
DropLoRA: Sparse Low-Rank Adaptation for Parameter-Efficient
Fine-Tuning

Anonymous ACL submission

Abstract001

LoRA-based large model parameter-efficient002
fine-tuning (PEFT) methods use low-rank de-003
composition to approximate updates to model004
parameters. However, compared to full-005
parameter fine-tuning, low-rank updates often006
lead to a performance gap in downstream tasks.007
To address this, we introduce DropLoRA, a008
novel pruning-based approach that focuses on009
pruning the rank dimension. Unlike conven-010
tional methods that attempt to overcome the011
low-rank bottleneck, DropLoRA innovatively012
integrates a pruning module between the two013
low-rank matrices in LoRA to simulate dy-014
namic subspace learning. This dynamic low-015
rank subspace learning allows DropLoRA to016
overcome the limitations of traditional LoRA,017
which operates within a static subspace. By018
continuously adapting the learning subspace,019
DropLoRA significantly boosts performance020
without incurring additional training or infer-021
ence costs. Our experimental results demon-022
strate that DropLoRA consistently outperforms023
LoRA in fine-tuning the LLaMA series across024
a wide range of large language model genera-025
tion tasks, including commonsense reasoning,026
mathematical reasoning, code generation, and027
instruction-following. Our code will be avail-028
able after the anonymous review.029

1 Introduction030

Large language models (LLMs) have demonstrated031

remarkable proficiency in diverse cognitive tasks032

spanning machine translation, information extrac-033

tion, question answering, human-like dialogue sys-034

tems, and logical reasoning (Guo et al., 2025;035

Achiam et al., 2023; Brown et al., 2020). While this036

methodology typically involves two-phase training037

- pre-training on extensive datasets followed by038

instruction-based fine-tuning (IFT) for downstream039

task optimization. The substantial computation and040

memory overhead required for effective instruc-041

tion fine-tuning pose significant barriers to imple-042

menting these architectures in resource-constrained 043

scenarios (Grattafiori et al., 2024). Consequently, 044

Efficient fine-tuning techniques based on models 045

are increasingly gaining popularity and attention 046

within the community. 047

Parameter-efficient fine-tuning (PEFT) methods 048

aim to achieve performance comparable to full- 049

parameter fine-tuning by freezing the majority of 050

the large model’s parameters and fine-tuning a 051

small number of parameters on downstream tasks 052

(Ding et al., 2023). Based on this fundamental 053

idea, Low-Rank Adaptation (LoRA) technology 054

approximates model parameter updates by intro- 055

ducing two low-rank matrices, and it has garnered 056

widespread attention within the community in re- 057

cent years (Hu et al., 2022). Mathematically, the 058

original model weight W can be reparametered 059

into W = W0 + BA, where W ∈ Rm×n and 060

B ∈ Rm×r, A ∈ Rr×n. Because of the rank 061

r ≪ min{m,n}, the learnable parameters are far 062

smaller than the original weight parameter count, 063

which saves much GPU memory. Despite LoRA’s 064

high flexibility and broad applicability, its perfor- 065

mance is constrained by the rank r of the low-rank 066

matrices A and B, resulting in it still slightly under- 067

performing compared to full-parameter fine-tuning 068

(Xia et al., 2024). 069

To address the performance limitations of LoRA, 070

the research community has investigated a diverse 071

array of strategies. A number of works have fo- 072

cused on the initialization of LoRA, employing sin- 073

gular value decomposition (SVD) of the original 074

matrices to optimize the initialization of the low- 075

rank matrices A and B (Meng et al., 2024a; Wang 076

et al., 2025; Lingam et al., 2024; Büyükakyüz, 077

2024). Another line of research aims to enhance the 078

rank of LoRA by refining the low-rank matrices to 079

mitigate the rank bottleneck and improve its expres- 080

sive power (Meng et al., 2024b; Wang et al., 2025; 081

Jiang et al., 2024). Additionally, some techniques 082

1

Pretrained Weight Pretrained Weight

Figure 1: Schematic comparison of LoRA (left) and DropLoRA (right). In LoRA, the original weights remain
unchanged, with updates being applied solely to two low-rank matrices. DropLoRA introduces a mask matrix M
between these two low-rank matrices to enable pruning. At each parameter iteration step, a distinct M is sampled
from a Bernoulli distribution, enabling subspace learning. In both scenarios, the low-rank matrices and vectors can
be seamlessly integrated into the original weight matrix W , thereby introducing no additional latency.

