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ABSTRACT

Flow-matching generative models have emerged as a powerful paradigm for con-
tinuous data generation, achieving state-of-the-art results across domains such as
images, 3D shapes, and point clouds. Despite their success, these models suf-
fer from slow inference due to the requirement of numerous sequential sampling
steps. Recent work has sought to accelerate inference by reducing the number of
sampling steps. In particular, Mean Flows offer a one-step generation approach
that delivers substantial speedups while retaining strong generative performance.
Yet, in many continuous domains, Mean Flows fail to faithfully approximate the
behavior of the original multi-step flow-matching process. In this work, we ad-
dress this limitation by incorporating optimal transport—based sampling strategies
into the Mean Flow framework, enabling one-step generators that better preserve
the fidelity and diversity of the original multi-step flow process. Experiments on
controlled low-dimensional settings and on high-dimensional tasks such as im-
age generation, image-to-image translation, and point cloud generation demon-
strate that our approach achieves superior inference accuracy in one-step genera-
tive modeling. The code for re- producing all the numerical results is available in
the anonymous repository at https://anonymous.4open.science/r/
OT-flow-FE8F/

1 INTRODUCTION

Flow-based generative models have emerged as a cornerstone of modern generative Al, providing a
unifying framework for modeling complex continuous data distributions. The goal is to transform
a source distribution (which may be simple, such as a Gaussian, or complex, as in image-to-image
translation) into a target data distribution (e.g., natural images). Two prominent frameworks are
diffusion models and flow matching (FM). Diffusion models formulate generation via a stochastic
differential equation (SDE) and learn a score function or denoising function (Sohl-Dickstein et al.,
2015;Ho et al.,|2020; |Song et al.,|2021;|Dhariwal & Nichol, 2021} |Karras et al.|[2022)), whereas flow
matching uses an ordinary differential equation (ODE) and learns a velocity field to continuously
transform the source distribution into the target (Lipman et al., 2023; |Albergo & Vanden-Eijnden),
2023} [L1u et al.,|2022). These two methods are closely related: under Gaussian priors and indepen-
dent couplings between source and target, they can be converted into one another (De Bortoli et al.,
2023; ' Tong et al., [2023b).

A key limitation of both diffusion and classical FM models is that, during inference, one must nu-
merically solve an integration problem, which requires many steps to obtain accurate results (Song
et al., 2021} [Lipman et al.| 2023). To mitigate this issue, several complementary directions have
been explored. One large body of work distills a multi-step diffusion model (teacher) into a one-step
generator (student) via trajectory or distribution matching objectives, with recent advances includ-
ing adversarial distillation, consistency models, and f-divergence—based approaches (Meng et al.,
2023} |Song et al., 2023} Sauer et al., [2024; Yin et al.| 2024} |Xu et al.,[2025). Another line of work
seeks to train FM or diffusion models with inherently straighter and more cost-efficient trajectories.
For instance, [Tong et al.| (2023a); |Kornilov et al.| (2024); |[Pooladian et al.[ (2023) leverage optimal
transport to define the joint sampling between source (Gaussian) and target data, yielding straighter
trajectories and improved efficiency both theoretically and empirically (Pooladian et al., 2023} |[Liu
et al.| [2022)). More recently, (Geng et al.| (2025)) introduces the MeanFlow method, which replaces
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the instantaneous velocity field with its time-averaged integration as the learning target. This refor-
mulation enables one-step or few-step sampling, significantly accelerating inference.

In this paper, we propose the Optimal Transport MeanFlow (OT-MF) method, which unifies the
trajectory-straightening principles of optimal transport with the time-averaged formulation of Mean-
Flow, yielding straighter and more efficient one-step generative trajectories. Our approach combines
OT-based couplings with mean-flow supervision, enabling geometry-aware and efficient one-step
generative modeling. Our contributions are summarized as follows:

¢ Unified framework. We introduce OT-MF, a new flow matching method that generalizes
conditional flow matching, minibatch OT flow matching, and mean flow approaches under
a single formulation.

* Improved efficiency and accuracy. In point cloud generation and image translation ex-
periments, OT-MF retains the one-step generation ability of MeanFlow while significantly
improving accuracy.

* Scalable training. To further enhance training efficiency, we incorporate accelerated OT
solvers including linear OT and hierarchical OT. We demonstrate that these extensions
preserve the accuracy of OT-MF while reducing computational cost during training.

2 BACKGROUND AND RELATED WORK

Notation Setup and ODE. Suppose the dataset lies in the space R%. Let P(R?) denote the set of
all probability measures on R%. We use p, q € P(R?) to denote the source (prior) and target (data)
laws, respectively; their densities (when they exist) are denoted p(z), g(«). By default, p is taken to
be the Gaussian law, i.e., p = N(0, I).

We also define the following ODE system:
’(p : [07 1] X Rd - Rda (t,Io) — ¢t($0),
v:[0,1] x RT = R (t,2) = v(t,z) := v (),
dipi(wo) = vi(Ye(z0)) dt (flow ODE),
Yo(zo) = mo (initial condition).

(D

Here, v, is called the time-dependent vector/velocity field, and the solution ¥ is referred to as the
time-dependent flow. We say that the velocity field v generates a probability path (p;):c[o,1] if the
following equivalent conditions hold:

* Let X ~ po, and dX; = v;(X;) dt. Then Law(X,) = p, or equivalently X; ~ p;.

* (p¢, vy) satisfies the following continuity equation:

Oipi(z) + V- (vi(x) pi(x)) = 0. 2)

In the default setting, we assume that v; and v, satisfy sufficient regularity conditions so that the
above system admits a unique solution. Further details are provided in the appendix.

Note that in the ODE (and SDE) flow generation setting, the flow ) can be equivalently described
by an interpolation function I, : R? x R? — R?, satisfying

Io(wo, 1) = 0, T1(w0,71) = 71. 3)
We can then define the probability path (conditional on X, X;) as
Xi = I(Xo, X1), Xi~pi

By default, we choose the affine interpolation (Liu et al., |2022; [Lipman et al., 2023 [2024):
It(l'o,l'l) = (]. — t)CEO + t:vl.

2.1 CLASSICAL FLOW MATCHING AND CONDITIONAL FLOW MATCHING

The goal of flow matching is to find a neural velocity field v such that v generates the probability
path (p¢);e[0,1) With endpoints pg = p and p; = q.
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Unconditional Flow Matching. Letv! : [0,1] x R? — R denote a parametrized function (e.g.,
a neural network). The flow matching loss is defined as

Ierélg CFM(Q) = Et,Xt [”vte(Xt) - vt(Xt)”Q]v t~ Z/{([O, ]-Dv Xt ~ Pt t A Xt7 (4)

where the independence condition ¢ Ll X, indicates that one first chooses ¢ ~ U([0, 1]), and then
independently samples X; ~ py.

Remark 2.1 In most flow-matching or diffusion-model references, t may be treated either as a
random variable (independent of (Xt).c[0,1]) or as a fixed constant in [0, 1]. We do not distinguish
these cases for convenience.

In practice, the problem (@) is intractable since the law p; is unknown. To address this, the condi-
tional flow matching, also known as the rectified flow (Liu et al.| 2022)) objective is used:

E(X07X1)N7"0,1 |:HU?(X,5 | X0>X1) - Ut(Xt | XVOVXI)”2 ) ()

where the target velocity is given by

d
v (X | Xo, X1) = %It(Xo,Xl) = X; — Xo,

when the interpolation is affine, i.e. X; := I;(Xo, X1) = (1 — )Xo + tX1.
2.2 OPTIMAL TRANSPORT AND RELATED FLOW MATCHING MODELS

Optimal Transport. Let Py(RY) := {p € PRY) : [ullz|? dp(z) < oo}. Given a measurable
mapping 7' : RY — RY, the pushforward measure Typ is defined as

Typ(B) :==p(T~'(B)), VB CR?Borel, (6)
where T71(B) := {z : T(z) € B} is the preimage of B under 7.
Given p, q € P»(R?), the optimal transport problem is

OT(p,q) = min / Iz — yl? dv(z,y). )
Y€l'(p,q) JRd xRd

where T'(p, q) := {'y € PR x RY) : (m)py = p, (m)py = q}, with 71, o denoting

the canonical projections. Classical OT theory (Villani, 2003} |Villani et al. 2008) guarantees the
existence of a minimizer to (7). When the optimal plan ~ is induced by a mapping 7' : R% — R,
that is, v = (id x T")zp where Tup = q, the solution is said to be of Monge form.

2.2.1 MINI-BATCH OPTIMAL TRANSPORT FLOW MATCHING.

The dynamic OT, known as the Benamou—Brenier formulation (Benamou & Brenier, 2000) is:
1
OT(p,q) = min / / lve(2)||? dpe(z)dt, (Benamou-Brenier)
{pt,ve} Jo JRrd
s.t. Oipi(z) + V- (ve(2), pe(x)) =0, po=p,p1=q.
Intuitively, dynamic OT finds the most cost-efficient probability path with respect to the 5 cost.
Inspired by this property, |Pooladian et al.| (2023); Tong et al.| (2023a)) adapt OT as the coupling

between py and p; in (3). The resulting method is called mini-batch optimal transport flow
matching (OT-CFM):

Lor-crm(0) = E, 5o | E(xo,x1)mm01 [[vf (X¢) = ve(Xe | Xo, X1)I1%], (8)
XlB 1:\1} a
where B € N, and 7 ; is the optimal coupling in OT'(p?, q¥) with empirical laws
p” =Law(Xy),  q” =Law(XP). ©)
The term mini-batch refers to the fact that the OT coupling 7 ; is computed from sampled mini-

batches X and X¥. Compared to using the full coupling OT'(p,q), the mini-batch approach
improves training efficiency and introduces stochasticity into the model.
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2.2.2 OTHER OT-BASED FLOW MATCHING MODELS

Beyond the models described above, several works have extended flow matching by incorporating
alternative OT formulations. For example, Klein et al.|(2023)) combine Gromov—Wasserstein (GW)
distance with rectified flow matching, enabling the model to align distributions with heterogeneous
supports (e.g., graphs versus point clouds). This direction leverages the structural matching ability
of GW to define flow trajectories in non-Euclidean domains.

