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ABSTRACT

Understanding the classifications of deep neural networks, e.g. used in safety-
critical situations, is becoming increasingly important. While recent models can
locally explain a single decision, to provide a faithful global explanation about an
accurate model’s general behavior is a more challenging open task. Towards that
goal, we introduce the Quadratic Programming Enhanced Model (QPM), which
learns globally interpretable class representations. QPM represents every class with
a binary assignment of very few, typically 5, features, that are also assigned to other
classes, ensuring easily comparable contrastive class representations. This compact
binary assignment is found using discrete optimization based on predefined simi-
larity measures and interpretability constraints. The resulting optimal assignment
is used to fine-tune the diverse features, so that each of them becomes the shared
general concept between the assigned classes. Extensive evaluations show that
QPM delivers unprecedented global interpretability across small and large-scale
datasets while setting the state of the art for the accuracy of interpretable models.

Rottweiler Features

Doberman Features

Class Images

R
ot

tw
ei

le
r

D
ob

er
m

an

Figure 1: Faithful global interpretability of our QPM: Without any additional supervision, QPM
learns to represent Rottweiler and Doberman using 5 diverse and general features. QPM faithfully
explains that it differentiates them exclusively via their visibly distinct head.

1 INTRODUCTION

Deep Learning has made remarkable advances in various fields, such as image classification, segmen-
tation or generation (Krizhevsky et al., 2012; Kirillov et al., 2023; Rombach et al., 2021; Ramesh
et al., 2022). For high-stakes decisions, e.g. applying image classification in the medical domain,
legislation moves towards requiring a certain level of interpretability (Veale & Zuiderveen Borgesius,
2021), whose measurement is a fairly open task on its own. However, some desirable and measurable
qualities of explanations have been identified (Miller, 2019). Human-friendly explanations should be
contrastive (Lipton, 1990), diverse (Alvarez Melis & Jaakkola, 2018), general and compact (Read &
Marcus-Newhall, 1993). As humans can consider 7± 2 cognitive aspects at once (Miller, 1956), an
explanation size of up to 5 is desirable. Additionally, an explanation should faithfully explain the
model, which is where many post-hoc methods fail (Kindermans et al., 2019; Adebayo et al., 2018;
Daras & Dimakis, 2022). Therefore, we focus on models that are interpretable by design with built-in
faithful explanations.
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Figure 2: Exemplary Application of the QP to a dense model with just 4 features and 2 classes
with the aim of selecting 3 features and assigning 2 per class. The different weights are indicated
by thickness of connection and color indicates sign. The result is a binary assignment of selected
features to classes. Typical values for Resnet50 (He et al., 2016) on CUB-2011 (Wah et al., 2011) are
selecting 50 features out of 2048 and assigning 5 to each of the 200 classes.

Previous works, such as SENN (Alvarez Melis & Jaakkola, 2018), Q-SENN (Norrenbrock et al.,
2024), Concept Bottleneck Model (CBM) (Koh et al., 2020), Label-free CBM (Oikarinen et al., 2023),
PIP-Net (Nauta et al., 2023), ProtoPool (Rymarczyk et al., 2022), ProtoTree (Nauta et al., 2021),
ProtoPNet (Chen et al., 2019) or the SLDD-Model Norrenbrock et al. (2022) relie on combining
understandable features in an interpretable manner. However, while most models can offer convincing
local explanations for a single decision, they struggle with the global explanation of their behavior
in general. Some models with global interpretability do not show competitive accuracy (Oikarinen
et al., 2023; Koh et al., 2020) and it is debated (Molnar, 2020), if ensembles of very deep decision
tress (Nauta et al., 2021) or dense high-dimensional linear layers (Koh et al., 2020; Rymarczyk
et al., 2022; Alvarez Melis & Jaakkola, 2018) are truly intrinsically interpretable as they lack desired
qualities like compactness. For that reason PIP-Net focuses on learning sparse class representations.
These representations lie in a high dimensional feature space, which causes PIP-Net’s features to
be connected to very few or only one class each. This leads to the emergence of features that are
already detecting the class and no general concept. The sparse representations of PIP-Net thus have
no interpretable meaning, as classes are represented with themselves. To alleviate that issue, the
SLDD-Model and Q-SENN reduce both dimensions of compactness: They not only reduce the number
of features per class nwc, which in isolation leads to class-specific features but also the number of
features in total n∗f to be significantly below the number of classes nc. That causes each of the
fewer features to be assigned to multiple classes, which prevents the emergence of class detectors.
However, these models still have shortcomings when it comes to global interpretability. Their class
representations are real-valued, or ternary for Q-SENN, include a bias, and are composed of a varying
number of features. Therefore, the global class explanations are hardly comparable or contrastive.
In this work, we introduce the Quadratic Programming Enhanced Model (QPM) that offers inter-
pretable class representations and sets a new state of the art for the accuracy of compactness-based
interpretable models. It represents every class with the binary assignment of a low user defined
number of features nwc, which themselves are contrastive, general and diverse. We typically choose
5, in line with previous work (Norrenbrock et al., 2024; 2022), to accommodate for human limita-
tions (Miller, 1956). As shown in fig. 1, QPM offers built-in faithful global explanations for classes
and enables the intuitive comparison of different learned class representations. These easy compar-
isons between compact binary class representations even enable reasoning about the differentiating
feature between the classes, like the head in fig. 1. The improvements in faithful global interpretability
of class representations are summarized in table 1.
The crucial step in training a QPM is solving a binary QP, applied to a dense black-box model, which
jointly finds an optimal solution to both the selection of a reduced subset of the model’s features and
the sparse assignment between the features and classes, as shown in fig. 2. It maximizes the similarity
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Table 1: Properties of class representation for class i, yi = wif + bi, for CUB-2011: Only QPM
represents each of its classes with the binary assignment of a fixed number of general features
(quantified in table 4) and no class Bias. Therefore, classes can also be represented as set of 5 feature
indices Si, yi =

∑
j∈Si

fj . These contrastive class explanations enable faithful global interpretability.
If applicable, all methods are configured to nwc = 5 and n∗f = 50.

Method Size of wi Equal Class Sparsity No Class Bias Contrastive Representation
Baseline Resnet50 wi ∈ R2048 ✓ ✗ ✗
glm-saga5 wi ∈ R809 ✗ ✗ ✗
PIP-Net wi ∈ R731 ✗ ✓ ✗
ProtoPool wi ∈ R202 ✓ ✓ ✗
SLDD-Model wi ∈ R50 ✗ ✗ ✗
Q-SENN wi ∈ {−α, 0, α}50 ✗ ✗ ✗
QPM (Ours) wi ∈ {0, 1}50 ✓ ✓ Si ∈ {1, . . . , 50}5 ✓

between features and their assigned classes, while minimizing the similarity of jointly selected
features. Further, the linear term can steer the selection towards desired biases, while the desired
interpretability is incorporated via constraints. This optimal solution is then fixed for the following
fine-tuning during which the features adapt to their assigned classes. As every class is assigned to the
same number of features, each of the features detects shared general concepts between its assigned
classes instead of also detecting the entire class. This leads to state-of-the-art accuracy. Finally, the
assignments are not maximizing inter-class distance, resulting in more similar representations for
similar classes and a form of structural grounding. The code will be published upon acceptance.

Our main contributions are as follows:

• We propose the Quadratic Programming Enhanced Model (QPM), which incorporates an
optimal feature selection and their binary assignment of a few, e.g. 5 features per class. It is
found by formulating the quadratic problem and solving it optimally.

• We demonstrate improvements in accuracy, compactness and structural grounding of
QPM on multiple benchmark datasets and architectures for image classification, including
ImageNet-1K (Russakovsky et al., 2015). Due to optimally using the given capacity, QPM
sets the new state of the art for compactness-based globally interpretable models.

• We show that the learned features exhibit several desired quantifiable properties, such as
contrastiveness, generality and diversity, and can be steered towards user-defined criteria.

• Representing classes as a contrastable compact set of these general features makes QPM
faithfully globally interpretable, while further closing the accuracy gap to black-box models.