dynamically adapt the rank of LoRA for different083

weights, offering greater flexibility and efficiency084

(Valipour et al., 2022; Zhang et al., 2023).085

In contrast to reparameterizing the original weights,086

Zhao et al. (2024) introduces GaLore, an inno-087

vative approach that achieves memory efficiency088

by projecting gradients onto diverse low-rank089

subspaces—effectively reparameterizing the gra-090

dients—while demonstrating exceptional perfor-091

mance. While Galore utilizes gradient-based low-092

rank projection, it fundamentally differs from093

LoRA, representing a distinct methodology. A key094

distinction is that LoRA fine-tunes only a subset095

of parameters, whereas GaLore optimizes all pa-096

rameters. Inspired by the efficiency of the dynamic097

subspace learning of GaLore, we are prompted098

to investigate: Can LoRA further enhance its per-099

formance through the application of dynamic sub-100

space learning?101

Building on this insight, we propose DropLoRA,102

a strategy that simulates subspace learning by dy-103

namically adjusting the rank of LoRA. For a fixed104

rank, LoRA operates within a consistent low-rank105

subspace, with the learning subspace remaining106

static throughout the process. To simulate dy-107

namic subspace learning, we propose a simple108

yet effective pruning strategy, as illustrated in Fig-109

ure 1. By applying unified dynamic pruning to110

the two low-rank matrices, each pruning opera-111

tion corresponds to a distinct subspace. Specifi- 112

cally, we sample the rank-dimension pruning ma- 113

trix M from a Bernoulli distribution, hence, M ∈ 114

{0, 1}r,Mi
i.i.d.∼ Bernoulli (p) , i ∈ {1, 2, ..., r}, 115

where p is the pruning probability, r is the rank 116

of A and B. Hence our DropLoRA can be formu- 117

lated as W = W0 + (B ⊙ M) × (M ⊙ A). The 118

dynamics of subspace learning are reflected in sam- 119

pling different pruning matrices M at each iteration 120

step. 121

Extensive experiments show that subspace learn- 122

ing, as exemplified by DropLoRA, can serve as 123

a novel optimization direction. In summary, our 124

main contributions are as follows: 125

• We propose DropLoRA, an innovative opti- 126

mization strategy for LoRA, which for the 127

first time introduces subspace learning into 128

the LoRA framework, exploring a novel direc- 129

tion for optimization in the community. 130

• Our pruning strategy is designed to be seam- 131

lessly integrated into any LoRA variant with- 132

out introducing additional computational or 133

storage overhead, showcasing its adaptability 134

and practicality. 135

• DropLoRA achieves state-of-the-art (SOTA) 136

performance across diverse domains, high- 137

lighting its broad applicability and robustness. 138

2

2 Related Work139

Parameter-Efficient Fine-Tuning (PEFT) meth-140

ods for supervised fine-tuning of large models141

have become increasingly significant, particularly142

in resource-constrained scenarios. The develop-143

ment of various efficient fine-tuning methods has144

emerged as a prominent research focus. Exist-145

ing efficient fine-tuning techniques can be cate-146

gorized into the following aspects. Methods based147

on adapters aim to insert different adapter layers148

between the layers of a model for various down-149

stream tasks (Houlsby et al., 2019; He et al., 2021;150

Mahabadi et al., 2021).151

Prompt-based methods, such as P-tuning (Liu et al.,152

2021) and prefix-tuning (Li and Liang, 2021) , in-153

troduce continuous prompt tokens into the input154

space, allowing for efficient adaptation of large155

PLMs by only fine-tuning these learned prompt156

embeddings while keeping the original model pa-157

rameters frozen. These approaches differ from tra-158

ditional fine-tuning, as they avoid direct modifi-159

cation of the underlying model weights, instead160

relying on task-specific soft prompts to guide the161

model’s behavior. However, both adapter-based162

and prompt-based approaches modify the model’s163

internal structure, either by inserting additional164

trainable layers or by prepending learnable prompt165

embeddings. While these methods significantly re-166

duce the number of trainable parameters compared167

to full fine-tuning, they inevitably introduce addi-168

tional computational overhead during both training169

and inference. Specifically, the inclusion of ex-170

tra parameters or prompt tokens increases memory171

usage and may lead to higher inference latency,172

particularly in real-time applications where low-173

latency responses are critical.174

LoRA-based methods and their variants achieve pa-175

rameter efficiency by decomposing the base weight176

matrix into two low-rank matrices, demonstrating177

significant advantages in deployment, particularly178

for mobile device applications (Hu et al., 2022;179

Kopiczko et al., 2023; Meng et al., 2024b; Liu180

et al., 2024; Zhang et al., 2023; Meng et al., 2024a).181

For diverse applications, it is only necessary to182

store distinct LoRA adapters specifically fine-tuned183

for their respective downstream tasks. Variants of184

LoRA primarily include optimization of initializa-185

tion parameters, rank enhancement, and adaptive186

rank selection, among others (Meng et al., 2024a,b;187

Valipour et al., 2022). Extensive research related188

Algorithm 1 DropLoRA, torch-style pseudocode.

class DropLoRALayer(nn.Module):
def __init__(
self ,
r: int = 32, # rank
p: float = 0.5, # pruning probability
d1: int = 4096, # input dimension
d2: int = 4096, # output dimension
base_layer: nn.Module # pre -trained layer
):
self.base_layer = base_layer
self.A = torch.randn(r, d1)
self.B = torch.zeros(d2 , r)
self.M = Dropout(p) ## Line 1.
self.base_layer.freeze ()

def forward(self , x: torch.Tensor):
h = self.base_layer(x)
In LoRA
delta = x @ self.A @ self.B
Line 2
delta = self.M(x @ self.A) @ self.B