More recently, Chapel et al.|(2025)) proposed differentiable generalized sliced OT (GSOT) plans and
integrated them with flow matching. By learning nonlinear projections that define generalized sliced
Wasserstein distances, their approach inherits both computational scalability and expressive power,
allowing efficient flow training on high-dimensional data. Similarly, Tran et al.|(2025)) applied tree-
sliced Wasserstein distances with nonlinear projections to diffusion models, showing that projection-
based OT relaxations can improve sampling quality.

Another line of research focuses on using dual formulation or regularized OT formulations. [Tong
et al.|(2023b) combined stochastic interpolations with OT couplings, including entropic OT, leading
to the Schrodinger Bridge Flow Matching model. [Kornilov et al.| (2024) proposed Optimal Flow
Matching, which uses the dual formulation of quadratic OT and constrains velocity fields to gradi-
ents of convex potentials.

In addition, the Wasserstein Flow Matching framework (Haviv et al.,|2024)) employs OT and Bures—
Wasserstein distances to define pairwise displacements between probability measures (e.g., between
shapes), broadening the applicability of flow matching beyond Euclidean metrics.

Overall, these works illustrate that OT can enrich flow matching models in diverse ways: by incor-
porating structural similarity (GW), scalable projections (sliced OT), dynamic formulations (SB), or
convex dual structures (OFM).

2.3 MEAN-FLOW MODEL

The inference (data generation) step of classical FM requires solving an integration of the form

1
T1 = To —|—/ v(t, zy) dt, (10)
0

which typically necessitates multiple numerical steps. In|Geng et al.|(2025)), the authors propose the
Mean-Flow model, which directly learns the average vector field:

1
t—r

u(t,r, xe) = ugr(xy) ==

t
/ o(T,x;)dr, r<t. (1D
It is straightforward to verify that u, , satisfies the following PDE (when ¢, r are independent):

u(t,r,ze) = v(wg, t) — (E—7) (v(wt,t) Op,u(t,ryxe) + 8tu9(t,7", xt)> (12)

This leads to the training loss:

EMF(G) = ]E(Xle) [”u?('xt?’r? t) - Sg(utgt(vtv t,’l"))”ﬂ s (13)
Uggt (Vg 8, 7) = v(2g,t) — (E—7) (v(xt,t) (%tug(t,r, ) + 8tu9(t,7", Lt)) , (14)

where sg denotes the stop-gradient operator (i.e., no gradients propagate through this argument with
respect to #). Intuitively, one can view uf as the model at the previous moment; thus, u’ is not
included as input to (. At inference time, the learned mean flow can be directly applied to a base

sample xy ~ p in a single step:
T = 2o + u1,0(%0), (15)

thereby bypassing multi-step ODE integration. This one-step transport significantly accelerates
sampling while maintaining competitive generation quality, showing that generative flows can be
effectively compressed into a single mean displacement (Geng et al., 2025).

4
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Algorithm 1 Mean-Flow Training with OT

Input: Source data Dy (default to N'(0, 1)), target data D1, epochs F, batch size B
Output: Trained parameters 0
1: Initialize 6,
2: fore=1— Edo
3:  for mini-batches (X, X) ~ (Do, D1) of size B do
4: Solve OT plan v = OT (Law (X&), Law(XT)) or OT variants (see e.g. , or , or )
5 Sample (Xo, X1) ~ 7, size(Xo, X1) < B (in default = B).
6: Sample ¢, ~ U(0,1) with r < ¢.
7: Compute X +— It(Xo, Xl), Vi < %(XO, Xl) In default, X; = (1—t)X0+tX1, v = X1 —Xo
8.
9
0
1

Compute usgt (vt, t, ) from
: L(0) = |lu’(t, 7, e) — sg(urge)||®
10: Update 6 based on £(0), e.g. gradient descent, momentum method, etc.

11: Stop if converges

3 OUR METHOD: OT-MEAN FLOW

Our OT-mean flow matching is defined as follows:

‘COTMF(U’Q) = EXOBNP7X13NQE(X07X1)N7"O,17t [”ug(tv T Xt) - Utgt(vt, t, T)HQ} ; (16)

0,1 is an optimal plan for OT(p?,q”), p? = Law(X{), q” = Law(X?).

The inference process is the same as in the classical mean-flow model (T3).

The above formulation can be viewed as a unified formulation that combines the mini-batch OT flow
and the mean flow method. Our method is summarized in Algorithms[T]and[2] We further accelerate
training by applying the following OT techniques to compute the batch coupling g ;.

3.1 OT ACCELERATION METHODS

The computational cost of solving the discrete OT prob-

lem via network flow or linear programming is pro- T T
hibitively high (O(n3logn) in the worst case for n sam-
ples). In the semi-discrete and continuous settings, the
complexity can be even worse. To accelerate compu-
tation, several approximate OT variants have been pro-
posed. Below we briefly review some of the most widely | © L

used approaches. MF OT-MF

Sinkhorn OT (Entropic Regularization). A popu- Figure 1: Velocity visualization of a pair
lar relaxation is the entropically regularized OT prob- of points from the source and target dis-

lem (Cuturi, 2013). For two empirical measures p = tributions. The straight line denotes the
>ie1 Pidy, and @ = 3771, idy, with cost matrix C' €  average velocity from an intermediate
R™ "™ the entropic OT problem is time to ¢ = 1. The OT-MF trajectory
is noticeably straighter compared to the
min (C,7) +eKL(7 | p® q) vanilla Mean Flow.
mell(p,q)

= eKL(7 || e=“/*p ® q) + constant, (17)

where KL(y[|p ® q) :== >, ;7i;1n ;f;; is the KL divergence term. The solution is computed
) idj

efficiently by the Sinkhorn-Knopp algorithm with O(n?) cost per iteration.

Dynamic Schrodinger Bridge View. Entropic OT also admits a dynamic formulation known as the
Schrodinger bridge problem (Léonard, 2014} |Chen et al., [2021). It seeks the most likely stochastic
process interpolating between p and q under a prior Brownian motion. Formally, it solves

min  KL(P||W.) st Py=p, P, =q, (18)
PeP([0,1]xR%)

where W, is the law of the Wiener process, dX; = \/edB;. As ¢ — 0, the Schrodinger bridge
converges to the classical Benamou—Brenier dynamic OT (Benamou—Brenier).
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Linear Optimal Transport. Another line of work considers linearized OT (Wang et al., [2013)
variants, which approximate the quadratic-cost OT by projecting the measures into a linear (Hilbert)

subspace of the L2 function space: Lo(R%; RY) := {f ‘R R [ |1f ()| Pdu(x) < oo}.

In particular, these methods fix a reference measure o € P, (Rd) (also referred to as the pivot
measure) and define 4%, 42 as the optimal transportation plans for OT (o, p) and OT' (o, q), re-
spectively. The Linear OT plan between p and q is then constructed from these conditional plans

Yror-1r = (Vs @3 )#0,  Yeor—ne =7 (V)6 716 #O (19)

where 7.1\3 denotes the conditional probability measure of ! given the first component is s € R,

and v* (v} s 7_22‘5) is the optimal coupling for OT' (v} s+ 7_22‘8).

It is straightforward to verify that y1,07—1r, YLoT—hr are couplings between p and q. The plan
~YLor—1r is related to the Low-Rank OT plan (Scetbon & Cuturi, 2022} |Scetbon et al., [2022);
similarly, y,or—nr is a special case of the Hierarchical OT plan (Halmos et al., 2025)).

In the discrete case, suppose & = Y., 005, P = 2.y Pids;, and @ = Y.~ ¢;0y,. Then
~v! € R and 4% € RY*™, and the above plan reduces to

{’YLOTlr = (’YI)T diag(1/0) ’727

. . (20)
YLOT—til Dy (i) x D2 1i,0) = T67 (Vg V]s)s Vi€ [Lem],

where in the second plan, D(v) := {i : v; > 0}.

The computational complexity of the low-rank linear OT coupling is O(rn(r + n)), while that of
the hierarchical linear OT coupling is O(rn(r 4+ n) + r(n/r)?). When r is small, the low-rank
formulation yields a significant reduction in complexity. When both 7 and n/r are small (i.e., when
n admits a suitable factorization), the hierarchical method also achieves reduced complexity.