2 RELATED WORK

Research towards Interpretable machine learning includes the direct design of models providing inter-
pretability by themselves (Alvarez Melis & Jaakkola, 2018; Sawada & Nakamura, 2022; Norrenbrock
et al., 2022; Nauta et al., 2023; 2021; Rymarczyk et al., 2022; Zarlenga et al., 2022; Marconato et al.,
2022; Koh et al., 2020; Rymarczyk et al., 2021; Chen et al., 2019) or to find post-hoc methods which
aim to explain the decision process or single features of the model (Kim et al., 2018; Bau et al., 2017;
McGrath et al., 2022; Fel et al., 2023; Yuksekgonul et al., 2022; Kalibhat et al., 2023; Oikarinen &
Weng, 2023). As our method is designed to find a compact set of human-understandable features,
our work can be assigned to the former type, which we focus on within this section. However, the
alignment of the learned features of our proposed QPM with human attributes can be guided by the
post-hoc methods. When considering the interpretability of a model, a distinction is made between
local interpretability, which refers to the explanation of a single decision, and global interpretability,
which describes the holistic behavior of the model over the entirety of a dataset (Molnar, 2020). For
local interpretability, B-Cos Networks (Böhle et al., 2023) already offer faithful explanations in the
form of saliency maps. Therefore, this work focuses on the more challenging global interpretability,
which also improves local interpretability. In the social sciences (Miller, 2019), human-friendly
explanations are contrastive (Lipton, 1990), concise and general (Read & Marcus-Newhall, 1993).
Further, SENN (Alvarez Melis & Jaakkola, 2018) describes diversity and grounding as desirable
attributes for features of an interpretable model. Grounding refers to the alignability with any human
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Figure 3: Overview of our proposed pipeline to construct a QPM
concept and is very difficult to quantify, as one would need a full dataset of potentially learned
concepts. Problematically, deep neural networks typically exhibit superposition and polysemantic
neurons (Scherlis et al., 2022; Elhage et al., 2022; Templeton, 2024), which is why we focus on more
clearly quantifiable aspects in this work.
Models such as Prototree (Nauta et al., 2021), ProtoPNet (Chen et al., 2019), ProtoPShare (Rymar-
czyk et al., 2021), ProtoPool, and PIP-Net aim to learn prototypes from data by employing deep
feature extractors. These prototypes’ similarities are subsequently integrated into interpretable models.
However, the extent of their interpretability remains debatable, as Kim et al. (2022) and Hoffmann
et al. (2021) reveal a gap between human and computed similarities. Similar to this work, PIP-Net
also aims for compactness via sparse weights in the final decision layer. However, they apply a local
optimization that aims for sparsity solely, resulting in a big set of used features with many of them
being class-specific. Norrenbrock et al. (2022; 2024) additionally select a compact feature set for
their SLDD-Model and Q-SENN, where a class is to be related to only a few features. Their diversity
is ensured through the Feature Diversity Loss Ldiv, which incurs a higher cost when highly activated
and weighted features localize on the same region. For both feature selection and the computation
of the sparse layer, glm-saga (Wong et al., 2021) is used. It locally and iteratively optimizes the
problem, leading to a suboptimal feature selection and continuous weights. In contrast, our global
optimization with user-defined steerable criteria jointly finds an optimal selection of the required
number of features and computes their binary assignments. This leads to a more effective use of the
allocated capacity and built-in easily interpretable class representations for global interpretability.
Another line of research is based on the Concept Bottleneck Model (CBM) which initially predicts
the labeled concepts within a given dataset and subsequently leverages a basic model to predict
the target category based on these identified concepts. This approach remains an area of active
exploration and development (Sawada & Nakamura, 2022; Zarlenga et al., 2022; Marconato et al.,
2022; Oikarinen et al., 2023), but is limited by the annotations, or in case of the Label-free CBM by
the vision-language model, resulting in subpar accuracy and compactness.

3 METHOD

Our proposed QPM is designed for the interpretable classification of an image as a class
c ∈ {c1, c2, . . . , cnc}. The QPM uses a deep feature extractor Φ to compute feature maps
M ∈ Rn∗

f×wM×hM of width wM and height hM and averages them into a feature vector f∗ ∈ Rn∗
f .

The classification result y ∈ Rnc of the QPM is the matrix multiplication between the sparse binary
matrix W ∗ ∈ {0, 1}nc×n∗

f and the features f∗ formalized as y = W ∗f∗.
The pipeline of our proposed method is shown in fig. 3 and is motivated by (Norrenbrock et al., 2022;
2024), following their presentation and notation. It starts with training a conventional black-box
model with initially nf features using the feature diversity loss Ldiv (Norrenbrock et al., 2022), as
a high diversity of features is desired for interpretable models. A detailed explanation of Ldiv is
included in appendix M. Using the black-box model as starting point, we aim to find a selection
of n∗f out of the initial nf features and their sparse binary assignment W ∗ to the classes to enable
downstream interpretability. The feature extractor Φ is then fine-tuned with this solution fixed, so
that the features adapt to the sparse solution and become a shared concept of the assigned classes.
This is encouraged through selecting fewer features than there are classes, n∗f < nc, and representing
every class with the same number nwc, typically 5, of features. Using the same number of features
for every class is beneficial for the interpretability in multiple ways. The class representations do not
need a bias and can be contrasted as Si ∈ {1, . . . , n∗

f}nwc , while the composing features can focus
on detecting general concepts. Since we aim to optimize binary variables under constraints with a
clear objective, we can formulate it as a discrete optimization problem to get the optimal solution.
As indicated in fig. 2, we define the constants A, R and b of the resulting QP so that in the global
optimum different (R) , localized (b) features are selected and assigned to classes for which they
have high predictive power (A). These fixed simple binary class representations then lead to the
emergence of interpretable features during fine-tuning. How the quadratic problem with A, R and b
is formulated to ensure this goal is discussed in the following sections.
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3.1 QUADRATIC PROBLEM

We consider the problem of selecting the n∗f out of nf features and assigning them to the classes as
a binary quadratic problem, that can be solved globally optimal. Specifically, the feature selection
s ∈ {0, 1}nf and assignment between features and classes W ∈ {0, 1}nc×nf are jointly optimized,
with W ∗ being W for the selected features. Given a similarity matrix A ∈ Rnc×nf the main
objective is to maximize the similarity ZA between the selected features and their assigned classes

ZA =

nc∑
c=1

(ac ◦wc)
Ts (1)

with ◦ indicating the Hadamard product. Here, s indicates whether a feature is selected and W
describes if a feature is assigned to the class. Note that we use c to index classes and d for features.
The sparsity and low-dimensionality are formulated as constraints for the optimization:

nf∑
d=1

sd = n∗f (2)

nf∑
d=1

wc,dsd = nwc ∀c ∈ {1, . . . , nc} (3)

To allow the QPM the differentiation between all classes and enable effective fine-tuning, we
additionally add constraints that no two classes are assigned to the same set of features:

(wc ◦wc′)
Ts < nwc ∀c, c′ ∈ {1, . . . , nc} (4)

Note that the constraints in eqs. (3) and (4) technically define a quadratically constrained quadratic
program (QCQP). To make the QCQP computationally tractable, the constraints are relaxed and
added iteratively for classes that violate the constraints. The efficient implementation is discussed in
detail in section 4.1.1. The general formulation of the problem allows us to add further nuance to
the optimization and include more desiderata. Since a high representational capacity is desired for
the selected features, the cross-feature similarity matrix R ∈ Rnf×nf is incorporated to reduce the
similarity between the selected features:

ZR = −sTRs (5)

Additionally, the selection of specific features can be guided via a selection bias b ∈ Rnf

ZB = bTs, (6)

where a higher value bi leads to a preferred selection of the feature i. The combination of all these
objectives leads to:

max
W ,s

Z = max
W ,s

ZA + ZR + ZB (7)

The formulation in standard form for quadratic problems 1
2x

TQx + cTx with Q capturing the
quadratic terms ZA and ZR, and c incorporating the linear term ZB is included in appendix O.

3.2 CLASS-FEATURE SIMILARITY

The class-feature similarity matrix A with entries ac,d should reflect how beneficial the assignment
of feature d to class c is for the classifier. As every feature gets assigned to multiple classes, which
themselves become assigned to multiple features, the metric should focus on a robust positive relation
between the activation and likelihood of a sample being of the respective class. This is captured
by the Pearson correlation coefficient ac,d between the feature distribution f:,d and the label vector
lc ∈ {0, 1}nT , in which for all nT training images a 1 indicates the label being c.

3.3 FEATURE-FEATURE SIMILARITY

Just maximizing eq. (1) can lead to very similar features being selected which is neither beneficial
for interpretability nor for accuracy as representational capacity is lost and multiple features develop

5
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Table 2: Statistical overview of datasets. TravelingBirds (Koh et al., 2020) is used in the appendix.

Dataset CUB-2011 Stanford Cars TravelingBirds ImageNet-1K
# Classes nc 200 196 200 1000
# Training 5 994 8 144 5 994 1 281 167
# Testing 5 774 8 041 5 774 50 000

towards the same concept during fine-tuning. To prevent this, selecting similar features in A should
be penalized in the objective. We choose the cosine similarity between the class similarities of two

features d ̸= d′ in A for R with rd,d′ = ReLU

(
aT

:,da:,d′

|a:,d||a:,d′ |

)
, using ReLU to focus on preventing

redundant features and rd,d′ = 0 for d = d′. As we are only interested in preventing the selection of
highly similar features, we can clip all entries in R below an ϵ to 0 to enable a fast solving of the QP.
The details are discussed in section 4.1.1.