return h + delta

to LoRA demonstrates that LoRA-based methods 189

are currently dominating the field of Parameter- 190

Efficient Fine-Tuning (PEFT). 191

Subspace Learning focuses on deriving 192

low-dimensional, essential features from high- 193

dimensional data to enhance learning efficiency 194

and effectiveness. By eliminating redundancy 195

and capturing essential characteristics, subspace 196

learning facilitates more efficient and effective 197

learning processes, enhancing both computational 198

performance and model accuracy (Liu et al., 2012; 199

De La Torre and Black, 2003). Extensive research 200

has demonstrated that subspace learning exhibits 201

excellent generalization capabilities, making it 202

a robust approach for various machine learning 203

tasks (Hinton and Salakhutdinov, 2006; Wright 204

et al., 2008; Zhao et al., 2024). LoRA assumes that 205

weight updates occur in a low-rank space; however, 206

due to its static rank nature, it can essentially be 207

regarded as a form of static subspace learning. 208

3 Method 209

LoRA reparameterizes the update of the original 210

weights as the product of two low-rank matrices, 211

as expressed in Equation 1: 212

h = W0x+BAx (1) 213

where W0 ∈ Rm×n and B ∈ Rm×r, A ∈ Rr×n. 214

During the training process, the original weights 215

W0 remain unchanged, with updates being applied 216

exclusively to the weights of the two low-rank ma- 217

trices A,B. Here, We undeline the parameters 218

3

updated during the training process. Because of219

the rank r ≪ min{m,n}, the learnable parameters220

are far smaller than the original weight parame-221

ter count. When the rank is fixed, LoRA can be222

viewed as learning within a static subspace, which223

may inherently constrain its expressive capacity.224

To simulate dynamic subspace learning, we pro-225

pose a pruning technique based on dynamic mask-226

ing. Specifically, we sample the rank dimension227

using a Bernoulli distribution Bernoulli (p) to gen-228

erate a mask vector of rank size, where a value of 1229

retains the dimension and a value of 0 discards it.230

Our DropLoRA method is expressed as:231

h = W0x+ (B ⊙M) (M ⊙A)x (2)232

where M ∈ {0, 1}r,Mi
i.i.d.∼ Bernoulli (p) , i ∈233

{1, 2, ..., r} and ⊙ represents element-wise multi-234

plication. M is a mask matrix, where p represents235

the pruning probability. At each training iteration236

step, we randomly sample a distinct mask matrix237

M to simulate dynamic subspace learning.238

Rank Analysis When we apply the sampled239

mask to prune the rank dimension, it implies that240

the effective rank of the two low-rank matrices241

Ã = (M ⊙A) and B̃ = (B ⊙M) is reduced242

compared to their original rank. With a pruning243

probability of 0.5, the rank of Ã and B̃ becomes244

only half of the original rank.245

Equivalence Intuitively, there are two pruning246

strategies: one applies a unified pruning using247

the same mask matrix for both low-rank matrices,248

while the other prunes A and B separately using249

distinct mask matrices. For the latter, the two mask250

matrices operate under a logical AND relationship,251

effectively equivalent to their intersection. This is252

functionally identical to using a single mask matrix253

with values equal to the intersection. Thus, the two254

approaches are equivalent.255

Easy Implementation Since the product of256

LoRA’s two low-rank matrices is mathematically257

equivalent to a two-layer perceptron without ac-258

tivation, the masked pruning strategy effectively259

functions as dropout applied to the intermediate260

hidden layer. This implies that, compared to LoRA,261

DropLoRA can be implemented with just two ad-262

ditional lines of code, as illustrated in Algorithm 1.263

It is worth noting that, although similar in im-264

plementation, our method differs from traditional265

Dropout regularization methods (Srivastava et al.,266

2014). The Dropout method generally randomly 267

drops some of the high-dimensional inputs. In 268

contrast, our method randomly discards the rank 269

dimension of LoRA low-rank matrices. Intuitively, 270

the expressive power of LoRA is limited by the 271

size of the rank. Randomly discarding the rank di- 272

mension will further reduce the expressive power of 273

LoRA, resulting in severe performance degradation. 274

Therefore, pruning the rank dimension is somewhat 275

counterintuitive. However, dynamic low-rank sub- 276

space learning allows DropLoRA to overcome the 277

limitations of traditional LoRA, which operates 278

within a static subspace and the model is prompted 279

to learn more intrinsic parameter variation charac- 280

teristics, thereby improving performance. 281

Training and Inference During the training pro- 282

cess, at each iteration step, we obtain different 283

low-rank subspaces by sampling different pruning 284

vectors through the Bernoulli distribution. During 285

backpropagation, only the retained parameters are 286

involved in the update. In the reasoning process, 287

in order to enhance the model’s expressive power, 288

we do not use the pruning module. By integrating 289

the parameters learned in different subspaces, this 290

has a similar effect to ensemble learning, thereby 291

improving the robustness of the model. 292

4 Experiments 293

To evaluate the effectiveness of the DropLoRA 294

method, we conducted extensive experiments en- 295

compassing commonsense reasoning tasks, mathe- 296

matical tasks, coding tasks, instruction following 297

tasks. For all tasks, we choose the same LoRA- 298

related baselines including: 299

LoRA(Hu et al., 2022) decomposes a parameter 300

update into the product of two low-rank matrices, 301

where one matrix is initialized with Gaussian dis- 302

tribution and the other is initialized with zeros. 303

DoRA(Liu et al., 2024) decouples the magnitude 304

and direction of the parameter update, using LoRA 305

to update the direction and a learnable magnitude 306

vector to update the magnitude. 307

PiSSA(Meng et al., 2024a) initializes LoRA by ap- 308

plying singular value decomposition (SVD) to the 309

pre-trained weights, using the Principal Singular 310

Components to initialize LoRA, while the residual 311

components are used to initialize the pre-trained 312

weights. 313

MiLoRA(Wang et al., 2025) initializes LoRA by 314

applying singular value decomposition (SVD) to 315

the pre-trained weights, using the Minor Singular 316

4

Model PEFT # Parameters BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

ChatGPT† − − 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA2-7B

LoRA† 56.10M 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA† 56.98M 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
PiSSA⋆ 56.10M 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8

MiLoRA† 56.10M 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2
LoRA 56.10M 74.37 87.38 81.32 95.07 85.79 88.80 75.34 87.00 84.38
DoRA 56.98M 74.46 86.18 80.60 94.91 87.53 89.14 75.85 86.40 84.39
PiSSA 56.10M 73.27 82.59 79.84 92.88 84.77 85.23 71.33 84.80 81.84

MiLoRA 56.10M 74.53 86.45 80.81 95.23 86.90 89.48 76.54 86.00 84.49
DropLoRA (Ours) 56.10M 74.22 87.00 80.91 95.24 87.61 89.73 77.30 87.20 84.91

LLaMA3-8B

LoRA† 56.62M 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA† 57.41M 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
PiSSA⋆ 56.62M 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA† 56.62M 68.8 86.7 77.2 92.9 85.6 89.48 75.5 81.8 81.9
LoRA 56.62M 75.54 89.06 81.12 95.99 88.08 92.80 82.59 89.20 86.78
DoRA 57.41M 75.41 89.12 881.27 95.83 87.69 92.42 82.59 89.00 86.67
PiSSA 56.62M 72.66 86.13 80.14 93.60 84.77 89.73 76.88 86.00 83.74

MiLoRA 56.62M 74.53 86.45 80.81 95.23 86.90 89.48 76.54 86.00 84.49
DropLoRA (Ours) 56.62M 76.45 90.04 82.19 96.59 89.34 93.18 83.28 89.80 87.61

Table 1: Commonsense reasoning evaluation results for LLaMA2-7B and LLaMA3-8B on eight tasks. The reported
metric in this table is accuracy. †Results are cited from the original paper and ⋆results are cited from Wang et al.
(2025). For PEFT results, all other experiments without superscripts are performed by ourselves. Bold numbers
indicate the highest performance scores and underline numbers indicate the second performance scores for each
dataset across the different PEFT methods for the corresponding model.