4 EXPERIMENTS

We evaluate the empirical benefits of Transport-
based Flows on four generative modeling tasks:

Algorithm 2 Inference: Flow-Matching ODE
Integration

(a) controlled low-dimensional synthetic data, (b)
image generation, (c) image-to-image translation,
and (d) point cloud generation. In addition,
we test several other optimal transport variants
within the Mean Flow framework. Some of these
introduce uncertainty into the transport problem
(e.g., Sinkhorn), while others focus on improving

Input: Trained mean vector field ug(z,t,7); steps
T sizen
Output: Sample x;
1: Sample n i.i.d. o ~ Do, set x = xo
2: fort=1/T,2/T,...,1do
3: s=t—1/T, xt<—xt+u9(xt,t,s)
4: 1 3y

computational efficiency (e.g., LOT-LR, LOT-HR). We further demonstrate that one-step generation
can be enhanced by incorporating optimal transport—based sampling strategies. Full implementation
details are provided in Appendix

OT solver setup. For vanilla OT and low-rank OT, we use the C++ linear programming solver pro-
vided in the PythonOT library (Flamary et al.| [2021)). For Sinkhorn, we evaluate three implemen-
tations: (i) the Python implementation in PythonOT (supports both CPU and GPU), (ii) a Numba-
accelerated CPU version/’| and (iii) the JAX-based implementation in the OTT-JAX library (Cuturi
et al.,[2022)). For each experiment, we report results using the fastest implementation.

4.1 Toy EXAMPLE: CONTROLLED LOW-DIMENSIONAL POINT CLOUDS

Dataset. We first present results on synthetic toy examples, considering five distribution pairs: a
Gaussian (V) — a mixture of 8 Gaussian (8-Gaussians); the half-moons dataset (Zhou et al., 2004)

!The original Linear OT plan is formally defined through an optimization problem; the low-rank construc-
tion presented here is a practically convenient alternative. Under suitable regularity conditions, the two formu-
lations coincide. We refer the reader to [Moosmiiller & Cloninger (2020), Bai et al.| (2023), and |[Rabbi et al.
(2024) for details.

“https://numba.pydata.org/
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Gaussian MF LOT-LR LOT-HR Sinkhorn OT-MF
W2 =0.1858 W3 =0.0173 W2 =0.0236 W2=0.0117 W3=0.0138
-
[}
=
B
4
M Source distribution M Target distribution NFE=1 mNFE=2
S-Curve MF LOT-LR LOT-HR Sinkhorn OT-MF
W2 =0.1850 Ww2=0.0116 W2=0.0186 W3 =0.0091 W2 =0.0097
«a d
n
[ .
B
4

Figure 2: Comparison of different transport-based mean flows for N — S—curve. The first row
is NFE=1, the second row is NFE=2. We report the 2-Wasserstein distance between the predicted
distribution and the target distribution.

(denoted as moons) — 8-Gaussians; N — moons; /N — the S-curve dataset (Pedregosa et al., 2011)
(denoted as scurve); and N — the checkerboard dataset (Dinh et al.| 2017).

Models and training setup. Following |Geng et al.| (2025)), we use a 3-layer MLP as the generator
and utilize Adam optimizer with learning rate Ir = 1e — 3. The results for two of these experiments
are presented in Figure 2}

Evaluation and Performance

Since the source and target data are 2D point clouds, we present the Wasserstein 2 distance (Villani,
2003) as a metric. From Table [T] and Figure [2] we observe that OT-based mean flow methods sig-
nificantly improve upon the vanilla mean flow. Other OT variants, such as Sinkhorn and LOT, also
demonstrate improved performance. In particular, LOT enhances computational efficiency com-
pared to the original OT while maintaining relatively high accuracy.

Table 1: Comparison of different transport-based mean flows over five distribution pairs at NFE=1/2
(denoted as @1 and @2) average over three random seeds. Best per column is bold gray.

Dataset — N—8gaussians moons—8gaussians N—moons N—scurve N—checkerboard
Method | Metric — W2@1 WZ@2 TR(ms) WZ@l WZ@2 TR(ms) WZ@l W2@2 TR(ms) W@l W2@2 TR(ms) W@l WZ@2 TR(ms)
MF 03931 03121 491 0.5601 0.5435 4.82 0.0719 0.0891 493 0.1913 0.1855 4.83 0.0721 0.0654 4.80
LOT-LR 0.0683 0.0539 8.82 0.0801 0.0657 827 0.0320 0.0250 847 0.0164 0.0117 830 0.0179 0.0168  8.38
LOT-HR 0.0268 0.0214 10.18 0.0648 0.0559 10.24 0.0322 0.0272 1022  0.0140 0.00958 10.17 0.00733 0.00648 10.12
Sinkhorn 0.0145 0.0107  21.1  0.0148 0.0113 213 0.0212 0.0149 21.6 0.00747 0.00432 212 0.00473 0.00411 21.1
OT-MF 0.0141 0.0104 124 0.0166 0.0120 12.6  0.0241 0.0165 13.0 0.00842 0.00472 122 0.00510 0.00456 12.1

4.2 IMAGE GENERATION

Table 2: Comparison of Transport-based Flows for image
Dataset Setup. We study one-step  generation on MNIST across NFEs. We report FID and W

MeanFlow generation on MNIST in g, 1/2/5/10 steps (EMA=True). Best per column is bold
the latent space of a pretrained VAE

. with gray background.
tokenizer Rombach et al| (2022). ——— D] )
Each 28 x 28 digit is padded t0 32 X \epoa) / NFE— 1 2 5 0 " 2 5 0
32, normalized to [—17 1], replicated MF 3.6709 1.0880 0.6318 0.7267 8.7449 8.2560 8.0634 8.0602
across three channels, and encoded rorir 22258 07449 05371 0.5531 8.4315 8.1481 8.0312 7.9941
once by the frozen VAE into 4 x 44 L5 L om b ba Bl s e 0
latents, which are cached for training. OT-MF 1.9179 0.6123 0.4689 0.4935 8.2102 8.0383 8.0029 7.9546

Network Model and Settings. Our

generator uses a ConvNeXt-style U-Net (Geng et al. 2025)), adapted to the low-resolution latent
tensor (~59M parameters), with dual sinusoidal embeddings for flow time ¢ and solver step size
h. Training largely follows Geng et al|(2025), with Adam (1073 Ir, (0.9,0.99), batch 256, no
weight decay), 30k iterations, 10% warm-up, EMA (0.99, every 16 steps), and logit-normal timestep
sampling (P, = —0.6, Pt; = 1.6, P}, = —4.0, mismatch 0.75). We use the JVP-based loss
with adaptive reweighting, and evaluate independent pairing as well as transport-based pairings (OT,
Sinkhorn OT, LOT-LR, LOT-HR).

Evaluation Metric. We evaluate OT solvers for Mean Flows with Euler integration across 1-10
NFEs. Performance is measured using Fréchet Inception Distance (FID) (Heusel et al.,2017) and 2-
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Figure 3: Single step (NFE=1) sample generation on ShapeNet Chairs and ModelNet10
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Figure 4: Single step (NEF=1) shape interpolation on two samples from ShapeNet chairs. « € [0, 1]
controls the interpolation of the source and target features.

Wasserstein distance (W>) (Villani et al 2008) between generated and VAE-reconstructed images,
computed in pixel space with the Inception network from TorchMetrics.

Consolidated generation results (NFE=1/2/5/10). Table2]shows that the exact OT solver achieves
the best FID and W5 across NFEs; LOT-HR and LOT-LR are competitive at NFE=1. Performance
improves markedly from NFE 1—5 and plateaus by NFE=10.

4.3 POINT CLOUD GENERATION AND INTERPOLATION

Experimental setup. We train and evaluate point cloud generation on a subset of ShapeNet
(Chang et al., [2013), a large-scale dataset of 3D CAD models, and ModelNet10 2015),
which contains 10 object classes. For our experiments, we use the Chair class from ShapeNet. Fol-
lowing standard practice, each object is preprocessed by uniformly sampling point clouds from mesh
surfaces. We utilize a pre-trained PointNet-based autoencoder to extract a vector
representation of each point cloud. This is then used to condition our flow model during generation.
We provide additional details of our experimental setup in section[D.2]

Table 3: W, and Average Train Time
Results. Figure [§] shows one-step generation (NFE=1) Per epoch (TR) reported on ShapeNet
results for MeanFlow, OT-MeanFlow, LOT-HR, LOT-LR, (SN) Chairs and ModelNet10.  Best
and the ground truth on ShapeNet Chairs and ModelNet10 values are bold and gray, fOHQWCd by
(classes ‘desk’, ‘table’, and ‘monitor’). Incorporating second-bests denoted by underline.

OT-based sampling enables the models to capture finer SN Chairs ModelNet10
details and generate more accurate shapes. Ttab'le E[re- Method W> TRGs)| Ws TRE)
ports the average Wasserstein-2 distance and training time

per epoch. All OT-augmented variants outperform Mean- ~ MF 0.0477 '16.32 | 0.0377 23.41
Flow, with OT-MF achieving the best performance while LOTLR 00168 17.22 100231 24.82

introducing only moderate additional cost LOTHR 0014 18.2¢ 100227 26,52
’ OT-MF  0.0121 20.81 | 0.0208 28.64
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Figure 5: Comparison of one-step mean flow method for Image-to-Image translation on
Adult—Child and Man—Woman.

Shape Interpolation. To further analyze the effect of our proposed method, we report shape in-
terpolation results in Figure[d] We randomly sample two shapes from the ShapeNet Chairs test data,
and use a convex combination of the context features of the two shapes to generate new interpolated
shapes in a single step. As shown in the figure, OT-MF can capture details more precisely in an
interpolated setting as well, resulting in higher quality shapes. In particular, we observe that OT-
MF induces a smoother interpolation, while vanilla MF exhibits relatively poor performance—for
example, the leg of the interpolated chair appears distorted.

