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ABSTRACT

Flow-matching generative models have emerged as a powerful paradigm for con-
tinuous data generation, achieving state-of-the-art results across domains such as
images, 3D shapes, and point clouds. Despite their success, these models suf-
fer from slow inference due to the requirement of numerous sequential sampling
steps. Recent work has sought to accelerate inference by reducing the number of
sampling steps. In particular, Mean Flows offer a one-step generation approach
that delivers substantial speedups while retaining strong generative performance.
Yet, in many continuous domains, Mean Flows fail to faithfully approximate the
behavior of the original multi-step flow-matching process. In this work, we ad-
dress this limitation by incorporating optimal transport–based sampling strategies
into the Mean Flow framework, enabling one-step generators that better preserve
the fidelity and diversity of the original multi-step flow process. Experiments on
controlled low-dimensional settings and on high-dimensional tasks such as im-
age generation, image-to-image translation, and point cloud generation demon-
strate that our approach achieves superior inference accuracy in one-step genera-
tive modeling. The code for re- producing all the numerical results is available in
the anonymous repository at https://anonymous.4open.science/r/
OT-flow-FE8F/.

1 INTRODUCTION

Flow-based generative models have emerged as a cornerstone of modern generative AI, providing a
unifying framework for modeling complex continuous data distributions. The goal is to transform
a source distribution (which may be simple, such as a Gaussian, or complex, as in image-to-image
translation) into a target data distribution (e.g., natural images). Two prominent frameworks are
diffusion models and flow matching (FM). Diffusion models formulate generation via a stochastic
differential equation (SDE) and learn a score function or denoising function (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Karras et al., 2022), whereas flow
matching uses an ordinary differential equation (ODE) and learns a velocity field to continuously
transform the source distribution into the target (Lipman et al., 2023; Albergo & Vanden-Eijnden,
2023; Liu et al., 2022). These two methods are closely related: under Gaussian priors and indepen-
dent couplings between source and target, they can be converted into one another (De Bortoli et al.,
2023; Tong et al., 2023b).

A key limitation of both diffusion and classical FM models is that, during inference, one must nu-
merically solve an integration problem, which requires many steps to obtain accurate results (Song
et al., 2021; Lipman et al., 2023). To mitigate this issue, several complementary directions have
been explored. One large body of work distills a multi-step diffusion model (teacher) into a one-step
generator (student) via trajectory or distribution matching objectives, with recent advances includ-
ing adversarial distillation, consistency models, and f -divergence–based approaches (Meng et al.,
2023; Song et al., 2023; Sauer et al., 2024; Yin et al., 2024; Xu et al., 2025). Another line of work
seeks to train FM or diffusion models with inherently straighter and more cost-efficient trajectories.
For instance, Tong et al. (2023a); Kornilov et al. (2024); Pooladian et al. (2023) leverage optimal
transport to define the joint sampling between source (Gaussian) and target data, yielding straighter
trajectories and improved efficiency both theoretically and empirically (Pooladian et al., 2023; Liu
et al., 2022). More recently, Geng et al. (2025) introduces the MeanFlow method, which replaces
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the instantaneous velocity field with its time-averaged integration as the learning target. This refor-
mulation enables one-step or few-step sampling, significantly accelerating inference.

In this paper, we propose the Optimal Transport MeanFlow (OT-MF) method, which unifies the
trajectory-straightening principles of optimal transport with the time-averaged formulation of Mean-
Flow, yielding straighter and more efficient one-step generative trajectories. Our approach combines
OT-based couplings with mean-flow supervision, enabling geometry-aware and efficient one-step
generative modeling. Our contributions are summarized as follows:

• Unified framework. We introduce OT-MF, a new flow matching method that generalizes
conditional flow matching, minibatch OT flow matching, and mean flow approaches under
a single formulation.

• Improved efficiency and accuracy. In point cloud generation and image translation ex-
periments, OT-MF retains the one-step generation ability of MeanFlow while significantly
improving accuracy.

• Scalable training. To further enhance training efficiency, we incorporate accelerated OT
solvers including linear OT and hierarchical OT. We demonstrate that these extensions
preserve the accuracy of OT-MF while reducing computational cost during training.

2 BACKGROUND AND RELATED WORK

Notation Setup and ODE. Suppose the dataset lies in the space Rd. Let P(Rd) denote the set of
all probability measures on Rd. We use p,q ∈ P(Rd) to denote the source (prior) and target (data)
laws, respectively; their densities (when they exist) are denoted p(x), q(x). By default, p is taken to
be the Gaussian law, i.e., p = N (0, Id).

We also define the following ODE system:
ψ : [0, 1]× Rd → Rd, (t, x0) 7→ ψt(x0),

v : [0, 1]× Rd → Rd, (t, x) 7→ v(t, x) := vt(x),

dψt(x0) = vt(ψt(x0)) dt (flow ODE),
ψ0(x0) = x0 (initial condition).

(1)

Here, vt is called the time-dependent vector/velocity field, and the solution ψ is referred to as the
time-dependent flow. We say that the velocity field v generates a probability path (pt)t∈[0,1] if the
following equivalent conditions hold:

• Let X0 ∼ p0, and dXt = vt(Xt) dt. Then Law(Xt) = pt, or equivalently Xt ∼ pt.
• (pt, vt) satisfies the following continuity equation:

∂tpt(x) +∇ ·
(
vt(x)pt(x)

)
= 0. (2)

In the default setting, we assume that vt and ψt satisfy sufficient regularity conditions so that the
above system admits a unique solution. Further details are provided in the appendix.

Note that in the ODE (and SDE) flow generation setting, the flow ψ can be equivalently described
by an interpolation function It : Rd × Rd → Rd, satisfying

I0(x0, x1) = x0, I1(x0, x1) = x1. (3)

We can then define the probability path (conditional on X0, X1) as

Xt = It(X0, X1), Xt ∼ pt.

By default, we choose the affine interpolation (Liu et al., 2022; Lipman et al., 2023; 2024):
It(x0, x1) = (1− t)x0 + tx1.

2.1 CLASSICAL FLOW MATCHING AND CONDITIONAL FLOW MATCHING

The goal of flow matching is to find a neural velocity field v such that v generates the probability
path (pt)t∈[0,1] with endpoints p0 = p and p1 = q.

2
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Unconditional Flow Matching. Let vθt : [0, 1] × Rd → Rd denote a parametrized function (e.g.,
a neural network). The flow matching loss is defined as

min
θ∈Θ

LFM(θ) = Et,Xt

[
∥vθt (Xt)− vt(Xt)∥2

]
, t ∼ U([0, 1]), Xt ∼ pt, t ⊥⊥ Xt, (4)

where the independence condition t ⊥⊥ Xt indicates that one first chooses t ∼ U([0, 1]), and then
independently samples Xt ∼ pt.

Remark 2.1 In most flow-matching or diffusion-model references, t may be treated either as a
random variable (independent of (Xt)t∈[0,1]) or as a fixed constant in [0, 1]. We do not distinguish
these cases for convenience.

In practice, the problem (4) is intractable since the law pt is unknown. To address this, the condi-
tional flow matching, also known as the rectified flow (Liu et al., 2022) objective is used:

E(X0,X1)∼π0,1

[
∥vθt (Xt | X0, X1)− vt(Xt | X0, X1)∥2

]
, (5)

where the target velocity is given by

vt(Xt | X0, X1) =
d

dt
It(X0, X1) = X1 −X0,

when the interpolation is affine, i.e. Xt := It(X0, X1) = (1− t)X0 + tX1.

2.2 OPTIMAL TRANSPORT AND RELATED FLOW MATCHING MODELS

Optimal Transport. Let P2(Rd) :=
{
p ∈ P(Rd) :

∫
Rd ∥x∥2 dp(x) < ∞

}
. Given a measurable

mapping T : Rd → Rd, the pushforward measure T#p is defined as

T#p(B) := p(T−1(B)), ∀B ⊆ Rd Borel, (6)

where T−1(B) := {x : T (x) ∈ B} is the preimage of B under T .

Given p,q ∈ P2(Rd), the optimal transport problem is

OT (p,q) := min
γ∈Γ(p,q)

∫
Rd×Rd

∥x− y∥2 dγ(x, y), (7)

where Γ(p,q) :=
{
γ ∈ P(Rd × Rd) : (π1)#γ = p, (π2)#γ = q

}
, with π1, π2 denoting

the canonical projections. Classical OT theory (Villani, 2003; Villani et al., 2008) guarantees the
existence of a minimizer to (7). When the optimal plan γ is induced by a mapping T : Rd → Rd,
that is, γ = (id× T )#p where T#p = q, the solution is said to be of Monge form.

2.2.1 MINI-BATCH OPTIMAL TRANSPORT FLOW MATCHING.

The dynamic OT, known as the Benamou–Brenier formulation (Benamou & Brenier, 2000) is:

OT (p,q) = min
{pt,vt}

∫ 1

0

∫
Rd

∥vt(x)∥2 dpt(x)dt, (Benamou–Brenier)

s.t. ∂tpt(x) +∇ ·
(
vt(x),pt(x)

)
= 0, p0 = p,p1 = q.

Intuitively, dynamic OT finds the most cost-efficient probability path with respect to the ℓ2 cost.

Inspired by this property, Pooladian et al. (2023); Tong et al. (2023a) adapt OT as the coupling
between p0 and p1 in (5). The resulting method is called mini-batch optimal transport flow
matching (OT-CFM):

LOT-CFM(θ) := E
XB

0
i.i.d.∼ p,

XB
1

i.i.d.∼ q

E(X0,X1)∼π0,1

[
∥vθt (Xt)− vt(Xt | X0, X1)∥2

]
, (8)

where B ∈ N, and π0,1 is the optimal coupling in OT (pB ,qB) with empirical laws

pB = Law(XB
0 ), qB = Law(XB

1 ). (9)

The term mini-batch refers to the fact that the OT coupling π0,1 is computed from sampled mini-
batches XB

0 and XB
1 . Compared to using the full coupling OT (p,q), the mini-batch approach

improves training efficiency and introduces stochasticity into the model.