Components to initialize LoRA, while the residual317

components are used to initialize the pre-trained318

weights.319

All experiments are conducted on 4×A100 GPUs320

with Deepspeed ZERO-2 stage(Rasley et al., 2020)321

to accelerate training.322

4.1 Commensense Reasoning323

To evaluate the impact of efficient fine-tuning tech-324

niques on commonsense knowledge and logical rea-325

soning abilities, we conduct experiments on com-326

monsense knowledge reasoning tasks.327

Datasets The commonsense reasoning dataset328

consists of 8 sub-tasks, each with its own329

predefined training and testing sets, including330

BoolQ(Clark et al., 2019), PIQA(Bisk et al., 2020),331

SIQA(Sap et al., 2019), HellaSwag(Zellers et al.,332

2019), WinoGrande(Sakaguchi et al., 2021), ARC-333

e, ARC-c(Clark et al., 2018) and OBQA(Mihaylov334

et al., 2018). We follow the experimental setup335

from Hu et al. (2023), where the training sets of the336

8 sub-tasks are combined, and inference and evalu-337

ation are conducted separately on their respective338

testing sets.339

Experimental Setting We choose LLaMA2-340

7B(Touvron et al., 2023)1 and LLaMA3-341

1https://hf-mirror.com/meta-llama/
Llama-2-7b-hf

8B(Grattafiori et al., 2024)2 as our backbone 342

models. To ensure a fair comparison, we imple- 343

ment all PEFT experiments ourselves. We also 344

report chatGPT-api based results sourced from Liu 345

et al. (2024). For the hyperparameter configuration, 346

we also follow the parameter settings from Hu 347

et al. (2023). Note that, to accelerate training, 348

we use a batch size of 128 instead of the original 349

configuration of 16. For all other hyperparameters, 350

we strictly follow the parameter settings from Hu 351

et al. (2023). It is important to note that in all 352

experiments, for DropLoRA, we only adjust the 353

pruning probability and do not adjust any other 354

hyperparameters. For detailed hyperparameter 355

configurations, see Appendix A. 356

Result Table 1 presents the experimental results 357

for the common-sense reasoning task. We also 358

report the evaluation results based on the Chat- 359

GPT API as outlined in the DoRA paper (Liu et al., 360

2024), which are obtained with the GPT-3.5-turbo 361

API using a zero-shot Chain of Thought approach. 362

As can be seen, on the LLaMA2-7B, DropLoRA 363

achieved the best performance on five datasets (Hel- 364

laSwag, WinoGrande, ARC-e, ARC-c, OBQA), the 365

second-best performance on two datasets (PIQA, 366

SIQA), and the best average performance across 367

all eight datasets with an average performance in- 368

2https://hf-mirror.com/meta-llama/
Meta-Llama-3-8B

5

https://hf-mirror.com/meta-llama/Llama-2-7b-hf
https://hf-mirror.com/meta-llama/Llama-2-7b-hf
https://hf-mirror.com/meta-llama/Meta-Llama-3-8B
https://hf-mirror.com/meta-llama/Meta-Llama-3-8B

Model Method # Parameters GSM8K MATH Average

LLaMA2-7B

Full FT† 6738M 66.5 19.8 43.2
LoRA† 112.20M 60.6 16.9 38.7
PiSSA† 112.20M 58.2 15.8 37.0

MiLoRA† 112.20M 63.5 17.8 40.7
LoRA 112.20M 65.66 16.02 40.84
DoRA 113.07M 66.19 16.14 41.16
PiSSA 112.20M 64.37 15.96 40.16

MiLoRA 112.20M 64.52 14.92 39.72
DropLoRA (Ours) 112.20M 66.72 16.38 41.55

LLaMA3-8B

LoRA 113.25M 80.44 30.46 55.45
DoRA 114.03M 80.44 30.21 55.32
PiSSA 113.25M 79.53 28.92 54.22

MiLoRA 113.25M 80.74 30.62 55.68
DropLoRA (Ours) 113.25M 81.32 30.74 56.03

Table 2: Math reasoning evaluation results for GSM8K
and MATH based on LLaMA2-7B and LLaMA3-8B.
†Results are cited from Wang et al. (2025) and All other
experiments without superscripts are performed by our-
selves.

crease of +0.53 points compared to LoRA. On the369

LLaMA3-8B model, DropLoRA achieves the best370

performance on all eight datasets, with an average371

performance increase of +0.83 points compared372

to LoRA, indicating that DropLoRA is an effec-373

tive parameter-efficient fine-tuning method. We ob-374

serve that both LoRA and DoRA achieve compara-375

ble performance on LLaMA2-7B and LLaMA3-8B.376

MiLoRA slightly outperforms LoRA on LLaMA2-377

7B, but shows a significant performance gap on378

LLaMA3-8B. PiSSA, on the other hand, performs379

substantially worse than other methods on both380

models. This indicates instability in performance381

for methods that fine-tune either the principal or382

the minor singular components. In contrast, our383

method achieves the best performance on both mod-384

els, demonstrating its superior stability.385

4.2 Math and Code Reasoning386

To evaluate numerical computation and logical rea-387

soning capabilities, we conduct performance as-388

sessments on mathematical problem-solving and389

programming tasks.390

Datasets We evaluate mathematical problem-391

solving capabilities on MetaMathQA dataset(Yu392

et al., 2023), including 395K samples generated393

by augmenting the training sets of GSM8K(Cobbe394

et al., 2021) and MATH(Hendrycks et al., 2021).395

During the testing phase, we perform inference and396

evaluate performance on the test sets of GSM8K397

and MATH separately.398

To evaluate code capabilities, we fine-tune on the399

CodeFeedback(Zheng et al., 2024) dataset and per-400

form evaluation on the HumanEval(Chen et al.,401

2021)and MBPP(Austin et al., 2021) test sets.402

Model Method # Parameters HumanEval MBPP Average

LLaMA2-7B Full FT† 6738M 21.34 35.59 28.47

LLaMA2-7B

LoRA 56.10M 18.90 41.27 30.09
DoRA 56.98M 14.63 42.86 28.75
PiSSA 56.10M 9.76 42.86 26.31

MiLoRA 56.10M 21.34 37.57 29.46
DropLoRA (Ours) 56.10M 21.34 43.39 32.37

LLaMA3-8B

LoRA 56.62M 62.81 65.87 64.34
DoRA 57.41M 59.76 66.40 63.08
PiSSA 56.62M 57.93 65.87 61.90

MiLoRA 56.62M 59.76 66.93 63.35
DropLoRA (Ours) 56.62M 60.37 70.37 65.37

Table 3: Code evaluation results for HumanEval
and MBPP based on LLaMA2-7B and LLaMA3-8B.
†Results are cited from Meng et al. (2024a) and the
other experimental results are from ourselves.