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

Next, we evaluate our method on unpaired image-to-image translation 2017), using
dataset splits from [Korotin et al.| (2023)) and (Gushchin et al} [2024). The dataset is derived from
FFHQ (Karras et al., 2019), with 60k training and 10k test images. All images are encoded into
a 512-dimensional latent space using ALAE (Pidhorskyi et al, 2020), and train flow models to
transform the latents corresponding to a set of source images to latents corresponding to a set of
target images. We compare OT, LOT-HR, and LOT-LR against vanilla MF on the splits adult—child
and man—woman. Evaluation uses FID |Heusel et al.| (2017)) between reconstructed autoencoder
images and model outputs. Figure [5] reports qualitative results and FID scores, showing OT-MF
achieves the best performance, followed by LOT variants for one-step generation.

5 SUMMARY

‘We propose a new one-step flow matching framework that unifies optimal transport conditional flow
matching and mean flow matching under a common formulation. By leveraging optimal transport
couplings, our method provides a principled way to construct target average velocity fields that
better capture the geometric structure of the data. We further explore approximate OT variants such
as low-rank and hierarchical refinements, which offer improved computational efficiency without
sacrificing performance.

Through extensive experiments on point cloud and image generation, as well as image-to-image
translation tasks, we demonstrate that OT-based mean flow methods consistently yield more robust
and higher-quality results for one-step generative modeling compared to vanilla mean flow. Our
study highlights the potential of integrating optimal transport with one-step flow-based generative
modeling, offering both theoretical insights and practical improvements.
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A DEFAULT NOTATION AND CONVENTION

SPACES, MEASURES, VECTORS, FUNCTIONS

* R%: d-dimensional Euclidean space with inner product (-, -) and norm || - ||.

» P(R9): Set of Borel probability measures on RY.

» P2(R9): Probability measures with finite second moment, ie. {u € P(RY)
Jllzl*dp(z) < oo}

* §,: Dirac measure at x.

* Supp(u): Support of a measure .

e Ty u: Pushforward of p by T : R — R, defined by (Txp)(B) = u(T~1(B)).

¢ 1,,: n-dimensional vector of all ones.

* Maxp:For M € R™™ and A C [1:n], B C [1 : m], the submatrix [M; ;lica jeB-

Random Variables and Probabilities

» p € P(R?): Source distribution (default p = N(0, I)).

* p: Probability density or mass function of p. For convenience, in some parts of the article,
we do not distinguish measure p and its density/mass function p.

» q € P(R?): Target (data) distribution; in practice, approximated by the training dataset.
* Xy ~ p, X1 ~ q: Source and target random variables (realizations of p, q).

» Law(X): Distribution of random variable X.

* 79,1, y: Coupling measures with marginals p, q.

e v € R™*™: Probability mass function of v when p, g are discrete of sizes n, m.

* ~1,72: First and second marginals of ~.

* 71,72 pmfs of y1, vz, with vy =1, 72 =y
* I'(p,q): Set of couplings between p and g.

* Xy 1L X;: Independence between X, and X .

* E[]: Expectation (subscripts indicate the distribution if needed).

T1,.

ODEs, Flows, Paths, Interpolations

* (Pt)tefo,1): Probability path, i.e. a curve in P(R?).

* v 1 [0,1] x RY — R%: Time-dependent velocity field.

* ;: Flow map defined by dip:(zo) = v (¢4 (x0)) dt, with ¥g(xg) = xo.
o X, = 4(Xo): State along the flow; Law(X;) = p;.

* Oypt + V - (npr) = 0: Continuity equation for (p;,v;). (Here we do not distinguish
measures from densities/pmfs unless needed.)

* Ii(xg,x1): Interpolation between g and x1, with Iy = xg, [; = 1 (default I; = (1 —
t)Io + tl’l).

o X; = I(Xop, X1): Interpolation-induced path used in conditional FM.
Optimal Transport (OT)

* OT(p, q): Quadratic-cost OT,
win [ oyl dy(a.).
Y€l (p.a)

* v = (id x T')»p: Monge solution, where T is the transport map with Txp = q.
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* Benamou-Brenier dynamic formulation:
1
win [ [ u@)|P dpi(o)dt. po=p. o1 =a,
(pt,vt) Jo
subject to the continuity equation Oyp; + V - (v¢p;) = 0.

* Dual OT formulation: Equivalent characterization in terms of convex potentials.
* Sinkhorn OT: Entropic OT with regularization € > 0 and cost matrix C.
s Sliced OT: OT averaged over 1D projections (6, -) with § € S~

 Linear OT (LOT): OT linearized via a reference o, including low-rank and hierarchical
variants.

Flow Matching (FM) and Mean Flows (MF)

* t,s €[0,1]: time variable, with s < ¢
* D(u,v): Bregman Divergence with

D(z,y) = ®(z) — [2(v) + (x — y, V(y))]-
where ¢ is convex function
e Lrum: Unconditional FM loss,
Er,x, [[[v] (X¢) = on(X0)|?]
or in general,
E: x, [D(v] (Xt), v:(Xy))]-

* Z: auxiliary variables used to construct the conditional velocity field and the conditional
flow matching. In this article, we only discuss the cases Z = X; and Z = (X, X1).

* pPz,Px,,Px,: probability measures of Z, X, X;. Their probability density/mass function
are pz, Pxo, PX;-
* v(+|Z): The velocity field given variable Z.

* Py z: the conditional probability path at time ¢ given Z.
* Lcopm: Conditional FM loss with X, = I;(X(, X1) and target %It(Xo, X1). In particular,
]Etv(X07X1)N7TO,1 [”vte(Xt) - vt(X|Z) HQ]

Or in general

Et7(X0,X1)N7\'0,1 [D(vf<Xt)7 vt(X|Z))]

* Mini-batch OT-CFM: Uses g 1 from OT(pB, qP), where p?, ¢ are empirical batch mea-
sures.

* u; »: Mean flow,

t
/ vr(zs)dr, r<t.

1
(@) = t—r
* Ugge: Mean-flow training target,
Ugge =0 — (t —7) (v Apu’ + ﬁtue),

an approximation of the true u;, (based on sample velocities and the model u? at the
“previous moment”).

* o1 &= xo + u1,0(zo): One-step mean-flow inference.

Batches and Computational Objects

« pP = LS°F 6,.: Empirical (mini-batch) measure of size B.
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+ XB ~ pPB: A realization of the empirical distribution.
¢ C € R™*™: Pairwise cost matrix, typically C;; = ||z; — y;||%.
* diag(a), I: Diagonal matrix with a on the diagonal; I is the identity matrix.

* O(+): Asymptotic computational complexity.
Flow matching under guidance

* c¢: guidance variable with ¢ ~ pc.
* v(t,x|c): the marginal velocity field conditional on guidance c.

* v(t,x): the marginal velocity field:
U(t’ X) = EC[U(t’ X|C)] = IECE(XO;XI)NWO,Ilc(Xl - XO)

* w > 1: guidance scalar.

* 1) € [0, 1]: parameter controls the weight of (averaged) velocity with and without guidance.
In default n = 0 (means no unconditional velocity).

B BACKGROUND:ODE, FLOW MATCHING AND OPTIMAL TRANSPORT

In the main text, we briefly introduced the background of ODEs, flow matching, and mean flows.
In this section, we provide a more detailed introduction and a survey: we revisit these concepts
in depth and present prior work within a unified, consistent framework to facilitate the reader’s
understanding.

B.1 ODE, FLOW AND PROBABLITY PATH.

Given a pair of probability measures (p, q), where p is a known source (noise) distribution, q is an
unknown target (data) distribution, and both p and q are supported in R? for some positive integer
d.

The goal of Flow Matching is to build a Probability Path (p;);c[o,1 such that py = p, p1 = q.
In particular, FM aims to train the Velocity Field neural network, which generates the probability

path (Pt)te[o,l]-
We start from the following ODE problem:

¥ :[0,1] x R4 — R4, (¢, 20) + 1y (0),

v:[0,1] x RT = R?, (2,1) = vy(x),

dip(x0) = ve(Pe(x0))dt (flow ODE),
Yo(zo) = Zo (initial condition).

2n

Here vy is called the time-dependent velocity field, and the solution v is called the time-dependent
flow.

In the default setting, we suppose v satisfies the condition of the following fundamental theorem,
which guarantees the existence and uniqueness of v, in (21)):

Theorem B.1 [Flow existence and uniqueness|LaSalle|(|]968)); |Perko|(2013); \Lipman et al.|(2024))]
Ifv:[0,1] x R — R? is continuously differentiable, then the ODE problem admits a unique
solution ). Furthermore, 1 is a diffeomorphism for each t € [0, 1], i.e. 1y is continuously differen-
tiable with a continuously differentiable inverse 1, L

Remark B.2 The above theorem demonstrates that, given a velocity field vy (with regular condi-
tions), it uniquely determines the flow 1. The reverse direction is straightforward: given a contin-
uously differentiable 1), we can obtain vy via v; = %wt. Therefore, velocity fields and flows are
equivalent descriptions of the same object.
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We define a set of random variables (vectors):
Xt = 1(Xo), pr = Law(Xy), (22)
Xo = 1o(Xo) ~ po := p.