3.4 FEATURE-BIAS

The Feature-Bias b describes the benefit of selecting each feature. This can be used to steer the
model towards specific desiderata. As diversity is generally preferred (Norrenbrock et al., 2022;
Alvarez Melis & Jaakkola, 2018) for interpretable models, a bias towards more local features is used,

bd =
1

nT
∑

j fj,d

nT∑
j=1

max(Sd
j )fj,d . (8)

Here Sd
j is the softmax over the spatial dimensions of the d-th feature map for the image j. Scaling

the feature bias by their activation leads to the selection of features that are more localized when their
activation is high. Alternatively, the bias can be used to steer the selection towards other criteria the
practitioner might identify as relevant, which we demonstrate in the appendix. We center b and scale
the maximum absolute value to be λ, whose strength defines the priority put on the bias.

4 EXPERIMENTS

Following prototype-based methods we applied our method to CUB-2011 (Wah et al., 2011) and
Stanford Cars (Krause et al., 2013). To showcase QPM’s broad applicability, we also include results
on the large-scale dataset ImageNet-1K (Russakovsky et al., 2015), to which most interpretable
methods are not applicable. Notably, CUB-2011 contains annotations of human concepts which we
use to measure Structural Grounding. An overview of the used datasets is shown in table 2. As our
method is independent of the used backbone, we evaluated it across various architectures, but focus
on Resnet50 (He et al., 2016) in this paper. Similar results on Resnet34, Inception-v3 (Szegedy et al.,
2016) and Swin Transformer (Liu et al., 2021), as well as detailed results with standard deviations,
are included in Suppl. appendix L. We do not apply our method to other interpretable models like
PIP-Net (Nauta et al., 2023), as QPM is an alternative way of inducing compactness and the features
of PIP-Net are not general, thus ill-suited for a broad assignment.

4.1 IMPLEMENTATION DETAILS

We generally followed PIP-Net for the data preparation. Specifically, the images are first cropped
to the ground truth bounding box for CUB-2011 and TravelingBirds. For all datasets, the images
are resized to 224× 224. Following PIP-Net, TrivialAugment (Müller & Hutter, 2021) is used and
the strides of ResNets are also set to 1 to obtain more fine-grained feature maps. The remaining
parameters, including dense training for 150 epochs on fine-grained datasets and directly using the
pretrained model on ImageNet-1K with subsequent 40 epochs of fine-tuning, mirror the SLDD-Model
and are described in appendix C. Note that QPM is trained more efficiently than Q-SENN, as it does
not use multiple training iterations during fine-tuning. We set nwc = 5 and n∗f = 50 for QPM, unless
stated otherwise. We demonstrate the impact of changing the parameters in the ablation studies but
choose these, as it is in line with prior literature (Norrenbrock et al., 2024; 2022), n∗f < nc, and it
enables sufficiently compact explanations (Miller, 1956). The shown results, e.g. tables 3 and 4,
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are the mean across 5 seeds, with the exception of 3 for ImageNet-1K, PIP-Net and ProtoPool. For
comparison, all models are exclusively pretrained on ImageNet-1K. This change did affect ProtoPool,
but even with iNaturalist (Van Horn et al., 2018) pretraining, we could not reproduce the reported
results by Rymarczyk et al. (2022).

4.1.1 QUADRATIC PROBLEM

This section presents details on how the described quadratic problem with eq. (7) as objective is
solved using Gurobi (Gurobi Optimization, LLC, 2023). We incorporated deduplication and the
assignment of an equal number of features to all classes of eqs. (3) and (4) using an iterative approach
with relaxed constraints. Specifically, the model is optimized without these constraints, but instead
1TWs = nwcnc. Then, after each iteration, all violated constraints are added to the model, but only
limited to a running set of features Γ ∈ {0, 1}nf , which gets extended during the iteration. Next to
the features, we also maintain a set of classes Cduplicates that were equal at one iteration and classes
Csparse that ever had too few features assigned. Instead of eqs. (3) and (4) the relaxed constraints

wT
c,ΓsΓ ≥ nwc ∀ c ∈ Csparse (9)

(wc ◦wc′)
T
ΓsΓ < nwc ∀ c, c′ ∈ Cduplicates (10)

are added, where Wc,Γ describes indexing Wc where Γ = 1. Additionally, we set the start solution
for the next optimization to a good, usually optimal, feasible solution for the currently selected
set of features. As we need multiple iterations to enforce all constraints, we limit the time spent
on one iteration to 3 hours and set the gap to optimality to 10−4. In our experiments, the global
optimum for the relaxed problem is usually found in less than 4 hours for fine-grained datasets,
and roughly 11 hours for ImageNet-1K using a CPU like EPYC 72F3. While eq. (9) changes the
desired optimization problem, the resulting objective is very close (achievable gap of less than 1%)
to the global optimum, which is infeasible to compute and does not lead to an improved model.
The experiments to verify this claim are included in Suppl. appendix N. Finally, alongside our
experiments, previous work (Hornakova et al., 2021) shows that the exact global optimum is not
always preferred for relevant metrics. To make the relative weighting of the multiple objectives ZA,
ZR and ZB easier, A is scaled with nc and nwc to have a maximum of 1 for nc = 200 and nwc = 5.
Since n∗f features need to be chosen, all entries below ϵ in R are set to 0, where ϵ is the highest value,
for which there still exists a selection with ZR = 0. This is equivalent to finding the maximal ϵ for
which the graph described by G with

gd,d′ =

{
0 if rd,d′ ≥ ϵ

1 else,
(11)

has a maximum clique of size n∗f . We used approximations (Pattabiraman et al., 2015; Boppana &
Halldórsson, 1992) and a sufficiently sized approximated maximum clique as the start value for s.
Additionally, the remaining nonzero values in R are scaled to have a maximum of 1. For scaling the
bias b, we clipped outliers, centered the remaining values around 0 and scaled the maximum absolute
value to be λ = 1√

10
, which is empirically found.

4.2 METRICS

Following PIP-Net as recent work, we evaluate the accuracy and compactness, measured as number
of total features n∗f and number of features per class nwc. Additionally, our QPM learns interpretable
class representations, summarized in table 1, that are composed of features. As discussed in section 2,
diversity, contrastiveness, generality and grounding are desired aspects of explanations. While we
believe that our sparse binary assignment is very well suited for a detailed analysis and alignment of
the learned features, as it likely prohibits superposition, polysemantic neurons are still likely to occur
and hard to measure for QPM and all end-to-end trained interpretable models. Therefore, we omit
measuring the grounding of features and instead focus on contrastive, general and diverse as desirable
and quantifiable qualities of features as building blocks of our interpretable class representations,
whose Structural Grounding we estimate using the attributes contained in CUB-2011. Specifically,
every class c in CUB-2011 is annotated with a vector ac ∈ [0, 1]312, where ac,j indicates the fraction
of images with label c, in which a human perceives the attribute j to be present. With these vectors,
we compute the ground truth structural class similarity Ψgt ∈ [0, 1]nc×nc with ψgt

c,c′ being the cosine

7
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Bronzed Crowbird Features

Shiny Crowbird Features

Figure 4: Contrastive faithful class explanations for QPM trained on CUB-2011: Without any
additional supervision, QPM learns to differentiate Shiny and Bronzed Cowbird (Ψgt = 0.97) using
the red eye just like humans do, as the annotations in CUB-2011 or the screenshot in fig. 24 show.

(a) Baseline Resnet50 with Contrastiveness = 41.8% (b) QPM with Contrastiveness = 99.9%

Figure 5: Extreme Examples for feature distributions and their Contrastiveness on CUB-2011.

similarity between ac and ac′ . Similarly, ΨModel ∈ [−1, 1]nc×nc is based on the class vectors in
the interpretable classification layer. We then report the similarity for the top 25 most similar unique
pairs of classes CSim in reality

StructuralGrounding =

∑
c,c′∈CSim

ψModel
c,c′∑

c,c′∈CSim
ψgt
c,c′

. (12)

Models with high Structural Grounding offer an interpretable human-like class-similarity, e.g. using
the apparently different head to differentiate between Rottweiler and Doberman in fig. 1 or differenti-
ating shiny and bronzed cowbird by its only separating attribute, shown in fig. 4.
To measure the contrastiveness of features, a Gaussian mixture model with two components is fit to
every feature distribution f:,d, resulting in the normal distributions N d

1 and N d
2 , visualized in fig. 5.

