DropLoRA: Sparse Low-Rank Adaptation for Parameter-Efficient
Fine-Tuning

Anonymous ACL submission

Abstract

LoRA-based large model parameter-efficient
fine-tuning (PEFT) methods use low-rank de-
composition to approximate updates to model
parameters. However, compared to full-
parameter fine-tuning, low-rank updates often
lead to a performance gap in downstream tasks.
To address this, we introduce DropLoRA, a
novel pruning-based approach that focuses on
pruning the rank dimension. Unlike conven-
tional methods that attempt to overcome the
low-rank bottleneck, DropLoRA innovatively
integrates a pruning module between the two
low-rank matrices in LoRA to simulate dy-
namic subspace learning. This dynamic low-
rank subspace learning allows DropL.oRA to
overcome the limitations of traditional LoRA,
which operates within a static subspace. By
continuously adapting the learning subspace,
DropLoRA significantly boosts performance
without incurring additional training or infer-
ence costs. Our experimental results demon-
strate that DropLoRA consistently outperforms
LoRA in fine-tuning the LLaMA series across
a wide range of large language model genera-
tion tasks, including commonsense reasoning,
mathematical reasoning, code generation, and
instruction-following. Our code will be avail-
able after the anonymous review.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable proficiency in diverse cognitive tasks
spanning machine translation, information extrac-
tion, question answering, human-like dialogue sys-
tems, and logical reasoning (Guo et al., 2025;
Achiam et al., 2023; Brown et al., 2020). While this
methodology typically involves two-phase training
- pre-training on extensive datasets followed by
instruction-based fine-tuning (IFT) for downstream
task optimization. The substantial computation and
memory overhead required for effective instruc-
tion fine-tuning pose significant barriers to imple-

menting these architectures in resource-constrained
scenarios (Grattafiori et al., 2024). Consequently,
Efficient fine-tuning techniques based on models
are increasingly gaining popularity and attention
within the community.

Parameter-efficient fine-tuning (PEFT) methods
aim to achieve performance comparable to full-
parameter fine-tuning by freezing the majority of
the large model’s parameters and fine-tuning a
small number of parameters on downstream tasks
(Ding et al., 2023). Based on this fundamental
idea, Low-Rank Adaptation (LoRA) technology
approximates model parameter updates by intro-
ducing two low-rank matrices, and it has garnered
widespread attention within the community in re-
cent years (Hu et al., 2022). Mathematically, the
original model weight W can be reparametered
into W = Wy + BA, where W € R™*" and
B € R™*" A € R"™"™. Because of the rank
r < min{m, n}, the learnable parameters are far
smaller than the original weight parameter count,
which saves much GPU memory. Despite LoRA’s
high flexibility and broad applicability, its perfor-
mance is constrained by the rank r of the low-rank
matrices A and B, resulting in it still slightly under-
performing compared to full-parameter fine-tuning
(Xia et al., 2024).

To address the performance limitations of LoRA,
the research community has investigated a diverse
array of strategies. A number of works have fo-
cused on the initialization of LoRA, employing sin-
gular value decomposition (SVD) of the original
matrices to optimize the initialization of the low-
rank matrices A and B (Meng et al., 2024a; Wang
et al., 2025; Lingam et al., 2024; Biiylikakyiiz,
2024). Another line of research aims to enhance the
rank of LoRA by refining the low-rank matrices to
mitigate the rank bottleneck and improve its expres-
sive power (Meng et al., 2024b; Wang et al., 2025;
Jiang et al., 2024). Additionally, some techniques

B=0,e R™"
Pretrained Weight

wy € Rmxn

A~ N(0,0),€ R™"

@ | |

dim;,

[CHE T L RYET

dimous

b |
AR
\—

ER’
4
@ |

dim,

wg €]Rnl\‘n

~ N(0,0) € R™"

Figure 1: Schematic comparison of LoRA (left) and DropLoRA (right). In LoRA, the original weights remain
unchanged, with updates being applied solely to two low-rank matrices. DropLoRA introduces a mask matrix M
between these two low-rank matrices to enable pruning. At each parameter iteration step, a distinct M is sampled
from a Bernoulli distribution, enabling subspace learning. In both scenarios, the low-rank matrices and vectors can
be seamlessly integrated into the original weight matrix W, thereby introducing no additional latency.

dynamically adapt the rank of LoRA for different
weights, offering greater flexibility and efficiency
(Valipour et al., 2022; Zhang et al., 2023).

In contrast to reparameterizing the original weights,
Zhao et al. (2024) introduces Galore, an inno-
vative approach that achieves memory efficiency
by projecting gradients onto diverse low-rank
subspaces—effectively reparameterizing the gra-
dients—while demonstrating exceptional perfor-
mance. While Galore utilizes gradient-based low-
rank projection, it fundamentally differs from
LoRA, representing a distinct methodology. A key
distinction is that LoRA fine-tunes only a subset
of parameters, whereas Galore optimizes all pa-
rameters. Inspired by the efficiency of the dynamic
subspace learning of Galore, we are prompted
to investigate: Can LoRA further enhance its per-
formance through the application of dynamic sub-
space learning?