3
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2.2.2 OTHER OT-BASED FLOW MATCHING MODELS

Beyond the models described above, several works have extended flow matching by incorporating
alternative OT formulations. For example, Klein et al. (2023) combine Gromov–Wasserstein (GW)
distance with rectified flow matching, enabling the model to align distributions with heterogeneous
supports (e.g., graphs versus point clouds). This direction leverages the structural matching ability
of GW to define flow trajectories in non-Euclidean domains.

More recently, Chapel et al. (2025) proposed differentiable generalized sliced OT (GSOT) plans and
integrated them with flow matching. By learning nonlinear projections that define generalized sliced
Wasserstein distances, their approach inherits both computational scalability and expressive power,
allowing efficient flow training on high-dimensional data. Similarly, Tran et al. (2025) applied tree-
sliced Wasserstein distances with nonlinear projections to diffusion models, showing that projection-
based OT relaxations can improve sampling quality.

Another line of research focuses on using dual formulation or regularized OT formulations. Tong
et al. (2023b) combined stochastic interpolations with OT couplings, including entropic OT, leading
to the Schrödinger Bridge Flow Matching model. Kornilov et al. (2024) proposed Optimal Flow
Matching, which uses the dual formulation of quadratic OT and constrains velocity fields to gradi-
ents of convex potentials.

In addition, the Wasserstein Flow Matching framework (Haviv et al., 2024) employs OT and Bures–
Wasserstein distances to define pairwise displacements between probability measures (e.g., between
shapes), broadening the applicability of flow matching beyond Euclidean metrics.

Overall, these works illustrate that OT can enrich flow matching models in diverse ways: by incor-
porating structural similarity (GW), scalable projections (sliced OT), dynamic formulations (SB), or
convex dual structures (OFM).

2.3 MEAN-FLOW MODEL

The inference (data generation) step of classical FM requires solving an integration of the form

x1 = x0 +

∫ 1

0

v(t, xt) dt, (10)

which typically necessitates multiple numerical steps. In Geng et al. (2025), the authors propose the
Mean-Flow model, which directly learns the average vector field:

u(t, r, xt) := ut,r(xt) :=
1

t− r

∫ t

r

v(τ, xτ ) dτ, r < t. (11)

It is straightforward to verify that ut,r satisfies the following PDE (when t, r are independent):

u(t, r, xt) = v(xt, t)− (t− r)
(
v(xt, t) ∂xt

u(t, r, xt) + ∂tu
θ(t, r, xt)

)
. (12)

This leads to the training loss:

LMF(θ) := E(X0,X1)

[
∥uθt (xt, r, t)− sg(utgt(vt, t, r))∥2

]
, (13)

utgt(vt, t, r) = v(xt, t)− (t− r)
(
v(xt, t) ∂xt

uθ(t, r, xt) + ∂tu
θ(t, r, xt)

)
, (14)

where sg denotes the stop-gradient operator (i.e., no gradients propagate through this argument with
respect to θ). Intuitively, one can view uθt as the model at the previous moment; thus, uθ is not
included as input to utgt. At inference time, the learned mean flow can be directly applied to a base
sample x0 ∼ p in a single step:

x1 ≈ x0 + u1,0(x0), (15)

thereby bypassing multi-step ODE integration. This one-step transport significantly accelerates
sampling while maintaining competitive generation quality, showing that generative flows can be
effectively compressed into a single mean displacement (Geng et al., 2025).

4
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Algorithm 1 Mean-Flow Training with OT
Input: Source data D0 (default toN (0, Id)), target data D1, epochs E, batch size B
Output: Trained parameters θ

1: Initialize θ;
2: for e = 1→ E do
3: for mini-batches (XB

0 , XB
1 ) ∼ (D0,D1) of size B do

4: Solve OT plan γ = OT (Law(XB
0 ),Law(XB

1 )) or OT variants (see e.g. (17), or (20), or (53))
5: Sample (X0, X1) ∼ γ, size(X0, X1) ≤ B (in default = B).
6: Sample t, r ∼ U(0, 1) with r ≤ t.
7: Compute Xt ← It(X0, X1), vt ← d

dt
(X0, X1). In default, Xt = (1−t)X0+tX1, vt = X1−X0

8: Compute utgt(vt, t, r) from (14)
9: L(θ) = ∥uθ(t, r, xt)− sg(utgt)∥2

10: Update θ based on L(θ), e.g. gradient descent, momentum method, etc.
11: Stop if converges

3 OUR METHOD: OT-MEAN FLOW

Our OT-mean flow matching is defined as follows:

LOTMF(u
θ) := EXB

0 ∼p,XB
1 ∼qE(X0,X1)∼π0,1,t

[
∥uθt (t, r,Xt)− utgt(vt, t, r)∥2

]
, (16)

π0,1 is an optimal plan for OT (pB ,qB), pB = Law(XB
0 ), qB = Law(XB

1 ).

The inference process is the same as in the classical mean-flow model (15).

The above formulation can be viewed as a unified formulation that combines the mini-batch OT flow
and the mean flow method. Our method is summarized in Algorithms 1 and 2. We further accelerate
training by applying the following OT techniques to compute the batch coupling π0,1.

3.1 OT ACCELERATION METHODS

MF OT-MF

𝑋0

𝑋1

𝑋0

𝑋1

Figure 1: Velocity visualization of a pair
of points from the source and target dis-
tributions. The straight line denotes the
average velocity from an intermediate
time to t = 1. The OT-MF trajectory
is noticeably straighter compared to the
vanilla Mean Flow.

The computational cost of solving the discrete OT prob-
lem via network flow or linear programming is pro-
hibitively high (O(n3 log n) in the worst case for n sam-
ples). In the semi-discrete and continuous settings, the
complexity can be even worse. To accelerate compu-
tation, several approximate OT variants have been pro-
posed. Below we briefly review some of the most widely
used approaches.

Sinkhorn OT (Entropic Regularization). A popu-
lar relaxation is the entropically regularized OT prob-
lem (Cuturi, 2013). For two empirical measures p =∑n
i=1 piδxi and q =

∑m
j=1 qiδyj with cost matrix C ∈

Rn×m, the entropic OT problem is

min
π∈Π(p,q)

⟨C, π⟩+ εKL(π ∥ p⊗ q)

= ϵKL(π ∥ e−C/εp⊗ q) + constant, (17)

where KL(γ ∥ p ⊗ q) :=
∑
i,j γi,j ln

γi,j
piqj

is the KL divergence term. The solution is computed
efficiently by the Sinkhorn–Knopp algorithm with O(n2) cost per iteration.

Dynamic Schrödinger Bridge View. Entropic OT also admits a dynamic formulation known as the
Schrödinger bridge problem (Léonard, 2014; Chen et al., 2021). It seeks the most likely stochastic
process interpolating between p and q under a prior Brownian motion. Formally, it solves

min
P∈P([0,1]×Rd)

KL(P ∥Wϵ) s.t. P0 = p, P1 = q, (18)

where Wϵ is the law of the Wiener process, dXt =
√
ϵdBt. As ε → 0, the Schrödinger bridge

converges to the classical Benamou–Brenier dynamic OT (Benamou–Brenier).

5
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Linear Optimal Transport. Another line of work considers linearized OT (Wang et al., 2013)
variants, which approximate the quadratic-cost OT by projecting the measures into a linear (Hilbert)
subspace of the L2 function space: L2(Rd;Rd) :=

{
f : Rd → Rd :

∫
Rd ∥f(x)∥2dµ(x) <∞

}
.

In particular, these methods fix a reference measure σ ∈ P2(Rd) (also referred to as the pivot
measure) and define γ1,γ2 as the optimal transportation plans for OT (σ,p) and OT (σ,q), re-
spectively. The Linear OT plan between p and q is then constructed from these conditional plans.1

γLOT−lr := (γ1
·1|s ⊗ γ2

·2|s)#σ, γLOT−hr := γ∗(γ1
·1|s,γ

2
·2|s)#σ, (19)

where γ1
·|s denotes the conditional probability measure of γ1 given the first component is s ∈ Rd,

and γ∗(γ1
·1|s,γ

2
·2|s) is the optimal coupling for OT (γ1

·1|s,γ
2
·2|s).

It is straightforward to verify that γLOT−lr,γLOT−hr are couplings between p and q. The plan
γLOT−lr is related to the Low-Rank OT plan (Scetbon & Cuturi, 2022; Scetbon et al., 2022);
similarly, γLOT−hr is a special case of the Hierarchical OT plan (Halmos et al., 2025).

In the discrete case, suppose σ =
∑r
i=1 σiδsi , p =

∑n
i=1 piδxi , and q =

∑m
i=1 qiδyi . Then

γ1 ∈ Rr×n+ and γ2 ∈ Rr×m+ , and the above plan reduces to{
γLOT−lr = (γ1)⊤ diag(1/σ)γ2,

[γLOT−hr]D(γ1[i,:])×D(γ2[i,:]) = σiγ
∗(γ1

·|si ,γ
2
·|si), ∀i ∈ [1 : r],

(20)

where in the second plan, D(v) := {i : vi > 0}.

The computational complexity of the low-rank linear OT coupling is O(rn(r + n)), while that of
the hierarchical linear OT coupling is O(rn(r + n) + r(n/r)3). When r is small, the low-rank
formulation yields a significant reduction in complexity. When both r and n/r are small (i.e., when
n admits a suitable factorization), the hierarchical method also achieves reduced complexity.

