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Abstract

Neural volume rendering became increasingly popular recently due to its success
in synthesizing novel views of a scene from a sparse set of input images. So far,
the geometry learned by neural volume rendering techniques was modeled using
a generic density function. Furthermore, the geometry itself was extracted using
an arbitrary level set of the density function leading to a noisy, often low fidelity
reconstruction. The goal of this paper is to improve geometry representation and
reconstruction in neural volume rendering. We achieve that by modeling the vol-
ume density as a function of the geometry. This is in contrast to previous work
modeling the geometry as a function of the volume density. In more detail, we
define the volume density function as Laplace’s cumulative distribution function
(CDF) applied to a signed distance function (SDF) representation. This simple
density representation has three benefits: (i) it provides a useful inductive bias
to the geometry learned in the neural volume rendering process; (ii) it facilitates
a bound on the opacity approximation error, leading to an accurate sampling of
the viewing ray. Accurate sampling is important to provide a precise coupling of
geometry and radiance; and (iii) it allows efficient unsupervised disentanglement
of shape and appearance in volume rendering. Applying this new density repre-
sentation to challenging scene multiview datasets produced high quality geometry
reconstructions, outperforming relevant baselines. Furthermore, switching shape
and appearance between scenes is possible due to the disentanglement of the two.

1 Introduction

Volume rendering [18] is a set of techniques that renders volume density in radiance fields by the
so called volume rendering integral. It has recently been shown that representing both the density
and radiance fields as neural networks can lead to excellent prediction of novel views by learning
only from a sparse set of input images. This neural volume rendering approach, presented in [21] and
developed by its follow-ups [34, 2] approximates the integral as alpha-composition in a differentiable
way, allowing to learn simultaneously both from input images. Although this coupling indeed leads
to good generalization of novel viewing directions, the density part is not as successful in faithfully
predicting the scene’s actual geometry, often producing noisy, low fidelity geometry approximation.

We propose VolSDF to devise a different model for the density in neural volume rendering, leading
to better approximation of the scene’s geometry while maintaining the quality of view synthesis.
The key idea is to represent the density as a function of the signed distance to the scene’s surface,
see Figure 1. Such density function enjoys several benefits. First, it guarantees the existence of a
well-defined surface that generates the density. This provides a useful inductive bias for disentangling
density and radiance fields, which in turn provides a more accurate geometry approximation. Second,
we show this density formulation allows bounding the approximation error of the opacity along rays.
This bound is used to sample the viewing ray so to provide a faithful coupling of density and radiance
field in the volume rendering integral. E.g., without such a bound the computed radiance along a ray
(pixel color) can potentially miss or extend surface parts leading to incorrect radiance approximation.
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Figure 1: VolSDF: given a set of input images (left) we learn a volumetric density (center-left, sliced)
defined by a signed distance function (center-right, sliced) to produce a neural rendering (right). This
definition of density facilitates high quality geometry reconstruction (gray surfaces, middle).

A closely related line of research, often referred to as neural implicit surfaces [22, 38, 14], have been
focusing on representing the scene’s geometry implicitly using a neural network, making the surface
rendering process differentiable. The main drawback of these methods is their requirement of masks
that separate objects from the background. Also, learning to render surfaces directly tends to grow
extraneous parts due to optimization problems, which are avoided by volume rendering. In a sense,
our work combines the best of both worlds: volume rendering with neural implicit surfaces.

We demonstrate the efficacy of VolSDF by reconstructing surfaces from the DTU [12] and Blended-
MVS [37] datasets. VolSDF produces more accurate surface reconstructions compared to NeRF [21]
and NeRF++ [39], and comparable reconstruction compared to IDR [38], while avoiding the use of
object masks. Furthermore, we show disentanglement results with our method, i.e., switching the
density and radiance fields of different scenes, which is shown to fail in NeRF-based models.