This means p; is the distribution of the random variable X;. The induced probability distribution
family {p; };c[0,1] is called the Probability Path. Thus, the above ODE reads

dXt = Ut (Xt) dt. (23)

Another way to describe the relation between v;, p; is the continuity equation Villani et al.|(2008):
d

%pt = V . (Utpt), Vt c [07 1] (24)

Note, another equivalent continuity equation is defined by replacing p; by its density/pmf p,. For
convenience, we do not distinguish them in this article.

Theorem B.3 Let (Pt)te[o,l] be a probability path and v, a locally Lipschitz integrable velocity
field. Then the following are equivalent:

* (vy, pt) satisfies the continuity equation (24).
* (v, Xy) satisfies the ODE (23).

We say v, generates the probability path p; if one of the above equivalent statements holds, with
initial condition X¢ ~ Ppo.

Remark B.4 The realizations generated by v, {Xi}ic(0,1), define a stochastic process, i.e.,
(Xt, Xs) admits a joint distribution. However, unlike Theorem given a probability path {p:},
there may exist multiple distinct stochastic processes { X} such that p; = Law(X) for all t.

Flow Matching Problem. Let v{ : [0,1] x R? — R? denote a parametrized function (e.g., a
neural network). The goal of the flow matching problem, equivalently speaking, the flow matching
loss, is:

rergg Lrm(0) = Ey x, [Dvf (Xe),ve(Xy))], t~U([0,1]), X ~pp, t 1L Xy, (25)

where D(-,-) is a Bregman divergence. For example, if ® : R? — R is strictly convex, then
D(u,v) := ®(u) — [®(v) + (u — v, VO(v))]. (26)

B.2 CONDITIONAL FLOW MATCHING

Following the previous section, we define random variables (X, X;) ~ 7,1 where 7 1 is a joint
measure with marginals p, q. For example, 7 ; can be independent coupling, i.e. mp 1 = p ® q.

Next, we aim to construct a probability path (p;).c[o,1] and the related flow model (v¢, ;). Note, this
task can be dramatically simplified by adopting a conditional strategy. In particular, we introduce
an auxiliary random variable Z ~ pz (in general, Z only depends on Xy, X1, i.e. Z € o(Xo, X1)
where o(Xo, X1) is the o—field defined by X, X;.

For example Z = X; or Z = (Xg, X1)).
B.2.1 CONDITIONAL FLOW MATCHING IN THE GENERAL CASE

Given an auxiliary random variable Z ~ pz, we consider the conditional path p;|z(-|2), and the
induced marginals

p() = / P2 (al2)pz(2)dz. @7)

Similarly, suppose vy (-|2) generate p(-|2), V2. Similar to marginal probability distribution, we
set the marginal velocity field:

UV = E[Ut(Xt|Z)|Xt = I], . (28)
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Theorem B.5 [Marginal and Conditional velocity fields |Lipman et al.| (2024)] Suppose
(Pt z(+]2), ve(-|2)) satisfies some regular conditions, that is, C1 ([0, 1)R?) and v¢(x|z) is C1 ([0, 1) %

R?, Rdd) as a function of (t,x). Furthermore, pz has compact support. Finally, p:(x) > 0 for all
x €R%andt € [0,1).

Thus, if vy 7 (-|2) is integrable and it generates py| 7 (-|2) for each z, then v defined in @ generates

pe defined in (27).
Based on it, we can propose the conditional flow matching model:

Lorm(0) =B zopy Ximp. , D(0d(Xi| Z), ug(Xy)). (29)

And the following theorems can demonstrate the equivalence between the Flow matching and con-
ditional flow matching problems (25) and (29):

Theorem B.6 Under the conditions of [B.5|we have the following:
VoLrm(0) = VoLlerm(0) (30

Proposition B.7 (Liu et al.| (2022)) Under the conditions of[B.3] the population solution of the con-
ditional flow matching problem is given by (28).

Furthermore, the dynamic generated by v, (28) is called rectified flow in|Liu et al.| (2022).

B.2.2 CONDITIONAL FLOW ON X

In this section, we set:
Z = X;.

We consider a mapping
[0,1] x RY 5 (t,2) +— o(z|z;) € RY
that satisfies the following conditions: for each x1, we have
Yo(z]z1) = ,

Y1 (zfrr) = 21, €Y
¥4 (+|z1) is a diffeomorphism.

By setting the random variables X; | x, ., = ¥:(Xo|x1), we obtain

Law(X; [x,=z,) = Pt|1(‘|351) = ¢t('\xl)#ﬁo|l(‘|$1)7

which defines a conditional probability path. One can verify that the following boundary conditions
are satisfied:

p0|1(~|x1) = 7T0,1(‘|$1)» pl,l("xl) =6(-21). (32)
By Theorem [B.1] the following mapping
v(xlzy) = z/}t(xg\xl) = 1/}t(w*1(x\xl)\xl), Va such that x = ¢ () for some zy € Supp(Xo),

is the unique velocity field that generates the conditional path (p;(-|x1)), V1.

Remark B.8 In some literature (e.g., |Haxholli et al.| (2024)), py|1(-) or v,(-|1) are introduced first,
and the boundary conditions for the (conditional) flow mapping 1 (-|x1) are then derived. Intu-
itively, describing the conditional flow via ¢;(-|x1), v¢(-|21), or py1(-|x1) is equivalent, as estab-
lished by the fundamental theorem Here, we follow the convention introduced in|Lipman et al.
(2024).

Based on the above setting, the conditional flow training loss (29) becomes:
Lorm(0) = B x, X,mp, x, D(0:(Xe X1), 0] (X2))
= Ee 0, X1mmo 1 D0 (Xo| X1), 0/ (X0)). (33)
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Remark B.9 Unlike , the above training loss is feasible because V. (-|x1) is constructed, and
Xt = ¥t(Xo|X1) is known for each t. Although o 1 is unknown, .|y is constructed in the setup.
Therefore, we can apply the Monte Carlo approximation

~B
Tg1°¢ T4 =To,1,
where GB is an n-size i.i.d. empirical distribution sampled from g.
Conditional on X; = z, the quantity v (Xo|X7) is still a random variable, since multiple pairs
(Xo,X1) = (20, 1) may satisfy 1;(zo|z1) = 2. That is, we aim to use a deterministic mapping

u?(x) to approximate this random variable. As discussed in the previous section, the population
solution of (33) is given by

uf () = B[ (Xo| X1) | X¢ = a]. (34)
At the end of this section, we introduce some classical examples of this model:

Example B.10 (Song & Ermon|(2019)) In this work, the authors set wy 1 (o, 1) = po(zo)p1(x1)
(independent coupling), and define the interpolation as

xr = Ye(xo|21) = 21 + 040, (35)

where o € [0,1] is a strictly monotone decreasing function with o1 =~ 0. The interpolation con-
straint (39) is thus slightly relaxed.

In this setting, we have

pe(xe|m1) = N (24|21, 07 14),

. 1o
ve(Te|21) 1= Grmg = —t(xl — 1),
Ot

Vinp(z|r1) = —— (x¢ — 21).
O}
Accordingly, the training loss is formulated as
Z(Q; U) = EXO,XlNﬂ(),l,tNU[O,l] |:||80(xt1 O—t) + i;t?x||:| )
where mo 1 := N (0, I4) ® Pdata-

It is worth noting that in|Song & Ermon|(2019), the authors primarily use the score function formal-
ism, and do not explicitly define the velocity field or interpolation function. However, their method
can be naturally described within the flow matching framework, as discussed in|Tong et al.|(2023al);
Lipman et al.|(2024).

Example B.11 (Denoising Diffusion Probabilistic Model (DDPM), Ho et al. (2020)) In this
work, the authors use the independent coupling mp1 = N(0,14) ® pagua and define the
interpolation

zy = ¢y(o|21) := Varx1 + V1 — @y xo, (36)

where ag = 0, a1 = 1, a; € [0,1] (e.g., ay = sin(5t)). The condition is satisfied. Under this
construction we have

pe(xe]er) = N(ze|[Vaw 21,1 — ),

(24]z1) = Qg . Qi
vi(Te|T1) = Q4] — ———=T0 = 4T — ——5 T
ACZAEA] tL1 \/@ 0 tL1 1_0[% ty
1
Vlnpt($t|$1)=—1 5 (z¢ — agxy).
s
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In the original paper, the interpolation is described as a discrete-time stochastic process. The au-
thors derive

- 1—ay—
Pe—1)t,0(Te—1|me, 20) = N (21-1; fir (24, T0), 17;1(1 —ay)),
— 0y
Vor_1(1— Vog(l — -
il 1) = Y i - at)$1+ d — 1)$t
1-— Qg 1- Qi
1 1-— Qg
=— |z — —a0 ) -
Vet VI
where oy € [0, 1] satisfies oy = [ ¢[o 4 s in the discrete sense.
By introducing a parameterized mean
1 1-— Qg ¢
e (o 0, ), e
po (e, t) A 1_dtxo(l’t ) (37

matching pg (-, ) with fi(-, -) yields the loss function

E(XO1X1)N7TO,1 [HXU _Ea(Xtvt)H]' (38)
Since this model explicitly estimates x (the Gaussian noise), it is known as the denoising diffusion

model.