We then compute the Contrastiveness as average of all features using the overlap (Inman & Bradley,
1989) between the two distributions:

Contrastiveness =

n∗
f∑

d=1

1−Overlap(N d
1 ,N d

2 ), (13)

as bi-modal contrastive features can be represented by two non-overlapping distributions. The binary
quality of the features is also indicated in figs. 1 and 4, as the features are normed per column.
Additionally, the features should capture a general concept, instead of a class-specific one. This can
be measured via the Class-Independence τ :

τ = 1− 1

n∗f

n∗
f∑

d=1

max
c

∑nT

j=1 l
c
j(fj,d −minf:,d)∑nT

j=1(fj,d −minf:,d)
(14)

It measures which fraction of the zero-based feature activation across the entire dataset is not focussed
on the most related class. A model with high Class-Independence has features that recognize a
shared concept for multiple classes, like the 4 central features in figs. 1 and 4. Notably, as opposed to
Dependence (Norrenbrock et al., 2024), Class-Independence can capture the assignment of multiple
class detectors to the same class.
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Table 3: Comparison on compactness and accuracy with Resnet50: QPM shows increased accuracy
and compactness. The compactness-accuracy trade-off is shown in fig. 7. Among more interpretable
models, the best result is marked in bold, second best underlined.

Method Accuracy ↑ Total Features ↓ Features / Class ↓
CUB CARS INET CUB CARS INET CUB CARS INET

Baseline Resnet50 86.6 92.1 76.1 2048 2048 2048 2048 2048 2048
glm-saga5 78.0 86.8 58.0 809 807 1627 5 5 5
PIP-Net 82.0 86.5 - 731 669 - 12 11 -
ProtoPool 79.4 87.5 - 202 195 - 202 195 -
SLDD-Model 84.5 91.1 72.7 50 50 50 5 5 5
Q-SENN 84.7 91.5 74.3 50 50 50 5 5 5
QPM (Ours) 85.1 91.8 74.2 50 50 50 5 5 5

Table 4: Comparison on Interpretability metrics with Resnet50. Due to required annotations, Struc-
tural Grounding (abbreviated SG) can only be computed for CUB-2011.

Method SID@5 ↑ Class-Independence ↑ Contrastiveness ↑ SG ↑
CUB CARS INET CUB CARS INET CUB CARS INET CUB

Baseline Resnet50 57.7 54.4 37.1 98.0 97.8 99.4 74.4 75.1 71.6 34.0
glm-saga5 55.4 51.8 35.8 97.8 97.6 99.4 74.0 74.5 71.7 2.5
PIP-Net 99.1 99.0 - 75.6 62.9 - 99.5 99.5 - 6.7
ProtoPool 24.5 30.7 - 96.9 96.0 - 76.7 78.9 - 13.9
SLDD-Model 88.2 88.6 64.7 96.2 95.6 98.6 87.2 89.7 93.4 29.2
Q-SENN 93.3 94.4 82.0 95.5 94.8 98.7 93.0 94.2 92.6 23.4
QPM (Ours) 90.1 89.6 64.1 97.0 96.5 99.1 96.0 97.7 89.3 47.9

For measuring the spatial diversity of the features, diversity@5 (Norrenbrock et al., 2022) has been
proposed. The diversity@5 however suffers from the non-linear behavior of the softmax, resulting in
scale-dependency (table 8). Therefore, we propose the Scale-Invariant-Diversity@5 (SID@5)

M̂d
i,j =

Md
i,j

1
wMhM

∑
|Md|

Ŝd
i,j =

eM̂
d
i,j∑

m,n e
M̂d

m,n

(15)

SID@5 =

∑hM

i=1

∑wM

j=1 max(Ŝ1
i,j , Ŝ

2
i,j , . . . , Ŝ

5
i,j)

5
, (16)

where Ŝ
d

refers to the result of softmax applied to the d-th highest weighted feature map Md, scaled
by its absolute mean. A high SID@5 is visible in figs. 1 and 4, as the 5 features used for each class,
localize on very different regions in the image.

4.3 RESULTS

This section discusses the experimental results. The usual metrics for compactness-based globally
interpretable models are shown in table 3. For the fine-grained datasets, QPM is among the most
compact models while showing the highest accuracy, thus setting the state of the art for interpretable
models. On ImageNet-1K, where prototype-based methods are not even applicable, QPM is only
marginally beaten by Q-SENN, which uses compute-intensive iterations and negative reasoning for
some classes, which significantly hinders interpretability. A runtime analysis is shown in appendix F.
The results for the interpretability metrics are shown in table 4. Note that glm-saga5 and PIP-Net
are hardly comparable, as glm-saga5 uses the uninterpretable features of a black-box model and
PIP-Net learns very localized class-detectors, with some features activating to 99% on just a
single class. In contrast, QPM achieves excellent values across all metrics and datasets in this
multicriterial task of self-explaining neural networks, summarized in fig. 6. Its interpretable class
representations, composed of diverse, general and contrastive features, mirror reality, as measured
by Structural Grounding. Note that QPM learns grounded representations as shown in figs. 1
and 4 without any additional supervision and is able to communicate the only differentiating
factor it uses. QPM’s local behavior then follows its faithful global explanations, which leads to
trustworthy classifications and predictable errors when the differentiating factor is not present,
as in fig. 8. The appendix contains more visualizations, including a discussion of failure cases
in appendix E, a discussion on polysemantic features (appendix H), an extension of Structural
Grounding to ImageNet-1K (appendix I) and a discussion of limitations and future work (appendix K).
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Figure 6: Radar plot across all considered metrics for CUB-
2011. Metrics which are preferred to be lower (n∗f , nwc) are
encoded as 1

x and every value is given as a fraction of the
maximum. Values in legend are the area of each radar plot.

Figure 7: Compactness-accuracy
trade-off compared with Q-SENN
(dashed) and SLDD-Model (dotted)
with Resnet50 on CUB-2011. With
increasing compactness, QPM’s op-
timal usage of the set n∗f and nwc

becomes more beneficial.

Table 5: Impact of including (✓) additional objectives
ZB (eq. (6)) for locality and ZR (eq. (5)) to reduce correlation
alongside ZA in eq. (7) on CUB-2011 with Resnet50. Corre-
lation is measured as the average maximally similar feature
according to cosine similarity, formulated in appendix C.B.

ZB ZR Accuracy ↑ SID@5 ↑ Correlation ↓
✗ ✗ 84.6 89.0 33.9
✓ ✗ 84.4 90.3 33.5
✗ ✓ 85.0 88.5 22.7
✓ ✓ 85.1 89.6 24.6

Figure 8: Misclassified example of
a QPM, explained in fig. 1: Pre-
dictably given the explanation, the
model classifies a Doberman as a
Rottweiler due to the absent head.

4.4 ABLATION STUDIES

This section validates the impact of the individual objectives in the quadratic problem in table 5 and
presents the compactness trade-off in fig. 7. We focus on CUB-2011 but observed similar results
for other datasets. The compactness-accuracy tradeoff for QPM compared with Q-SENN and the
SLDD-Model is visualized in fig. 7. The global optimization clearly leads to a more effective use of
the defined capacity, with the highest uplift in the very high compactness regime, e.g. 1.5 percent
points at n∗f = 20, where a good selection and assignment naturally has more impact.
The impact of the feature-feature similarity matrix R and feature selection bias b is shown in table 5.
Incorporating a bias b for local feature maps further increases the SID@5. On the other hand, reducing
feature similarity through R effectively reduces the correlation between the resulting features, which
improves accuracy, as the model uses its capacity more effectively. In summary, the inclusion of the
secondary objectives ZR and ZB is beneficial for the resulting model, improving the desired aspects
not just after solving the QP but also in the resulting model after fine-tuning.
The appendix contains further ablation studies to support our claims, demonstrating the ability to
steer (appendix D), validating the choice of correlation as metric for A (appendix J) and showing the
benefits of enforcing exactly nwc features per class (appendix G).

5 CONCLUSION

In this paper, we introduced the Quadratic Programming Enhanced Model (QPM). It uses discrete
optimization to find an optimal feature selection and assignment of just 5 to each class. With this
easy-to-understand assignment, the resulting QPM is more interpretable than previous methods, as it
has contrastive faithfully interpretable class-representations, shows Structural Grounding, is steerable,
and its features have excellent SID@5, Class-Independence and Contrastiveness. Additionally, it
further closes the accuracy gap to the drastically less robust uninterpretable baseline. Figure 6
shows that only QPM excels in all metrics, thus setting a new state of the art for compactness-based
interpretable models, while delivering unprecedented global interpretability even to ImageNet-1K.
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A APPENDIX

This appendix contains additional details of the implementation details, more results with standard
deviations, further experiments on steerability, a discussion of failure cases and the formulation of
the Feature Diversity Loss Ldiv. Further, the quadratic problem is presented in its standard form and
the optimality of the found solutions is discussed.

B TRAVELINGBIRDS

We use TravelingBirds as an additional dataset to validate our method and for our steering experiments
in appendix D. It is based on CUB-2011 and designed to allow the measurement of the robustness of
spurious correlations. Specifically, the background of every class in the training set is replaced with
an image of a constant class of Places365 (Zhou et al., 2017). For the test set, backgrounds of random
classes are used, thus measuring if the model learned to rely on the spuriously correlated background.