Building on this insight, we propose DropLoRA,
a strategy that simulates subspace learning by dy-
namically adjusting the rank of LoRA. For a fixed
rank, LoRA operates within a consistent low-rank
subspace, with the learning subspace remaining
static throughout the process. To simulate dy-
namic subspace learning, we propose a simple
yet effective pruning strategy, as illustrated in Fig-
ure 1. By applying unified dynamic pruning to
the two low-rank matrices, each pruning opera-

tion corresponds to a distinct subspace. Specifi-
cally, we sample the rank-dimension pruning ma-
trix M from a Bernoulli distribution, hence, M &€
0,13, M; "% Bernoulli (p),i € {1,2,....r},
where p is the pruning probability, r is the rank
of A and B. Hence our DropLoRA can be formu-
lated as W = Wy + (B ® M) x (M ® A). The
dynamics of subspace learning are reflected in sam-
pling different pruning matrices M at each iteration
step.

Extensive experiments show that subspace learn-
ing, as exemplified by DropLoRA, can serve as
a novel optimization direction. In summary, our
main contributions are as follows:

* We propose DropLoRA, an innovative opti-
mization strategy for LoRA, which for the
first time introduces subspace learning into
the LoRA framework, exploring a novel direc-
tion for optimization in the community.

* Our pruning strategy is designed to be seam-
lessly integrated into any LoRA variant with-
out introducing additional computational or
storage overhead, showcasing its adaptability
and practicality.

* DropLoRA achieves state-of-the-art (SOTA)
performance across diverse domains, high-
lighting its broad applicability and robustness.

2 Related Work

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods for supervised fine-tuning of large models
have become increasingly significant, particularly
in resource-constrained scenarios. The develop-
ment of various efficient fine-tuning methods has
emerged as a prominent research focus. Exist-
ing efficient fine-tuning techniques can be cate-
gorized into the following aspects. Methods based
on adapters aim to insert different adapter layers
between the layers of a model for various down-
stream tasks (Houlsby et al., 2019; He et al., 2021;
Mahabadi et al., 2021).

Prompt-based methods, such as P-tuning (Liu et al.,
2021) and prefix-tuning (Li and Liang, 2021) , in-
troduce continuous prompt tokens into the input
space, allowing for efficient adaptation of large
PLMs by only fine-tuning these learned prompt
embeddings while keeping the original model pa-
rameters frozen. These approaches differ from tra-
ditional fine-tuning, as they avoid direct modifi-
cation of the underlying model weights, instead
relying on task-specific soft prompts to guide the
model’s behavior. However, both adapter-based
and prompt-based approaches modify the model’s
internal structure, either by inserting additional
trainable layers or by prepending learnable prompt
embeddings. While these methods significantly re-
duce the number of trainable parameters compared
to full fine-tuning, they inevitably introduce addi-
tional computational overhead during both training
and inference. Specifically, the inclusion of ex-
tra parameters or prompt tokens increases memory
usage and may lead to higher inference latency,
particularly in real-time applications where low-
latency responses are critical.

LoRA-based methods and their variants achieve pa-
rameter efficiency by decomposing the base weight
matrix into two low-rank matrices, demonstrating
significant advantages in deployment, particularly
for mobile device applications (Hu et al., 2022;
Kopiczko et al., 2023; Meng et al., 2024b; Liu
et al., 2024; Zhang et al., 2023; Meng et al., 2024a).
For diverse applications, it is only necessary to
store distinct LoRA adapters specifically fine-tuned
for their respective downstream tasks. Variants of
LoRA primarily include optimization of initializa-
tion parameters, rank enhancement, and adaptive
rank selection, among others (Meng et al., 2024a,b;
Valipour et al., 2022). Extensive research related

Algorithm 1 DropLoRA, torch-style pseudocode.

class DropLoRALayer (nn.Module):
def __init__¢(
self,
r: int = 32, # rank
p: float = 0.5, # pruning probability
d1: int 4096, # input dimension
d2: int 4096, # output dimension
base_layer: nn.Module # pre-trained layer

sélf.base_layer = base_layer

self.A = torch.randn(r, d1)
self.B = torch.zeros(d2, r)
self.M = Dropout(p) ## Line 1.

self.base_layer. freeze()

def forward(self, x: torch.Tensor):
h = self.base_layer(x)
In LoRA
delta = x @ self.A @ self.B
Line 2
delta = self.M(x @ self.A) @ self.B

return h + delta

to LoRA demonstrates that LoRA-based methods
are currently dominating the field of Parameter-
Efficient Fine-Tuning (PEFT).

Subspace Learning focuses on deriving
low-dimensional, essential features from high-
dimensional data to enhance learning efficiency
and effectiveness. By eliminating redundancy
and capturing essential characteristics, subspace
learning facilitates more efficient and effective
learning processes, enhancing both computational
performance and model accuracy (Liu et al., 2012;
De La Torre and Black, 2003). Extensive research
has demonstrated that subspace learning exhibits
excellent generalization capabilities, making it
a robust approach for various machine learning
tasks (Hinton and Salakhutdinov, 2006; Wright
et al., 2008; Zhao et al., 2024). LoRA assumes that
weight updates occur in a low-rank space; however,
due to its static rank nature, it can essentially be
regarded as a form of static subspace learning.

3 Method

LoRA reparameterizes the update of the original
weights as the product of two low-rank matrices,
as expressed in Equation 1:

h = Wyx + BAx 1

where Wy € R™*™ and B € R™*", A € R"™*".
During the training process, the original weights
Wy remain unchanged, with updates being applied
exclusively to the weights of the two low-rank ma-
trices A, B. Here, We undeline the parameters

updated during the training process. Because of
the rank r < min{m, n}, the learnable parameters
are far smaller than the original weight parame-
ter count. When the rank is fixed, LORA can be
viewed as learning within a static subspace, which
may inherently constrain its expressive capacity.