Example B.12 (Classical Conditional Flow Matching |Lipman et al.| (2023)) In this work, the
authors consider the independent coupling my 1 = N(0,14) ® Paaras and define the interpolation
function as

xy = ¢(xol|x1) =ty + (tomin — t + 1o,

where omin > 0 is a small constant. When o,i, = 0, the constraint ([3_7]) is exactly satisfied. For
Omin > 0, the final distribution p1 becomes a Gaussian-perturbed version of paasa:

D1 (l‘) = /N(l‘, U?ninld) dpdam(xl) ~ pdaru(x)-

The conditional distribution and velocity field are
pt(ztlxl) = N(mtuxla (to—min —t+ 1)2)a
Omin — 1

_Tmin T2 ta).
tomin—t—i—l(xt 1)

ve(2t]|21) = 21 + (Omin — )20 = 21 +
The training objective is then defined as

Exy Xymomo.s |51 = (1= 0min) Xo = o7 22,02

In this subsection, we consider the case where the conditioning variable is Z = (Xo,X;) =
(zo, 1)

Similar to the previous section, the goal is to build a conditional probability path pyo, (|zo, 1) that
satisfies the boundary conditions

Pijo,1 (|20, 1) = 0q, (), Vi€ {0,1}. (39)
We define a mapping 1 : [0, 1] x R? x R? — R such that
wt(.’ﬂo,l‘l) =ux;, ift=1i, Vi€ {0, 1}. (40)

In|Liu et al.| (2022)), v, is referred to as the interpolation mapping.
Let

Peo,1 (0, 1) = e (-, 21) 400, () = Oy, (20,21) () (41)
which by construction satisfies (39).
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Define the random variable X := 1 (X¢, X7 ), whose marginal distribution is
pi() := Law(X;) = /pt|0,1("$07x1)d7T0,1(53071'1)-

From Theorems[B.1]and [B.3] it follows that
ve(z|wo, 1) = "/.}t(xmxl)
is the unique conditional velocity field that generates the conditional probability path
(pt\o,1('|330,$1))te[0,1]~
Thus, the conditional flow matching loss (29) reduces to
Lerm(0) = B, (Xo.X1 )01, Xemp. 0.1 (1X0.X1) [P (02(Xe| Xo, X1), 07 (X1))]
=By, (Xo, X1 )omor [P (W01 (Xo, X1), 0] (X0))]. (42)

Remark B.13 Ignoring the difference in boundary conditions between 1 (xo|x1) and ¥r(xg, 1),
the training objectives (33) and (#2)) are essentially equivalent.

Example B.14 (Rectified Flow, Liu et al.|(2022)) The authors consider the independent coupling
mo,1 and define the interpolation

Ty = ¢¢(w0, 1) = w1 + Bixo,
where ag = 1 = 0 and oy = By = 1, ensuring (#0) is satisfied. The corresponding velocity field is
v (|0, 1) = dyy + Bro.
In the default choice oy = t, By = 1 — t, this simplifies to
vi(we|wo, 21) = 21 — o,
and the training loss becomes
0
E(xo,X1)~mor 107 (Xe| X0, X1) — (X1 — Xo)|P],

a widely used formulation due to its simplicity and effectiveness.

Example B.15 (Stochastic Interpolation, Albergo et al.|(2023)) Here, randomness is introduced
into the interpolation function. The stochastic interpolant is

Ty = ¢t(IO;Ila€) = (1 - t)Io +txy + \% 2t(1 - t) fa te [07 1]5
where Xog ~ p, X1 ~ q, and & ~ N (0, 1) are independent.
Differentiating yields the velocity field
1—2t

v(xe|2o, 21,8) = 21 — 20 + m £

The training loss is

Ls1(0) = E(xy,x1)~mo 1, E~N(0,14) [IIvf (X¢| X0, X1,€) — ve(Xe| Xo, X1, )],
where X; = ¢1(Xo, X1, §).
This reduces to rectified flow when the noise vanishes (¢ = 0). For intermediate 1, the stochastic

term encourages the model to learn a velocity field that balances interpolation with diffusion-like
dynamics, effectively bridging flow matching and score-based diffusion models.

Example B.16 (Independent Conditional Flow Matching, Lipman et al.|(2023)) The method
discussed in Example can also be described in the setting Z = (X0, X1). In this case, the
interpolation function is

It(m07mla§) = (1_t>$0+t$1 +0'£7 te [07 1];
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with independent coupling ™y 1 = p ® q. Note that under this formulation, the source distribution
becomes py = p * N(0,14) (where * denotes convolution), and the target distribution becomes
p1 = q*N(0,14).

The corresponding conditional velocity field is

d
P E¢[I; (2o, r1,8)] = 1 — x0.

Ut(l"t \ onl’l) =

Thus, the training loss is

Lerm(0) = E(xy,x1)~poa Etnv(0,1], e~n 0,10 [ 100 (X2) — (X1 — X0)|1%], (43)
where X; = (1 — )Xo + tX; + o&.

Because of its simplicity and effectiveness, Independent CFM has become one of the most widely
used training objectives for flow-based generative models.

B.3 OT-BASED FLOW MATCHING MODELS

When we consider Z = (Xj, X1), a natural extension of the above flow matching models is to
utilize optimal transport to define g ;.

Example B.17 (Mini-Batch OT Flow, Pooladian et al.|(2023)) A classical approach is Mini-
Batch Optimal Transport. Here, we sample i.i.d. empirical distributions pég PP frompy = p
and p; = q, respectively, with batch size B € N. Let w* (p¥, p¥) denote the optimal transporta-
tion plan between pE and pP. This empirical coupling is then used during training as a proxy for
the true coupling between p and q. Formally, the training objective is

Lor-crm(9) :=Exr iia p, EBxe,x1)~mo,1 [lvf (X2) = (X1 = Xo)I%], (44)
XP~iid q

where T 1 is the optimal coupling in OT (p?, qP) with empirical laws

p? = Law(X?), q? = Law(XP). (45)

Pooladian et al.|(2023) show that the transportation cost (trajectory length) induced by the mini-
batch OT plan is strictly smaller than that of the independent coupling. This provides a theoretical
Jjustification for why OT-based conditional flow matching yields more cost-efficient and geometri-
cally faithful interpolations.

Example B.18 (Mini-Batch OT and Sinkhorn OT Stochastic Flow) In (Tong et al.| (2023b)), the
authors combine the OT-CFM model ({4) with the stochastic conditional flow matching model ([{#3)).
The training loss is

Lor-crm(9) = Exrp Eixg,x)mmo 107 (Xe) = (X1 = Xo)|?],
XPrq t,6~N(0,14)

with interpolation
Xy = Ii(Xo, X1,8) = (1 = )Xo + tX1 + 0, (46)
where T 1 is the optimal solution of the mini-batch OT problem.

Compared to independent coupling, the OT-induced coupling aligns the source and target samples
in a globally optimal way, producing straighter transport trajectories and reducing unnecessary
curvature in the learned flows. This leads to more stable training and improved sample efficiency.

The authors further consider the entropic OT solution for Ty 1, leading to the Schrodinger Bridge
CFM model:

Lsp-crm(0) = Exn Eixg xy)mmo, [[07(Xe) = 00(Xe| Xo, X1)17],
XBrq  BEN(0.10)

22



Under review as a conference paper at ICLR 2026

with interpolation and velocity field

X =(1-t)Xo+tX;1 +/t(1 —t)ok, 47
1-2
T e L o R

0.1 is optimal for OTpy2 (Law(XJ), Law(X P)).

Here, entropic OT regularization further smooths the coupling, interpolating between deterministic
OT alignments and independent couplings, thereby improving robustness.

Example B.19 (Optimal Flow Matching (OFM) Kornilov et al. (2024)) This method modifies
the flow matching framework by restricting the velocity fields to gradients of convex potentials.
Concretely, the authors parameterize 1 with an Input Convex Neural Network (ICNN) and define

v(z) = V().
We first recall the Kantorovich dual formulation of quadratic optimal transport. For two probability
measures p and q on R?, the squared 2-Wasserstein distance admits the following dual form:

OT(p.a) = Exyrpl| Xoll* + Ex, vall X1[[* — 2 sup {Exompt(X0) + Expnat” (X1) }, (49)
where 1) is any convex function and p* is its convex conjugate (Villani, |2003 | Benamou & Brenier
2000). Brenier’s theorem ensures that the Monge optimal map under quadratic cost is of the form
T* = V*, and the optimal velocity field in (Benamou—Brenier) is Vi *(x) — x, where ¢* is the
maximizer in (#9).

OFM model. Given a coupling 7 between p and q, samples (xq, 1) ~ 79,1, and interpolation
¢ = (1 — t)xo + tx1, the OFM objective is

Lorm(¥) = E|Ju? () — (x1 — z0)|*|,
u¥ (zy) = Vp(2;) — o, 1 convex.

At the population optimum, minimizing this objective recovers the Brenier map V1*; equivalently,
* solves the dual Kantorovich problem. This aligns flow matching with the dual OT formulation
and guarantees straight displacement interpolations.

Intuitively, unlike standard FM/CFM models, the mapping x — ¥ (x) (or x — Vi(x)) does not
take time t as input. This is because the optimal velocity field in the OT problem has constant speed.
OFM exploits this property to simplify the model while preserving optimality.

C EXPERIMENT SETTING DETAILS IN IMAGE GENERATION.

