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ABSTRACT

Machine learning holds immense promise in biology, particularly for the chal-
lenging task of identifying causal variants for Mendelian and complex traits. Two
primary approaches have emerged for this task: supervised sequence-to-function
models trained on functional genomics experimental data and self-supervised
DNA language models that learn evolutionary constraints on sequences. How-
ever, the field currently lacks consistently curated datasets with accurate labels,
especially for non-coding variants, that are necessary to comprehensively bench-
mark these models and advance the field. In this work, we present TraitGym, a
curated dataset of genetic variants that are either known to be causal or are strong
candidates across 113 Mendelian and 83 complex traits, along with carefully con-
structed control variants. We frame the causal variant prediction task as a bi-
nary classification problem and benchmark various models, including functional-
genomics-supervised models, self-supervised models, models that combine ma-
chine learning predictions with curated annotation features, and ensembles of
these. Our results provide insights into the capabilities and limitations of dif-
ferent approaches for predicting the functional consequences of genetic variants.
We find that alignment-based models CADD and GPN-MSA compare favor-
ably for Mendelian traits and complex disease traits, while functional-genomics-
supervised models Enformer and Borzoi perform better for complex non-disease
traits. All curated benchmark data, together with training and benchmarking
scripts, will be made publicly available upon publication.

1 INTRODUCTION

Machine learning is increasingly transforming the fields of genomics, human genetics, and health-
care by offering new avenues for predicting the impact of genetic variants on phenotypes and by po-
tentially improving the accuracy of trait or disease risk predictions from individual human genomes.
A major challenge in these domains is determining which among millions of intercorrelated genetic
variants are causal for Mendelian and complex traits, including diseases. Tackling this challenge,
which has profound implications for human health, requires robust and scalable methods that can
decode the biological syntax of the human genome and how it drives molecular functions across
different cells and tissues.

Three major classes of approaches have been developed to model DNA sequences and predict the ef-
fects of genetic variants. The first approach utilizes supervised machine learning models, commonly
referred to as sequence-to-function models, which are trained to predict genome-wide functional
genomics experimental data from DNA sequences (Eraslan et al., 2019); we refer to these models
as functional-genomics-supervised. These models predict the functional effects of specific variants
by assessing how changes in the DNA sequence influence experimental outcomes. The second ap-
proach involves self-supervised genomic language models (gL.Ms), such as masked or autoregressive
language models, which are trained only on DNA sequences from one or multiple species without
relying on experimental data (Benegas et al., 2024). Models that utilize sequences from multiple
species take advantage of evolutionary conservation to gain functional insights. Variant effects in
such models are assessed by comparing the log-likelihood between the alternative and reference al-
leles of the variant, as well as by quantifying changes in the latent representations. Another class of
methods includes integrative approaches, which combine machine learning predictions with curated
annotation features to improve the accuracy of variant effect prediction (Schubach et al., 2024).
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Figure 1: Genotype-to-phenotype relationship and general ML approaches for prediction.

Despite its importance, the field currently lacks consistently processed and comprehensively curated
datasets of putative causal genetic variants with reliable labels. Furthermore, there is a pressing
need for establishing a common ground for systematically benchmarking state-of-the-art models
based on functional-genomics-supervised, self-supervised and integrative approaches, in order to
help advance the field.

In this article, we present TraitGym, a curation of two benchmark datasets from human genetics:
one comprising causal variants for 113 Mendelian traits, and another consisting of strong causal
variant candidates across 83 complex traits, along with carefully constructed control sets matching
relevant summary statistics (such as minor allele frequencies, variant types, distances from transcrip-
tion start sites, and linkage disequilibrium scores) of putative causal variants. We frame the task as
binary classification between putatively causal and non-causal variants, allowing to evaluate several
state-of-the-art functional-genomics-supervised and self-supervised models, alongside integrative
methods and their ensembles. We find that alignment-based integrative and self-supervised mod-
els compare favorably for Mendelian traits and complex disease traits, while functional-genomics-
supervised models do better on complex non-disease traits. The classification of variants is substan-
tially harder for complex traits, but consistent improvement is observed by ensembling input and
predicted features from different models. Additionally, we introduce a new gLLM trained specifi-
cally on regulatory regions and demonstrate that it compares favorably with other alignment-free
self-supervised language models.