To simulate dynamic subspace learning, we pro-
pose a pruning technique based on dynamic mask-
ing. Specifically, we sample the rank dimension
using a Bernoulli distribution Bernoulli (p) to gen-
erate a mask vector of rank size, where a value of 1
retains the dimension and a value of 0 discards it.
Our DropLoRA method is expressed as:

h=Wx+(BoM)(MoAx (2

where M € {0,1}", M; "% Bernoulli (p),i €
{1,2,...,r} and ® represents element-wise multi-
plication. M is a mask matrix, where p represents
the pruning probability. At each training iteration
step, we randomly sample a distinct mask matrix
M to simulate dynamic subspace learning.

Rank Analysis When we apply the sampled
mask to prune the rank dimension, it implies that
the effective rank of the two low-rank matrices
A= (M®A) and B = (B® M) is reduced
compared to their original rank. With a pruning
probability of 0.5, the rank of A and B becomes
only half of the original rank.

Equivalence Intuitively, there are two pruning
strategies: one applies a unified pruning using
the same mask matrix for both low-rank matrices,
while the other prunes A and B separately using
distinct mask matrices. For the latter, the two mask
matrices operate under a logical AND relationship,
effectively equivalent to their intersection. This is
functionally identical to using a single mask matrix
with values equal to the intersection. Thus, the two
approaches are equivalent.

Easy Implementation Since the product of
LoRA’s two low-rank matrices is mathematically
equivalent to a two-layer perceptron without ac-
tivation, the masked pruning strategy effectively
functions as dropout applied to the intermediate
hidden layer. This implies that, compared to LoRA,
DropLoRA can be implemented with just two ad-
ditional lines of code, as illustrated in Algorithm 1.

It is worth noting that, although similar in im-
plementation, our method differs from traditional
Dropout regularization methods (Srivastava et al.,

2014). The Dropout method generally randomly
drops some of the high-dimensional inputs. In
contrast, our method randomly discards the rank
dimension of LoRA low-rank matrices. Intuitively,
the expressive power of LoRA is limited by the
size of the rank. Randomly discarding the rank di-
mension will further reduce the expressive power of
LoRA, resulting in severe performance degradation.
Therefore, pruning the rank dimension is somewhat
counterintuitive. However, dynamic low-rank sub-
space learning allows DropLoRA to overcome the
limitations of traditional LoRA, which operates
within a static subspace and the model is prompted
to learn more intrinsic parameter variation charac-
teristics, thereby improving performance.

Training and Inference During the training pro-
cess, at each iteration step, we obtain different
low-rank subspaces by sampling different pruning
vectors through the Bernoulli distribution. During
backpropagation, only the retained parameters are
involved in the update. In the reasoning process,
in order to enhance the model’s expressive power,
we do not use the pruning module. By integrating
the parameters learned in different subspaces, this
has a similar effect to ensemble learning, thereby
improving the robustness of the model.

4 Experiments

To evaluate the effectiveness of the DropLoRA
method, we conducted extensive experiments en-
compassing commonsense reasoning tasks, mathe-
matical tasks, coding tasks, instruction following
tasks. For all tasks, we choose the same LoRA-
related baselines including:

LoRA(Hu et al., 2022) decomposes a parameter
update into the product of two low-rank matrices,
where one matrix is initialized with Gaussian dis-
tribution and the other is initialized with zeros.
DoRA(Liu et al., 2024) decouples the magnitude
and direction of the parameter update, using LoRA
to update the direction and a learnable magnitude
vector to update the magnitude.

PiSSA(Meng et al., 2024a) initializes LoRA by ap-
plying singular value decomposition (SVD) to the
pre-trained weights, using the Principal Singular
Components to initialize LoRA, while the residual
components are used to initialize the pre-trained
weights.

MiLoRA (Wang et al., 2025) initializes LoRA by
applying singular value decomposition (SVD) to
the pre-trained weights, using the Minor Singular

Model PEFT # Parameters BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT' - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 71.0
LoRAT 56.10M 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6

DoRAT 56.98M 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7

PiSSA* 56.10M 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8

MiLoRAT 56.10M 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2

LLaMA2-7B LoRA 56.10M 7437 8738 81.32 95.07 85.79 88.80 7534 87.00 84.38
DoRA 56.98M 7446 86.18 80.60 94.91 87.53 89.14 7585 8640 84.39

PiSSA 56.10M 7327 8259 79.84 92.88 84.77 8523 71.33 84.80 81.84

MiLoRA 56.10M 74.53 86.45 80.81 95.23 86.90 89.48 76.54 86.00 84.49

DropLoRA (Ours) 56.10M 7422 87.00 80.91 95.24 87.61 89.73 77.30 87.20 84.91

LoRAT 56.62M 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8

DoRAT 57.41M 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

PiSSA* 56.62M 67.1 81.1 77.2 83.6 78.9 771 63.2 74.6 75.4

MiLoRAT 56.62M 68.8 86.7 77.2 92.9 85.6 89.48 75.5 81.8 81.9

LLaMA3-8B LoRA 56.62M 75.54 89.06 81.12 95.99 88.08 92.80 8259 89.20 86.78
DoRA 57.41M 7541 89.12 881.27 95.83 87.69 9242 8259 89.00 86.67

PiSSA 56.62M 72.66 86.13 80.14 93.60 84.77 89.73 76.88 86.00 83.74

MiLoRA 56.62M 74.53 86.45 80.81 95.23 86.90 89.48 76.54 86.00 84.49

DropLoRA (Ours) 56.62M 76.45 90.04 82.19 96.59 89.34 93.18 8328 89.80 87.61

Table 1: Commonsense reasoning evaluation results for LLaMA?2-7B and LLaMA3-8B on eight tasks. The reported
metric in this table is accuracy. TResults are cited from the original paper and *results are cited from Wang et al.
(2025). For PEFT results, all other experiments without superscripts are performed by ourselves. Bold numbers
indicate the highest performance scores and underline numbers indicate the second performance scores for each
dataset across the different PEFT methods for the corresponding model.