We study one-step MeanFlow generation on the MNIST dataset, operating entirely in the latent
space of a pretrained VAE tokenizer from [Rombach et al|(2022). Each 28x28 grayscale digit is
padded to 32x32, normalized to [-1,1], and replicated across three channels before being encoded
once by the frozen VAE. The resulting 4x4 x4 latents are cached and reused throughout training.
Our generator adopts a ConvNeXt-style U-Net backbone, following the implementation from |Geng
et al.|(2025), but adapted to the low-resolution latent tensor (= 59M parameters). We retain dual si-
nusoidal embeddings for the flow time ¢ and the solver step size h, such that the network is explicitly
conditioned on both temporal signals, consistent with the original design.

Training hyperparameters largely mirror the baseline from |Geng et al.| (2025) with minor mod-
ifications to improve latent-space stability. We use Adam with a learning rate of 1 x 1073,
(81, B2) = (0.9,0.99), batch size 256, no weight decay, and 30k iterations with a 10% linear warm-
up followed by a constant schedule. Exponential moving averages are maintained with decay 0.99
and an update period of 16 steps. Timesteps are sampled from a logit-normal distribution with
(Pmeant = —0.6, Pygt = 1.6, Pyean” = —4.0) and a mismatch ratio of 0.75. The training objective
follows the JVP-based loss with adaptive reweighting as introduced in |Geng et al.| (2025). Beyond
the default Gaussian pairing, we also evaluate transport-based pairings, including Optimal Transport
(OT), Sinkhorn OT, Low-Rank Linear OT, hi er OT, and Sliced OT.
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We evaluate several typical OT solvers for Mean Flows by varying the Number of Function Evalua-
tions (NFE) under the Euler integrator. By default we study 1-NFE generation and report results up
to 10-NFE. Evaluation metrics use Fréchet Inception Distance (FID) Heusel et al.|(2017) and the
2—Wasserstein distance (W) |Villani et al.| (2008)), computed between generated images and recon-
structed images from VAE. In pixel space, we use the Inception network from TorchMetrics to
compute FID and W,. In latent space, we re-encode generated and reconstructed images with the
frozen VAE to obtain 4 x4 x4 latent vectors (rescaled by 0.18215) and report FID* and W32°. While
FID captures perceptual quality and diversity in Inception feature space, the Wy provides a more
direct measure of distribution alignment between generated and VAE-reconstructed samples, both
in pixel space and autoencoder latent manifold.

One-step generation results. Table[d]reports one-step (1-NFE) MNIST generation for baseline and
six transport-based pairings sampler. The left sub-table (a) uses EMA parameters and the right panel
(b) uses original weights. We find the exact OT pairing has the lowest scores on all four metrics,
while LOT-HR and LOT-LR are competitive under EMA. The trends of W5, FID*, and W3¢ mirror
those of FID, indicating reduced divergence between generated and reference distributions in both
pixel and latent spaces when transport-based pairings are applied.

Table 4: One-step generation performance on MNIST. FID, W5 and FID*, W3¢ are computed
between generated images and reconstructed images from VAR. Best values are bold with gray
background.

(a) EMA=True (b) EMA=False
Method FID | W, | FID* | W& | Method FID | W, | FID* | W3¢ |
w/o OT (Gaussian) 3.6709 8.7449 0.2296 2.5706 w/o OT (Gaussian) 8.0620 9.2343  0.3792 2.6661
oT 1.9179 8.2102 0.0304 2.3527 oT 3.2484 8.6393 0.0993 2.4512
LOT-LR 2.2258 8.4315 0.0405 2.3751 LOT-LR 6.2175 8.9047 0.1397 2.4792
LOT-HR 1.9754 8.3815 0.0401 2.3557 LOT-HR 5.5294 8.8883 0.1077 2.4966
Sinkhorn 3.6944 8.6554 0.1672 2.5144 Sinkhorn 9.9643 9.6867 0.3419 2.7312
Sliced-OT 7.2018 9.1260 0.9254 2.8637 Sliced-OT 11.2034 9.7436  0.8810 2.9050
OT-Partial 4.1926 8.9223 0.2917 2.6078 OT-Partial 8.3549 9.4912 0.3822 2.6973

Multi-step generation results. From Table [5| we find in pixel space, the exact OT solver attains
the lowest FID and W5 at all 2/5/10 NFEs. Within the autoencoder manifold, FID* is lowest
for LOT-LR across steps, while W3¢ alternates between OT (NFE=2,10) and LOT-LR (NFE=5).
Improvements from NFE=2 to 5 are significant, whereas gains from 5 to 10 are small, suggesting
diminishing returns beyond 5 steps.

Multi-step generation trends across NFEs. Figure E]plots FID, Wy, FID*, and W2*© versus NFE
(1-10) with EMA. The curves validate Table [5] that OT dominates in pixel-space metrics across
steps, LOT-LR leads on FID?°, and W2¢° is shared between OT and LOT-LR. Most OT Solvers
improve rapidly up to ~5 NFE, after which the curves flatten and the solver rankings remain stable.

D EXPERIMENT SETUP DETAILS IN CONDITIONAL SHAPE GENERATION

D.1 MEAN FLOW MATCHING UNDER GUIDANCE

We first recap the mean flow matching model with guidance.

Following the convention in the mean flow formulation |Geng et al| (2025)), we set the condition
Z = (Xo, X1). Guidance is represented by a random variable ¢ such that (Z4,,, ¢) follows a joint
distribution. For example, c may correspond to the class label or extracted features of Tg,¢a.

In the classical flow matching setting (see, e.g., [Lipman et al.| (2024)), the guided ground-truth
velocity field is defined as

vEB (2 | €) = wug(ay | €) + (1 — w)vg (), (50)
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Table 5: Multi-step generation performance on MNIST (EMA=True) at 2/5/10-NFEs. metrics are
computed between generated images and reconstructed images from VAE, best values per column
are bold with gray background.

Method FID (1) Wa (1) FID" (1) W (1)

2 5 10 2 5 10 2 5 10 2 5 10
w/o OT (Gaussian) 1.0880 0.6318 0.7267 8.2560 8.0634 8.0602 0.2878 0.1860 0.1811 2.4788 2.3719 2.3639
oT 0.6123 0.4689 0.4935 8.0383 8.0029 7.9546 0.0484 0.0621 0.0644 2.3273 2.3089 2.2885
LOT-LR 0.7449 0.5371 0.5531 8.1481 8.0312 7.9941 0.0439 0.0536 0.0615 2.3331 2.2975 2.2921
LOT-HR 0.8357 0.6053 0.5759 8.1922 8.0683 8.0138 0.0496 0.0577 0.0631 2.3457 2.3073 2.2990
Sinkhorn 1.0782 0.6362 0.7135 8.2903 8.1000 8.1040 0.2644 0.1598 0.1641 2.4663 2.3700 2.3629
Sliced-OT 2.9616 1.2293 0.9985 8.4144 8.1957 8.1968 0.3852 0.2581 0.2806 2.5695 2.4584 2.4733
OT-Partial 2.9925 29214 2.8793 8.6410 8.5239 8.5422 0.3711 0.4142 0.4340 2.6095 2.5879 2.6077

~O— Wlo OT (Gaussian) —¥~ Sinkhorn X —0— wlo OT (Gaussian) ~¥~ Sinkhorn
-o- or -~ Sliced-OT 90 -o- oI ~&- Sliced-OT

A~ LOTLR @ OT-Partial 34 A~ LOT-LR # - OT-Partial
¢+ LOT-Group b <+ LOT-Group

—O— w/o OT (Gaussian) —W~— Sinkhorn 2 —O— w/o OT (Gaussian) —W%— Sinkhorn
-o- oT -#- Sliced-OT 28 -o- or —@- Sliced-OT
A~ LOTLIR @ OT-Partial . A~ LOTLLR ® OT-Partial
¢ LOT-Group &+ LOT-Group
® o 8 ® s & ¢
L s o R i 4
ey mm =y = =G m i e i G G G n PPN i S G S, —---~$~:: _:u_g_»-, «
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Figure 6: Multi-step generation performance results on MNIST (EMA=True). panels (a—d) plot
FID, Wy, FID*®, and W3© versus NFE (1-10).

where w > 1 is the guidance scale. Here v;(x;) and v:(z; | ¢) denote the marginal velocity fields
based on p; and py|c, respectively:

ve(@) = E(x0,x1) 0.1, Ximprixg x, [41,(Xo0, X1)] = E(x0, %1 )~ [X1 — Xo),

Ut(a: ‘ C) = E(Xo,Xl)NW0,1|C7 Xt~Pt|xg,X1,c [%It(X()’Xl)] = E(XO,XI)NWO,HC[Xl - XO]'

In both cases, the second equality holds under the deterministic interpolation I;(zg,z1) = (1 —
t)xo +try. Indeed, in this setting py (oo 2, = Ptjwo,e1,c = O(1—t)zo+ta» AN %It(xo, x1) = x1 — Xo.

Based on |Geng et al.| (2025)), the guided mean velocity is defined as

¢
/ v (7,2, | ) dr.
,

Multiplying both sides by (¢ — r) and differentiating with respect to ¢, we obtain

qug(xt,r,t |c) = ;
—r

d gy
u(zy t,r | c) = v (1,2, | €) — (t — r)ﬁudg(t,r, x¢ | ©)

= 0% (1,2, | ) — (t —7) (v (2 | €) D, u® + Dyuce).