4 EXPERIMENTS
Algorithm 2 Inference: Flow-Matching ODE
Integration
Input: Trained mean vector field uθ(x, t, r); steps

T ; size n
Output: Sample x1

1: Sample n i.i.d. x0 ∼ D0, set xt = x0

2: for t = 1/T, 2/T, . . . , 1 do
3: s = t− 1/T , xt ← xt + uθ(xt, t, s)

4: x1 ← xt

We evaluate the empirical benefits of Transport-
based Flows on four generative modeling tasks:
(a) controlled low-dimensional synthetic data, (b)
image generation, (c) image-to-image translation,
and (d) point cloud generation. In addition,
we test several other optimal transport variants
within the Mean Flow framework. Some of these
introduce uncertainty into the transport problem
(e.g., Sinkhorn), while others focus on improving
computational efficiency (e.g., LOT-LR, LOT-HR). We further demonstrate that one-step generation
can be enhanced by incorporating optimal transport–based sampling strategies. Full implementation
details are provided in Appendix C.

OT solver setup. For vanilla OT and low-rank OT, we use the C++ linear programming solver pro-
vided in the PythonOT library (Flamary et al., 2021). For Sinkhorn, we evaluate three implemen-
tations: (i) the Python implementation in PythonOT (supports both CPU and GPU), (ii) a Numba-
accelerated CPU version,2 and (iii) the JAX-based implementation in the OTT-JAX library (Cuturi
et al., 2022). For each experiment, we report results using the fastest implementation.

4.1 TOY EXAMPLE: CONTROLLED LOW-DIMENSIONAL POINT CLOUDS

Dataset. We first present results on synthetic toy examples, considering five distribution pairs: a
Gaussian (N ) → a mixture of 8 Gaussian (8-Gaussians); the half-moons dataset (Zhou et al., 2004)

1The original Linear OT plan is formally defined through an optimization problem; the low-rank construc-
tion presented here is a practically convenient alternative. Under suitable regularity conditions, the two formu-
lations coincide. We refer the reader to Moosmüller & Cloninger (2020), Bai et al. (2023), and Rabbi et al.
(2024) for details.

2https://numba.pydata.org/
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Figure 2: Comparison of different transport-based mean flows for N → S−curve. The first row
is NFE=1, the second row is NFE=2. We report the 2-Wasserstein distance between the predicted
distribution and the target distribution.

(denoted as moons) → 8-Gaussians; N → moons; N → the S-curve dataset (Pedregosa et al., 2011)
(denoted as scurve); and N → the checkerboard dataset (Dinh et al., 2017).

Models and training setup. Following Geng et al. (2025), we use a 3-layer MLP as the generator
and utilize Adam optimizer with learning rate lr = 1e− 3. The results for two of these experiments
are presented in Figure 2.

Evaluation and Performance

Since the source and target data are 2D point clouds, we present the Wasserstein 2 distance (Villani,
2003) as a metric. From Table 1 and Figure 2 we observe that OT-based mean flow methods sig-
nificantly improve upon the vanilla mean flow. Other OT variants, such as Sinkhorn and LOT, also
demonstrate improved performance. In particular, LOT enhances computational efficiency com-
pared to the original OT while maintaining relatively high accuracy.

Table 1: Comparison of different transport-based mean flows over five distribution pairs at NFE=1/2
(denoted as @1 and @2) average over three random seeds. Best per column is bold gray.
Dataset → N→8gaussians moons→8gaussians N→moons N→scurve N→checkerboard

Method ↓ Metric → W 2
2@1 W 2

2@2 TR(ms) W 2
2@1 W 2

2@2 TR(ms) W 2
2@1 W 2

2@2 TR(ms) W 2
2@1 W 2

2@2 TR(ms) W 2
2@1 W 2

2@2 TR(ms)

MF 0.3931 0.3121 4.91 0.5601 0.5435 4.82 0.0719 0.0891 4.93 0.1913 0.1855 4.83 0.0721 0.0654 4.80
LOT-LR 0.0683 0.0539 8.82 0.0801 0.0657 8.27 0.0320 0.0250 8.47 0.0164 0.0117 8.30 0.0179 0.0168 8.38
LOT-HR 0.0268 0.0214 10.18 0.0648 0.0559 10.24 0.0322 0.0272 10.22 0.0140 0.00958 10.17 0.00733 0.00648 10.12
Sinkhorn 0.0145 0.0107 21.1 0.0148 0.0113 21.3 0.0212 0.0149 21.6 0.00747 0.00432 21.2 0.00473 0.00411 21.1
OT-MF 0.0141 0.0104 12.4 0.0166 0.0120 12.6 0.0241 0.0165 13.0 0.00842 0.00472 12.2 0.00510 0.00456 12.1

4.2 IMAGE GENERATION

Table 2: Comparison of Transport-based Flows for image
generation on MNIST across NFEs. We report FID and W2

for 1/2/5/10 steps (EMA=True). Best per column is bold
with gray background.
Metric→ FID ↓ W2 ↓
Method ↓ / NFE→ 1 2 5 10 1 2 5 10

MF 3.6709 1.0880 0.6318 0.7267 8.7449 8.2560 8.0634 8.0602

LOT-LR 2.2258 0.7449 0.5371 0.5531 8.4315 8.1481 8.0312 7.9941
LOT-HR 1.9754 0.8357 0.6053 0.5759 8.3815 8.1922 8.0683 8.0138
Sinkhorn 3.6944 1.0782 0.6362 0.7135 8.6554 8.2903 8.1000 8.1040
OT-MF 1.9179 0.6123 0.4689 0.4935 8.2102 8.0383 8.0029 7.9546

Dataset Setup. We study one-step
MeanFlow generation on MNIST in
the latent space of a pretrained VAE
tokenizer Rombach et al. (2022).
Each 28× 28 digit is padded to 32×
32, normalized to [−1, 1], replicated
across three channels, and encoded
once by the frozen VAE into 4×4×4
latents, which are cached for training.

Network Model and Settings. Our
generator uses a ConvNeXt-style U-Net (Geng et al., 2025), adapted to the low-resolution latent
tensor (∼59M parameters), with dual sinusoidal embeddings for flow time t and solver step size
h. Training largely follows Geng et al. (2025), with Adam (10−3 lr, (0.9, 0.99), batch 256, no
weight decay), 30k iterations, 10% warm-up, EMA (0.99, every 16 steps), and logit-normal timestep
sampling (P tmean = −0.6, P tstd = 1.6, P rmean = −4.0, mismatch 0.75). We use the JVP-based loss
with adaptive reweighting, and evaluate independent pairing as well as transport-based pairings (OT,
Sinkhorn OT, LOT-LR, LOT-HR).

Evaluation Metric. We evaluate OT solvers for Mean Flows with Euler integration across 1–10
NFEs. Performance is measured using Fréchet Inception Distance (FID) (Heusel et al., 2017) and 2-
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Figure 3: Single step (NFE=1) sample generation on ShapeNet Chairs and ModelNet10
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Figure 4: Single step (NEF=1) shape interpolation on two samples from ShapeNet chairs. α ∈ [0, 1]
controls the interpolation of the source and target features.

Wasserstein distance (W2) (Villani et al., 2008) between generated and VAE-reconstructed images,
computed in pixel space with the Inception network from TorchMetrics.

Consolidated generation results (NFE=1/2/5/10). Table 2 shows that the exact OT solver achieves
the best FID and W2 across NFEs; LOT-HR and LOT-LR are competitive at NFE=1. Performance
improves markedly from NFE 1→5 and plateaus by NFE=10.

4.3 POINT CLOUD GENERATION AND INTERPOLATION

Experimental setup. We train and evaluate point cloud generation on a subset of ShapeNet
(Chang et al., 2015), a large-scale dataset of 3D CAD models, and ModelNet10 (Wu et al., 2015),
which contains 10 object classes. For our experiments, we use the Chair class from ShapeNet. Fol-
lowing standard practice, each object is preprocessed by uniformly sampling point clouds from mesh
surfaces. We utilize a pre-trained PointNet-based (Qi et al., 2017) autoencoder to extract a vector
representation of each point cloud. This is then used to condition our flow model during generation.
We provide additional details of our experimental setup in section D.2.

Table 3: W2 and Average Train Time
per epoch (TR) reported on ShapeNet
(SN) Chairs and ModelNet10. Best
values are bold and gray, followed by
second-bests denoted by underline.

SN Chairs ModelNet10

Method W2 TR(s) W2 TR(s)

MF 0.0477 16.32 0.0377 23.41
LOT-LR 0.0168 17.22 0.0231 24.82
LOT-HR 0.0141 18.24 0.0227 26.52
OT-MF 0.0121 20.81 0.0208 28.64

Results. Figure 3 shows one-step generation (NFE=1)
results for MeanFlow, OT-MeanFlow, LOT-HR, LOT-LR,
and the ground truth on ShapeNet Chairs and ModelNet10
(classes ‘desk’, ‘table’, and ‘monitor’). Incorporating
OT-based sampling enables the models to capture finer
details and generate more accurate shapes. Table 3 re-
ports the average Wasserstein-2 distance and training time
per epoch. All OT-augmented variants outperform Mean-
Flow, with OT-MF achieving the best performance while
introducing only moderate additional cost.
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Figure 5: Comparison of one-step mean flow method for Image-to-Image translation on
Adult→Child and Man→Woman.

Shape Interpolation. To further analyze the effect of our proposed method, we report shape in-
terpolation results in Figure 4. We randomly sample two shapes from the ShapeNet Chairs test data,
and use a convex combination of the context features of the two shapes to generate new interpolated
shapes in a single step. As shown in the figure, OT-MF can capture details more precisely in an
interpolated setting as well, resulting in higher quality shapes. In particular, we observe that OT-
MF induces a smoother interpolation, while vanilla MF exhibits relatively poor performance—for
example, the leg of the interpolated chair appears distorted.