C IMPLEMENTATION DETAILS

We first describe the implementation on the fine-grained datasets CUB-2011, TravelingBirds and
Stanford Cars. All deviating details for ImageNet-1K are included in appendix C.A. The implemen-
tation details are similar to the SLDD-Model (Norrenbrock et al., 2022), but use the default data
for prototype-based methods. Specifically, we use the exact same dense model for both models in
our experiments and only alter the following parts of the pipeline with the same hyperparameters
for fine-tuning. Therefore, the improved metrics can be attributed to the superior selection and
assignment.

Architectures We implement our method using PyTorch (Paszke et al., 2019) and its ImageNet-1K
pretrained models as feature extractors. For Resnet50 and Resnet34 we follow PIP-Net and use a
smaller stride size of 1 for the two last blocks.

Data For training with CUB-2011 and TravelingBirds, the images are first cropped to the ground
truth segmentation, following prototype-based methods Nauta et al. (2023); Rymarczyk et al. (2022).
After cropping, they are resized to 224× 224 (299× 299 for Inception-v3). For Stanford Cars and
our steerability experiments in table 11, a random crop after resizing one side to the target image
size is used instead. Then normalization, random horizontal flip, jitter and TrivialAugment Müller
& Hutter (2021) is applied. At test time, no augmentation is used and only cropping, random crop
replaced by center crop, resizing and normalization is maintained.

Dense Training We fine-tune the pretrained models on the fine-grained datasets using stochastic
gradient descent with a batch size of 16 for 150 epochs. The learning rate starts at 5 · 10−3 for the
pretrained layers and 0.01 for the final linear layer and gets multiplied by 0.4 every 30 epochs. We
set momentum to 0.9, ℓ2-regularization to 5 · 10−4 and apply dropout with rate 0.2 to the features.
The weighting β, included in eq. (33), of the Feature Diversity Loss Norrenbrock et al. (2022) is set
to 0.196 for the Resnets, 0.049 for Inception-v3 and 0.0245, the highest value we tried for which all
dense models converged, for Swin Transformers. Note that the values are scaled with the number of
patches in the feature maps, leading to numerical values that do not align conveniently with powers
of 10.

Fine-tuning After solving the quadratic problem, the model is trained with the final layer fixed to
the sparse assignment of selected features W ∗ for 40 epochs. The learning rate starts at 100 times the
final learning rate of the dense training and decreases by 60% every 10 epochs. During fine-tuning,
momentum is increased to 0.95 and dropout on the features reduced to 10%. For Swin Transformers,
the batch size is set to 8 and Layer normalization Ba et al. (2016) is turned off after the dense training
has finished, ensuring more unrelated features. All other parameters equal the dense setting.

As the feature maps are the result of ReLU Nair & Hinton (2010), one might expect its values to be
strictly ≥ 0. However, just like for the SLDD-Model, the features of QPM are normalized with a
fixed mean and standard deviation before fine-tuning begins, resulting in the sub-zero min(f:,i).

1
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Reproducibility For reproducibility, all our experiments with 5 seeds use the integers 16 to 20,
ending at 18 for the 3 ImageNet-1K runs, as seed for all random processes.

Scaling the Objective To keep a similar relative weighting across changing nwc and nc, we also
scale the main objective for the quadratic problem ZA with them

Z∗
A =

1000 · ZA

nwc · nc
, (17)

ensuring no additional scaling for nc = 200 and nwc = 5.

Choice of Pretrained Weights We use the pretrained Resnet50 weights V1 of PyTorch for our
experiments, as the default V2 has very class-specific features already, with a Class-Independence of
92.6%. For V2, a sparse model computed by glm-saga (Wong et al., 2021) with just 1.1 features per
class can already achieve 66% accuracy on ImageNet-1K, demonstrating the class-specificness of its
features. For Resnet34 and Inception-v3, we use the only available set of weights from PyTorch. For
Swin Transformers, we used the original provided weights of PyTorch, as they are suitable for the
used image resolution.

C.A IMAGENET-1K

Due to computational constraints, we follow the SLDD-Model, skip the dense training on ImageNet-
1K and directly use the pretrained model as dense model. To facilitate the comparability of metrics
between the dense model and our experiments, we use the default strides. For augmentation, we use
Lighting noise and omit TrivialAugment. Finally, the learning rate of the fine-tuning starts at 1

100 of
the value used for the fine-grained datasets to account for the increased size of the dataset.

C.B CORRELATION METRIC

For measuring the effect of reducing correlation between selected features in table 5, the Correlation
is used:

Correlation =
1

n∗f

n∗
f∑

d=1

max
d̸=d′

fT
:,df:,d′

|f:,d||f:,d′ |
(18)

C.C QUADRATIC PROBLEM

This section presents further details on the quadratic problem and the start solution W Start for the
next iteration of solving the quadratic problem with updated constraints. The start solution is a
good, usually optimal, feasible solution for the currently selected set of features Λ. To simplify the
initial iterations, only eq. (9) is considered. The deduplication of eq. (10) is only included after a
solution is found that satisfies eq. (9). The start solution is constructed from W nwc which contains
nwc assignments for each class to the most similar features in A:,Λ. If the equal distribution of
assignments per class is still exclusively optimized for, W Start = W nwc is already the start solution.
Else, we take care of all classes with equal assignment Cequal in W nwc . Specifically, we remove all
duplicate pairs (c, c′) ∈ Cequal:

wDeduplication
c,d =


1 if (c, c′) ∈ Cequal &

(c, d) = Maxi(c, c′),
−1 if (c, c′) ∈ Cequal &

(c, d) = Mini(c, c′),

0 else

(19)

W Start = W nwc +WDeduplication (20)

Here, Mini(c, c′) returns the indices to remove, that is of the current assignment with lowest similarity:

hc = (ac ◦wnwc
c ) ◦ s+max(ac ◦wnwc

c ) · (1− s) (21)

Mini(c, c′) =

{
c, argmin(hc) if min(hc) ≤ min(hc′)

c′, argmin(hc′) else
(22)

2
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Figure 9: Steerability of the proposed QPM: When increasing the weighting of the bias λ, the desired
metrics, accuracy or SID@5 improve.

Here, s is the selection vector and ensures that all changes only apply to the selected features.
Similarly, Maxi(c, c′) returns the indices of the assignment to add, which has the highest similarity
of the the not currently assigned features:

hc = (ac ◦ cand(c)) ◦ s (23)

Maxi(c, c′) =

{
c, argmax(hc) if max(hc ≥ max(hc′)

c′, argmax(hc′) else
(24)

The candidate function

cand(c) = (1−wnwc
c ) · wbnd(c,wnwc) (25)

checks that the assignment is not made yet and the would-be-no-duplicate function
wbnd(c,W nwc)d ∈ {0, 1} further ensures that the addition of the assignment of class c to fea-
ture d would introduce no duplicate, returning 0 in that case. While this technically does not
guarantee an optimal solution, first only finding the solution with nwc assignments per class and
then deduplicating ensures that the number of duplicates is quite low already, which usually leads to
finding the optimal feasible start solution.

D STEERABILITY

This section is concerned with the ability of the practitioner to steer the model towards desired biases
using the feature bias b. For example, if a human recognizes the erroneous focus on the background
of a trained QPM, enabled through global interpretability, the feature bias bCenter (eq. (26)) can be
used to steer the model towards more centered features.

bCenter
d = − 1

nT
∑

j fj,d

nT∑
j=1

1

1 + de(M
j
d )
fj,d (26)

where de computes the distance between the maximum of the j-th sample’s map M j
d at (x, y) and

the closest edge:

de(Mj
d) = min(|x− wM |, x− 1, |y − hM |, y − 1) (27)

The resulting improved accuracy on TravelingBirds with λ = 10
3
2 , shown in table 11, demonstrates

this steerability. Setting λ allows a precise weighting of the emphasis put on the bias. This direct
control for both the center and diversity bias is visualized in fig. 9 and allows the incorporation of any
feature-level bias b.

3
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(a) Correctly Classified Doberman Examples

(b) Correctly Classified Rottweiler Examples

(c) Wrongly classified as
Rottweiler

(d) Wrongly classified as
Rottweiler

(e) Wrongly classified as
Black & tan coonhound

(f) Classified as
Rottweiler

(g) Wrongly classified as
Doberman

(h) Wrongly classified as
Doberman

(i) Wrongly classified as
Black & tan coon hound

(j) Classified as Greater
Swiss Mountain dog

Figure 10: Examples for correctly and wrongly (according to ground truth labels) classified examples
of the QPM with global explanations shown in figs. 1 and 21 to 23. Figures 10b to 10f (rows 1 and 3)
show Doberman labeled images. Figures 10a and 10g to 10j (rows 2 and 4) display Rottweiler labeled
images. The resulting classifications match the expected behavior based on the global explanations.
As the explained QPM uses the head to differentiate between Doberman and Rottweiler (fig. 1), they
can be confused when it is occluded (figs. 10c and 10e) or in a difficult pose (figs. 10d and 10h). As
the black and tan coon hound is assigned the same head features (fig. 23), they get confused, if only
the head is visible (figs. 10e and 10i). Finally, the probed QPM correctly classifies according to its
explanations (figs. 10a and 10b), also on wrongly labeled samples (figs. 10f and 10j).