Moreover, we have the identity
v (t x| ) = wolt,xy | €) + (1 — w)v(t, zy)
=wo(t,z, | c) + (1 — w)v(t, ;)
= wo(t, x| €) + (1 — w)us(t,t, z,),
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where v°'8(t, 2;) 1= E.[v® (¢, 2 | ¢)], and
uB(t,r, ) = Ee[u®(t,r, z, | €)] = u®(t,r, z, | 0),
with ) denoting the unconditional case.

Combining the above identities, |(Geng et al.| (2025) introduces the training loss for mean flow with
guidance:

L(0) = E[|lug®(t, 7,2, | ) — sglueg)l|*],
U = Ty — (t — 1) (T4 uGE + Dyuf®),

U= wop + (1 — w)u;fg(t, t, ).
Based on this process, we can derive the training loss of OT-MeanFlow under guidance as

f
ECN(l—ﬂ)pc"ﬂl% E XE~p E(X07X1)Nﬂ'8’1 {Hugg<tv Ty, Ty | C) - Utgt||2 s (51
XP~qle

where 7§ ; denotes the optimal coupling between Law (X{£) and Law(X#). We use the superscript

c to emphasize that X is sampled from the conditional distribution q | c. During the experiment,
we setn = 0.

D.2 EXPERIMENTAL DETAILS ON CONDITIONAL SHAPE GENERATION

Training and evaluation We pre-train a PointNet-based auto-encoder with two additional linear
layers, followed by batch normalization and max pooling for the encoder. We minimize the Chamfer
distance between the reconstructed shape, and the ground truth. The number of epochs is set to 1000.
We train an auto-encoder on ShapeNet Chairs, and one on ModelNet10, and utilize these pretrained
auto-encoders to extract context features as condition vectors to our generation model.

For training the MeanFlow model, the context vector extracted from the pre-trained auto-encoder is
first then projected through a two layer MLP with an output size of 256. This is then concatenated
alongside the flow model input and a Residual MLP network is used for flow prediction. This model
has 12 layers and hidden dimension set to 2048. For ShapeNet Chairs, use the train-validation split
from class “Chairs” to train the model, and report the evaluation metrics and plots on the test set.
Similarly, for ModelNet10, we train on the training split and report evaluation metrics on the test
split.

All experiments are trained for 1000 epochs. We train across 4 NVIDIA A6000 GPUs with a batch
size of 32 graphs. For each graph, we then randomly sample 256 points as target samples. We use
the Adam optimizer with Ir = 2e — 5. The source distribution is a randomly generated gaussian
with the same dimensionality as the target data.

Interpolation For the interpolation plots, we condition the model on a convex combination of
context features for two random shapes. Assume C'; and C' are context vectors for shape 1 and 2
respectively. The combined context vector is formulated as (1 — «)Cy + aCs. Ideally, the output
conditioned on this context vector should display an interpolated version of the two shapes. Addi-
tional interpolation results for LOT-ind and LOT-group are provided in Figure[/| It can be observed
that other OT variants also preserve a good performance, capturing finer details compared to MF.

D.3 EXPERIMENTAL DETAILS ON UNPAIRED IMAGE-TO-IMAGE TRANSLATION

We use a 4-layer MLP with hidden dimension of 1024. The time inputs ¢ and & are concatenated
and projected to a 32-dimensional vector through an MLP layer. We use the Adam optimizer with a
learning rate 1e — 3, and train all methods for 5000 epochs with a batch size of 2048.

E FUTURE DIRECTION.

One of our future directions is applying generalized sliced OT into the old (flow matching) and new
(mean flow matching) methods.
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a=0.0 a = 0.25 a=05 a=0.75 a=1.0 Sample 2

LOT-LR

LOT-HR

Figure 7: Single step (NEF=1) shape interpolation on two samples from ShapeNet chairs using LOT-
LR, and LOT-HR.

E.1 BACKGROUND: SLICED OPTIMAL TRANSPORT (SOT).

Sliced OT (Rabin et all, 2011} [Bonneel et al, 2013) reduces high-dimensional OT to a collection of
one-dimensional OT problems, which admit closed-form solutions. For a probability measure p on
R? and a projection direction # € S?~!, let Ry denote the Radon transform (i.e., 1D projection).
The sliced OT distance is defined as

SOT*(p,q) = /SH OT(Rop; Req) db, (52)

where the 1D Wasserstein distances can be computed in O(nlogn) via sorting. In practice, the
integral is approximated by Monte Carlo sampling over random directions.

Generalized Radon Transform. In the simplest setting, the Radon transform uses the inner prod-
uct as the 1D projection:

Rop = (0, )P
Later, this transform was generalized to nonlinear mappings:

GRop = (0, h()) 4P,

where h : RY — R satisfies certain regularity conditions and can be modeled as a learnable
neural network. Intuitively, i serves as a feature mapping into a Reproducing Kernel Hilbert Space
(RKHS), and the inner-product projection is then computed in the transformed space.

Sliced OT Plan. Let ~? denote the optimal plan for the 1D OT problem. One can lift 4% back into
R (see, e.g., Mahey et al. (2023); [Liu et al.| (2024)), denoted as £(~?). In the discrete case, 77 is
represented as an 1 X m transport matrix; with probability 1, v and £(+?) coincide. Therefore, for
convenience, we do not distinguish between them in this article.

There are several ways to define a transportation plan between p and q in the sliced OT setting, for
example:

YSOT-min ‘= arg min'ye <Cv 70>,

YSOT-expect *= IEewUnif(Solfl) ["/9]7 (53)

—XC,~°
YSOT-temp ‘= EGNUnif(Sdfl) 70 de,le)e(f;E(f)f(C:ng)})dO’] )

where in the third case, A > 0 controls the temperature.

In practice, these expectations are approximated via Monte Carlo sampling over projection direc-
tions 6.

Differentiable transportation plan One challenge of the above formulations is the minimization
over f. Classical gradient descent does not work since +? is not differentiable with respect to #. To
address this issue, several techniques have been proposed.

» The simplest method is Soft-sorting (Prillo & FEisenschlos, 2020). When GRp =
% Zf;l 0z, and GRq = % Zle 9y, are empirical distributions on R with equal weights,
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the optimal coupling for any convex cost ¢(z,y) = |z — y|P (p > 1) matches points in
sorted order. Let S;, S, € {0,1}5*5 be permutation matrices such that S, x = x and
S,y =y', where x = [z1,...,25]",y = [y1,...,y5] ", and T denotes nondecreasing

sort. Then the optimal plan is

1
7 = 28T XS
Intuitively, it denotes the matching
zl oyl Vie1:B]

Inspired by this formulation, we replace the hard sorting S, S, by the corresponded soft
permutation matrices Sy (x), S-(y) € B (doubly-stochastic), yielding the relaxed plan

= £ 5007 SH(y),
S, x = softmax(—d(sort(x)1" —x"1)/7)

which recovers the hard coupling as 7 — 0. S;(x), S-(y) are differentiable when 7 > 0,
thus we obtain a differentiable plan.

The second method to obtain a differentiable plan is Gaussian perturbation. We define
the smoothed objective

hs(e) = ]EZNN(O,I)[h(e + EZ) ] ;
where h(6) = OT(GR4(p), GRo(q)).

By Stein’s lemma, the gradient of the smoothed objective admits the unbiased form
1
Vohe(0) = z Ezno,nlh(0+cZ) Z]. 54

In practice, we approximate the expectation using Monte Carlo with a control variate, lead-
ing to the empirical estimator
N
1

Vohe(0) = <Y (h(e Fez) — h(&))zk, 2 ~ N(0, ). (55)

T eN
k=1

This yields a differentiable surrogate for the originally non-smooth transport objective.

E.2 FUTURE WORK: SLICED OT MEAN FLoOw

One natural extension of the proposed OT-mean flow method is utilizing the sliced OT plan 53] to
define 7 ; in the mean flow (or original flow). The current challenges include the following:

* In a high-dimensional data generation experiment, it is important to define a suitable gen-
eralized Radon transform GR as we aim to capture the important features in the high-
dimensional original space. How to efficiently train such a feature mapping h(zx) is still
unclear.

* Due to the nature of the sliced OT problem, the mapping 6 — OT(GRy(p), GRe(q)) is not
differentiable at finite points. It is still unclear if the gradient-descent based optimization
method is suitable.

* The number of projections required to achieve an accurate sliced approximation scales with
data complexity; balancing computational efficiency and approximation quality is still an
open question.

* It remains unclear how to integrate sliced OT plans with stochastic mini-batch training
while preserving stability and convergence guarantees in mean flow training.

Despite these challenges, combining sliced OT with mean flow has significant potential benefits.
By working with one-dimensional projections, sliced OT can substantially reduce computational
complexity compared to solving high-dimensional OT directly. Moreover, if an effective feature
mapping GR can be learned, this framework could also adaptively emphasize task-relevant direc-
tions in the data, leading to improved sample quality and representation learning.
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F COMPUTATIONAL RESOURCE

The toy shape translation experiments were conducted on an AMD EPYC 7713 CPU.

The image generation experiments were conducted on a single NVIDIA A6000 GPU with 48 GB
memory.

The unpaired image-to-image translation experiments were trained on a single NVIDIA A6000 GPU
with 48 GB memory. The point cloud experiments were done using distributed training, parallelized
over 4x NVIDIA A6000 GPUs.
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