Components to initialize LoRA, while the residual
components are used to initialize the pre-trained
weights.

All experiments are conducted on 4 x A100 GPUs
with Deepspeed ZERO-2 stage(Rasley et al., 2020)
to accelerate training.

4.1 Commensense Reasoning

To evaluate the impact of efficient fine-tuning tech-
niques on commonsense knowledge and logical rea-
soning abilities, we conduct experiments on com-
monsense knowledge reasoning tasks.

Datasets The commonsense reasoning dataset
consists of 8 sub-tasks, each with its own
predefined training and testing sets, including
BoolQ(Clark et al., 2019), PIQA(Bisk et al., 2020),
SIQA(Sap et al., 2019), HellaSwag(Zellers et al.,
2019), WinoGrande(Sakaguchi et al., 2021), ARC-
e, ARC-c(Clark et al., 2018) and OBQA(Mihaylov
et al., 2018). We follow the experimental setup
from Hu et al. (2023), where the training sets of the
8 sub-tasks are combined, and inference and evalu-
ation are conducted separately on their respective
testing sets.

Experimental Setting We choose LLaMA?2-
7B(Touvron et al., 2023)' and LLaMA3-

1https ://hf-mirror.com/meta-1lama/
Llama-2-7b-hf

8B(Grattafiori et al., 2024)> as our backbone
models. To ensure a fair comparison, we imple-
ment all PEFT experiments ourselves. We also
report chatGPT-api based results sourced from Liu
et al. (2024). For the hyperparameter configuration,
we also follow the parameter settings from Hu
et al. (2023). Note that, to accelerate training,
we use a batch size of 128 instead of the original
configuration of 16. For all other hyperparameters,
we strictly follow the parameter settings from Hu
et al. (2023). It is important to note that in all
experiments, for DropLoRA, we only adjust the
pruning probability and do not adjust any other
hyperparameters. For detailed hyperparameter
configurations, see Appendix A.

Result Table 1 presents the experimental results
for the common-sense reasoning task. We also
report the evaluation results based on the Chat-
GPT API as outlined in the DoRA paper (Liu et al.,
2024), which are obtained with the GPT-3.5-turbo
API using a zero-shot Chain of Thought approach.

As can be seen, on the LLaMA2-7B, DropLoRA
achieved the best performance on five datasets (Hel-
laSwag, WinoGrande, ARC-e, ARC-c, OBQA), the
second-best performance on two datasets (PIQA,
SIQA), and the best average performance across
all eight datasets with an average performance in-

2https://hf—mirror.com/meta—llama/
Meta-Llama-3-8B

https://hf-mirror.com/meta-llama/Llama-2-7b-hf
https://hf-mirror.com/meta-llama/Llama-2-7b-hf
https://hf-mirror.com/meta-llama/Meta-Llama-3-8B
https://hf-mirror.com/meta-llama/Meta-Llama-3-8B

Model Method # Parameters GSM8K MATH Average

Model Method # Parameters HumanEval MBPP Average

Full FT 6738M 66.5 19.8 432

LoRAT 112.20M 60.6 16.9 38.7

PiSSAT 112.20M 58.2 15.8 37.0

MiLoRAT 112.20M 63.5 17.8 40.7

LLaMA2-7B LoRA 112.20M 65.66 1602 40.84
DoRA 113.07M 66.19 16.14 41.16

PiSSA 112.20M 64.37 1596 40.16

MiLoRA 112.20M 64.52 1492 39.72

DropLoRA (Ours) 112.20M 66.72 16.38 41.55

LoRA 113.25M 80.44 30.46 55.45

DoRA 114.03M 80.44 30.21 55.32
LLaMA3-8B PiSSA 113.25M 79.53 28.92 54.22
MiLoRA 113.25M 80.74 30.62 55.68

DropLoRA (Ours) 113.25M 81.32 30.74 56.03

Table 2: Math reasoning evaluation results for GSM8K
and MATH based on LLaMA2-7B and LLaMA3-8B.
TResults are cited from Wang et al. (2025) and All other
experiments without superscripts are performed by our-
selves.

crease of +0.53 points compared to LoRA. On the
LLaMA3-8B model, DropLoRA achieves the best
performance on all eight datasets, with an average
performance increase of 4+0.83 points compared
to LoRA, indicating that DropLoRA is an effec-
tive parameter-efficient fine-tuning method. We ob-
serve that both LoRA and DoRA achieve compara-
ble performance on LLaMA2-7B and LLaMA3-8B.
MiLoRA slightly outperforms LoRA on LLaMA2-
7B, but shows a significant performance gap on
LLaMA3-8B. PiSSA, on the other hand, performs
substantially worse than other methods on both
models. This indicates instability in performance
for methods that fine-tune either the principal or
the minor singular components. In contrast, our
method achieves the best performance on both mod-
els, demonstrating its superior stability.

4.2 Math and Code Reasoning

To evaluate numerical computation and logical rea-
soning capabilities, we conduct performance as-
sessments on mathematical problem-solving and
programming tasks.