Experimental Setting We choose LLaMA2-7B1 403

and LLaMA3-8B2 as our pre-trained models. We 404

use hyperparameter configurations similar to those 405

for commonsense reasoning. For the mathemat- 406

ical reasoning task, due to the large training set 407

of MetaMathQA, we set the rank of LoRA to 64 408

and train for only one epoch to avoid overfitting. 409

For the code evaluation task, we maintain the same 410

hyperparameter configuration as for commonsense 411

reasoning. For detailed hyperparameter configura- 412

tions, see Appendix A. 413

Result Tables 2 and Table 3 present the experi- 414

mental results for mathematical reasoning and code 415

reasoning tasks, respectively. DropLoRA consis- 416

tently achieves state-of-the-art performance across 417

all four reasoning tasks, demonstrating its effective- 418

ness in handling both mathematical and code-based 419

problem-solving scenarios. 420

Notably, on mathematical reasoning tasks with 421

LLaMA2-7B, DropLoRA outperforms standard 422

LoRA by an average margin of +0.7 percentage 423

points, while this advantage expands to +2.28 per- 424

centage points on coding tasks. The performance 425

gap persists with LLaMA3-8B, where DropLoRA 426

achieves +0.58 and +1.03 percentage point im- 427

provements over LoRA in mathematical and coding 428

tasks, respectively. 429

We also observed that LoRA and DoRA achieved 430

comparable performance on mathematical reason- 431

ing tasks, while MiLoRA exhibited significant per- 432

formance fluctuations across two models. On cod- 433

ing tasks, DoRA, MiLoRA, and PiSSA all show 434

substantial performance gaps compared to LoRA, 435

hinting at the complexity of coding tasks. Despite 436

this, our method still significantly outperformed 437

LoRA. Specifically, on LLaMA2-7B, it surpassed 438

LoRA by +2.3 percentage points; on LLaMA3- 439

6

Model Method # Parameters MT-Bench

LLaMA2-7B

LoRA 56.10M 5.16
DoRA 56.98M 5.33
PiSSA 56.10M 5.20

MiLoRA 56.10M 5.25
DropLoRA (Ours) 56.10M 5.54

LLaMA3-8B

LoRA 56.62M 6.31
DoRA 57.41M 6.09
PiSSA 56.62M 5.94

MiLoRA 56.62M 6.11
DropLoRA (Ours) 56.62M 6.42

Table 4: Instruction following results based on
LLaMA2-7B and LLaMA3-8B, assigned by GPT-4 to
the answers. All experimental results are conducted by
ourselves.

8B, it surpassed LoRA by +1 point. The absolute440

leading advantage demonstrates the superior per-441

formance of our method on reasoning tasks.442

4.3 LLM Capability for Open Questions443

To comprehensively evaluate our model’s capacity444

for handling open-ended questions and executing445

complex instructions, we employ the MT-Bench446

dataset (Zheng et al., 2023), a widely recognized447

benchmark in the field of natural language process-448

ing. This meticulously curated dataset contains449

80 carefully designed questions spanning diverse450

domains and difficulty levels, along with 3,300451

expert-annotated pairwise human preference judg-452

ments comparing responses generated by six differ-453

ent models.454

Experimental Setting We utilize the same hy-455

perparameters as those used in the Hu et al. (2023).456

For the evaluation of conversational abilities, we457

employ the method mentioned in the MT-Bench pa-458

per(Zheng et al., 2023)3, utilizing GPT-4 to score459

the dialogue tasks. For detailed hyperparameter460

configurations, see Appendix A.461

Result Table 4 displays the results of our ex-462

periments conducted on the dialogue task. Our463

proposed method demonstrates the best perfor-464

mance across both models. Specifically, when465

compared to LoRA, the performance improves by466

+0.38 points on LLaMA2-7B and by +0.38 points467

on LLaMA3-8B. Notably, we observe that both468

PiSSA and MiLoRA, in comparison to LoRA, yield469

nearly the same marginal gains in the dialogue task.470

This suggests that the differences in performance471

between fine-tuning the principal singular compo-472

nent (PiSSA) and fine-tuning the minor singular473

3https://github.com/lm-sys/fastchat

Method rank pruning rate accuracy
LoRA 16 0 84.5
LoRA 32 0 84.4

DropLoRA (Ours) 32 0.5 84.9

Table 5: The performance comparison of LoRA and
DropLoRA on inference tasks with different ranks and
pruning rates.

component (MiLoRA) are relatively minor and do 474

not have a significant impact on this particular task. 475

4.4 Study 476

Effect of Pruning Module DropLoRA inserts a 477

pruning module between the two low-rank matrices 478

of LoRA to simulate subspace learning, while keep- 479

ing everything else consistent with LoRA. As can 480

be seen from Table 1 ∼ Table 4, on all four tasks, 481

whether it is on the LLaMA2-7B or LLaMA3-8B 482

model, the performance of DropLoRA is signifi- 483

cantly better than that of LoRA, proving the effec- 484

tiveness of the pruning module and its generaliza- 485

tion to different tasks and models. As shown in 486

Table 5, for DropLoRA, when the rank is 32 and 487

the pruning rate is 0.5, it means that only half of the 488

parameters are updated during each parameter up- 489

date, which is comparable to the LoRA parameters 490

with rank 16. However, regardless of whether the 491

rank of LoRA is 16 or 32, DropLoRA consistently 492

outperforms LoRA, proving the effectiveness of 493

the DropLoRA pruning module. 494

Effect of Pruning Rate We explore the impact 495

of different pruning rates on experimental results, 496

such as the pruning rate in Equation 2. Figure 2 497

shows the fine-tuning performance of different 498

pruning rates on the commonsense reasoning, math 499

and coding tasks. We can see that when the prun- 500

ing rate varies within the range of 0.1 ∼ 0.5, the 501

performance fluctuates slightly. When the pruning 502

rate is 0.3, compared with LoRA, the performance 503

improvement is the greatest. We observe that when 504

the pruning rate is set to 0.5, it starts to perform 505

worse than LoRA on math and code tasks. This is 506

because when the pruning rate is too large, it will 507

reduce the low-rank subspace representation ability 508

of the model, resulting in performance degradation. 509

We also observe that even when the pruning rate 510

is set to 0.5, which means that only half of the pa- 511

rameters are activated during the training process 512

of each subspace, DropLoRA can still achieve bet- 513

ter performance than LoRA on the commonsense 514

reasoning task. This demonstrates the effectiveness 515

7

https://github.com/lm-sys/fastchat

Figure 2: Average accuracy of LoRA and DropLoRA for varying pruning rate on the commonsense reasoning, math
and code tasks. The left, middle, and right figures correspond to commonsense reasoning, math, and coding tasks
respectively.

