaded areas represent the 95% confidence intervals.
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E Additional Ablation Study and Analysis

E.1 Ablation Study Details

In Section 4.5, we evaluate the effectiveness and scalability of UniZero’s core designs through a series of
ablation experiments. These experiments include investigations into training context lengths, normalization
methods, and decode regularization in the Pong environment and the VisualMatch task.

Additionally, we provide ablation studies on the target world models for both tasks and explore the impact of
Transformer depth in VisualMatch (memlen=500).

Below, we present comprehensive experimental details and key observations.

• Model Size Across Different Training Context Lengths (H = 5, 10, 20, 40): The number of layers
in the Transformer backbone is varied, while the number of attention heads is fixed at 8. We examine how
context length affects performance in both Pong and VisualMatch.

• Latent Normalization: We compare three normalization methods: the default SimNorm, Softmax, and
Sigmoid. These methods are applied to both the encoded latent state and the output of the dynamics
network (i.e., the predicted next latent state). Our initial experiments indicate that LayerNorm performs
comparably to SimNorm. However, SimNorm’s intra-group Softmax mechanism enables more attribute-
specific and generalizable representations (Lavoie et al., 2022), which benefits attribute interpretation
and multi-task fine-tuning. Therefore, we default to SimNorm, while retaining LayerNorm as a viable
alternative.

• Decode Regularization: We introduce a decoder function to map latent states back into the observation
space:

Decoder: ôt = dθ(ẑt) ▷ Maps latent states to observations for regularization.
Training includes an auxiliary objective:

Ldecode_reg = ∥ot − dθ(zt)∥1 + Lperceptual(ot, dθ(zt)), zt = hθ(ot),

where the first term represents an L1 reconstruction loss, and the second term is a perceptual loss, as
defined in Ni et al. (2024). For these experiments, the decode regularization loss coefficient is set to 0.05.
Notably, in VisualMatch, only the L1 reconstruction loss is applied.

• Target World Model: We evaluate three configurations for the target world model:

– Soft Target (default): Leverages an Exponential Moving Average (EMA) target model (Mnih et al.,
2013) for both the target latent state and target value.

– Hard Target: Updates the target world model by hard-copying parameters every 100 training
iterations.

– No Target: Removes the target world model entirely, using the current world model to generate the
target latent state.

Based on these ablation studies, we derive the following key insights:

(1) Training Context Length and Transformer Depth:

• In the Pong environment, shorter inference contexts (Hinfer = 4) outperform longer contexts (Hinfer =
8) across all Transformer depths. This suggests that shorter contexts are sufficient for Atari tasks.
Consequently, we set Hinfer = 4 for all Atari experiments.

• In VisualMatch, however, the training context length must match the episode length to enable the agent
to retain memory of the target color from the first phase. Accordingly, the training context length is set
to 16 + memory_length.

• Figure 16 illustrates that deeper Transformer backbones slightly improve performance, indicating that
increased capacity better captures long-term dependencies.
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Figure 16: Impact of Transformer
depth in VisualMatch (Memory
Length = 500). Performance im-
proves slightly with the number of lay-
ers in the Transformer backbone, indi-
cating that deeper architectures better
capture long-term dependencies.
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Figure 17: Ablation results for the target world model. Left:
Pong, Right: VisualMatch (MemoryLength = 60). Soft target models
yield the most stable performance. The horizontal axis shows Env
Steps, while the vertical axis represents the Return or Success Rate
over 10 episodes. Results are averaged over 3 runs, with shaded areas
denoting 95% confidence intervals.

(2) Latent Normalization:

• The SimNorm method (Hansen et al., 2023) achieves the best performance, followed by Softmax, while
Sigmoid fails to converge.

• These results underscore the importance of proper normalization in the latent space for training stability.
Specifically, SimNorm enforces a fixed L1 norm on latent states, which introduces natural sparsity and
stabilizes gradient magnitudes.

• Without normalization, gradient explosion is frequently observed.

(3) Decode Regularization:

• Decode regularization has minimal impact on performance in both Pong and VisualMatch.
• This suggests that latent states primarily encode task-relevant information, rendering the reconstruction

of original observations unnecessary for effective decision-making.