2 BACKGROUND

One of the essential quests in biology is to understand the genotype-to-phenotype relationship (Fig-
ure 1). The genotype is the genetic makeup of an organism, i.e., the set of DNA sequences com-
posing each genome. The phenotype is the collection of observable traits of an individual, such as
height or cholesterol levels. Phenotypic variance can be decomposed into components attributed
to genetic and environmental factors. The influence of non-coding genetic variants on phenotype
is mediated via the expression of genes in different tissues and cell types. Functional-genomics-
supervised models attempt to learn the relationship between DNA sequence and gene expression,
leveraging genome-wide experimental data (Eraslan et al., 2019). Natural selection closes the loop
by impacting which genotypes are favored over time, based on the fitness of the phenotype on a given
environment. Therefore, the space of observed DNA sequences contains rich information about the
underlying biology; this is precisely the signal leveraged by self-supervised DNA language models
(Benegas et al., 2024).

The are two classes of phenotypic traits: Mendelian and complex (Figure 2). Mendelian traits, such
as hemophilia, can be strongly affected by a single mutation in a single gene. On the other hand,
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complex traits, such as the risk to develop

Mendelian trait Complex trait
Alzheimer’s disease, are affected by several
mutations in multiple genes, each typically with
a small individual effect. The fact that variants
affecting Mendelian traits have larger pheno- o
enes

typic effect sizes than variants affecting com-
plex traits makes the former relatively eas-
ier to predict, as they tend to have larger ef- Figure 2: Mendelian vs. complex traits. A single
fects on gene expression (the signal picked gene typically controls a Mendelian trait, whereas
up by functional-genomics-supervised models) a complex trait is influenced by multiple muta-
and tend to be subject to stronger purifying se- tions across several genes, each contributing a
lection (the signal picked up by self-supervised small individual effect.

models).

3 RELATED WORK

GeneticsGym (Finucane et al., 2024) evaluates the prediction of causal variants for human com-
plex traits, but limited to protein-coding variants. Dey et al. (2020) evaluate the prediction of non-
coding causal variants for human complex traits, but limited to a previous generation of functional-
genomics-supervised models. Concurrent work (Fabiha et al., 2024) also evaluates the prediction of
causal variants for complex traits, but does not cover self-supervised models nor Mendelian traits.
Benegas et al. (2023a) evaluate the prediction of non-coding causal variants for human Mendelian
traits, but with a much larger, non-subsampled negative set of 2.6 million variants, which makes it
less practical to evaluate some of the latest, computationally expensive models.

Tang et al. (2024) benchmark the ability of functional-genomics-supervised and self-supervised
models to predict non-coding variant effects on gene expression, but they cover neither Mendelian
nor complex traits. BEND (Marin et al., 2024) and GV-Rep (Li et al., 2024) evaluate self-supervised
models for the prediction of disease-associated variants from ClinVar (Landrum et al., 2020). While
not documented, it is likely that these variants mostly cover Mendelian rather than complex diseases.
Furthermore, expert-reviewed pathogenic variants in ClinVar are highly skewed towards coding and
splice region variants, containing only a single promoter variant and no intergenic variants (Ta-
ble A.7). Neither of these benchmarks establishes adequate baselines for this task. BEND includes
a single early-generation functional-genomics-supervised model (Zhou & Troyanskaya, 2015), but
does not include any conservation-based model, which are usually strong for this task (Benegas
et al., 2023a). GV-Rep does not include any baseline.

Thus, TraitGym is the only benchmark of causal non-coding variant prediction for both Mendelian
and complex human traits. Furthermore, it is the only available framework to evaluate both the latest
functional-genomics-supervised and self-supervised models, as well as strong non-neural baselines.

4 BENCHMARK DATASETS

TraitGym consists of two curated datasets of non-coding genetic variants affecting Mendelian and
complex traits (Table 1). We focus on non-coding variants since understanding their impact is a
particularly important use case for DNA sequence models, compared to coding variants which are
more commonly interpreted using protein sequence models. Further, we focus on single-nucleotide
variants, the most common form of genetic variation, which is still challenging to interpret. Our data
curation process is outlined in Figure 3 and additional details are provided in Appendix A.1.

Table 1: Number of variants and traits in TraitGym.

Dataset  # putatively causal variants  total # variants  # traits

Mendelian traits 338 3,380 113
Complex traits 1,140 11,400 83
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Figure 3: Matching putatively causal and control variants. Nine matched control variants are used
for each putatively causal variant, within each chromosome. See the text for the details.
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Figure 4: Distribution of consequence classes of putative causal non-coding variants.