of subspace learning.516

Parameter Scalability We conduct an explo-517

ration into the relationship that exists between the518

quantity of trainable parameters and the perfor-519

mance of both the Low-Rank Adaptation (LoRA)520

method and our proposed method. We set the521

rank r = {8, 16, 32, 64}, and α remains twice522

the rank. Other hyperparameters remain consis-523

tent with those of the commensense reasoning task.524

The average accuracy of LoRA and DropLoRA525

for varying ranks for LLaMA-7B on the common-526

sense reasoning tasks is depicted in Figure 3. As527

shown in Figure 3, under all rank configurations,528

DropLoRA consistently outperforms LoRA. Due529

to the structural similarity between the two, their530

performance trends are also similar. When the rank531

is larger, DropLoRA’s performance remains signif-532

icantly superior to that of LoRA. However, when533

the rank is smaller, the performance gap between534

the two narrows. This is because, when the rank535

is small, DropLoRA, due to the pruning module,536

learns in a lower-rank subspace compared to LoRA.537

An excessively low rank can limit the expressive538

power of the subspace learning.539

5 Conclusion540

In this paper, we introduce DropLoRA, a simple yet541

effective low-rank adaptive method for parameter-542

efficient fine-tuning of large language models. By543

inserting a pruning module between the two low-544

rank matrices of LoRA to simulate subspace learn-545

ing, we show that performance can be improved not546

Figure 3: Average accuracy of LoRA and DropLoRA
for varying ranks for LLaMA-7B on the commonsense
reasoning tasks.

only by increasing LoRA’s rank but also by lower- 547

ing it. We validate the effectiveness of DropLoRA 548

on a wide range of large language model evaluation 549

benchmarks, including commonsense reasoning, 550

math reasoning, code generation, and instruction- 551

following tasks. Experimental results indicate that 552

DropLoRA consistently outperforms other base- 553

line methods, including LoRA, DoRA, PiSSA, and 554

MiLoRA, across all tasks. Compared to LoRA, 555

DropLoRA introduces no additional parameters, 556

thus not increasing any training or inference costs. 557

Our research shows that, in addition to increas- 558

ing the rank of LoRA, lowering its rank can also 559

enhance the performance, providing a new perspec- 560

tive for future optimization on parameter-efficient 561

fine-tuning of LLMs. 562

8

Limitations563

Due to computational resource constraints, we have564

only validated the effectiveness of DropLoRA on565

large model generation tasks, such as common-566

sense reasoning, math reasoning, code generation,567

and instruction-following tasks. However, an inter-568

esting future direction is whether DropLoRA can569

enhance performance on multimodal large model570

benchmark tasks beyond language generation. An-571

other open question is whether we can provide a572

theoretical foundation to support the effectiveness573

of rank reduction for simulating subspace learning.574

We consider these unresolved issues as important575

areas for future research.576

References577

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama578
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo579
Almeida, Janko Altenschmidt, Sam Altman, Shyamal580
Anadkat, et al. 2023. Gpt-4 technical report. arXiv581
preprint arXiv:2303.08774.582

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten583
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,584
Carrie Cai, Michael Terry, Quoc Le, et al. 2021. Pro-585
gram synthesis with large language models. arXiv586
preprint arXiv:2108.07732.587

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,588
et al. 2020. Piqa: Reasoning about physical common-589
sense in natural language. In Proceedings of the AAAI590
conference on artificial intelligence, volume 34, pages591
7432–7439.592

Tom Brown, Benjamin Mann, Nick Ryder, Melanie593
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind594
Neelakantan, Pranav Shyam, Girish Sastry, Amanda595
Askell, et al. 2020. Language models are few-shot596
learners. Advances in neural information processing597
systems, 33:1877–1901.598

Kerim Büyükakyüz. 2024. Olora: Orthonormal low-599
rank adaptation of large language models. arXiv600
preprint arXiv:2406.01775.601

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,602
Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri603
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,604
et al. 2021. Evaluating large language models trained605
on code. arXiv preprint arXiv:2107.03374.606

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom607
Kwiatkowski, Michael Collins, and Kristina Toutanova.608
2019. Boolq: Exploring the surprising difficulty of natu-609
ral yes/no questions. arXiv preprint arXiv:1905.10044.610

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,611
Ashish Sabharwal, Carissa Schoenick, and Oyvind612
Tafjord. 2018. Think you have solved question answer-613
ing? try arc, the ai2 reasoning challenge. arXiv preprint614
arXiv:1803.05457.615

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 616
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap- 617
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 618
2021. Training verifiers to solve math word problems. 619
arXiv preprint arXiv:2110.14168. 620

Fernando De La Torre and Michael J Black. 2003. A 621
framework for robust subspace learning. International 622
Journal of Computer Vision, 54:117–142. 623

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong- 624
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi- 625
Min Chan, Weize Chen, et al. 2023. Parameter-efficient 626
fine-tuning of large-scale pre-trained language models. 627
Nature Machine Intelligence, 5(3):220–235. 628

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 629
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, 630
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex 631
Vaughan, et al. 2024. The llama 3 herd of models. 632
arXiv preprint arXiv:2407.21783. 633

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 634
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 635
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incen- 636
tivizing reasoning capability in llms via reinforcement 637
learning. arXiv preprint arXiv:2501.12948. 638

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 639
Kirkpatrick, and Graham Neubig. 2021. Towards a uni- 640
fied view of parameter-efficient transfer learning. arXiv 641
preprint arXiv:2110.04366. 642

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 643
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 644
cob Steinhardt. 2021. Measuring mathematical prob- 645
lem solving with the math dataset. arXiv preprint 646
arXiv:2103.03874. 647

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. 648
Reducing the dimensionality of data with neural net- 649
works. science, 313(5786):504–507. 650

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 651
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges- 652
mundo, Mona Attariyan, and Sylvain Gelly. 2019. 653
Parameter-efficient transfer learning for nlp. In Inter- 654
national conference on machine learning, pages 2790– 655
2799. PMLR. 656