(4) Target World Model:

• As shown in Figure 17, the soft target model delivers the most stable performance.
• The hard target model exhibits some instability, while removing the target world model leads to

non-convergence in Pong and NaN gradients in VisualMatch.
• This behavior aligns with the role of target networks in algorithms such as DQN (Mnih et al., 2013),

where the absence of target stabilization mechanisms often causes divergence.

E.2 World Model Analysis

VisualMatch. In Figure 18 and Figure 19, we present the predictions of the learned world model in one
success and one fail episode of VisualMatch (MemoryLength=60), respectively. The first row indicates the
predicted reward and true reward. The second row displays the original image frame. The third row outlines
the predicted prior policy, and the fourth row describes the improved (MCTS) policy induced by MCTS
based on the prior policy. For the sake of simplicity, we have only illustrated the first two steps (t = {2, 3})
and the last two steps (t = {60, 61}) of the distraction phase. Please note that at each timestep, the agent
performs the action with the highest probability value in the fourth row. As observed, the reward is accurately
predicted in both cases, and the MCTS policy has shown further improvement compared to the initial
predicted prior policy. For example, in Figure 18, at timestep 75, action 3, which represents moving to the
right, is identified as the optimal action because the target color, green, is located on the agent’s right side.
While the predicted prior policy still allocates some probability to actions other than action 3, the MCTS
policy refines this distribution, converging more towards action 3.
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Figure 18: Predictions of the world model in one success episode of VisualMatch (MemoryLength=60). The
first row indicates the predicted reward and true reward. The second row displays the original image frame. The
third row outlines the predicted prior policy, and the fourth row describes the improved (MCTS) policy induced by
MCTS based on the prior policy. For the sake of simplicity, we have only illustrated the first two steps (t = {2, 3})
and the last two steps (t = {60, 61}) of the distraction phase. At timestep 75, action 3, which corresponds to moving
to the right, is identified as the optimal action because the target color, green, is located on the agent’s right side.
Although the predicted prior policy assigns some probability to actions other than action 3, the MCTS policy refines
this distribution, converging more decisively towards action 3.

Figure 21 shows the attention maps of the trained world model. It can be observed that in the initial layers
of the Transformer, the attention is primarily focused on the first time step (which contains the target color
that needs to be remembered) and the most recent few time steps, mainly for predicting potential dynamic
changes. In higher-level layers, sometimes, such as in Layer3-Head2, the attention is mainly concentrated
on the current time step, whereas at other times, such as in Layer4-Head4, there is a relatively broad and
dispersed attention distribution, possibly indicating the fusion of some learned higher-level features.

Pong. Similarly, in Figure 20, we present the predictions of the world model in one trajectory of Pong. The
first row indicates the predicted reward and true reward. The second row displays the original image frame.
The third row outlines the predicted prior policy, and the fourth row describes the improved (MCTS) policy
induced by MCTS based on the prior policy. Please note that the image in the second row (original image)
has already been resized to (64,64) from the raw Atari image, so there may be some visual distortion. At each
timestep, the agent performs the action with the highest probability value in the fourth row. Throughout
all timesteps, the true reward remains zero due to the absence of score events. Unizero’s world model can
accurately predict this, with all predicted rewards consistently remaining zero. At the 8th timestep, the agent
controlling the right green paddle successfully bounces the ball back. At the 7th timestep, the agent should
perform the upward action 2; otherwise, it might miss the opportunity to catch the ball. The MCTS policy
further concentrates the action probability on action 2 compared to the prediction policy, demonstrating the
policy improvement process of MCTS.
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Figure 19: Predictions of the world model in one fail episode of VisualMatch (MemoryLength=60). The first
row indicates the predicted reward and true reward. The second row displays the original image frames. The third
row outlines the predicted prior policy, and the fourth row describes the improved (MCTS) policy induced by MCTS
based on the prior policy.

In Figure 22, we plot the attention maps in one trajectory (train_context_length is 10, with each time step
consisting of two tokens, namely the latent state and the action) of Pong. It can be observed that across
various levels, attention is primarily on data from the most recent frames. This is closely related to the
short-term dependency characteristic of Pong. Utilizing information from only the recent frames is sufficient
for dynamic prediction and policy-value learning.