2 Related work

Neural Scene Representation & Rendering Implicit functions are traditionally adopted in modeling
3D scenes [24, 11, 4]. Recent studies have been focusing on model implicit functions with multi-layer
perceptron (MLP) due to its expressive representation power and low memory foot-print, including
scene (geometry & appearance) representation [9, 20, 19, 23, 25, 29, 36, 28, 35] and free-view
rendering [33, 16, 30, 26, 17, 21, 15, 39, 34, 2]. In particular, NeRF [21] has opened up a line of
research (see [6] for an overview) combining neural implicit functions together with volume rendering
to achieve photo-realistic rendering results. However, it is non-trivial to find a proper threshold
to extract surfaces from the predicted density, and the recovered geometry is far from satisfactory.
Furthermore, sampling of points along a ray for rendering a pixel is done using an opacity function
that is approximated from another network without any guarantee for correct approximation.

Multi-view 3D Reconstruction Image-based 3D surface reconstruction (multi-view stereo) has been
a longstanding problem in the past decades. Classical multi-view stereo approaches are generally
either depth-based [1, 31, 8, 7] or voxel-based [5, 3, 32]. For instance, in COLMAP [31] (a typical
depth-based method) image features are extracted and matched across different views to estimate
depth. Then the predicted depth maps are fused to obtain dense point clouds. To obtain the surface, an
additional meshing step e.g. Poisson surface reconstruction [13] is applied. However, these methods
with complex pipelines may accumulate errors at each stage and usually result in incomplete 3D
models, especially for non-Lambertian surfaces as they can not handle view dependent colors. On the
contrary, although it produces complete models by directly modeling objects in a volume, voxel-based
approaches are limited to low resolution due to high memory consumption. Recently, neural-based
approaches such as DVR [22], IDR [38], NLR [14] have also been proposed to reconstruct scene
geometry from multi-view images. However, these methods require accurate object masks and
appropriate weight initialization due to the difficulty of propagating gradients.

Independently from and concurrently with our work here, [27] also use implicit surface representation
incorporated into volume rendering. In particular, they replace the local transparency function with an
occupancy network [19]. This allows adding surface smoothing term to the loss, improving the quality
of the resulting surfaces. Differently from their approach, we use signed distance representation,
regularized with an Eikonal loss [38, 10] without any explicit smoothing term. Furthermore, we show
that the choice of using signed distance allows bounding the opacity approximation error, facilitating
the approximation of the volume rendering integral for the suggested family of densities.
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3 Method
In this section we introduce a novel parameterization for volume density, defined as transformed
signed distance function. Then we show how this definition facilitates the volume rendering process.
In particular, we derive a bound of the error in the opacity approximation and consequently devise a
sampling procedure for approximating the volume rendering integral.

3.1 Density as transformed SDF

Let the set Ω ⊂ R3 represent the space occupied by some object in R3, andM = ∂Ω its boundary
surface. We denote by 1Ω the Ω indicator function, and by dΩ the Signed Distance Function (SDF)
to its boundaryM,

1Ω(x) =

{
1 if x ∈ Ω

0 if x /∈ Ω
, and dΩ(x) = (−1)1Ω(x) min

y∈M
‖x− y‖ , (1)

where ‖·‖ is the standard Euclidean 2-norm. In neural volume rendering the volume density σ :
R3 → R+ is a scalar volumetric function, where σ(x) is the rate that light is occluded at point x; σ
is called density since it is proportional to the particle count per unit volume at x [18]. In previous
neural volumetric rendering approaches [21, 15, 39], the density function, σ, was modeled with a
general-purpose Multi-Layer Perceptron (MLP). In this work we suggest to model the density using a
certain transformation of a learnable Signed Distance Function (SDF) dΩ, namely

σ(x) = αΨβ (−dΩ(x)) , (2)
where α, β > 0 are learnable parameters, and Ψβ is the Cumulative Distribution Function (CDF) of
the Laplace distribution with zero mean and β scale (i.e., mean absolute deviation, which is intuitively
the L1 version of the standard deviation),

Ψβ(s) =


1
2 exp

(
s
β

)
if s ≤ 0

1− 1
2 exp

(
− s
β

)
if s > 0

(3)

Figure 1 (center left and right) depicts an example of such a density and SDF. As can be readily
checked from this definition, as β approach zero, the density σ converges to a scaled indicator
function of Ω, that is σ → α1Ω for all points x ∈ Ω \M.