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

Next, we evaluate our method on unpaired image-to-image translation (Zhu et al., 2017), using
dataset splits from Korotin et al. (2023) and (Gushchin et al., 2024). The dataset is derived from
FFHQ (Karras et al., 2019), with 60k training and 10k test images. All images are encoded into
a 512-dimensional latent space using ALAE (Pidhorskyi et al., 2020), and train flow models to
transform the latents corresponding to a set of source images to latents corresponding to a set of
target images. We compare OT, LOT-HR, and LOT-LR against vanilla MF on the splits adult→child
and man→woman. Evaluation uses FID Heusel et al. (2017) between reconstructed autoencoder
images and model outputs. Figure 5 reports qualitative results and FID scores, showing OT-MF
achieves the best performance, followed by LOT variants for one-step generation.

5 SUMMARY

We propose a new one-step flow matching framework that unifies optimal transport conditional flow
matching and mean flow matching under a common formulation. By leveraging optimal transport
couplings, our method provides a principled way to construct target average velocity fields that
better capture the geometric structure of the data. We further explore approximate OT variants such
as low-rank and hierarchical refinements, which offer improved computational efficiency without
sacrificing performance.

Through extensive experiments on point cloud and image generation, as well as image-to-image
translation tasks, we demonstrate that OT-based mean flow methods consistently yield more robust
and higher-quality results for one-step generative modeling compared to vanilla mean flow. Our
study highlights the potential of integrating optimal transport with one-step flow-based generative
modeling, offering both theoretical insights and practical improvements.
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Dominik Klein, Théo Uscidda, Fabian Theis, and Marco Cuturi. Genot: Entropic (gromov) wasser-
stein flow matching with applications to single-cell genomics. arXiv preprint arXiv:2310.09254,
2023. version v4.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Alexander Korotin. Optimal flow matching:
Learning straight trajectories in just one step. arXiv preprint arXiv:2403.13117, 2024. URL
https://arxiv.org/abs/2403.13117.

Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light schr\” odinger bridge. arXiv
preprint arXiv:2310.01174, 2023.

Joseph P LaSalle. Stability theory for ordinary differential equations. Journal of Differential equa-
tions, 4(1):57–65, 1968.
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A DEFAULT NOTATION AND CONVENTION

SPACES, MEASURES, VECTORS, FUNCTIONS

• Rd: d-dimensional Euclidean space with inner product ⟨·, ·⟩ and norm ∥ · ∥.

• P(Rd): Set of Borel probability measures on Rd.

• P2(Rd): Probability measures with finite second moment, i.e. {µ ∈ P(Rd) :∫
∥x∥2dµ(x) <∞}.

• δx: Dirac measure at x.

• Supp(µ): Support of a measure µ.

• T#µ: Pushforward of µ by T : Rd → Rd, defined by (T#µ)(B) = µ(T−1(B)).

• 1n: n-dimensional vector of all ones.

• MA×B : For M ∈ Rn×m and A ⊂ [1 : n], B ⊂ [1 : m], the submatrix [Mi,j ]i∈A,j∈B .

Random Variables and Probabilities

• p ∈ P(Rd): Source distribution (default p = N (0, Id)).

• p: Probability density or mass function of p. For convenience, in some parts of the article,
we do not distinguish measure p and its density/mass function p.

• q ∈ P(Rd): Target (data) distribution; in practice, approximated by the training dataset.

• X0 ∼ p, X1 ∼ q: Source and target random variables (realizations of p,q).

• Law(X): Distribution of random variable X .

• π0,1,γ: Coupling measures with marginals p,q.

• γ ∈ Rn×m: Probability mass function of γ when p, q are discrete of sizes n,m.

• γ1,γ2: First and second marginals of γ.

• γ1, γ2: pmfs of γ1,γ2, with γ1 = γ1n, γ2 = γ⊤1m.

• Γ(p,q): Set of couplings between p and q.

• X0 ⊥⊥ X1: Independence between X0 and X1.

• E[·]: Expectation (subscripts indicate the distribution if needed).

ODEs, Flows, Paths, Interpolations

• (pt)t∈[0,1]: Probability path, i.e. a curve in P(Rd).

• vt : [0, 1]× Rd → Rd: Time-dependent velocity field.

• ψt: Flow map defined by dψt(x0) = vt(ψt(x0)) dt, with ψ0(x0) = x0.

• Xt = ψt(X0): State along the flow; Law(Xt) = pt.

• ∂tpt + ∇ · (vtpt) = 0: Continuity equation for (pt, vt). (Here we do not distinguish
measures from densities/pmfs unless needed.)

• It(x0, x1): Interpolation between x0 and x1, with I0 = x0, I1 = x1 (default It = (1 −
t)x0 + tx1).

• Xt = It(X0, X1): Interpolation-induced path used in conditional FM.

Optimal Transport (OT)

• OT (p,q): Quadratic-cost OT,

min
γ∈Γ(p,q)

∫
∥x− y∥2 dγ(x, y).

• γ = (id× T )#p: Monge solution, where T is the transport map with T#p = q.
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• Benamou–Brenier dynamic formulation:

min
(pt,vt)

∫ 1

0

∫
∥vt(x)∥2 dpt(x) dt, p0 = p, p1 = q,

subject to the continuity equation ∂tpt +∇ · (vtpt) = 0.
• Dual OT formulation: Equivalent characterization in terms of convex potentials.
• Sinkhorn OT: Entropic OT with regularization ε > 0 and cost matrix C.
• Sliced OT: OT averaged over 1D projections ⟨θ, ·⟩ with θ ∈ Sd−1.
• Linear OT (LOT): OT linearized via a reference σ, including low-rank and hierarchical

variants.

Flow Matching (FM) and Mean Flows (MF)

• t, s ∈ [0, 1]: time variable, with s ≤ t

• D(µ, ν): Bregman Divergence with

D(x, y) := Φ(x)−
[
Φ(v) + ⟨x− y,∇Φ(y)⟩

]
.

where ϕ is convex function
• LFM: Unconditional FM loss,

Et,Xt

[
∥vθt (Xt)− vt(Xt)∥2

]
,

or in general,
Et,Xt [D(vθt (Xt), vt(Xt))].

• Z: auxiliary variables used to construct the conditional velocity field and the conditional
flow matching. In this article, we only discuss the cases Z = X1 and Z = (X0, X1).

• pZ ,pX0 ,pX1 : probability measures of Z,X0, X1. Their probability density/mass function
are pZ , pX0 , pX1 .

• vt(·|Z): The velocity field given variable Z.
• pt|Z : the conditional probability path at time t given Z.

• LCFM: Conditional FM loss withXt = It(X0, X1) and target d
dtIt(X0, X1). In particular,

Et,(X0,X1)∼π0,1
[∥vθt (Xt)− vt(X|Z)∥2].

Or in general

Et,(X0,X1)∼π0,1
[D(vθt (Xt), vt(X|Z))].

• Mini-batch OT–CFM: Uses π0,1 fromOT (pB , qB), where pB , qB are empirical batch mea-
sures.

• ut,r: Mean flow,

ut,r(x) =
1

t− r

∫ t

r

vτ (xτ ) dτ, r < t.

• utgt: Mean-flow training target,

utgt = v − (t− r)
(
v ∂xu

θ + ∂tu
θ
)
,

an approximation of the true ut,r (based on sample velocities and the model uθ at the
“previous moment”).

• x1 ≈ x0 + u1,0(x0): One-step mean-flow inference.

Batches and Computational Objects

• pB = 1
B

∑B
i=1 δxi : Empirical (mini-batch) measure of size B.

15
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• XB ∼ pB : A realization of the empirical distribution.

• C ∈ Rn×m: Pairwise cost matrix, typically Cij = ∥xi − yj∥2.

• diag(a), I: Diagonal matrix with a on the diagonal; I is the identity matrix.

• O(·): Asymptotic computational complexity.

Flow matching under guidance

• c: guidance variable with c ∼ pc.

• v(t,x|c): the marginal velocity field conditional on guidance c.

• v(t,x): the marginal velocity field:

v(t,x) = Ec[v(t,x|c)] = EcE(X0,X1)∼π0,1|c(X1 −X0)

• ω > 1: guidance scalar.

• η ∈ [0, 1]: parameter controls the weight of (averaged) velocity with and without guidance.
In default η = 0 (means no unconditional velocity).

B BACKGROUND:ODE, FLOW MATCHING AND OPTIMAL TRANSPORT

In the main text, we briefly introduced the background of ODEs, flow matching, and mean flows.
In this section, we provide a more detailed introduction and a survey: we revisit these concepts
in depth and present prior work within a unified, consistent framework to facilitate the reader’s
understanding.

B.1 ODE, FLOW AND PROBABLITY PATH.

Given a pair of probability measures (p,q), where p is a known source (noise) distribution, q is an
unknown target (data) distribution, and both p and q are supported in Rd for some positive integer
d.

The goal of Flow Matching is to build a Probability Path (pt)t∈[0,1] such that p0 = p, p1 = q.
In particular, FM aims to train the Velocity Field neural network, which generates the probability
path (pt)t∈[0,1].

We start from the following ODE problem:
ψ : [0, 1]× Rd → Rd, (t, x0) 7→ ψt(x0),

v : [0, 1]× Rd → Rd, (x, t) 7→ vt(x),

dψt(x0) = vt(ψt(x0))dt (flow ODE),
ψ0(x0) = x0 (initial condition).

(21)

Here vt is called the time-dependent velocity field, and the solution ψ is called the time-dependent
flow.

In the default setting, we suppose vt satisfies the condition of the following fundamental theorem,
which guarantees the existence and uniqueness of ψt in (21):

Theorem B.1 [Flow existence and uniqueness LaSalle (1968); Perko (2013); Lipman et al. (2024)]
If v : [0, 1] × Rd → Rd is continuously differentiable, then the ODE problem (21) admits a unique
solution ψ. Furthermore, ψt is a diffeomorphism for each t ∈ [0, 1], i.e. ψt is continuously differen-
tiable with a continuously differentiable inverse ψ−1

t .