E.3 Covariate Shift in UniZero

MuZero and its recent variants Hubert et al. (2021a); Ye et al. (2021) are founded on the value-equivalence
principle that guides world model training. These models comprise two primary components: a dynamics
model that predicts the next latent state and reward, and a decision model that estimates both the policy
and corresponding value. In the MuZero-style architecture, only the first step directly processes environment
observations (e.g., multiple stacked frames or encoded history), while subsequent steps rely on recurrent
predictions of latent states. This design minimizes discrepancies between training-time encoded observations
and the predictions employed during Monte Carlo Tree Search (MCTS) at inference.

However, as noted in Ghugare et al. (2022b), MuZero-style latent models experience significant performance
degradation with an increasing number of unroll steps during recurrent training. Our proposed UniZero
addresses this limitation by employing a Transformer-based latent model that integrates new information at
every step through advanced representation learning techniques, including self-supervised losses. Although
this improvement enhances the overall representation and alleviates degradation over long unrolls, it inherently
introduces covariate shift, consistent with the “no free lunch” principle.

In UniZero, the root node utilizes a key-value cache (kv-cache) to retain historical information, thereby
preserving an unbiased process. Furthermore, during the search phase, the depth of the search tree is
constrained, with long-term value estimation delegated to a dedicated value head. This design effectively
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Figure 20: Predictions of the world model in one trajectory of Pong. The first row indicates the predicted
reward and true reward. The second row displays the original image frame. The third row outlines the predicted prior
policy, and the fourth row describes the improved (MCTS) policy induced by MCTS based on the prior policy.

minimizes biases in value and policy estimation that may arise from covariate shift. Future research will focus
on both quantifying and mitigating the effects of this covariate shift, as well as exploring hybrid architectures
that combine the strengths of recurrent and Transformer-based models to balance the trade-offs between
extended unroll training and covariate shift.

F Comparison with Prior Works

Comparison with recent approaches in world modeling. To provide a clear comparison, we present
Table 12 outlining the key differences between UniZero and recent approaches (Hansen et al., 2023; Schrittwieser
et al., 2019; Hafner et al., 2023; Micheli et al., 2022; Robine et al., 2023; Zhang et al., 2023) in world modeling.
The attributes considered include the type of sequence model used, the input information introduced during
a single timestep, the method for obtaining latent representations, the approach to policy improvement, and
the training pipeline.

• Sequence Model: The architecture employed for modeling sequences.

• Input: The type of information fed into the sequence model at each timestep, where "Latent history" refers
to the recurrent/hidden state as described in the respective papers.

• Latent Representation: This refers to the technique employed to extract embeddings from each observation.
For instance, an "Encoder" might be a neural network such as a Convolutional Network (ConvNet)
for processing images or a Multi-Layer Perceptron (MLP) for handling vector observations. The term
"VQ-VAE" (van den Oord et al., 2017) denotes the vector-quantized VAE, which is utilized to obtain a
discrete code for the observation. Similarly, "Categorical-VAE" (Hafner et al., 2023) represents the discrete
VAE, which is used to derive the discrete distribution of the observation.
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Figure 21: Attention maps in one success episode of VisualMatch (MemoryLength=60) (Note that the
train_context_length is 1 + 60 + 15 = 76, with each time step consisting of two tokens, namely the latent state and the
action.). It can be observed that in the initial layers of the Transformer, the attention is primarily focused on the first
time step (which contains the target color that needs to be remembered) and the most recent few time steps, mainly
for predicting potential dynamic changes. In higher-level layers, sometimes, such as in Layer3-Head2, the attention is
mainly concentrated on the current time step, whereas at other times, such as in Layer4-Head4, there is a relatively
broad and dispersed attention distribution, possibly indicating the fusion of some learned higher-level features.

• Policy Improvement: The method for enhancing the policy, with "PG" standing for Policy Gradient
methods (Schulman et al., 2017; Hafner et al., 2023) and "MPC" standing for Model Predictive Control
(Hansen et al., 2022).