4



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Correctly Classified Doberman Examples

(b) Correctly Classified Rottweiler Examples

(c) Wrongly classified as
Rottweiler

(d) Wrongly classified as
Rottweiler

(e) Wrongly classified as
Black & tan coonhound

(f) Classified as
Rottweiler

(g) Wrongly classified as
Doberman

(h) Wrongly classified as
Doberman

(i) Wrongly classified as
Black & tan coon hound

(j) Classified as Greater
Swiss Mountain dog

Figure 11: Gradcam Visuliazations for fig. 10.

E FAILURE CASES

This section presents examples where QPM predicts wrongly. For that, fig. 10 shows exemplary
images of Rottweiler and Doberman with classification results of the probed QPM trained on
ImageNet-1K and with global explanations in figs. 1 and 21 to 23. Note that the accuracy across
the two classes is 87%, well above the average, reflected in correct classifications across poses,
backgrounds and settings in figs. 10a and 10b. Additionally, fig. 11 shows the GradCAM (Selvaraju
et al., 2020) visualizations and demonstrates that QPM always focuses on the dog in the image.
For the erroneous predictions, the model behaves just like the global explanations would indicate.
Rottweiler and Doberman may be swapped, if the head is occluded as in figs. 10c and 10g or in
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Figure 12: Features of Greater Swiss Mountain Dog and their localization on the sample in fig. 10j
(first row), that is presumably falsely labeled Rottweiler. The 4 lower rows contain examples of
Greater Swiss Mountain Dog and the features consistently localize around semantically similar
regions, also on the Rottweiler labeled one.

a difficult pose to gauge the shape, shown in figs. 10d and 10h. Since the Black and tan coon
hound is assigned both head features of Rottweiler and Doberman, they can also be confused when
primarily the head is visible, demonstrated in figs. 10e and 10i. Finally, figs. 10f and 10j seem to
contain one of the many (Northcutt et al., 2021) wrongly labeled samples in ImageNet-1K. QPM
also robustly classifies wrongly labeled data, as the global explanation would suggest. Figures 12
and 13 show the feature activations of Greater Swiss Mountain Dog and Rottweiler on fig. 10f and
other class examples, further suggesting that it is indeed a typical Greater Swiss Mountain rather
a Rottweiler for the probed QPM, as the features of the former localize on the expected regions,
whereas most Rottweiler features barely activate. Finally, fig. 14 shows further test examples for
the model explained in fig. 4 and demonstrates that the model does not predict Bronzed Cowbird if
the differentiating red eye is not present in the image. In summary, QPM’s local behavior robustly
follows the faithful global explanations, which can lead to predictable faulty classifications in case of
occlusion or difficult pose.

F RUNTIME ANALYSIS

This section discusses the time it takes to obtain a QPM, compares it to competing models and
discusses the impact of n∗f on it. Figure 15 demonstrates that the optimization time strongly increases
when increasing n∗f . However, for the probed datasets, going beyond 50 features seems not to be
necessary, as the accuracy only improves negligibly, while the interpretability is harmed: Features
become less general and there will be fewer class representations with high overlap, which allow for

6
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Figure 13: Features of Rottweiler and their localization, scaled by column, on the sample in fig. 10j
(first row), that is presumably falsely labeled Rottweiler. The 4 lower rows contain examples of
Rottweiler. The color code is consistent with fig. 1 and features 4 and 5 are shared with Greater Swiss
Mountain Dog.

Table 6: Time in minutes between finishing dense training and obtaining the final model. First value
is time for optimization, second time spent fine-tuning. Following Q-SENN, we use the fast setting
for ImageNet-1K. Q-SENN trains for 70 epochs, instead of 40, in total during fine-tuning and does 4
iterations of glm-saga. Note that every method runs exclusively on a GPU server, except for the QP
optimization, which can be done on just a CPU.

Method CUB INET

SLDD-Model (15 + 22) + 78 = 115 (500 + 3000) + 3600 = 7100
Q-SENN (15 + 4 ∗ 22) + 78 ∗ 7/4 ≈ 240 (500 + 4 ∗ 100) + 7/4 ∗ 3600 = 7200

QPM (Ours) 210 + 78 = 298 660 + 3600 = 4260

the most intuitive interpretation. One can further optimize this using suitable priors, which we do not
include in this work, as the interpretability and additional accuracy decreases with increasing n∗f . It is
however an avenue for future work, when datasets with sufficient complexity are published. Table 6
compares the time to obtain the interpretable model between QPM, Q-SENN and SLDD-Model.
Q-SENN and SLDD-Model start with a feature selection, that takes 15 minutes on CUB-2011 and
roughly 500 minutes on ImageNet-1K. They both use glm-saga for feature selection and computing
the sparse matrix and are thus scaling with number of samples nT , which QPM is invariant to, as that
dimension is summarized in the constants.
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Figure 14: Features of Bronzed Cowbird, explained and compared with Shiny Cowbird in fig. 4, the
predictions of the QPM, and their localizations, normed across column, on Bronzed Cowbird labeled
test samples. When all features, including the red eye (feature 1) are visible (rows 1 and 2), the model
is correct. However, as expected from the global explanation, without the red eye it can be wrong and
confuse e.g. Shiny Cowbird with it. The probed QPM represents American Crow with features 2,4,5
and 2 further not shown features, that localize on wing and beak of crows.

Figure 15: Time it takes to optimize QP for models with varying n∗f in fig. 7.

G IMPACT OF EVEN SPARSITY

This section discusses the impact of enforcing exactly nwc features per class, rather than on average.
For that, we trained a model without this constraint, but instead with 1TWs = nwcnc enforcing an
average sparsity. To counteract the uneven number of features per class, every class got a bias, that
is linear to the number of features it is below the average. In prior experiments, various forms of
counteracting the uneven assignment with a bias have performed similarly. Table 7 shows that the
even assignment is beneficial for the accuracy. Further, the even assignment boosts interpretability as
it leads to more classes that can be contrasted easily and does not introduce an unintuitive bias term.
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Table 7: Accuracy with or without exactly nwc features per class (eq. (3)). Instead, on average nwc

features per class are used.

Method CUB CARS

without eq. (3) 84.3±0.2 91.6±0.3
QPM (Ours) 85.1±0.3 91.8±0.1

Figure 16: Average Class-Independence of Assigned Features on CUB-2011 as function of the
number of features assigned to the class. The distribution of the sparsity is shown in fig. 17.

Additionally, fig. 16 demonstrates that classes, which are assigned to fewer features, cause these
features to become less general for QPM and Q-SENN, which hurts interpretability and potentially
accuracy. Figure 17 also visualizes that Q-SENN always learns to represent classes with a huge
variety in the number of assigned features, necessarily leading to hardly interpretable representations.
Nevertheless, the impact is disparate on the two datasets and the accuracy increase is not significant
on Stanford Cars. Future work might investigate if datasets with classes of varying complexity will
benefit from representing classes with a suitable number of features and how this can be combined
with contrastive globally interpretable class representations.

H POLYSEMANTIC FEATURES

This section discusses the phenomenon of polysemantic features and how it relates to QPM. Like
all deep learning models (Scherlis et al., 2022) not specifically designed to prevent polysemanticity,
QPM learns polysemantic features. It refers to individual neurons activating on not just one concept c
but rather on n seemingly unrelated ones. While it is an active area of research, their emergence can
likely be attributed to being an effective solution to the training objective. On many training samples,
the impact on the loss can be fairly low, if a polysemantic feature activates on any of its n meanings.
The only exception occurs, when it activates on samples, where its activation contributes significantly
to a class that is already showing a lot of activation. While this is typically very difficult to analyze,
the interpretable structure of QPM can offer more insights, as it enables a reliable metric on which to
gauge how strongly the activation on another concept would affect the loss: The similarity in QPM’s
class representation space. Our hypothesis is that QPM learns features that are locally monosemantic,
while being globally polysemantic. Around a class, e.g., Bronzed Cowbird, we expect the features
to only activate on one of the n concepts that they activate on across the entire dataset. As this is
generally fairly difficult to measure, we show anecdotal evidence for this in fig. 18. It shows the
Feature Alignment metric from Q-SENN(Norrenbrock et al., 2024) relative to the similarity to the
Bronzed Cowbird, measured as the number of its features that classes do not share. Specifically,
given the training features F ∈ RnT×nf s,

Agt
a,j =

1

|ρa+|
∑

i∈ρa+

F train
i,j − 1

|ρa−|
∑

i∈ρa−

F train
i,j (28)

describes the average difference in activations when an annotated attribute is present, encoded in ρa+
or ρa− for absent. Norrenbrock et al. (2024) then scales the difference by the average zero based

9



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 17: Distribution of Nonzero Weights per Class on CUB-2011. For each method, all 1000
classes from 5 seeds are shown.