Remark B.2 The above theorem demonstrates that, given a velocity field vt (with regular condi-
tions), it uniquely determines the flow ψt. The reverse direction is straightforward: given a contin-
uously differentiable ψt, we can obtain vt via vt = d

dtψt. Therefore, velocity fields and flows are
equivalent descriptions of the same object.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We define a set of random variables (vectors):

Xt = ψt(X0), pt = Law(Xt), (22)
X0 = ψ0(X0) ∼ p0 := p.

This means pt is the distribution of the random variable Xt. The induced probability distribution
family {pt}t∈[0,1] is called the Probability Path. Thus, the above ODE reads

dXt = vt(Xt) dt. (23)

Another way to describe the relation between vt,pt is the continuity equation Villani et al. (2008):
d

dt
pt = ∇ · (vtpt), ∀t ∈ [0, 1]. (24)

Note, another equivalent continuity equation is defined by replacing pt by its density/pmf pt. For
convenience, we do not distinguish them in this article.

Theorem B.3 Let (pt)t∈[0,1] be a probability path and vt a locally Lipschitz integrable velocity
field. Then the following are equivalent:

• (vt,pt) satisfies the continuity equation (24).

• (vt, Xt) satisfies the ODE (23).

We say vt generates the probability path pt if one of the above equivalent statements holds, with
initial condition X0 ∼ p0.

Remark B.4 The realizations generated by vt, {Xt}t∈[0,1], define a stochastic process, i.e.,
(Xt, Xs) admits a joint distribution. However, unlike Theorem B.1, given a probability path {pt},
there may exist multiple distinct stochastic processes {Xt} such that pt = Law(Xt) for all t.

Flow Matching Problem. Let vθt : [0, 1] × Rd → Rd denote a parametrized function (e.g., a
neural network). The goal of the flow matching problem, equivalently speaking, the flow matching
loss, is:

min
θ∈Θ

LFM(θ) = Et,Xt

[
D(vθt (Xt), vt(Xt))

]
, t ∼ U([0, 1]), Xt ∼ pt, t ⊥⊥ Xt, (25)

where D(·, ·) is a Bregman divergence. For example, if Φ : Rd → R is strictly convex, then

D(u, v) := Φ(u)−
[
Φ(v) + ⟨u− v,∇Φ(v)⟩

]
. (26)

B.2 CONDITIONAL FLOW MATCHING

Following the previous section, we define random variables (X0, X1) ∼ π0,1 where π0,1 is a joint
measure with marginals p,q. For example, π0,1 can be independent coupling, i.e. π0,1 = p⊗ q.

Next, we aim to construct a probability path (pt)t∈[0,1] and the related flow model (vt, ψt). Note, this
task can be dramatically simplified by adopting a conditional strategy. In particular, we introduce
an auxiliary random variable Z ∼ pZ (in general, Z only depends on X0, X1, i.e. Z ∈ σ(X0, X1)
where σ(X0, X1) is the σ−field defined by X0, X1.

For example Z = X1 or Z = (X0, X1)).

B.2.1 CONDITIONAL FLOW MATCHING IN THE GENERAL CASE

Given an auxiliary random variable Z ∼ pZ , we consider the conditional path pt|Z(·|z), and the
induced marginals

pt(x) =

∫
pt|Z(x|z)pZ(z)dz. (27)

Similarly, suppose vt|Z(·|z) generate pt|Z(·|z),∀z. Similar to marginal probability distribution, we
set the marginal velocity field:

vt = E[vt(Xt|Z)|Xt = x], . (28)
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Theorem B.5 [Marginal and Conditional velocity fields Lipman et al. (2024)] Suppose
(pt|Z(·|z), vt(·|z)) satisfies some regular conditions, that is,C1([0, 1)Rd) and vt(x|z) isC1([0, 1)×
Rd,Rd) as a function of (t, x). Furthermore, pZ has compact support. Finally, pt(x) > 0 for all
x ∈ Rd and t ∈ [0, 1).

Thus, if vt|Z(·|z) is integrable and it generates pt|Z(·|z) for each z, then vt defined in (28) generates
pt defined in (27).

Based on it, we can propose the conditional flow matching model:

LCFM (θ) := Et,Z∼PZ ,Xt∼p·|ZD(vt(Xt|Z), utθ(Xt)). (29)

And the following theorems can demonstrate the equivalence between the Flow matching and con-
ditional flow matching problems (25) and (29):

Theorem B.6 Under the conditions of B.5 we have the following:

∇θLFM (θ) = ∇θLCFM (θ) (30)

Proposition B.7 (Liu et al. (2022)) Under the conditions of B.5, the population solution of the con-
ditional flow matching problem is given by (28).

Furthermore, the dynamic generated by vt (28) is called rectified flow in Liu et al. (2022).

B.2.2 CONDITIONAL FLOW ON X1

In this section, we set:
Z = X1.

We consider a mapping
[0, 1]× Rd ∋ (t, x) 7→ ψt(x|x1) ∈ Rd

that satisfies the following conditions: for each x1, we have
ψ0(x|x1) = x,

ψ1(x|x1) = x1,

ψt(·|x1) is a diffeomorphism.
(31)

By setting the random variables Xt |X1=x1= ψt(X0|x1), we obtain

Law(Xt |X1=x1
) = pt|1(·|x1) := ψt(·|x1)#π0|1(·|x1),

which defines a conditional probability path. One can verify that the following boundary conditions
are satisfied:

p0|1(·|x1) = π0,1(·|x1), p1,1(·|x1) = δ(·, x1). (32)

By Theorem B.1, the following mapping

vt(x|x1) := ψ̇t(x0|x1) = ψ̇t(ψ
−1(x|x1)|x1), ∀x such that x = ϕt(x0) for some x0 ∈ Supp(X0),

is the unique velocity field that generates the conditional path (pt(·|x1)),∀x1.

Remark B.8 In some literature (e.g., Haxholli et al. (2024)), pt|1(·) or vt(·|1) are introduced first,
and the boundary conditions for the (conditional) flow mapping ψt(·|x1) are then derived. Intu-
itively, describing the conditional flow via ϕt(·|x1), vt(·|x1), or pt|1(·|x1) is equivalent, as estab-
lished by the fundamental theorem B.1. Here, we follow the convention introduced in Lipman et al.
(2024).

Based on the above setting, the conditional flow training loss (29) becomes:

LCFM (θ) := Et,X1,Xt∼p·|X1
D(vt(Xt|X1), v

θ
t (Xt))

= Et,X0,X1∼π0,1D(ψ̇t(X0|X1), v
θ
t (Xt)). (33)
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Remark B.9 Unlike (25), the above training loss is feasible because ψt(·|x1) is constructed, and
Xt = ψt(X0|X1) is known for each t. Although π0,1 is unknown, π·|1 is constructed in the setup.
Therefore, we can apply the Monte Carlo approximation

π·|1 · q̂B ≈ π·|1 · q = π0,1,

where q̂B is an n-size i.i.d. empirical distribution sampled from q.

Conditional on Xt = x, the quantity ψ̇t(X0|X1) is still a random variable, since multiple pairs
(X0, X1) = (x0, x1) may satisfy ψt(x0|x1) = x. That is, we aim to use a deterministic mapping
uθ(x) to approximate this random variable. As discussed in the previous section, the population
solution of (33) is given by

u∗t (x) = E[ψ̇t(X0|X1) | Xt = x]. (34)

At the end of this section, we introduce some classical examples of this model:

Example B.10 (Song & Ermon (2019)) In this work, the authors set π0,1(x0, x1) = p0(x0)p1(x1)
(independent coupling), and define the interpolation as

xt = ψt(x0|x1) := x1 + σtx0, (35)

where σt ∈ [0, 1] is a strictly monotone decreasing function with σ1 ≈ 0. The interpolation con-
straint (39) is thus slightly relaxed.

In this setting, we have

pt(xt|x1) = N (xt|x1, σ2
t Id),

vt(xt|x1) := σ̇tx0 =
σ̇t
σt

(x1 − xt),

∇ ln pt(xt|x1) = − 1

σ2
t

(xt − x1).

Accordingly, the training loss is formulated as

l(θ;σ) := EX0,X1∼π0,1, t∼U [0,1]

[∥∥sθ(xt, σt) + x̃−x
σ2
t

∥∥],
where π0,1 := N (0, Id)⊗ pdata.

It is worth noting that in Song & Ermon (2019), the authors primarily use the score function formal-
ism, and do not explicitly define the velocity field or interpolation function. However, their method
can be naturally described within the flow matching framework, as discussed in Tong et al. (2023a);
Lipman et al. (2024).

Example B.11 (Denoising Diffusion Probabilistic Model (DDPM), Ho et al. (2020)) In this
work, the authors use the independent coupling π0,1 := N (0, Id) ⊗ pdata and define the
interpolation

xt = ϕt(x0|x1) :=
√
ᾱt x1 +

√
1− ᾱt x0, (36)

where α0 = 0, α1 = 1, αt ∈ [0, 1] (e.g., αt = sin(π2 t)). The condition (32) is satisfied. Under this
construction we have

pt(xt|x1) = N (xt|
√
ᾱt x1, 1− ᾱt),

vt(xt|x1) = α̇tx1 −
αtα̇t√
1− α2

t

x0 = α̇tx1 −
αtα̇t
1− α2

t

xt,

∇ ln pt(xt|x1) = − 1

1− α2
t

(xt − αtx1).
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In the original paper, the interpolation is described as a discrete-time stochastic process. The au-
thors derive

pt−1|t,0(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0),
1− ᾱt−1

1− ᾱt
(1− αt)),

µ̃(xt, t) =

√
ᾱt−1(1− αt)

1− ᾱt
x1 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

x0

)
.

where αt ∈ [0, 1] satisfies ᾱt =
∏
s∈[0,t] αs in the discrete sense.