Intuitively, the density σ models a homogeneous object with a constant density α that smoothly
decreases near the object’s boundary, where the smoothing amount is controlled by β. The benefit
in defining the density as in equation 2 is two-fold: First, it provides a useful inductive bias for
the surface geometryM, and provides a principled way to reconstruct the surface, i.e., as the zero
level-set of dΩ. This is in contrast to previous work where the reconstruction was chosen as an
arbitrary level set of the learned density. Second, the particular form of the density as defined in
equation 2 facilitates a bound on the error of the opacity (or, equivalently the transparency) of the
rendered volume, a crucial component in the volumetric rendering pipeline. In contrast, such a bound
will be hard to devise for a generic MLP densities.

3.2 Volume rendering of σ

In this section we review the volume rendering integral and the numerical integration commonly used
to approximate it, requiring a set S of sample points per ray. In the following section (Section 3.3),
we explore the properties of the density σ and derive a bound on the opacity approximation error
along viewing rays. Finally, in Section 3.4 we derive an algorithm for producing a sample S to be
used in the volume rendering numerical integration.

In volume rendering we consider a ray x emanating from a camera position c ∈ R3 in direction
v ∈ R3, ‖v‖ = 1, defined by x(t) = c + tv, t ≥ 0. In essence, volume rendering is all about
approximating the integrated (i.e., summed) light radiance along this ray reaching the camera.
There are two important quantities that participate in this computation: the volume’s opacity O, or
equivalently, its transperancy T , and the radiance field L.

The transparency function of the volume along a ray x, denoted T , indicates, for each t ≥ 0, the
probability a light particle succeeds traversing the segment [c,x(t)] without bouncing off,

T (t) = exp

(
−
∫ t

0

σ(x(s))ds

)
, (4)
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NeRF

VolSDF

Figure 2: Qualitative comparison to
NeRF. VolSDF shows less artifacts.

and the opacity O is the complement probability,

O(t) = 1− T (t). (5)

Note that O is a monotonic increasing function where
O(0) = 0, and assuming that every ray is eventually oc-
cluded O(∞) = 1. In that sense we can think of O as a
CDF, and

τ(t) =
dO

dt
(t) = σ(x(t))T (t) (6)

is its Probability Density Function (PDF). The volume
rendering equation is the expected light along the ray,

I(c,v) =

∫ ∞
0

L(x(t),n(t),v)τ(t)dt, (7)

where L(x,n,v) is the radiance field, namely the amount
of light emanating from point x in direction v; in our
formulation we also allow L to depend on the level-set’s
normal, i.e., n(t) = ∇xdΩ(x(t)). Adding this depen-
dency is motivated by the fact that BRDFs of common
materials are often encoded with respect to the surface
normal, facilitating disentanglement as done in surface
rendering [38]. We will get back to disentanglement in the experiments section. The integral in
equation 7 is approximated using a numerical quadrature, namely the rectangle rule, at some discrete
samples S = {si}mi=1, 0 = s1 < s2 < . . . < sm = M , where M is some large constant:

I(c,v) ≈ ÎS(c,v) =

m−1∑
i=1

τ̂iLi, (8)

where we use the subscript S in ÎS to highlight the dependence of the approximation on the
sample set S, τ̂i ≈ τ(si)∆s is the approximated PDF multiplied by the interval length, and
Li = L(x(si),n(si),v) is the sampled radiance field. We provide full derivation and detail of
τ̂i in the supplementary.

Sampling. Since the PDF τ is typically extremely concentrated near the object’s boundary (see e.g.,
Figure 3, right) the choice of the sample points S has a crucial effect on the approximation quality
of equation 8. One solution is to use an adaptive sample, e.g., S computed with the inverse CDF,
i.e., O−1. However, O depends on the density model σ and is not given explicitly. In [21] a second,
coarse network was trained specifically for the approximation of the opacity O, and was used for
inverse sampling. However, the second network’s density does not necessarily faithfully represents
the first network’s density, for which we wish to compute the volume integral. Furthermore, as we
show later, one level of sampling could be insufficient to produce an accurate sample S. Using a
naive or crude approximation of O would lead to a sub-optimal sample set S that misses, or over
extends non-negligible τ values. Consequently, incorrect radiance approximations can occur (i.e.,
pixel color), potentially harming the learned density-radiance field decomposition. Our solution
works with a single density σ, and the sampling S is computed by a sampling algorithm based on
an error bound for the opacity approximation. Figure 2 compares the NeRF and VolSDF renderings
for the same scene. Note the salt and pepper artifacts in the NeRF rendering caused by the random
samples; using fixed (uniformly spaced) sampling in NeRF leads to a different type of artifacts shown
in the supplementary.