Figure 18: Feature Alignment metric from Q-SENN Norrenbrock et al. (2024) for the red-eye feature
(marked in red) in fig. 4 and the attribute red eye color rred−eye(x). The x-axis describes to which
samples the computation is limited, e.g. x = 2 describes computing the metric only on samples
whose label is represented using up to 2 other features. On the right, x = 5 refers to the usual
global feature alignment. The probed QPM learned a polysemantic, but locally monosemantic feature.
When differentiating between bronzed and shiny cowbird only (x = 1), the feature value increased
by almost 4 times its mean, if the attribute is annotated to be present.

activation and reports the average maximum per feature:

r =
1

n∗f

n∗
f∑

j=1

nT∑nT

l=1 F
train
l,j −minl F train

l,j

max
i
Agt

i,j . (29)

For our analysis, we limit these formulas to just the attribute red eye color red − eye and only
consider the one feature k detecting it for Bronzed Cowbird:

rred−eye(x) =
nT∑nT

l=1 F
train
l,k −minl F train

l,k

Agt
red−eye,k(x). (30)

The x-axis additionally describes a filtering applied to the features and attributes based on the
similarity of the label, where a sample is considered for computing Agt

red−eye,k(x) if the annotated
label shares at least 5− x features with Bronzed Cowbird. Figure 18 demonstrates that the feature
clearly detecting the red eye of the Bronzed Cowbird is indeed quite sensitive to its presence when
the ground truth label is similar to the class, while it globally loses that sensitivity as it also detects
other concepts of classes further away from Bronzed Cowbird.

10
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Table 8: Results for diversity@5 (Norrenbrock et al., 2022) demonstrating its weakness to capture
the locality of the by-design very local features of PIP-Net. Note that 20 is the worst possible value.

Method CUB CARS

Baseline Resnet50 61.1±0.4 57.4±0.3
glm-saga5 55.3±0.5 52.6±0.3
PIP-Net 20.5±0.0 20.5±0.0
ProtoPool 25.5±0.4 23.4±0.5
SLDD-Model 79.2±0.3 81.9±0.9
Q-SENN 87.0±0.5 89.6±0.3

QPM (Ours) 89.9±0.2 91.4±0.3

I STRUCTURAL GROUNDING ON IMAGENET

This section is concerned with evaluating a metric similar to Structural Grounding on ImageNet-1K.
It is based on comparing the class similarities in reality Ψgt with the ΨModel ones learned by our
model. Structural Grounding relies on the annotations of CUB-2011 to compute Ψgt. However, there
are no such annotations on a fine-grained scale for ImageNet-1K. Therefore, we use the similarity of
the text-names in CLIP (Radford et al., 2021) as proxy to obtain our ground-truth class similarities.
Specifically, we compute the cosine similarity Ψclip ∈ [−1, 1]nc×nc between the text embeddings
of the class names, obtained from the powerful pretrained ViT-L-14, that is broadly used, e.g. to
condition Stable Diffusion XLPodell et al. (2023). We always take the first description given for
every class.

When inspecting the most similar classes, several issues are apparent. Many of them include shared
tokens or words, e.g., ski and ski mask, lion and sea lion, rule and stole or digital clock and wall clock.
While some of these indeed describe a similar class, e.g., giant Schnauzer and Standard Schnauzer,
others do not. Including classes without high similarity as ground-truth similar classes harms
the quality of the evaluation drastically and demonstrates the value of having human annotations.
Another issue in the clip similarities is that fine-grained knowledge about the classes seems to be
less dominant than literal exact matching, as with higher similarity only more commonly used terms
are correctly associated with similar terms, e.g., Orangutan and Gorilla, but not Rottweiler and
Doberman. Therefore, the number of similar classes to consider is set to 1250, as the latter pair ranks
at position 828 and we definitely consider it as a similarity worth measuring. Notably, this pair is
ranked behind pairs such as hog and tank, lemon and yawl or hamster and snail, further demonstrating
the weakness of the language model to exactly model the similarities. The final apparent issue lies
in the ambiguity of class names which leads to crane appearing twice as class name, once referring
to birds, once to a machine on a construction site. Notably, the distribution of class sparsity has
significant impact. While QPM is limited to a class similarity of up to 80%, due to deviating in
at least one feature with all features sharing the same weight and every class being represented by
nwc = 5 features, SLDD-Model, Q-SENN and glm-saga5 all exhibit multiple (14, 9 and 5) class pairs,
that have a class similarity of above 99%. The SLDD-Model for instance repeatedly represents classes
with one feature with positive weight and one with an extremely low negative weight, resulting even
in cosine similarities of 1 due to floating point precision. While this generally hurts interpretability, it
can be beneficial for Structural Grounding.

Despite these issues, Table 9 shows that QPM still performs comparatively to SLDD-Model and
Q-SENN with their extremely high similarities and learns significantly more aligned representations
than the dense baseline, even on ImageNet-1K. Future work might incorporate a more fine-grained
class hierarchy, building upon the very general WordNet, into this metric or profit off of further
improved language models.

J IMPACT OF CLASS-FEATURE SIMILARITY METRIC

This section contains an ablation study on the choice of Pearson correlation as metric for the feature-
class similarity matrix A. While it captures the desired linear relationship, that is also utilized during

11
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Table 9: Structural Grounding based on Clip Similarities on ImageNet

Method Structural Grounding

Dense Resnet50 17.9±0.0
glm-saga5 10.3±0.0
SLDD-Model 36.9±0.4
Q-SENN 33.2±0.2

QPM (Ours) 34.5±0.6

Table 10: Accuracy with different criteria used as Feature-Class Similarity matrix A

A Metric CUB CARS

AUROC 84.8±0.2 91.6±0.2
Correlation (Ours) 85.1±0.3 91.8±0.1

the following predictions, an intuitive alternative is the Area under the receiver operating characteristic
curve (AUROC), which is highly non-linear and frequently used to capture the predictive power with
a varying threshold. Table 10 shows that AUROC is also suitable but inferior to the simple correlation.

K LIMITATIONS AND FUTURE WORK

This section discusses limitations for the proposed QPM and avenues for future work.

In this work, QPM is applied to the generally available and typical datasets for image classification,
with ImageNet-1K indicating broad applicability. However, QPM’s high interpretability is especially
beneficial for high-stakes applications such as the medical domain or autonomous driving, where
each individual situation can not be accessed by an expert. Rather, after training the QPM and before
deploying it to cars, its class explanations can be obtained to gain insights into whether it is right
for the right reasons and if these are robust to all deployment conditions. Thus, applying QPM to
suitable high-stakes applications is a promising avenue for future work. However, to our knowledge,
there is no suitable dataset from these domains published yet.

A limitation of our QPM in its current form lies in its inability to model negative assignments.
Compared to the SLDD-Model and Q-SENN, which use negative weights, it is evident that the varied
datasets used in this paper, do not require it. Further, while we believe that it is generally prefer-
able to represent classes only using positive assignments, as e.g., also done by recent prototypical
models (Nauta et al., 2023; Rymarczyk et al., 2022), one can think of other datasets where negative
reasoning may be superior. If, e.g., all classes in a dataset containing birds had a black beak, except
for one with all other colors, it would likely be the most efficient solution to represent that one with
a negative assignment on a feature activating on black beaks, rather than have every other class
positively assigned to it, which the current QPM might do. Thus, future work may incorporate
negative assignments into the optimization, which might lead to even more compact representations.

As discussed in appendix H, the learned features of our QPM are generally polysemantic, while
potentially being monosemantic locally. For aligning them with human concepts, all post-hoc
methods, such as TCAV (Kim et al., 2018), Clip-Dissect (Oikarinen & Weng, 2023), or the alignment
methods from SLDD-Model or Q-SENN can be applied. Notably, aligning a feature with their human
concepts is more beneficial for QPM than it is for e.g., black-box models, as they are used in an
intuitively interpretable way. Further, the interpretable assignment can even help with alignment, as
shown in appendix H. Nevertheless, polysemantic features are a challenge for interpretability and
future work in this direction can focus on preventing their emergence while still using them in an
interpretable way or robustly measuring alignment to multiple concepts.

For many explanations from our QPM, a saliency map for its individual features is used. While we
typically just visualize each individual feature map via upscaling, resulting in a comparable resolution
to GradCAM (Selvaraju et al., 2020), other saliency methods, like Integrated Gradients (Sundararajan

12
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et al., 2017), LRP (Binder et al., 2016) or RISE (Petsiuk et al., 2018) can be applied. Because
QPM is backbone independent, even models with built-in more faithful saliency maps such as B-cos
Networks (Böhle et al., 2023) can be used. Since the use of these features is easy-to-interpret,
evaluating the localizations of our model should focus on the feature explanations rather than class-
level ones. Future work might incorporate these faithful saliency maps to measure insertion or
deletion methods, akin to those used for class-level saliency maps (Petsiuk et al., 2018). Ideally, one
is able to overcome the issue of moving out-of-distribution with removing pixels (Hooker et al., 2019).
Finally, the contrastive nature of QPM’s features might lead to an intuitive threshold that can be used
during the removal of pixels, similar to how previous metrics try to change the class prediction.