By introducing a parameterized mean

µθ(xt, t) :=
1√
αt

(
xt −

1− αt
1− ᾱt

xθ0(xt, t)
)
, (37)

matching µθ(·, ·) with µ̃(·, ·) yields the loss function

E(X0,X1)∼π0,1

[
∥X0 − ϵθ(Xt, t)∥

]
. (38)

Since this model explicitly estimates x0 (the Gaussian noise), it is known as the denoising diffusion
model.

Example B.12 (Classical Conditional Flow Matching Lipman et al. (2023)) In this work, the
authors consider the independent coupling π0,1 := N (0, Id) ⊗ pdata, and define the interpolation
function as

xt = ϕt(x0|x1) := tx1 + (tσmin − t+ 1)x0,

where σmin ≥ 0 is a small constant. When σmin = 0, the constraint (32) is exactly satisfied. For
σmin > 0, the final distribution p1 becomes a Gaussian-perturbed version of pdata:

p1(x) =

∫
N (x, σ2

minId) dpdata(x1) ≈ pdata(x).

The conditional distribution and velocity field are

pt(xt|x1) = N (xt|tx1, (tσmin − t+ 1)2),

vt(xt|x1) = x1 + (σmin − 1)x0 = x1 +
σmin − 1

tσmin − t+ 1
(xt − tx1).

The training objective is then defined as

EX0,X1∼π0,1

[
∥X1 − (1− σmin)X0 − vθ(xt, t)∥2

]
.

In this subsection, we consider the case where the conditioning variable is Z = (X0, X1) =
(x0, x1).

Similar to the previous section, the goal is to build a conditional probability path pt|0,1(·|x0, x1) that
satisfies the boundary conditions

pi|0,1(x|x0, x1) = δxi
(x), ∀i ∈ {0, 1}. (39)

We define a mapping ψ : [0, 1]× Rd × Rd → Rd such that

ψt(x0, x1) = xi, if t = i, ∀i ∈ {0, 1}. (40)

In Liu et al. (2022), ψt is referred to as the interpolation mapping.

Let

pt|0,1(·|x0, x1) := ψt(·, x1)#δx0(·) = δψt(x0,x1)(·), (41)

which by construction satisfies (39).
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Define the random variable Xt := ψt(X0, X1), whose marginal distribution is

pt(·) := Law(Xt) =

∫
pt|0,1(·|x0, x1) dπ0,1(x0, x1).

From Theorems B.1 and B.3, it follows that

vt(x|x0, x1) := ψ̇t(x0, x1)

is the unique conditional velocity field that generates the conditional probability path
(pt|0,1(·|x0, x1))t∈[0,1].

Thus, the conditional flow matching loss (29) reduces to

LCFM (θ) := Et,(X0,X1)∼π0,1, Xt∼p·|0,1(·|X0,X1)

[
D(vt(Xt|X0, X1), v

θ
t (Xt))

]
= Et,(X0,X1)∼π0,1

[
D(ψ̇t(X0, X1), v

θ
t (Xt))

]
. (42)

Remark B.13 Ignoring the difference in boundary conditions between ψt(x0|x1) and ψt(x0, x1),
the training objectives (33) and (42) are essentially equivalent.

Example B.14 (Rectified Flow, Liu et al. (2022)) The authors consider the independent coupling
π0,1 and define the interpolation

xt = ϕt(x0, x1) = αtx1 + βtx0,

where α0 = β1 = 0 and α1 = β0 = 1, ensuring (40) is satisfied. The corresponding velocity field is

vt(xt|x0, x1) = α̇tx1 + β̇tx0.

In the default choice αt = t, βt = 1− t, this simplifies to

vt(xt|x0, x1) = x1 − x0,

and the training loss becomes

E(X0,X1)∼π0,1

[
∥vθt (Xt|X0, X1)− (X1 −X0)∥2

]
,

a widely used formulation due to its simplicity and effectiveness.

Example B.15 (Stochastic Interpolation, Albergo et al. (2023)) Here, randomness is introduced
into the interpolation function. The stochastic interpolant is

xt = ϕt(x0, x1, ξ) = (1− t)x0 + tx1 +
√

2t(1− t) ξ, t ∈ [0, 1],

where X0 ∼ p, X1 ∼ q, and ξ ∼ N (0, Id) are independent.

Differentiating yields the velocity field

vt(xt|x0, x1, ξ) = x1 − x0 +
1− 2t√
2t(1− t)

ξ.

The training loss is

LSI(θ) = E(X0,X1)∼π0,1, ξ∼N (0,Id)

[
∥vθt (Xt|X0, X1, ξ)− vt(Xt|X0, X1, ξ)∥2

]
,

where Xt = ϕt(X0, X1, ξ).

This reduces to rectified flow when the noise vanishes (ξ = 0). For intermediate t, the stochastic
term encourages the model to learn a velocity field that balances interpolation with diffusion-like
dynamics, effectively bridging flow matching and score-based diffusion models.

Example B.16 (Independent Conditional Flow Matching, Lipman et al. (2023)) The method
discussed in Example B.12 can also be described in the setting Z = (X0, X1). In this case, the
interpolation function is

It(x0, x1, ξ) = (1− t)x0 + tx1 + σξ, t ∈ [0, 1],
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with independent coupling π0,1 = p ⊗ q. Note that under this formulation, the source distribution
becomes p0 = p ∗ N (0, Id) (where ∗ denotes convolution), and the target distribution becomes
p1 = q ∗ N (0, Id).

The corresponding conditional velocity field is

vt(xt | x0, x1) =
d

dt
Eξ[It(x0, x1, ξ)] = x1 − x0.

Thus, the training loss is

LCFM(θ) := E(X0,X1)∼p⊗q Et∼U [0,1], ξ∼N (0,Id)

[
∥vθt (Xt)− (X1 −X0)∥2

]
, (43)

where Xt = (1− t)X0 + tX1 + σξ.

Because of its simplicity and effectiveness, Independent CFM has become one of the most widely
used training objectives for flow-based generative models.

B.3 OT-BASED FLOW MATCHING MODELS

When we consider Z = (X0, X1), a natural extension of the above flow matching models is to
utilize optimal transport to define π0,1.

Example B.17 (Mini-Batch OT Flow, Pooladian et al. (2023)) A classical approach is Mini-
Batch Optimal Transport. Here, we sample i.i.d. empirical distributions pB0 ,p

B
1 from p0 = p

and p1 = q, respectively, with batch size B ∈ N. Let π∗(pB0 ,p
B
1 ) denote the optimal transporta-

tion plan between pB0 and pB1 . This empirical coupling is then used during training as a proxy for
the true coupling between p and q. Formally, the training objective is

LOT-CFM(θ) := EXB
0 ∼i.i.d. p,
XB

1 ∼i.i.d. q

E(X0,X1)∼π0,1

[
∥vθt (Xt)− (X1 −X0)∥2

]
, (44)

where π0,1 is the optimal coupling in OT (pB ,qB) with empirical laws

pB = Law(XB
0 ), qB = Law(XB

1 ). (45)

Pooladian et al. (2023) show that the transportation cost (trajectory length) induced by the mini-
batch OT plan is strictly smaller than that of the independent coupling. This provides a theoretical
justification for why OT-based conditional flow matching yields more cost-efficient and geometri-
cally faithful interpolations.

Example B.18 (Mini-Batch OT and Sinkhorn OT Stochastic Flow) In Tong et al. (2023b), the
authors combine the OT-CFM model (44) with the stochastic conditional flow matching model (43).
The training loss is

LOT-CFM(θ) := EXB
0 ∼p

XB
1 ∼q

E(X0,X1)∼π0,1

t,ξ∼N (0,Id)

[
∥vθt (Xt)− (X1 −X0)∥2

]
,

with interpolation

Xt = It(X0, X1, ξ) = (1− t)X0 + tX1 + σξ, (46)

where π0,1 is the optimal solution of the mini-batch OT problem.

Compared to independent coupling, the OT-induced coupling aligns the source and target samples
in a globally optimal way, producing straighter transport trajectories and reducing unnecessary
curvature in the learned flows. This leads to more stable training and improved sample efficiency.

The authors further consider the entropic OT solution for π0,1, leading to the Schrödinger Bridge
CFM model:

LSB-CFM(θ) := EXB
0 ∼p

XB
1 ∼q

E(X0,X1)∼π0,1

t,ξ∼N (0,Id)

[
∥vθt (Xt)− vt(Xt|X0, X1)∥2

]
,
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with interpolation and velocity field

Xt = (1− t)X0 + tX1 +
√
t(1− t)σξ, (47)

vt(x|x0, x1) =
(1− 2t)

2t(1− t)
(x− x̄t) + (x1 − x0), x̄t = (1− t)x0 + tx1, (48)

π0,1 is optimal for OT2σ2(Law(XB
0 ),Law(XB

1 )).

Here, entropic OT regularization further smooths the coupling, interpolating between deterministic
OT alignments and independent couplings, thereby improving robustness.

Example B.19 (Optimal Flow Matching (OFM) Kornilov et al. (2024)) This method modifies
the flow matching framework by restricting the velocity fields to gradients of convex potentials.
Concretely, the authors parameterize ψ with an Input Convex Neural Network (ICNN) and define
v(x) = ∇ψ(x).
We first recall the Kantorovich dual formulation of quadratic optimal transport. For two probability
measures p and q on Rd, the squared 2-Wasserstein distance admits the following dual form:

OT (p,q) = EX0∼p∥X0∥2 + EX1∼q∥X1∥2 − 2 sup
ψ convex

{
EX0∼pψ(X0) + EX1∼qψ

∗(X1)
}
, (49)

where ψ is any convex function and ψ∗ is its convex conjugate (Villani, 2003; Benamou & Brenier,
2000). Brenier’s theorem ensures that the Monge optimal map under quadratic cost is of the form
T ⋆ = ∇ψ⋆, and the optimal velocity field in (Benamou–Brenier) is ∇ψ⋆(x) − x, where ψ⋆ is the
maximizer in (49).