Datasets We evaluate mathematical problem-
solving capabilities on MetaMathQA dataset(Yu
et al., 2023), including 395K samples generated
by augmenting the training sets of GSM8K(Cobbe
et al., 2021) and MATH(Hendrycks et al., 2021).
During the testing phase, we perform inference and
evaluate performance on the test sets of GSM8K
and MATH separately.

To evaluate code capabilities, we fine-tune on the
CodeFeedback(Zheng et al., 2024) dataset and per-
form evaluation on the HumanEval(Chen et al.,
2021)and MBPP(Austin et al., 2021) test sets.

LLaMA2-7B Full FT 6738M 21.34 35.59 28.47
LoRA 56.10M 18.90 41.27 30.09

DoRA 56.98M 14.63 42.86 28.75

LLaMA2-7B PiSSA 56.10M 9.76 42.86 26.31
MiLoRA 56.10M 21.34 37.57 29.46

DropLoRA (Ours) 56.10M 21.34 43.39 32.37

LoRA 56.62M 62.81 65.87 64.34

DoRA 57.41IM 59.76 66.40 63.08

LLaMA3-8B PiSSA 56.62M 57.93 65.87 61.90
MiLoRA 56.62M 59.76 66.93 63.35

DropLoRA (Ours) 56.62M 60.37 70.37 65.37

Table 3: Code evaluation results for HumanEval
and MBPP based on LLaMA?2-7B and LLaMA3-8B.
tResults are cited from Meng et al. (2024a) and the
other experimental results are from ourselves.

Experimental Setting We choose LLaMA2-7B!
and LLaMA3-8B? as our pre-trained models. We
use hyperparameter configurations similar to those
for commonsense reasoning. For the mathemat-
ical reasoning task, due to the large training set
of MetaMathQA, we set the rank of LoRA to 64
and train for only one epoch to avoid overfitting.
For the code evaluation task, we maintain the same
hyperparameter configuration as for commonsense
reasoning. For detailed hyperparameter configura-
tions, see Appendix A.

Result Tables 2 and Table 3 present the experi-
mental results for mathematical reasoning and code
reasoning tasks, respectively. DropLoRA consis-
tently achieves state-of-the-art performance across
all four reasoning tasks, demonstrating its effective-
ness in handling both mathematical and code-based
problem-solving scenarios.

Notably, on mathematical reasoning tasks with
LLaMA2-7B, DropLoRA outperforms standard
LoRA by an average margin of +0.7 percentage
points, while this advantage expands to +2.28 per-
centage points on coding tasks. The performance
gap persists with LLaMA3-8B, where DropLoRA
achieves 4-0.58 and +1.03 percentage point im-
provements over LORA in mathematical and coding
tasks, respectively.

We also observed that LoRA and DoRA achieved
comparable performance on mathematical reason-
ing tasks, while MiLoRA exhibited significant per-
formance fluctuations across two models. On cod-
ing tasks, DoRA, MiL.oRA, and PiSSA all show
substantial performance gaps compared to LoRA,
hinting at the complexity of coding tasks. Despite
this, our method still significantly outperformed
LoRA. Specifically, on LLaMA2-7B, it surpassed
LoRA by +2.3 percentage points; on LLaMA3-

Model Method # Parameters MT-Bench
LoRA 56.10M 5.16
DoRA 56.98M 5.33
LLaMA2-7B PiSSA 56.10M 5.20
MiLoRA 56.10M 5.25
DropLoRA (Ours) 56.10M 5.54
LoRA 56.62M 6.31
DoRA 57.41M 6.09
LLaMA3-8B PiSSA 56.62M 5.94
MiLoRA 56.62M 6.11
DropLoRA (Ours) 56.62M 6.42

Table 4: Instruction following results based on

LLaMAZ2-7B and LLaMA3-8B, assigned by GPT-4 to
the answers. All experimental results are conducted by
ourselves.

8B, it surpassed LoRA by +1 point. The absolute
leading advantage demonstrates the superior per-
formance of our method on reasoning tasks.

4.3 LLM Capability for Open Questions

To comprehensively evaluate our model’s capacity
for handling open-ended questions and executing
complex instructions, we employ the MT-Bench
dataset (Zheng et al., 2023), a widely recognized
benchmark in the field of natural language process-
ing. This meticulously curated dataset contains
80 carefully designed questions spanning diverse
domains and difficulty levels, along with 3,300
expert-annotated pairwise human preference judg-
ments comparing responses generated by six differ-
ent models.

Experimental Setting We utilize the same hy-
perparameters as those used in the Hu et al. (2023).
For the evaluation of conversational abilities, we
employ the method mentioned in the MT-Bench pa-
per(Zheng et al., 2023)3, utilizing GPT-4 to score
the dialogue tasks. For detailed hyperparameter
configurations, see Appendix A.

Result Table 4 displays the results of our ex-
periments conducted on the dialogue task. Our
proposed method demonstrates the best perfor-
mance across both models. Specifically, when
compared to LoRA, the performance improves by
+0.38 points on LLaMA2-7B and by +0.38 points
on LLaMA3-8B. Notably, we observe that both
PiSSA and MiLoRA, in comparison to LoRA, yield
nearly the same marginal gains in the dialogue task.
This suggests that the differences in performance
between fine-tuning the principal singular compo-
nent (PiSSA) and fine-tuning the minor singular

Shttps://github.com/lm-sys/fastchat

Method rank pruning rate accuracy
LoRA 16 0 84.5
LoRA 32 0 84.4

DropLoRA (Ours) | 32 0.5 84.9

Table 5: The performance comparison of LoRA and
DropLoRA on inference tasks with different ranks and
pruning rates.

component (MiLoRA) are relatively minor and do
not have a significant impact on this particular task.