L DETAILED RESULTS

This section contains detailed results with standard deviations, including experiments with Resnet34,
Inception-v3, Swin-Transformer-small and Swin-Transformer-tiny, in Suppl. table 11 to table 22. The
good results across architectures demonstrate an independence between backbone and our proposed
method. They further seem robust as the difference in mean is usually large compared to the standard
deviation. Further, figs. 21 and 22 show how the features of fig. 1 continue to localize on the same
human attribute across different poses. Additionally, we included the activations of these features
on images of another class in fig. 23 to showcase the global interpretability enabled through the
binary assignment of more interpretable features. Instead of the blue and green feature, this probed
QPM recognizes the Black and Tan Coonhound through both doberman-like and rottweiler-like head
features, as well as a neck that is also assigned to pandas or bears. Figures 19 and 20 additionally
include examples for contrastive class representations learned on Stanford Cars and TravelingBirds.
Finally, table 8 contains results for diversity@5, to quantify its inability to capture the high spatial
diversity of PIP-Nets class detectors.

M FEATURE DIVERSITY LOSS

This section further describes the Feature Diversity Loss Ldiv, proposed in Norrenbrock et al. (2022).
It is defined per sample, for which the model predicted the class ĉ = argmax(y) and ensures a local
diversity of the used feature maps M ∈ Rnf×wM×hM .

ŝdij =
exp(md

ij)∑hM

i′=1

∑wM

j′=1 exp(m
d
i′j′)

fd

maxf

|wĉ,d|
∥wĉ∥2

(31)

Ldiv = −
hM∑
i=1

wM∑
j=1

max(ŝ1ij , ŝ
2
ij , . . . , ŝ

nf

ij ) (32)

Equation 31 employs the softmax function to normalize the entries ml
ij of the feature maps M across

spatial dimensions. It then scales the maps to emphasize visible and significant features, maintaining
the relative mean of M while weighting them according to the predicted class. Equation 32 then
applies cross-channel-max-pooling of the normalized and scaled feature maps Ŝ. The result is
negatively weighted and thus encourages the model to learn features that localize on different image
regions. The resulting total training loss is

Lfinal = LCE + βLdiv, (33)

with β ∈ R+ as weighting factor.

N OPTIMALITY OF SOLUTION

In order to test the optimality of our solution, we try to solve the problem without our relaxation
in eq. (9) with more compute and time. We used 3 days and 250 GB on an AMD EPYC 72F3 to
solve the problem globally across 5 seeds on CUB-2011 with a target gap to optimality of 1% to
ensure sufficient deduplication. The time limit was left to 3 hours for one iteration, as otherwise
multiple iterations would not finish. Across the 5 seeds used for QPM, the average obtained objective
value for the global problem was 0.5% above the one computed with our simplifications. Similar
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Figure 19: Faithful global interpretability of our QPM trained on Stanford Cars: Without any
additional supervision, QPM learns to represent the Convertible and Coupe Variant using 5 diverse
and general features.

Black Billed Cuckoo Features

Yellow billed Cuckoo Features

Figure 20: Faithful global interpretability of our QPM trained on TravelingBirds: Without any
additional supervision, QPM learns to represent the Yellow and Black billed Cuckoo using 5 diverse
and general features, correctly ignoring the correlated background.

to our ablations in table 5, the resulting accuracy for the extensively optimized model was not
improved, but even 0.1 percent points lower. As mentioned in section 4.1.1, the objective does not
perfectly correlate with downstream metrics, as the constants A, R and b only approximate the
desired behaviour. However, the average gap to the best bound was still 3.2%, with only negligible
progress during the final iteration, suggesting that a longer time limit would not significantly improve
it. Note, that the best bound might be violating constraints, already added or not. In summary, the
gap between our easy-to-compute solution and an obtainable solution of the global problem is 0.5%,
which leads to no improved model, with an upper bound on the gap of 3.7% (372 to 386).

O STANDARD FORM FOR QUADRATIC PROBLEM

The quadratic problem, described in section 3.1, can be expressed in the standard form for quadratic
programming problems. The aim is to optimize quadratic problems of the form 1

2x
TQx+ cTx with

respect to specified constraints. To describe our quadratic problem in standard form, we therefore
define the variables x, Q, c as well as the constraints. For notation, 0x and 1x describe a vector
with x zeros or ones respectively and 0m,n describes a m× n matrix of zeros.

Variables Let x be the binary decision variable vector, combining s and the vectorized form of W:

x =

[
s

vec(W )

]
∈ {0, 1}nf+nc·nf
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Objective Function The standard objective function includes all objectives:

Maximize:
1

2
xTQx+ cTx

Here

Q =

[
−R 0nf ,nf ·nc

Astack 0nf ·nc,nf ·nc

]
(34)

combines all quadratic objectives and

c =

[
b

0nf ·nc

]
(35)

the linear term. Here

Astack =


diag(a1)
diag(a2)

...
diag(anc

))

 (36)

connects the vectorized entries of W with A.

Constraints

1. Constraint for the number of selected features (eq. (2)):[
1nf

0nf ·nc

]T
x = n∗f (37)

2. No assignments on unselected features:

[featureSum 0nf ·nc ] (1nf ·(nc+1) − x) = 0 (38)

featureSum = [0nf ,nf FeatureSelnf ]x (39)

where FeatureSelnf ∈ {0, 1}nf×nf ·nc is a matrix of zeros with FeatureSeli,j = 1 where
(j − i) mod nf = 0. The vector featureSum captures the total number of assignments
per feature.

3. Constraint for the number of assignments per class (eq. (3)):

[0nc,nf UBDnc,nf ]x = nwc · 1nc (40)

Where the upper block diagonal matrix

UBDnc,nf =


1nf 0nf · · · 0nf

0nf 1nf · · · 0nf

...
...

...
...

0nf 0nf · · · 1nf


T

(41)

is a block-diagonal matrix with nf ones per row, one 1 in each of the nf · nc columns and
nc total rows.

4. No duplicated classes (eq. (4)):[
Eqc,c′ 0nf ·nc

]
1nf ·(nc+1) > 0 ∀c ̸= c′ ∈ {1, . . . , nc} (42)

Eqc,c′

d = |xc·nf+d − xc′·nf+d| ∀d ∈ {1, . . . , nf} (43)
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Table 11: Accuracy without background removal based on the Ground-Truth with Resnet50. QPM is
less susceptible to the spuriously correlated backgrounds with and without Center Bias bCenter. NA
indicates no convergence.

Method CUB TRAVEL

Baseline Resnet50 84.2±0.3 33.8±0.6

glm-saga5 75.0±0.9 35.6±1.4
PIP-Net 74.9±0.0 59.4±1.0
ProtoPool 75.0±0.3 NA
SLDD-Model 82.2±0.1 62.6±1.6
Q-SENN 82.8±0.3 67.0±0.5

QPM (Ours) 82.9±0.1 64.7±0.7
w/ Center Bias bCenter 82.4±0.3 68.9±0.5

Table 12: Ablation Studies investigating the impact of incorporating feature-feature similarity through
R and locality bias b on CUB-2011 with Resnet50.

b R Accuracy ↑ SID@5 ↑ Correlation ↓
✗ ✗ 84.6±0.4 89.5±0.2 33.9±0.8
✓ ✗ 84.4±0.2 90.4±0.3 33.5±9.4
✗ ✓ 85.0±0.3 89.4±0.3 22.7±1.1

✓ ✓ 85.1±0.3 90.1±0.3 24.6±1.1
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Figure 21: Exemplary Activations of Features in fig. 1 on further Rottweiler images. The feature
values after normalization are written on the images. Note that all shown activations are scaled from
0 to 1, resulting in an arbitrary localization of the brown feature detecting the Doberman-like head.
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Figure 22: Exemplary Activations of Features in fig. 1 on further Doberman images. The rounded
feature values after normalization are written on the images. Note that all shown activations are scaled
from 0 to 1, resulting in an arbitrary localization of the red feature detecting the Rottweiler-like head.
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Figure 23: Exemplary Activations of Features in fig. 1 on Black and Tan Coonhound images. The
rounded feature values after normalization are written on the images. Note that all shown activations
are scaled from 0 to 1, resulting in an arbitrary localization of the two not assigned and barely activated
blue and green features. The fifth assigned feature is shared with dog types such as Newfoundlands,
bears and pandas, localizing on the neck region.
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