OFM model. Given a coupling π between p and q, samples (x0, x1) ∼ π0,1, and interpolation
xt = (1− t)x0 + tx1, the OFM objective is

LOFM(ψ) = E
[
∥uψ(xt)− (x1 − x0)∥2

]
,

uψ(xt) = ∇ψ(xt)− x0, ψ convex.

At the population optimum, minimizing this objective recovers the Brenier map ∇ψ⋆; equivalently,
ψ⋆ solves the dual Kantorovich problem. This aligns flow matching with the dual OT formulation
and guarantees straight displacement interpolations.

Intuitively, unlike standard FM/CFM models, the mapping x 7→ ψ(x) (or x 7→ ∇ψ(x)) does not
take time t as input. This is because the optimal velocity field in the OT problem has constant speed.
OFM exploits this property to simplify the model while preserving optimality.

C EXPERIMENT SETTING DETAILS IN IMAGE GENERATION.

We study one-step MeanFlow generation on the MNIST dataset, operating entirely in the latent
space of a pretrained VAE tokenizer from Rombach et al. (2022). Each 28×28 grayscale digit is
padded to 32×32, normalized to [-1,1], and replicated across three channels before being encoded
once by the frozen VAE. The resulting 4×4×4 latents are cached and reused throughout training.
Our generator adopts a ConvNeXt-style U-Net backbone, following the implementation from Geng
et al. (2025), but adapted to the low-resolution latent tensor (≈ 59M parameters). We retain dual si-
nusoidal embeddings for the flow time t and the solver step size h, such that the network is explicitly
conditioned on both temporal signals, consistent with the original design.

Training hyperparameters largely mirror the baseline from Geng et al. (2025) with minor mod-
ifications to improve latent-space stability. We use Adam with a learning rate of 1 × 10−3,
(β1, β2) = (0.9, 0.99), batch size 256, no weight decay, and 30k iterations with a 10% linear warm-
up followed by a constant schedule. Exponential moving averages are maintained with decay 0.99
and an update period of 16 steps. Timesteps are sampled from a logit-normal distribution with
(Pmeant = −0.6, P stdt = 1.6, Pmeanr = −4.0) and a mismatch ratio of 0.75. The training objective
follows the JVP-based loss with adaptive reweighting as introduced in Geng et al. (2025). Beyond
the default Gaussian pairing, we also evaluate transport-based pairings, including Optimal Transport
(OT), Sinkhorn OT, Low-Rank Linear OT, hi er OT, and Sliced OT.
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We evaluate several typical OT solvers for Mean Flows by varying the Number of Function Evalua-
tions (NFE) under the Euler integrator. By default we study 1–NFE generation and report results up
to 10–NFE. Evaluation metrics use Fréchet Inception Distance (FID) Heusel et al. (2017) and the
2–Wasserstein distance (W2) Villani et al. (2008), computed between generated images and recon-
structed images from VAE. In pixel space, we use the Inception network from TorchMetrics to
compute FID and W2. In latent space, we re-encode generated and reconstructed images with the
frozen VAE to obtain 4×4×4 latent vectors (rescaled by 0.18215) and report FIDae andW ae

2 . While
FID captures perceptual quality and diversity in Inception feature space, the W2 provides a more
direct measure of distribution alignment between generated and VAE-reconstructed samples, both
in pixel space and autoencoder latent manifold.

One-step generation results. Table 4 reports one-step (1–NFE) MNIST generation for baseline and
six transport-based pairings sampler. The left sub-table (a) uses EMA parameters and the right panel
(b) uses original weights. We find the exact OT pairing has the lowest scores on all four metrics,
while LOT-HR and LOT-LR are competitive under EMA. The trends of W2, FIDae, and W ae

2 mirror
those of FID, indicating reduced divergence between generated and reference distributions in both
pixel and latent spaces when transport-based pairings are applied.

Table 4: One-step generation performance on MNIST. FID, W2 and FIDae, W ae
2 are computed

between generated images and reconstructed images from VAR. Best values are bold with gray
background.

(a) EMA=True

Method FID ↓ W2 ↓ FIDae ↓ W ae
2 ↓

w/o OT (Gaussian) 3.6709 8.7449 0.2296 2.5706

OT 1.9179 8.2102 0.0304 2.3527
LOT-LR 2.2258 8.4315 0.0405 2.3751
LOT-HR 1.9754 8.3815 0.0401 2.3557
Sinkhorn 3.6944 8.6554 0.1672 2.5144
Sliced-OT 7.2018 9.1260 0.9254 2.8637
OT-Partial 4.1926 8.9223 0.2917 2.6078

(b) EMA=False

Method FID ↓ W2 ↓ FIDae ↓ W ae
2 ↓

w/o OT (Gaussian) 8.0620 9.2343 0.3792 2.6661

OT 3.2484 8.6393 0.0993 2.4512
LOT-LR 6.2175 8.9047 0.1397 2.4792
LOT-HR 5.5294 8.8883 0.1077 2.4966
Sinkhorn 9.9643 9.6867 0.3419 2.7312
Sliced-OT 11.2034 9.7436 0.8810 2.9050
OT-Partial 8.3549 9.4912 0.3822 2.6973

Multi-step generation results. From Table 5 we find in pixel space, the exact OT solver attains
the lowest FID and W2 at all 2/5/10 NFEs. Within the autoencoder manifold, FIDae is lowest
for LOT-LR across steps, while W ae

2 alternates between OT (NFE=2,10) and LOT-LR (NFE=5).
Improvements from NFE=2 to 5 are significant, whereas gains from 5 to 10 are small, suggesting
diminishing returns beyond 5 steps.

Multi-step generation trends across NFEs. Figure 6 plots FID, W2, FIDae, and W ae
2 versus NFE

(1–10) with EMA. The curves validate Table 5 that OT dominates in pixel-space metrics across
steps, LOT-LR leads on FIDae, and W ae

2 is shared between OT and LOT-LR. Most OT Solvers
improve rapidly up to ∼5 NFE, after which the curves flatten and the solver rankings remain stable.

D EXPERIMENT SETUP DETAILS IN CONDITIONAL SHAPE GENERATION

D.1 MEAN FLOW MATCHING UNDER GUIDANCE

We first recap the mean flow matching model with guidance.

Following the convention in the mean flow formulation Geng et al. (2025), we set the condition
Z = (X0, X1). Guidance is represented by a random variable c such that (xdata, c) follows a joint
distribution. For example, c may correspond to the class label or extracted features of xdata.

In the classical flow matching setting (see, e.g., Lipman et al. (2024)), the guided ground-truth
velocity field is defined as

vcfgt (xt | c) = ωvt(xt | c) + (1− ω)vt(xt), (50)
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Table 5: Multi-step generation performance on MNIST (EMA=True) at 2/5/10–NFEs. metrics are
computed between generated images and reconstructed images from VAE, best values per column
are bold with gray background.
Method FID (↓) W2 (↓) FIDae (↓) W ae

2 (↓)
2 5 10 2 5 10 2 5 10 2 5 10

w/o OT (Gaussian) 1.0880 0.6318 0.7267 8.2560 8.0634 8.0602 0.2878 0.1860 0.1811 2.4788 2.3719 2.3639

OT 0.6123 0.4689 0.4935 8.0383 8.0029 7.9546 0.0484 0.0621 0.0644 2.3273 2.3089 2.2885
LOT-LR 0.7449 0.5371 0.5531 8.1481 8.0312 7.9941 0.0439 0.0536 0.0615 2.3331 2.2975 2.2921
LOT-HR 0.8357 0.6053 0.5759 8.1922 8.0683 8.0138 0.0496 0.0577 0.0631 2.3457 2.3073 2.2990
Sinkhorn 1.0782 0.6362 0.7135 8.2903 8.1000 8.1040 0.2644 0.1598 0.1641 2.4663 2.3700 2.3629
Sliced-OT 2.9616 1.2293 0.9985 8.4144 8.1957 8.1968 0.3852 0.2581 0.2806 2.5695 2.4584 2.4733
OT-Partial 2.9925 2.9214 2.8793 8.6410 8.5239 8.5422 0.3711 0.4142 0.4340 2.6095 2.5879 2.6077

Figure 6: Multi-step generation performance results on MNIST (EMA=True). panels (a–d) plot
FID, W2, FIDae, and W ae

2 versus NFE (1–10).

where ω ≥ 1 is the guidance scale. Here vt(xt) and vt(xt | c) denote the marginal velocity fields
based on pt and pt|c, respectively:

vt(x) = E(X0,X1)∼π0,1, Xt∼pt|X0,X1

[
d
dtIt(X0, X1)

]
= E(X0,X1)∼π0,1

[X1 −X0],

vt(x | c) = E(X0,X1)∼π0,1|c, Xt∼pt|X0,X1,c

[
d
dtIt(X0, X1)

]
= E(X0,X1)∼π0,1|c[X1 −X0].

In both cases, the second equality holds under the deterministic interpolation It(x0, x1) = (1 −
t)x0+ tx1. Indeed, in this setting pt|x0,x1

= pt|x0,x1,c = δ(1−t)x0+tx1
, and d

dtIt(x0, x1) = x1−x0.

Based on Geng et al. (2025), the guided mean velocity is defined as

ucfg(xt, r, t | c) =
1

t− r

∫ t

r

vcfg(τ, xτ | c) dτ.

Multiplying both sides by (t− r) and differentiating with respect to t, we obtain

ucfg(xt, t, r | c) = vcfg(τ, xτ | c)− (t− r)
d

dt
ucfg(t, r, xt | c)

= vcfg(τ, xτ | c)− (t− r)
(
vcfgt (xt | c) ∂xtu

cfg + ∂tu
cfg

)
.

Moreover, we have the identity

vcfg(t, xt | c) = ωv(t, xt | c) + (1− ω)v(t, xt)

= ωv(t, xt | c) + (1− ω)vcfg(t, xt)

= ωv(t, xt | c) + (1− ω)ucfg(t, t, xt),
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where vcfg(t, xt) := Ec[v
cfg(t, xt | c)], and

ucfg(t, r, xt) := Ec[u
cfg(t, r, xt | c)] = ucfg(t, r, xt | ∅),

with ∅ denoting the unconditional case.