4.4 Study

Effect of Pruning Module DropLoRA inserts a
pruning module between the two low-rank matrices
of LoRA to simulate subspace learning, while keep-
ing everything else consistent with LoRA. As can
be seen from Table 1 ~ Table 4, on all four tasks,
whether it is on the LLaMA2-7B or LLaMA3-8B
model, the performance of DropLoRA is signifi-
cantly better than that of LoRA, proving the effec-
tiveness of the pruning module and its generaliza-
tion to different tasks and models. As shown in
Table 5, for DropLoRA, when the rank is 32 and
the pruning rate is 0.5, it means that only half of the
parameters are updated during each parameter up-
date, which is comparable to the LoRA parameters
with rank 16. However, regardless of whether the
rank of LoRA is 16 or 32, DropLoRA consistently
outperforms LoRA, proving the effectiveness of
the DropLoRA pruning module.

Effect of Pruning Rate We explore the impact
of different pruning rates on experimental results,
such as the pruning rate in Equation 2. Figure 2
shows the fine-tuning performance of different
pruning rates on the commonsense reasoning, math
and coding tasks. We can see that when the prun-
ing rate varies within the range of 0.1 ~ 0.5, the
performance fluctuates slightly. When the pruning
rate is 0.3, compared with LoRA, the performance
improvement is the greatest. We observe that when
the pruning rate is set to 0.5, it starts to perform
worse than LoRA on math and code tasks. This is
because when the pruning rate is too large, it will
reduce the low-rank subspace representation ability
of the model, resulting in performance degradation.
We also observe that even when the pruning rate
is set to 0.5, which means that only half of the pa-
rameters are activated during the training process
of each subspace, DropLoRA can still achieve bet-
ter performance than LoRA on the commonsense
reasoning task. This demonstrates the effectiveness

https://github.com/lm-sys/fastchat

56.00 66.0
85.4
55.75 1
65.5 1
55.50 1 88 _ .
65.0 1
55.25 1
> > 0y
[9) O S
© © o
5 5 55.00 5 64.5 1
3 3 RS B B B S
< < <
54.75 1
64.0 -
54.50
63.5 A
54.25
54.00 - 63.0-
0.2 0.4 0.2 0.4 0.2 0.4

Pruning rate

---- LoRA = 84.4 ----

Pruning rate

LoRA = 55.45

Pruning rate

---- LoRA = 64.34

Figure 2: Average accuracy of LoRA and DropLoRA for varying pruning rate on the commonsense reasoning, math
and code tasks. The left, middle, and right figures correspond to commonsense reasoning, math, and coding tasks

respectively.

of subspace learning.

Parameter Scalability We conduct an explo-
ration into the relationship that exists between the
quantity of trainable parameters and the perfor-
mance of both the Low-Rank Adaptation (LoRA)
method and our proposed method. We set the
rank r = {8,16,32,64}, and « remains twice
the rank. Other hyperparameters remain consis-
tent with those of the commensense reasoning task.
The average accuracy of LoRA and DropLoRA
for varying ranks for LLaMA-7B on the common-
sense reasoning tasks is depicted in Figure 3. As
shown in Figure 3, under all rank configurations,
DropLoRA consistently outperforms LoRA. Due
to the structural similarity between the two, their
performance trends are also similar. When the rank
is larger, DropLoRA’s performance remains signif-
icantly superior to that of LoORA. However, when
the rank is smaller, the performance gap between
the two narrows. This is because, when the rank
is small, DropLoRA, due to the pruning module,
learns in a lower-rank subspace compared to LoRA.
An excessively low rank can limit the expressive
power of the subspace learning.

5 Conclusion

In this paper, we introduce DropLoRA, a simple yet
effective low-rank adaptive method for parameter-
efficient fine-tuning of large language models. By
inserting a pruning module between the two low-
rank matrices of LoRA to simulate subspace learn-
ing, we show that performance can be improved not

LLaMA2-7B

~®- LoRA
—@— DroplLoRA

84.6

Avg. Accuracy

o
-
o

32 64
rank

Figure 3: Average accuracy of LoRA and DropLoRA
for varying ranks for LLaMA-7B on the commonsense
reasoning tasks.

only by increasing LoRA’s rank but also by lower-
ing it. We validate the effectiveness of DropLoRA
on a wide range of large language model evaluation
benchmarks, including commonsense reasoning,
math reasoning, code generation, and instruction-
following tasks. Experimental results indicate that
DropLoRA consistently outperforms other base-
line methods, including LoRA, DoRA, PiSSA, and
MiLoRA, across all tasks. Compared to LoRA,
DropLoRA introduces no additional parameters,
thus not increasing any training or inference costs.
Our research shows that, in addition to increas-
ing the rank of LoRA, lowering its rank can also
enhance the performance, providing a new perspec-
tive for future optimization on parameter-efficient
fine-tuning of LLMs.