Mendelian traits. Curated causal non-coding variants for 113 Mendelian diseases were collected
from Online Mendelian Inheritance in Man, OMIM (Smedley et al., 2016). For additional strin-
gency, we filtered out a small percentage of variants with minor allele frequency (MAF) greater
than 0.1% in the Genome Aggregation Database, gnomAD (Chen et al., 2024). We used gnomAD
common variants (MAF > 5%) as controls.

Complex traits. Putative causal and control non-coding variants for 83 complex traits were obtained
by processing statistical fine-mapping results (Kanai et al., 2021) from association studies in the
UK BioBank data (Bycroft et al., 2018). Specifically, we used variants with posterior inclusion
probability (PIP) in the credible set greater than 0.9 in any trait as positives and variants with PIP
< 0.01 in all traits as controls. We additionally filtered the positive set to genome-wide significant
variants (p < 5 x 1078).

Variant type (or consequence) annotation. We annotated the consequence (e.g., intergenic, in-
tronic, 5’ UTR, 3’ UTR, etc.) of each variant using Ensembl (McLaren et al., 2016), and refined this
annotation by overlapping with candidate cis-regulatory elements from ENCODE (Epstein et al.,
2020). Distal non-exonic variants (potential enhancers) comprise a small proportion (10%) in the
Mendelian traits dataset but the vast majority (76%) in the complex traits dataset (Figure 4).

Matching positives and negatives. For each putative causal non-coding variant, we sampled 9 non-
coding variants from the control set, matching chromosome, consequence, and distance to transcrip-
tion start site (TSS). For complex traits, we additionally matched MAF and linkage disequilibrium
(LD) score (Bulik-Sullivan et al., 2015) in the UK BioBank. We sampled only 9 controls per positive
variant in order to be able to evaluate even the most computationally demanding models. However,
we also provide a larger version of the dataset with millions of negative controls per positive variant,
for which we evaluate a subset of the models. This expanded version of the dataset for Mendelian
traits does not require any subsampling of negatives, but for complex traits we do subsample to
match the MAF distribution (Finucane et al., 2024), while still keeping millions of variants.

Task definition. The task is to classify whether a variant is putatively causal for any trait or not.
The input data consist of the reference and alternate allele together with the DNA sequence context.
As evaluation metric, we calculate the area under the precision recall curve (AUPRC) for each
chromosome (for a model trained on the remaining chromosomes), and then compute a weighted
average across chromosomes based on sample size, together with a standard error estimated via
bootstrapping (described in Appendix A.2.4). The baseline AUPRC is 0.1, which is the proportion
of positives.
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Table 2: Benchmarked models.

Model Dependencies # params Context # extracted  Source
size features

Functional ~ Alignment  Population
genomics data

Functional-genomics-supervised models

Enformer Yes No No 246M 196K 5,138 Avsec et al. (2021)

Sei Yes No No 890M 4K 41 Chen et al. (2022)
Borzoi Yes No No 186M 524K 7,617 Linder et al. (2023)
Self-supervised models

GPN-MSA No Yes No 86M 128 770 Benegas et al. (2023a)
NT No No No 2.5B 6K 2,562 Dalla-Torre et al. (2023)
HyenaDNA No No No 14M 160K 258 Nguyen et al. (2023)
Caduceus No No No M 131K 514 Schiff et al. (2024)
gLM-Promoter No No No 152M 512 1,026 This work

Integrative models
CADD Yes Yes Yes N/A N/A 114 Schubach et al. (2024)

Table 3: Extracted features and zero-shot scores for each model type.

Model type Extracted features Zero-shot score

Functional-genomics 5 scores: change in activity in each track {2 of {5 scores (all tracks)

supervised {5 of £y scores: aggregation of £5 scores across

(Enformer/Borzoi) several tracks (all + within each assay type)

Functional-genomics ~ Change in sequence class scores Max absolute change in se-

supervised (Sei) quence class scores

Self-supervised LLR, abs(LLR) LLR, abs(LLR)
Embeddings inner product for each hidden di- Embeddings inner product,
mension £ distance, cosine distance

Integrative CADD input features, CADD score CADD score

5 MODELS

We benchmark functional-genomics-supervised models, self-supervised gl.Ms and integrative mod-
els (Table 2). We introduce a new gLLM, called gLM-Promoter, trained using the genomes of 434
animal species, following the training objective of GPN (Benegas et al., 2023b) and the ByteNet
convolutional architecture (Kalchbrenner et al., 2017; Yang et al., 2024). It is only trained on pro-
moters as an attempt to focus on regulatory regions (we would have liked to train on enhancers as
well but no annotation exists for non-model organisms). Additional details on models are provided
in Appendix A.2.