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 657
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu 658
Chen, et al. 2022. Lora: Low-rank adaptation of large 659
language models. ICLR, 1(2):3. 660

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee- 661
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and 662
Roy Ka-Wei Lee. 2023. Llm-adapters: An adapter fam- 663
ily for parameter-efficient fine-tuning of large language 664
models. arXiv preprint arXiv:2304.01933. 665

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan 666
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng 667
Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. 668
2024. Mora: High-rank updating for parameter-efficient 669
fine-tuning. Preprint, arXiv:2405.12130. 670

9

https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M671
Asano. 2023. Vera: Vector-based random matrix adap-672
tation. arXiv preprint arXiv:2310.11454.673

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:674
Optimizing continuous prompts for generation. arXiv675
preprint arXiv:2101.00190.676

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh677
Shetty, Gautham Krishna Gudur, Joydeep Ghosh,678
Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski,679
and Sujay Sanghavi. 2024. Svft: Parameter-680
efficient fine-tuning with singular vectors. Preprint,681
arXiv:2405.19597.682

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,683
Yong Yu, and Yi Ma. 2012. Robust recovery of sub-684
space structures by low-rank representation. IEEE trans-685
actions on pattern analysis and machine intelligence,686
35(1):171–184.687

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo688
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting689
Cheng, and Min-Hung Chen. 2024. Dora: Weight-690
decomposed low-rank adaptation. In Forty-first Interna-691
tional Conference on Machine Learning.692

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,693
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-694
tuning v2: Prompt tuning can be comparable to fine-695
tuning universally across scales and tasks. arXiv696
preprint arXiv:2110.07602.697

Rabeeh Karimi Mahabadi, Sebastian Ruder,698
Mostafa Dehghani, and James Henderson. 2021.699
Parameter-efficient multi-task fine-tuning for trans-700
formers via shared hypernetworks. arXiv preprint701
arXiv:2106.04489.702

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024a.703
Pissa: Principal singular values and singular vec-704
tors adaptation of large language models. Preprint,705
arXiv:2404.02948.706

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang,707
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu708
Dong, Liang Chen, and Zhifang Sui. 2024b. Period-709
iclora: Breaking the low-rank bottleneck in lora opti-710
mization. arXiv preprint arXiv:2402.16141.711

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish712
Sabharwal. 2018. Can a suit of armor conduct electric-713
ity? a new dataset for open book question answering.714
arXiv preprint arXiv:1809.02789.715

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,716
and Yuxiong He. 2020. Deepspeed: System optimiza-717
tions enable training deep learning models with over718
100 billion parameters. In Proceedings of the 26th ACM719
SIGKDD international conference on knowledge discov-720
ery & data mining, pages 3505–3506.721

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-722
ula, and Yejin Choi. 2021. Winogrande: An adversarial723
winograd schema challenge at scale. Communications724
of the ACM, 64(9):99–106.725

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 726
LeBras, and Yejin Choi. 2019. Socialiqa: Common- 727
sense reasoning about social interactions. arXiv preprint 728
arXiv:1904.09728. 729

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, 730
Ilya Sutskever, and Ruslan Salakhutdinov. 2014. 731
Dropout: a simple way to prevent neural networks from 732
overfitting. The journal of machine learning research, 733
15(1):1929–1958. 734

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 735
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, 736
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 737
2023. Llama 2: Open foundation and fine-tuned chat 738
models. arXiv preprint arXiv:2307.09288. 739

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 740
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parame- 741
ter efficient tuning of pre-trained models using dy- 742
namic search-free low-rank adaptation. arXiv preprint 743
arXiv:2210.07558. 744

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, 745
and Yun Chen. 2025. Milora: Harnessing minor singu- 746
lar components for parameter-efficient llm finetuning. 747
Preprint, arXiv:2406.09044. 748

John Wright, Allen Y Yang, Arvind Ganesh, S Shankar 749
Sastry, and Yi Ma. 2008. Robust face recognition via 750
sparse representation. IEEE transactions on pattern 751
analysis and machine intelligence, 31(2):210–227. 752

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024. 753
Chain of lora: Efficient fine-tuning of language models 754
via residual learning. arXiv preprint arXiv:2401.04151. 755

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 756
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo 757
Li, Adrian Weller, and Weiyang Liu. 2023. Metamath: 758
Bootstrap your own mathematical questions for large 759
language models. arXiv preprint arXiv:2309.12284. 760

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 761
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 762
machine really finish your sentence? arXiv preprint 763
arXiv:1905.07830. 764

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 765
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 766
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap- 767
tive budget allocation for parameter-efficient fine-tuning. 768
arXiv preprint arXiv:2303.10512. 769

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang 770
Wang, Anima Anandkumar, and Yuandong Tian. 2024. 771
Galore: Memory-efficient llm training by gradient low- 772
rank projection. Preprint, arXiv:2403.03507. 773

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 774
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo- 775
han Li, Dacheng Li, Eric Xing, et al. 2023. Judging llm- 776
as-a-judge with mt-bench and chatbot arena. Advances 777
in Neural Information Processing Systems, 36:46595– 778
46623. 779

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 780
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue. 781

10

https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

2024. Opencodeinterpreter: Integrating code gener-782
ation with execution and refinement. arXiv preprint783
arXiv:2402.14658.784

A Appendix 785

Table 6 presents the statistics of the datasets used 786

in this paper. 787

A.1 Dataset Statistics 788

Dataset Domain # train # test Answer
BoolQ CS 9.4K 3,270 Yes/No
PIQA CS 16.1K 1,830 Option
SIQA CS 33.4K 1,954 Option

HellaSwag CS 39.9K 10,042 Option
WinoGrande CS 63.2K 1,267 Option

ARC-e CS 1.1K 2,376 Option
ARC-c CS 2.3K 1,172 Option
OBQA CS 5.0K 500 Option

GSM8K Math 240K 1,319 Number
MATH Math 155K 5,000 Number
Python Code 104,848 563 Code

Instruction Following Conversation 143K 80 Text

Table 6: Details of datasets used in our experiment set-
ting including commonsense reasoning, math reasoning,
code reasoning and instruction following tasks.