Limitations

Due to computational resource constraints, we have
only validated the effectiveness of DropLoRA on
large model generation tasks, such as common-
sense reasoning, math reasoning, code generation,
and instruction-following tasks. However, an inter-
esting future direction is whether DropLoRA can
enhance performance on multimodal large model
benchmark tasks beyond language generation. An-
other open question is whether we can provide a
theoretical foundation to support the effectiveness
of rank reduction for simulating subspace learning.
We consider these unresolved issues as important
areas for future research.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. 2021. Pro-
gram synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages
7432-7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Kerim Biiyiikakyiiz. 2024. Olora: Orthonormal low-
rank adaptation of large language models. arXiv
preprint arXiv:2406.01775.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
2019. Boolq: Exploring the surprising difficulty of natu-
ral yes/no questions. arXiv preprint arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question answer-
ing? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

Fernando De La Torre and Michael J Black. 2003. A
framework for robust subspace learning. International
Journal of Computer Vision, 54:117-142.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-
Min Chan, Weize Chen, et al. 2023. Parameter-efficient
fine-tuning of large-scale pre-trained language models.
Nature Machine Intelligence, 5(3):220-235.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a uni-
fied view of parameter-efficient transfer learning. arXiv
preprint arXiv:2110.04366.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. science, 313(5786):504-507.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Infer-
national conference on machine learning, pages 2790-
2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. 2022. Lora: Low-rank adaptation of large
language models. ICLR, 1(2):3.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Ka-Wei Lee. 2023. Llm-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng
Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang.
2024. Mora: High-rank updating for parameter-efficient
fine-tuning. Preprint, arXiv:2405.12130.

https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2023. Vera: Vector-based random matrix adap-
tation. arXiv preprint arXiv:2310.11454.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh
Shetty, Gautham Krishna Gudur, Joydeep Ghosh,
Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski,
and Sujay Sanghavi. 2024. Svft: Parameter-
efficient fine-tuning with singular vectors. Preprint,
arXiv:2405.19597.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,
Yong Yu, and Yi Ma. 2012. Robust recovery of sub-
space structures by low-rank representation. [EEE trans-
actions on pattern analysis and machine intelligence,
35(1):171-184.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. In Forty-first Interna-
tional Conference on Machine Learning.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-
tuning v2: Prompt tuning can be comparable to fine-

tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Rabeeh Karimi Mahabadi, Sebastian Ruder,
Mostafa Dehghani, and James Henderson. 2021.

Parameter-efficient multi-task fine-tuning for trans-
formers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024a.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Preprint,
arXiv:2404.02948.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang,
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu
Dong, Liang Chen, and Zhifang Sui. 2024b. Period-
iclora: Breaking the low-rank bottleneck in lora opti-
mization. arXiv preprint arXiv:2402.16141.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct electric-
ity? a new dataset for open book question answering.
arXiv preprint arXiv:1809.02789.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discov-
ery & data mining, pages 3505-3506.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adversarial
winograd schema challenge at scale. Communications
of the ACM, 64(9):99-106.

10

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Common-
sense reasoning about social interactions. arXiv preprint
arXiv:1904.09728.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research,
15(1):1929-1958.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parame-
ter efficient tuning of pre-trained models using dy-
namic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

Hanqging Wang, Yixia Li, Shuo Wang, Guanhua Chen,
and Yun Chen. 2025. Milora: Harnessing minor singu-
lar components for parameter-efficient llm finetuning.
Preprint, arXiv:2406.09044.

John Wright, Allen Y Yang, Arvind Ganesh, S Shankar
Sastry, and Yi Ma. 2008. Robust face recognition via
sparse representation. IEEE transactions on pattern
analysis and machine intelligence, 31(2):210-227.

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.
Chain of lora: Efficient fine-tuning of language models
via residual learning. arXiv preprint arXiv:2401.04151.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Metamath:
Bootstrap your own mathematical questions for large
language models. arXiv preprint arXiv:2309.12284.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-tuning.
arXiv preprint arXiv:2303.10512.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian. 2024.
Galore: Memory-efficient llm training by gradient low-
rank projection. Preprint, arXiv:2403.03507.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric Xing, et al. 2023. Judging llm-
as-a-judge with mt-bench and chatbot arena. Advances
in Neural Information Processing Systems, 36:46595—
46623.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.

https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2405.19597
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

2024. Opencodeinterpreter: Integrating code gener-
ation with execution and refinement. arXiv preprint
arXiv:2402.14658.

11

A Appendix

Table 6 presents the statistics of the datasets used
in this paper.

A.1 Dataset Statistics

Dataset Domain #train #test Answer
BoolQ CS 9.4K 3,270 Yes/No
PIQA CS 16.1K 1,830 Option
SIQA CS 33.4K 1,954 Option
HellaSwag CS 399K 10,042 Option
‘WinoGrande CS 63.2K 1,267 Option
ARC-e CS 1.IK 2,376 Option
ARC-c CS 2.3K 1,172 Option
OBQA CS 5.0K 500 Option
GSMSK Math 240K 1,319 Number
MATH Math 155K 5,000 Number
Python Code 104,848 563 Code
Instruction Following Conversation 143K 80 Text

Table 6: Details of datasets used in our experiment set-
ting including commonsense reasoning, math reasoning,
code reasoning and instruction following tasks.

A.2 Our Hyperparameter Setup for LLM

Table 7 presents the hyperparameter configura-
tions used in our experiments. To ensure fairness,
our hyperparameter settings are consistent with
those reported in the DoRA(Liu et al., 2024) and
MiLoRA(Wang et al., 2025) papers. Note that, to
accelerate training, the batch size for all experi-
ments in this paper is set to 128.

Hyperparameters ~ Commonsense Math Code Conversation
Rank r 32 64 32 32
« of LoRA 64 128 64 64
a of DoORA 64 128 64 64
« of DropLoRA 64 128 64 64
o of PISSA 32 64 32 32
o of MiLoRA 32 64 32 32
Dropout 0.05
Pruning Rate 0.1~0.5
Optimizer AdamW
LR 3e-4
LR Scheduler Linear
Batch size 128
Warmup Steps 100
Epochs 3 1 3 3
Reparameterization Q.K,V,Up,Down

Table 7: Our hyperparameter configuration for LLM
generation benchmarks for fine-tuning LLaMA2-7B,
LLaMA3-8B on the commonsense reasoning, math rea-
soning, code reasoning and instruction following tasks.