Combining the above identities, Geng et al. (2025) introduces the training loss for mean flow with
guidance:

L(θ) = E
[
∥ucfgθ (t, r, xt | c)− sg(utgt)∥2

]
,

utgt := ṽt − (t− r)
(
ṽt ∂zu

cfg
θ + ∂tu

cfg
θ

)
,

ṽt := ωvt + (1− ω)ucfgθ (t, t, xt).

Based on this process, we can derive the training loss of OT-MeanFlow under guidance as

Ec∼(1−η)pc+ηδ∅ E XB
0 ∼p

XB
1 ∼q|c

E(X0,X1)∼πc
0,1

[
∥ucfgθ (t, r, xt | c)− utgt∥2

]
, (51)

where πc
0,1 denotes the optimal coupling between Law(XB

0 ) and Law(XB
1 ). We use the superscript

c to emphasize that XB
1 is sampled from the conditional distribution q | c. During the experiment,

we set η = 0.

D.2 EXPERIMENTAL DETAILS ON CONDITIONAL SHAPE GENERATION

Training and evaluation We pre-train a PointNet-based auto-encoder with two additional linear
layers, followed by batch normalization and max pooling for the encoder. We minimize the Chamfer
distance between the reconstructed shape, and the ground truth. The number of epochs is set to 1000.
We train an auto-encoder on ShapeNet Chairs, and one on ModelNet10, and utilize these pretrained
auto-encoders to extract context features as condition vectors to our generation model.

For training the MeanFlow model, the context vector extracted from the pre-trained auto-encoder is
first then projected through a two layer MLP with an output size of 256. This is then concatenated
alongside the flow model input and a Residual MLP network is used for flow prediction. This model
has 12 layers and hidden dimension set to 2048. For ShapeNet Chairs, use the train-validation split
from class “Chairs” to train the model, and report the evaluation metrics and plots on the test set.
Similarly, for ModelNet10, we train on the training split and report evaluation metrics on the test
split.

All experiments are trained for 1000 epochs. We train across 4 NVIDIA A6000 GPUs with a batch
size of 32 graphs. For each graph, we then randomly sample 256 points as target samples. We use
the Adam optimizer with lr = 2e − 5. The source distribution is a randomly generated gaussian
with the same dimensionality as the target data.

Interpolation For the interpolation plots, we condition the model on a convex combination of
context features for two random shapes. Assume C1 and C2 are context vectors for shape 1 and 2
respectively. The combined context vector is formulated as (1 − α)C1 + αC2. Ideally, the output
conditioned on this context vector should display an interpolated version of the two shapes. Addi-
tional interpolation results for LOT-ind and LOT-group are provided in Figure 7. It can be observed
that other OT variants also preserve a good performance, capturing finer details compared to MF.

D.3 EXPERIMENTAL DETAILS ON UNPAIRED IMAGE-TO-IMAGE TRANSLATION

We use a 4-layer MLP with hidden dimension of 1024. The time inputs t and h are concatenated
and projected to a 32-dimensional vector through an MLP layer. We use the Adam optimizer with a
learning rate 1e− 3, and train all methods for 5000 epochs with a batch size of 2048.

E FUTURE DIRECTION.

One of our future directions is applying generalized sliced OT into the old (flow matching) and new
(mean flow matching) methods.
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Sample 1 𝛼 = 0.0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 Sample 2

LO
T-

LR
LO

T-
H

R

Figure 7: Single step (NEF=1) shape interpolation on two samples from ShapeNet chairs using LOT-
LR, and LOT-HR.

E.1 BACKGROUND: SLICED OPTIMAL TRANSPORT (SOT).

Sliced OT (Rabin et al., 2011; Bonneel et al., 2015) reduces high-dimensional OT to a collection of
one-dimensional OT problems, which admit closed-form solutions. For a probability measure p on
Rd and a projection direction θ ∈ Sd−1, let Rθ denote the Radon transform (i.e., 1D projection).
The sliced OT distance is defined as

SOT2(p,q) =

∫
Sd−1

OT (Rθp,Rθq) dθ, (52)

where the 1D Wasserstein distances can be computed in O(n log n) via sorting. In practice, the
integral is approximated by Monte Carlo sampling over random directions.

Generalized Radon Transform. In the simplest setting, the Radon transform uses the inner prod-
uct as the 1D projection:

Rθp := ⟨θ, ·⟩#p.
Later, this transform was generalized to nonlinear mappings:

GRθp := ⟨θ, h(·)⟩#p,

where h : Rd → Rd′ satisfies certain regularity conditions and can be modeled as a learnable
neural network. Intuitively, h serves as a feature mapping into a Reproducing Kernel Hilbert Space
(RKHS), and the inner-product projection is then computed in the transformed space.

Sliced OT Plan. Let γθ denote the optimal plan for the 1D OT problem. One can lift γθ back into
Rd (see, e.g., Mahey et al. (2023); Liu et al. (2024)), denoted as L(γθ). In the discrete case, γθ is
represented as an n×m transport matrix; with probability 1, γθ and L(γθ) coincide. Therefore, for
convenience, we do not distinguish between them in this article.

There are several ways to define a transportation plan between p and q in the sliced OT setting, for
example: 

γSOT-min := argminγθ ⟨C,γθ⟩,
γSOT-expect := Eθ∼Unif(Sd−1)[γ

θ],

γSOT-temp := Eθ∼Unif(Sd−1)

[
γθ exp(−λ⟨C,γθ⟩)∫

Sd−1 exp(−λ⟨C,γθ′ ⟩) dθ′

]
,

(53)

where in the third case, λ ≥ 0 controls the temperature.

In practice, these expectations are approximated via Monte Carlo sampling over projection direc-
tions θ.

Differentiable transportation plan One challenge of the above formulations is the minimization
over θ. Classical gradient descent does not work since γθ is not differentiable with respect to θ. To
address this issue, several techniques have been proposed.

• The simplest method is Soft-sorting (Prillo & Eisenschlos, 2020). When GRp =
1
B

∑B
i=1 δxi and GRq = 1

B

∑B
j=1 δyj are empirical distributions on R with equal weights,
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the optimal coupling for any convex cost c(x, y) = |x − y|p (p ≥ 1) matches points in
sorted order. Let Sx, Sy ∈ {0, 1}B×B be permutation matrices such that Sx x = x↑ and
Sy y = y↑, where x = [x1, . . . , xB ]

⊤, y = [y1, . . . , yB ]
⊤, and ↑ denotes nondecreasing

sort. Then the optimal plan is

γ∗ =
1

B
S⊤(x)S(y).

Intuitively, it denotes the matching

x↑i 7→ y↑i ,∀i ∈ [1 : B].

Inspired by this formulation, we replace the hard sorting Sx, Sy by the corresponded soft
permutation matrices Sτ (x), Sτ (y) ∈ B (doubly-stochastic), yielding the relaxed plan

γτ =
1

B
Sτ (x)

⊤Sτ (y),

Sτ,x = softmax(−d(sort(x)1⊤ − x⊤1)/τ)

which recovers the hard coupling as τ → 0. Sτ (x), Sτ (y) are differentiable when τ > 0,
thus we obtain a differentiable plan.

• The second method to obtain a differentiable plan is Gaussian perturbation. We define
the smoothed objective

hε(θ) = EZ∼N (0,I)[h(θ + εZ) ] ,

where h(θ) = OT
(
GRθ(p), GRθ(q)

)
.

By Stein’s lemma, the gradient of the smoothed objective admits the unbiased form

∇θhε(θ) =
1

ε
EZ∼N (0,I)[h(θ + εZ)Z ] . (54)

In practice, we approximate the expectation using Monte Carlo with a control variate, lead-
ing to the empirical estimator

∇̂θhε(θ) =
1

εN

N∑
k=1

(
h(θ + εzk)− h(θ)

)
zk, zk ∼ N (0, I). (55)

This yields a differentiable surrogate for the originally non-smooth transport objective.

E.2 FUTURE WORK: SLICED OT MEAN FLOW

One natural extension of the proposed OT-mean flow method is utilizing the sliced OT plan 53 to
define π0,1 in the mean flow (or original flow). The current challenges include the following:

• In a high-dimensional data generation experiment, it is important to define a suitable gen-
eralized Radon transform GR as we aim to capture the important features in the high-
dimensional original space. How to efficiently train such a feature mapping h(x) is still
unclear.

• Due to the nature of the sliced OT problem, the mapping θ 7→ OT (GRθ(p),GRθ(q)) is not
differentiable at finite points. It is still unclear if the gradient-descent based optimization
method is suitable.

• The number of projections required to achieve an accurate sliced approximation scales with
data complexity; balancing computational efficiency and approximation quality is still an
open question.

• It remains unclear how to integrate sliced OT plans with stochastic mini-batch training
while preserving stability and convergence guarantees in mean flow training.

Despite these challenges, combining sliced OT with mean flow has significant potential benefits.
By working with one-dimensional projections, sliced OT can substantially reduce computational
complexity compared to solving high-dimensional OT directly. Moreover, if an effective feature
mapping GR can be learned, this framework could also adaptively emphasize task-relevant direc-
tions in the data, leading to improved sample quality and representation learning.
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Under review as a conference paper at ICLR 2026

F COMPUTATIONAL RESOURCE

The toy shape translation experiments were conducted on an AMD EPYC 7713 CPU.

The image generation experiments were conducted on a single NVIDIA A6000 GPU with 48 GB
memory.

The unpaired image-to-image translation experiments were trained on a single NVIDIA A6000 GPU
with 48 GB memory. The point cloud experiments were done using distributed training, parallelized
over 4× NVIDIA A6000 GPUs.
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