3.3 Bound on the opacity approximation error

In this section we develop a bound on the opacity approximation error using the rectangle rule. For a
set of samples T = {ti}ni=1, 0 = t1 < t2 < · · · < tn = M , we let δi = ti+1−ti, and σi = σ(x(ti)).
Given some t ∈ (0,M ], assume t ∈ [tk, tk+1], and apply the rectangle rule (i.e., left Riemann sum)
to get the approximation:∫ t

0

σ(x(s))ds = R̂(t) + E(t), where R̂(t) =

k−1∑
i=1

δiσi + (t− tk)σk (9)
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is the rectangle rule approximation, and E(t) denotes the error in this approximation. The corre-
sponding approximation of the opacity function (equation 5) is

Ô(t) = 1− exp
(
−R̂(t)

)
. (10)

Our goal in this section is to derive a uniform bound over [0,M ] to the approximation Ô ≈ O. The
key is the following bound on the derivative1 of the density σ inside an interval along the ray x(t):
Theorem 1. The derivative of the density σ within a segment [ti, ti+1] satisfies∣∣∣∣ ddsσ(x(s))

∣∣∣∣ ≤ α

2β
exp

(
−d

?
i

β

)
, where d?i = min

s∈[ti,ti+1]
y/∈Bi∪Bi+1

‖x(s)− y‖ , (11)

and Bi = {x | ‖x− x(ti)‖ < |di|}, di = dΩ(x(ti)).

|di| |di+1|
d�i

x(ti) x(ti+1)

Bi+1Bi
The proof of this theorem, which is provided in the supplementary,
makes a principled use of the signed distance function’s unique prop-
erties; the explicit formula for d∗i is a bit cumbersome and therefore
is deferred to the supplementary as-well. The inset depicts the bound-
ary of the open balls union Bi ∪Bi+1, the interval [x(ti),x(ti+1)]
and the bound is defined in terms of the minimal distance between
these two sets, i.e., d∗i .

The benefit in Theorem 1 is that it allows to bound the density’s derivative in each interval [ti, ti−1]
based only on the unsigned distance at the interval’s end points, |di|, |di+1|, and the density parameters
α, β. This bound can be used to derive an error bound for the rectangle rule’s approximation of the
opacity,

|E(t)| ≤ Ê(t) =
α

4β

(
k−1∑
i=1

δ2
i e
− d

?
i
β + (t− tk)2e−

d?k
β

)
. (12)

Details are in the supplementary. Equation 12 leads to the following opacity error bound, also proved
in the supplementary:

Theorem 2. For t ∈ [0,M ], the error of the approximated opacity Ô can be bounded as follows:∣∣∣O(t)− Ô(t)
∣∣∣ ≤ exp

(
−R̂(t)

)(
exp

(
Ê(t)

)
− 1
)

(13)

Finally, we can bound the opacity error for t ∈ [tk, tk+1] by noting that Ê(t), and consequently also
exp(Ê(t)) are monotonically increasing in t, while exp(−R̂(t)) is monotonically decreasing in t,
and therefore

max
t∈[tk,tk+1]

∣∣∣O(t)− Ô(t)
∣∣∣ ≤ exp

(
−R̂(tk)

)(
exp(Ê(tk+1))− 1

)
. (14)

Taking the maximum over all intervals furnishes a bound BT ,β as a function of T and β,

max
t∈[0,M ]

∣∣∣O(t)− Ô(t)
∣∣∣ ≤ BT ,β = max

k∈[n−1]

{
exp

(
−R̂(tk)

)(
exp(Ê(tk+1))− 1

)}
, (15)

where by convention R̂(t0) = 0, and [`] = {1, 2, . . . , `}. See Figure 3, where this bound is visualized
in faint-red.

To conclude this section we derive two useful properties, proved in the supplementary. The first, is
that sufficiently dense sampling is guaranteed to reduce the error bound BT ,ε:
Lemma 1. Fix β > 0. For any ε > 0 a sufficient dense sampling T will provide BT ,β < ε.