We evaluate zero-shot model scores as well as ridge logistic regression classifiers (linear probing)
trained using extracted features (Table 3). We use a number of folds equal to the number of chro-
mosomes. In each fold, we test on a single chromosome using a model trained on the remaining
chromosomes, and the regularization hyperparameter is chosen based on cross-validation on the
training chromosomes (detailed in Appendix A.2.4).

Functional-genomics-supervised models. Sequence-to-function models predict activity in thou-
sands of different functional genomic tracks, covering different assays, such as gene expression or
chromatin accessibility, in different tissues and cell types. As variant effect prediction features, we
calculate the norm (across spatial positions) of the predicted log-fold-change in activity between the
reference and the alternate sequence, for each separate track (referred to as “/5 score” in Linder et al.
(2023)). As zero-shot score, we aggregate the {5 scores of different tracks by taking their /5 norm
(“lo of ¢4 scores”). Sei (Chen et al., 2022) adopts a different variant scoring approach; it maps each
sequence into discrete classes, such as promoters or brain-specific enhancers, and scores a variant
according to how much it impacts the relative scores of different classes.
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Self-supervised models. For self-supervised gL.Ms, a popular zero-shot score is the log-likelihood
ratio (LLR) between the alternate and reference allele', which has been shown to reflect learned
functional constraints, such as transcription factor binding sites (Benegas et al., 2023b). Good re-
sults have also been obtained comparing the embeddings of the alternate and reference alleles (Dalla-
Torre et al., 2023; Mendoza-Revilla et al., 2024). We evaluate these different scoring approaches for
each model (Table A.8) and choose the best performing one when benchmarking against other mod-
els (Table A.9). We additionally obtain a high-dimensional featurization of a variant by calculating
the inner product (across genomic positions in a given window) between contextual embeddings of
the alternate and reference sequences, for each hidden dimension separately.

Integrative models. CADD (Schubach et al., 2024) is built on top of a broad set of curated an-
notations, including conservation, biochemical activity, population-level data as well as predictions
from several machine learning models. Utilizing this rich set of input features, CADD is a logistic
regression model trained to distinguish proxy-deleterious from proxy-neutral variants. The output
of the model is called the CADD score, which we use as zero-shot score. In this paper, we also train
our own models using the broad set of CADD input features, which we refer to as CADD features
even though they are the input, not the output, of CADD.

6 RESULTS

Mendelian traits. Among zero-shot scores, CADD and GPN-MSA perform the best, but a super-
vised model trained using CADD input features achieves the best performance when using linear
probing (Figure 5). GPN-MSA is a gL M for the human genome that leverages whole-genome
sequence alignments across diverse
multiple species. Among the mod-
els studied in this paper, CADD and

Mendelian traits Complex traits

CADD CADD
GPN-MSA are the only ones explic- GP“é'o"ﬂSg E”fggg‘zifi N
itly incorporating conservation fea- gLm-Promoter GPN-MSA 3
tures, which might be particularly Enformer e ¢
helpful to predict causal variants for NT gLM-Promoter o
Mendelian traits, expected to be un- ~ "YejaPNA LT FyenaDNA 5.
der relatively strong purifying se-
lection. Next come the functional- CADD Enformer -
genomlcs—superV1§ed models Borzoi GP“E‘;O"ES %‘Xé%' 3
and Enformer. Alignment-free gl.Ms Enformer GPN-MSA E
come last, with our new gLM- 9-M-Promoter gLM-Promoter '5
Promoter model clearly performing Caduceus NT T
the best among them. When using  cnaona de HranaoN A Je @
a more relaxed MAF cutoff of 1%, 025 050 095 o1 o2 03

only 19 additional positive variants
are included, resulting in very simi-

AUPRC AUPRC

lar results (Figure A.1). Also, we ex-
plored matching negatives from the
same gene rather than from the same
chromosome, which required drop-
ping many variants that could not be
properly matched, but with similar
overall conclusions (Figure A.2).