• Training Pipeline: The training process involves a "two-stage" approach, where we first train the world
model and then use the learned model to train the policy (behavior) through imagination. On the other
hand, "model-policy joint training" refers to simultaneously learning the world model and the policy (and
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Figure 22: Attention maps in one trajectory (train_context_length is 10, with each time step consisting of two
tokens, namely the latent state and the action.) of Pong. It can be observed that across various levels, attention is
primarily on data from the most recent frames. This is closely related to the short-term dependency characteristic of
Pong. Utilizing information from only the recent frames is sufficient for dynamic prediction and policy-value learning.

value), rather than following a two-stage process. This joint training approach offers several benefits, as
discussed in Eysenbach et al. (2022); Ghugare et al. (2022b); Grill et al. (2020).

Table 12: Comparison between UniZero and recent model-based RL approaches. The main difference
between UniZero and MuZero is highlighted in bold.

Attributes Sequence model Input Latent representation Policy Improvement Training Pipeline
TWM (Robine et al., 2023) Transformer-XL (Dai et al., 2019) Latent, observation, action, reward Categorical-VAE PG of DreamerV2 (Hafner et al., 2020) two-stage
IRIS (Micheli et al., 2022) Transformer (Vaswani et al., 2017) Latent, observation, action VQ-VAE PG of DreamerV2 (Hafner et al., 2020) two-stage

DreamerV3 (Hafner et al., 2023) GRU (Cho et al., 2014) Latent, observation, action Categorical-VAE PG of DreamerV3 two-stage
STORM (Zhang et al., 2023) Transformer Latent, observation, action Categorical-VAE PG of DreamerV3 two-stage

TD-MPC2 (Hansen et al., 2023) MLP Latent, observation, action Encoder (with SimNorm) MPC (Hansen et al., 2022) two-stage
MuZero (Schrittwieser et al., 2019) MLP Latent, action Encoder MCTS Model-policy Joint training

UniZero (ours) Transformer (Lee et al., 2023) Latent, observation, action Encoder (with SimNorm) MCTS Model-policy Joint training

Comparison with MuZero’s Extensions. In recent years, MuZero and its extended algorithms have
significantly improved efficiency and stability across various scenarios through a series of innovations. To
facilitate understanding of the relationship between UniZero and the MuZero family of algorithms, we provide
a qualitative comparison across the following key dimensions:

• Action Space: The type of action space supported by the algorithm (continuous or discrete).

• Simulation Cost: The computational cost of simulating latent states during the search process.

• Sample Efficiency: The effectiveness of utilizing sampled data for learning.

• Explicit Stochasticity Modeling: Whether the algorithm explicitly models the stochasticity in the environ-
ment.

The core ideas of each extended algorithm are summarized as follows:
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• Sampled MuZero (Hubert et al., 2021b): A sample-based policy iteration framework that applies to
any type of action space. It computes improved policies over a subset of the original action space and
probabilistically converges to the optimal policy over the entire action space as the number of samples
increases.

• Gumbel MuZero (Danihelka et al., 2022): is designed to enhance performance in environments with low
simulation costs by leveraging the Gumbel-Top-k trick (Kool et al., 2019) to select actions that guarantee
policy improvement. It seamlessly integrates the original visit counts distribution with MCTS searched
values to more informed decision-making and improved performance.

• EfficientZero (Ye et al., 2021): Incorporates techniques such as self-supervised consistency loss, end-to-
end prediction of value prefixes, and model-based off-policy correction. These enhancements significantly
improve sample efficiency, achieving outstanding performance in tasks like Atari 100k.

• Stochastic MuZero (Antonoglou et al., 2021): Introduces stochastic modeling (including afterstates)
and employs stochastic tree search to effectively handle randomness in the environment. It demonstrates
superior performance in tasks such as 2048, Backgammon, and Go.

Table 13 provides a qualitative comparison of UniZero and the aforementioned MuZero family algorithms
across key dimensions. It is worth noting that the improvements introduced in the MuZero family of extended
algorithms are largely orthogonal to those in UniZero, making them easily transferable to UniZero. We
consider integrating these extensions as part of our future work.

Table 13: Qualitative Comparison of UniZero and MuZero Family Algorithms Across Different Dimensions.

Algorithm Action Space Simulation Cost Sample Efficiency Explicit Stochasticity Modeling

UniZero continuous/discrete medium medium no
Sampled MuZero continuous/discrete low medium no
Gumbel MuZero discrete low medium no
EfficientZero discrete medium high no
Stochastic MuZero discrete medium medium yes
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