Second, with a fixed number of samples we can set β such that the error bound is below ε:
Lemma 2. Fix n > 0. For any ε > 0 a sufficiently large β that satisfies

β ≥ αM2

4(n− 1) log(1 + ε)
(16)

will provide BT ,β ≤ ε.
1As dΩ is not differentiable everywhere the bound is on the Lipschitz constant of σ, see supplementary.
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Figure 3: Qualitative evaluation of Algorithm 1 after 1, 2 and 5 iterations. Left-bottom: per-pixel β+

heatmap; Left-top: rendering of areas marked with black squares. Right-top: for a single ray indicated
by white pixel we show the approximated (orange), true opacity (blue), the SDF (black), and Ô−1

sample example (yellow dots). Right-bottom: for the same ray we now show the true opacity error
(red), and error bound (faint red). After 5 iterations most of the rays converged, as can be inspected
by the blue colors in the heatmap, providing a guaranteed ε approximation to the opacity, resulting in
a crisp and more accurate rendering (center-left, top).

3.4 Sampling algorithm

In this section we develop an algorithm for computing the sampling S to be used in equation 8. This
is done by first utilizing the bound in equation 15 to find samples T so that Ô (via equation 10)
provides an ε approximation to the true opacity O, where ε is a hyper-parameter, that is BT ,β < ε.
Second, we perform inverse CDF sampling with Ô, as described in Section 3.2.

Note that from Lemma 1 it follows that we can simply choose large enough n to ensure BT ,β < ε.
However, this would lead to prohibitively large number of samples. Instead, we suggest a simple
algorithm to reduce the number of required samples in practice and allows working with a limited
budget of sample points. In a nutshell, we start with a uniform sampling T = T0, and use Lemma
2 to initially set a β+ > β that satisfies BT ,β+

≤ ε. Then, we repeatedly upsample T to reduce
β+ while maintaining BT ,β+

≤ ε. Even though this simple strategy is not guaranteed to converge,
we find that β+ usually converges to β (typically 85%, see also Figure 3), and even in cases it does
not, the algorithm provides β+ for which the opacity approximation still maintains an ε error. The
algorithm is presented below (Algorithm 1).

We initialize T (Line 1 in Algorithm 1) with uniform sampling T0 = {ti}ni=1, where tk = (k−1) M
n−1 ,

k ∈ [n] (we use n = 128 in our implementation). Given this sampling we next pick β+ > β according
to Lemma 2 so that the error bound satisfies the required ε bound (Line 2 in Algorithm 1).

Algorithm 1: Sampling algorithm.
Input: error threshold ε > 0; β

1 Initialize T = T0

2 Initialize β+ such that BT ,β+
≤ ε

3 while BT ,β > ε and not max_iter do
4 upsample T
5 if BT ,β+ < ε then
6 Find β? ∈ (β, β+) so that

BT ,β? = ε

7 Update β+ ← β?

8 end
9 end

10 Estimate Ô using T and β+

11 S ← get fresh m samples using Ô−1

12 return S

In order to reduce β+ while keep BT ,β+ ≤ ε, n sam-
ples are added to T (Line 4 in Algorithm 1), where
the number of points sampled from each interval is
proportional to its current error bound, equation 14.
Assuming T was sufficiently upsampled and satisfy
BT ,β+

< ε, we decrease β+ towards β. Since the
algorithm did not stop we have that BT ,β > ε. There-
fore the Mean Value Theorem implies the existence
of β? ∈ (β, β+) such that BT ,β? = ε. We use the
bisection method (with maximum of 10 iterations) to
efficiently search for β? and update β+ accordingly
(Lines 6 and 7 in Algorithm 1). The algorithm runs
iteratively until BT ,β ≤ ε or a maximal number of 5
iterations is reached. Either way, we use the final T
and β+ (guaranteed to provideBT ,β+

≤ ε) to estimate
the current opacity Ô, Line 10 in Algorithm 1). Fi-
nally we return a fresh set ofm = 64 samples Ô using
inverse transform sampling (Line 11 in Algorithm 1).
Figure 3 shows qualitative illustration of Algorithm 1,
for β = 0.001 and ε = 0.1 (typical values).
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Figure 4: Qualitative results for reconstructed geometries of objects from the DTU dataset.