Figure 5: Results on each dataset with zero-shot and linear
probing approaches. Zero-shot scores are described in Ta-
ble 3. For linear probing, we use 113 CADD input features,
together with the single CADD output score, while for the
other models we only use output features (predicted tracks,
LLR or embedding similarity).

CADD is the only model trained on variants and its training variants overlap with around 1% of
the variants in our datasets (Table A.10). However, CADD’s positives and negatives are not de-
fined based on causal variant annotations (Schubach et al., 2024), and they do not exhibit a clear
association with the positive or negative sets in our datasets (Table A.10). We repeated our analysis
upon removing this small amount of overlapping variants and found that the aforementioned results
remain stable (Figure A.3).

!'The absolute value of the LLR is more appropriate when we want scores to be invariant to which allele is
the reference, as in the case of association studies.
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Figure 6: Results of ensembling models by training a logistic regression classifier on the concatena-
tion of their features.
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Figure 7: Results of lightweight ensembles. Full CADD features are used, but a much reduced
number of features are used from other models.

Complex traits. Overall scores are much lower than in Mendelian traits (Figure 5). This is a
harder task in principle since variants affecting complex traits are expected to have relatively small
effect sizes. CADD and GPN-MSA also perform relatively well on this dataset, but Enformer and
Borzoi ultimately come first when their predicted tracks are used in linear probing. Our gL.M-
Promoter model again does the best among alignment-free gLMs, but only with linear probing.
When using a more stringent PIP cutoff, performance generally improves, and Borzoi gains a small
relative advantage (Figure A.4). When matching negatives from the same gene rather than the same
chromosome, performance is lower overall, but Borzoi obtains a small advantage (Figure A.5).

While the AUPRC is generally recommended for imbalanced datasets where we are mostly inter-
ested in the positive minority class (Whalen et al., 2022), we also report the area under the receiver
operating characteristic (AUROC). The main difference we see is a slight relative improvement of
Enformer and Borzoi zero-shot scores (Figure A.6).

Results on expanded datasets. We also considered expanded datasets containing millions of nega-
tive controls and evaluated the two models (CADD and GPN-MSA) with precomputed genome-wide
zero-shot scores. For Mendelian traits, GPN-MSA achieves a substantial improvement over CADD
(Figure A.7). For complex traits, CADD outperforms GPN-MSA, but neither model does very well
in absolute terms (Figure A.7). In the future, we hope to evaluate other models on these full datasets,
but we estimate that slower models like Caduceus would take approximately 6 months of compute
on an NVIDIA A100 80GB GPU.

Model ensembling. Given the good performance obtained by different classes of models, poten-
tially leveraging different signals, we evaluated linear probing of combined features extracted from
representative models from each class: Borzoi (predicted tracks), GPN-MSA (latent embeddings
and LLR) and CADD (input features to the model together with the single output score). The results
are summarized in Figure 6. On the complex traits dataset, ensembling the three models achieves
the best performance, with a particularly high jump when combining Borzoi with either of CADD
or GPN-MSA. On the Mendelian traits dataset, on the other hand, ensembling the full features from
different models does not improve upon CADD input features. We attribute this to the fact that (i)
the room for improvement is relatively small and (ii) the dataset is small, making it easier to overfit
when using high-dimensional features. We refer to the last approach as “full” feature ensembling.
However, we do see small improvements when ensembling CADD with a reduced number of fea-
tures from other models (LLR for GPN-MSA and “/5 of {5 scores” for Borzoi), which we refer to
as “lightweight” feature ensembling (Figure 7).
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Figure 8: Stratified results. The best score is reported between zero-shot and linear probing. (A)
Results by consequence (variant type). Full feature ensemble is evaluated for complex traits, but
lightweight feature ensemble is evaluated for Mendelian traits. (B) Results for disease vs. non-
disease complex traits. (C) Results for pleiotropic vs. non-pleiotropic variants. (D) Results for
complex traits variants stratified by whether or not they overlap with fine-mapped eQTLs.

Results by consequence (variant type). We also evaluated the performance stratified by variant
consequence classes (Figure 8A). The most important insight here is that the advantage of ensem-
bling for complex traits holds within each consequence class, so it is not simply that different models
are experts on different consequences. Second, we note that distal (TSS distance > 1 kb) non-exonic
variants for complex traits (which make up the majority) are the hardest class overall. Lastly, while
Borzoi performs the worst for Mendelian traits, the gap is the smallest for proximal non-exonic
variants.