A.2 Our Hyperparameter Setup for LLM 789

Table 7 presents the hyperparameter configura- 790

tions used in our experiments. To ensure fairness, 791

our hyperparameter settings are consistent with 792

those reported in the DoRA(Liu et al., 2024) and 793

MiLoRA(Wang et al., 2025) papers. Note that, to 794

accelerate training, the batch size for all experi- 795

ments in this paper is set to 128. 796

Hyperparameters Commonsense Math Code Conversation
Rank r 32 64 32 32

α of LoRA 64 128 64 64
α of DoRA 64 128 64 64

α of DropLoRA 64 128 64 64
α of PiSSA 32 64 32 32
α of MiLoRA 32 64 32 32

Dropout 0.05
Pruning Rate 0.1 ∼ 0.5

Optimizer AdamW
LR 3e-4

LR Scheduler Linear
Batch size 128

Warmup Steps 100
Epochs 3 1 3 3

Reparameterization Q,K,V,Up,Down

Table 7: Our hyperparameter configuration for LLM
generation benchmarks for fine-tuning LLaMA2-7B,
LLaMA3-8B on the commonsense reasoning, math rea-
soning, code reasoning and instruction following tasks.

A.3 Case Study 797

To provide an intuitive demonstration of the effects, 798

we randomly sampled two cases from the mathe- 799

matical reasoning tasks and presented the reasoning 800

analysis results. Table 8 and Table 9 show the infer- 801

ence results of various methods. In Table 8, except 802

for DoRA, the reasoning processes and outcomes 803

of the other methods are correct. Although DoRA 804

11

produces the correct result, its reasoning process805

is incorrect. DropLoRA and LoRA share a similar806

reasoning process, as do MiLoRA and PiSSA. In807

Table 9, PiSSA’s reasoning process and outcome808

are both incorrect, while LoRA’s reasoning process809

is correct but its result is wrong. The reasoning810

processes and results of DropLoRA, DoRA, and811

MiLoRA are all correct. Note that although the rea-812

soning processes of these three methods are correct,813

DropLoRA and MiLoRA’s reasoning processes ex-814

plicitly highlight the keyword "least common mul-815

tiple (LCM)", reflecting a more fundamental rea-816

soning approach.817

12

Question The ratio of Mary’s age to Alice’s age is 3 : 5.
Alice is 30 years old. How many years old is Mary?

DropLoRA If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.
This means that for every 3 years old Mary is, Alice is 5 years old.
Since Alice is 30 years old, we can set up the equation 3

5 · 30 = 18 .
Therefore, Mary is 18 years old. The answer is: 18.

DoRA If the ratio of Mary’s age to Alice’s age is 3 : 5,
then we can write this as 3x : 5x, where x is a constant.
We are given that Alice is 30 years old,
so we can substitute this into the ratio to get 3x : 5x = 30.
To solve for x, we divide both sides of the equation by 3 and 5,
respectively, to get x = 10.
Therefore, Mary’s age is 3x = 3(10) = 30 years old. The answer is: 30.

LoRA If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.
This means that for every 3 years old Mary is, Alice is 5 years old.
Since Alice is 30 years old, we can set up the equation 3

5 · 30 = Mary’s age.
Simplifying, we find that Mary is 3

5 · 30 = 18 years old. The answer is: 18.
MiLoRA: If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.

Let’s assume Mary’s age is x years old.
According to the ratio, we have x

30 = 3
5 . Cross-multiplying, we get 5x = 30 · 3.

Simplifying, we find 5x = 90. Dividing both sides by 5, we get x = 18 .
Therefore, Mary is 18 years old. The answer is: 18.

PiSSA If the ratio of Mary’s age to Alice’s age is 3 : 5,
then we can write this as Mary’s age

Alice’s age = 3
5 .

We are given that Alice is 30 years old,
so we can substitute this into the equation to get Mary’s age

30 = 3
5 .

To solve for Mary’s age, we can cross-multiply to get 5 · Mary’s age = 3 · 30.
Simplifying, we have 5 · Mary’s age = 90.
Dividing both sides by 5, we find that Mary’s age = 18 . The answer is: 18.

Table 8: Case Study I for Math Reasoning task on LLaMA2-7B.

13

Question What is the smallest number of marbles that could be divided up either
into bags of 18 marbles or into bags of 42 marbles,
with no marbles left over in each case?

DropLoRA We can find the least common multiple (LCM) of 18 and 42 to
find the smallest number that can be divided evenly into both 18 and 42.
Prime factorizing 18 and 42, we have 18 = 2× 32 and 42 = 2× 3× 7.
The LCM is then 2× 32 × 7 = 126.
Therefore, the smallest number of marbles that can be divided up
into bags of 18 or 42 marbles is 126 .
The answer is: 126.

DoRA We want to find the smallest number that is divisible by both 18 and 42.
The prime factorization of 18 is 2× 32,
and the prime factorization of 42 is 2× 3× 7.
To find the smallest number divisible by both 18 and 42,
we take the highest power of each prime that appears in either factorization.
So, the smallest number divisible by both 18 and 42 is 2× 32 × 7 = 126 .
The answer is: 126.

LoRA We want to find the smallest number that is divisible by both 18 and 42.
The prime factorization of 18 is 2× 32

and the prime factorization of 42 is 2× 3× 7.
To find the smallest number divisible by both 18 and 42,
we take the highest power of each prime that appears in either factorization.
So, the smallest number divisible by both 18 and 42 is 2× 32 × 7 = 168 .
The answer is: 168.

MiLoRA We can find the smallest number of marbles by finding
the least common multiple (LCM) of 18 and 42.
Prime factorizing 18 and 42, we have 18 = 2× 32 and 42 = 2× 3× 7.
The LCM is then 2× 32 × 7 = 126.
Therefore, the smallest number of marbles that could be
divided up into bags of 18 marbles or 42 marbles is 126 .
The answer is: 126.

PiSSA The smallest number of marbles that could be divided up into bags
of 18 marbles is 18, and the smallest number of marbles that
could be divided up into bags of 42 marbles is 42.
Therefore, the smallest number of marbles that could be divided up
into both bags is 18× 42 = 784 .
The answer is: 784.

Table 9: Case Study II for Math Reasoning task on LLaMA2-7B.

14

	Introduction
	Related Work
	Method
	Experiments
	Commensense Reasoning
	Math and Code Reasoning
	LLM Capability for Open Questions
	Study

	Conclusion
	Appendix
	Dataset Statistics
	Our Hyperparameter Setup for LLM
	Case Study