3.5 Training

Our system consists of two Multi-Layer Perceptrons (MLP): (i) fϕ approximating the SDF of
the learned geometry, as well as global geometry feature z of dimension 256, i.e., fϕ(x) =
(d(x), z(x)) ∈ R1+256, where ϕ denotes its learnable parameters; (ii) Lψ(x,n,v, z) ∈ R3 rep-
resenting the scene’s radiance field with learnable parameters ψ. In addition we have two scalar
learnable parameters α, β ∈ R. In fact, in our implementation we make the choice α = β−1. We
denote by θ ∈ Rp the collection of all learnable parameters of the model, θ = (ϕ,ψ, β). To facilitate
the learning of high frequency details of the geometry and radiance field, we exploit positional
encoding [21] for the position x and view direction v in the geometry and radiance field. The
influence of different positional encoding choices are presented in the supplementary.

Our data consists of a collection of images with camera parameters. From this data we extract pixel
level data: for each pixel p we have a triplet (Ip, cp,vp), where Ip ∈ R3 is its intensity (RGB color),
cp ∈ R3 is its camera location, and vp ∈ R3 is the viewing direction (camera to pixel). Our training
loss consists of two terms:

L(θ) = LRGB(θ) + λLSDF(ϕ), where (17)

LRGB(θ) = Ep
∥∥∥Ip − ÎS(cp,vp)

∥∥∥
1
, and LSDF(ϕ) = Ez (‖∇d(z)‖ − 1)

2
, (18)

where LRGB is the color loss; ‖·‖1 denotes the 1-norm, S is computed with Algorithm 1, and ÎS is the
numerical approximation to the volume rendering integral in equation 8; here we also incorporate the
global feature in the radiance field, i.e., Li = Lψ(x(si),n(si),vp, z(x(si))). LSDF is the Eikonal
loss encouraging d to approximate a signed distance function [10]; the samples z are taken to combine
a single random uniform space point and a single point from S for each pixel p. We train with batches
of size 1024 pixels p. λ is a hyper-parameter set to 0.1 throughout the the experiments. Further
implementation details are provided in the supplementary.

4 Experiments
We evaluate our method on the challenging task of multiview 3D surface reconstruction. We use two
datasets: DTU [12] and BlendedMVS [37], both containing real objects with different materials that
are captured from multiple views. In Section 4.1 we show qualitative and quantitative 3D surface
reconstruction results of VolSDF, comparing favorably to relevant baselines. In Section 4.2 we
demonstrate that, in contrast to NeRF [21], our model is able to successfully disentangle the geometry
and appearance of the captured objects.
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Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

C
ha

m
fe

rD
is

ta
nc

e IDR 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.90 0.42 0.51 0.53 0.90

colmap7 0.45 0.91 0.37 0.37 0.90 1.00 0.54 1.22 1.08 0.64 0.48 0.59 0.32 0.45 0.43 0.65

colmap0 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36

NeRF 1.92 1.73 1.92 0.80 3.41 1.39 1.51 5.44 2.04 1.10 1.01 2.88 0.91 1.00 0.79 1.89

VolSDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86

PS
N

R NeRF 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.0 35.59 35.51 30.65

VolSDF 26.28 25.61 26.55 26.76 31.57 31.5 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.9 34.75 30.38

Table 1: Quantitative results for the DTU dataset.

Figure 5: Qualitative results sampled from the BlendedMVS dataset. For each scan we present a
visualization of a rendered image and the reconstructed 3D geometry.

4.1 Multi-view 3D reconstruction

DTU The DTU [12] dataset contains multi-view image (49 or 64) of different objects with fixed
camera and lighting parameters. We evaluate our method on the 15 scans that were selected by [38].
We compare our surface accuracy using the Chamfer l1 loss (measured in mm) to COLMAP0 (which
is watertight reconstruction; COLMAP7 is not watertight and provided only for reference) [31],
NeRF [21] and IDR [38], where for fair comparison with IDR we only evaluate the reconstruction
inside the visual hull of the objects (defined by the segmentation masks of [38]). We further evaluate
the PSNR of our rendering compared to [21]. Quantitative results are presented in Table 1. It can be
observed that our method is on par with IDR (that uses object masks for all images) and outperforms
NeRF and COLMAP in terms of reconstruction accuracy. Our rendering quality is comparable to
NeRF’s.