A.3 Case Study

To provide an intuitive demonstration of the effects,
we randomly sampled two cases from the mathe-
matical reasoning tasks and presented the reasoning
analysis results. Table 8 and Table 9 show the infer-
ence results of various methods. In Table 8, except
for DoRA, the reasoning processes and outcomes
of the other methods are correct. Although DoRA

produces the correct result, its reasoning process
is incorrect. DropLoRA and LoRA share a similar
reasoning process, as do MiLoRA and PiSSA. In
Table 9, PiSSA’s reasoning process and outcome
are both incorrect, while LORA’s reasoning process
is correct but its result is wrong. The reasoning
processes and results of DropLoRA, DoRA, and
MiLoRA are all correct. Note that although the rea-
soning processes of these three methods are correct,
DropLoRA and MiLoRA’s reasoning processes ex-
plicitly highlight the keyword "least common mul-
tiple (LCM)", reflecting a more fundamental rea-
soning approach.

12

Question The ratio of Mary’s age to Alice’s age is 3 : 5.
Alice is 30 years old. How many years old is Mary?

DropLoRA If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.
This means that for every 3 years old Mary is, Alice is 5 years old.
Since Alice is 30 years old, we can set up the equation % -30 = .
Therefore, Mary is 18 years old. The answer is: 18.

DoRA If the ratio of Mary’s age to Alice’s age is 3 : 5,
then we can write this as 3x : bz, where x is a constant.
We are given that Alice is 30 years old,
so we can substitute this into the ratio to get 3x : bx = 30.
To solve for z, we divide both sides of the equation by 3 and 35,
respectively, to get z = 10.
Therefore, Mary’s age is 3x = 3(10) = w years old. The answer is: 30.

LoRA If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.
This means that for every 3 years old Mary is, Alice is 5 years old.
Since Alice is 30 years old, we can set up the equation % - 30 = Mary’s age.
Simplifying, we find that Mary is % <30 = years old. The answer is: 18.

MiLoRA: If Alice is 30 years old, then the ratio of Mary’s age to Alice’s age is 3 : 5.
Let’s assume Mary’s age is x years old.
According to the ratio, we have 55 = % Cross-multiplying, we get bx = 30 - 3.
Simplifying, we find 52 = 90. Dividing both sides by 5, we get = = [18]
Therefore, Mary is 18 years old. The answer is: 18.

PiSSA If the ratio of Mary’s age to Alice’s age is 3 : 5,
Mary’sage __ 3

Alice’sage = 5°
We are given that Alice is 30 years old,

then we can write this as

so we can substitute this into the equation to get % =3
To solve for Mary’s age, we can cross-multiply to get 5 - Mary’s age = 3 - 30.
Simplifying, we have 5 - Mary’s age = 90.

Dividing both sides by 5, we find that Mary’s age = W The answer is: 18.

Table 8: Case Study I for Math Reasoning task on LLaMA2-7B.

13

Question

What is the smallest number of marbles that could be divided up either
into bags of 18 marbles or into bags of 42 marbles,
with no marbles left over in each case?

DropLoRA

We can find the least common multiple (LCM) of 18 and 42 to

find the smallest number that can be divided evenly into both 18 and 42.
Prime factorizing 18 and 42, we have 18 =2 x 32 and 42 = 2 x 3 x 7.
The LCM is then 2 x 3% x 7 = 126.

Therefore, the smallest number of marbles that can be divided up

into bags of 18 or 42 marbles is .

The answer is: 126.

DoRA

We want to find the smallest number that is divisible by both 18 and 42.
The prime factorization of 18 is 2 x 32,

and the prime factorization of 421is 2 x 3 x 7.

To find the smallest number divisible by both 18 and 42,

we take the highest power of each prime that appears in either factorization.
So, the smallest number divisible by both 18 and 42 is 2 x 3% x 7 = .
The answer is: 126.

LoRA

We want to find the smallest number that is divisible by both 18 and 42.
The prime factorization of 18 is 2 x 32

and the prime factorization of 421is 2 x 3 X 7.

To find the smallest number divisible by both 18 and 42,

we take the highest power of each prime that appears in either factorization.
So, the smallest number divisible by both 18 and 42 is 2 x 32 x 7 = .
The answer is: 168.

MiLoRA

We can find the smallest number of marbles by finding

the least common multiple (LCM) of 18 and 42.

Prime factorizing 18 and 42, we have 18 = 2 x 32 and 42 = 2 x 3 x 7.
The LCM is then 2 x 3% x 7 = 126.

Therefore, the smallest number of marbles that could be

divided up into bags of 18 marbles or 42 marbles is .

The answer is: 126.

PiSSA

The smallest number of marbles that could be divided up into bags
of 18 marbles is 18, and the smallest number of marbles that

could be divided up into bags of 42 marbles is 42.

Therefore, the smallest number of marbles that could be divided up

into both bags is 18 x 42 = .

The answer is: 784.

Table 9: Case Study II for Math Reasoning task on LLaMA2-7B.

14

	Introduction
	Related Work
	Method
	Experiments
	Commensense Reasoning
	Math and Code Reasoning
	LLM Capability for Open Questions
	Study

	Conclusion
	Appendix
	Dataset Statistics
	Our Hyperparameter Setup for LLM
	Case Study