BlendedMVS The BlendedMVS dataset [37] contains a large collection of 113 scenes captured
from multiple views. It supplies high quality ground truth 3D models for evaluation, various camera
configurations, and a variety of indoor/outdoor real environments. We selected 9 different scenes
and used our method to reconstruct the surface of each object. In contrast to the DTU dataset,
BlendedMVS scenes have complex backgrounds. Therefore we use NeRF++ [39] as a baseline for
this dataset. In Table 2 we present our results compared to NeRF++. Qualitative comparisons are
presented in Fig. 5; since the units are unknown in this case we present relative improvement of

Figure 6: IDR extraneous parts.

Chamfer distance (in %) compared to NeRF. Also in this case, we
improve NeRF reconstructions considerably, while being on-par in
terms of the rendering quality (PSNR).

Comparison to [38] IDR [38] is the state of the art 3D surface
reconstruction method using implicit representation. However, it
suffers from two drawbacks: first, it requires object masks for
training, which is a strong supervision signal. Second, since it sets
the pixel color based only on the single point of intersection of the
corresponding viewing ray, it is more pruned to local minima that
sometimes appear in the form of extraneous surface parts. Figure 6 compares the same scene trained

8



Scene Doll Egg Head Angel Bull Robot Dog Bread Camera Mean
Chamfer l1 Our Improvement (%) 54.0 91.2 24.3 75.1 60.7 27.2 47.7 34.6 51.8 51.8

PSNR
NeRF++ 26.95 27.34 27.23 30.06 26.65 26.73 27.90 31.68 23.44 27.55

VolSDF 25.49 27.18 26.36 29.79 26.01 26.03 28.65 31.24 22.97 27.08

Table 2: Quantitative results for the BlendedMVS dataset.

with IDR with the addition of ground truth masks, and VolSDF trained without masks. Note that
IDR introduces some extraneous surface parts (e.g., in marked red), while VolSDF provides a more
faithful result in this case.

4.2 Disentanglement of geometry and appearance

We have tested the disentanglement of scenes to geometry (density) and appearance (radiance field)
by switching the radiance fields of two trained scenes. For VolSDF we switched Lψ. For NeRF
[21] we note that the radiance field is computed as Lψ(z,v), where Lψ is a fully connected network
with one hidden layer (of width 128 and ReLU activation) and z is a feature vector. We tested two
versions of NeRF disentanglement: First, by switching the original radiance fields Lψ of trained
NeRF networks. Second, by switching the radiance fields of trained NeRF models with an identical
radiance field model to ours, namely Lψ(x,n,v, z). As shown in Figure 7 both versions of NeRF
fail to produce a correct disentanglement in these scenes, while VolSDF successfully switches the
materials of the two objects. We attribute this to the specific inductive bias injected with the use of
the density in equation 2.

NeRF NeRF with normal VolSDF
Figure 7: Geometry and radiance disentanglement is physically plausible with VolSDF.

5 Conclusions
We introduce VolSDF, a volume rendering framework for implicit neural surfaces. We represent
the volume density as a transformed version of the signed distance function to the learned surface
geometry. This seemingly simple definition provides a useful inductive bias, allowing disentanglement
of geometry (i.e., density) and radiance field, and improves the geometry approximation over previous
neural volume rendering techniques. Furthermore, it allows to bound the opacity approximation error
leading to high fidelity sampling of the volume rendering integral.

Some limitations of our method present interesting future research opportunities. First, although
working well in practice, we do not have a proof of correctness for the sampling algorithm. We
believe providing such a proof, or finding a version of this algorithm that has a proof would be a useful
contribution. In general, we believe working with bounds in volume rendering could improve learning
and disentanglement and push the field forward. Second, representing non-watertight manifolds
and/or manifolds with boundaries, such as zero thickness surfaces, is not possible with an SDF.
Generalizations such as multiple implicits and unsigned fields could be proven valuable. Third, our
current formulation assumes homogeneous density; extending it to more general density models
would allow representing a broader class of geometries. Fourth, now that high quality geometries can
be learned in an unsupervised manner it will be interesting to learn dynamic geometries and shape
spaces directly from collections of images. Lastly, although we don’t see immediate negative societal
impact of our work, we do note that accurate geometry reconstruction from images can be used for
malice purposes.
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