We also inspected the performance of gLM-Promoter on different consequences, given that it was
trained only on promoters (Figure A.8). gLM-Promoter’s zero-shot scores perform better on prox-
imal non-exonic and 5’ UTR variants, which lie in the regions of the gene with the highest overlap
with the model’s training data (512 bp around the TSS). Except for the aforementioned classes in
Mendelian traits, linear probing outperforms zero-shot scores.

Results by trait. We also report performance (Table A.11) for specific traits with sufficiently many
putative causal variants and not overlapping too much with each other; specifically, traits with at
least 10 causal variants and less than 10% overlap of causal variants with other traits. Ensembling
wins in the majority of these traits. Among the 1,140 putative causal variants for complex traits,
only 53 affect a disease trait (Table A.1). We evaluated the results stratified by disease vs. non-
disease complex traits, pooled given the small sample size (Figure 8B)—for example, our dataset
only contains 3 non-coding variants affecting the risk of developing Alzheimer’s disease. We note
that causal variants for disease traits are easier to classify overall than for non-disease traits, and that
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Table 4: Top CADD features in different categories.

Dataset Category Feature AUPRC  Description
Mendelian traits ~ Alignment ZooVerPhyloP 0.673 Conservation in mammals
Functional EncodetotalRNA-max 0.348 Max. RNA-seq level
genomics
Population (-) Freql00bp 0.509 # common variants within
data 100bp
Complex traits Alignment  ZooPriPhyloP 0.225 Conservation in primates
Functional EncodeDNase-max 0.145 Max. DNase-seq level
genomics
Population (-) Freql0000bp 0.131 # common variants within
data 10kb
Mendelian traits Complex traits
RNA ATAC
CAGE CHIP
ATAC DNASE
CHIP CAGE
DNASE RNA
0.25 0.50 0.1 0.2
AUPRC AUPRC

Figure 9: Results of “/5 of /5 scores” aggregating different assays (Borzoi).

Borzoi loses the edge compared to conservation-aware CADD and GPN-MSA for disease traits.
This is consistent with disease traits being under stronger selective pressures. We also noted that
putative pleiotropic variants (i.e., those affecting multiple traits) are in general easier to predict, with
the biggest advantage being gained by the ensemble model and Borzoi (Figure 8C).

eQTL colocalization. We found that 103 putative causal variants for complex traits (9%) overlap
with fine-mapped GTEx eQTL variants (Lonsdale et al., 2013; Wang et al., 2021); we found no
such overlap for Mendelian trait variants, as expected given their low allele frequencies. The low
overlap of complex trait and eQTL variants is well known and Mostafavi et al. (2023) discuss several
hypotheses for the cause. We found that eQTL-overlapping variants are much easier to predict
than non-eQTL-overlapping variants, across all model types (Figure 8D). We also note that Borzoi
achieves a wide margin compared to other models and little is gained from ensembling. We observed
that eQTL-overlapping variants are enriched in exonic variants (Fisher’s exact p = 8 x 10~%) and,
among non-exonic variants, they have lower TSS distances (Mann Whitney p = 4 x 10~%), all of
which could explain their increased predictability.

Interpreting CADD features. CADD contains informative features from three orthogonal cate-
gories: alignment, functional genomics, and population genetic data (Table 4). Conservation fea-
tures are the most predictive overall. Conservation in mammals is most predictive for Mendelian
traits, whereas conservation in primates is most predictive for complex traits. This might be due to
the fact that enhancer-like regions, where most causal variants for complex traits lie, tend to only be
alignable over shorter evolutionary distances than other functional regions (Phan et al., 2024).

Interpreting Borzoi features. We evaluated the performance of aggregated Borzoi scores across
specific experimental assays (Figure 9). Of note, gene expression tracks (RNA and CAGE) perform
the best on Mendelian traits, while epigenetic tracks (ATAC, CHIP and DNASE) perform the best on
complex traits. It has been shown that models such as Borzoi tend to particularly struggle with find-
ing causal variants affecting gene expression when these are distal as opposed to proximal (Karollus
et al., 2023). In the case of distal causal variants for complex traits (which make up the majority, see
Figure 4), epigenetic tracks might instead be more informative.

A key feature of functional-genomics-supervised models such as Borzoi is that their features are as-
sociated with a specific tissue or cell type, which can help interpret disease pathways as well as de-
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Table 5: Top three tissue/cell types for different traits, ranked by the highest AUPRC of Borzoi
predicted tracks from such tissue/cell type.

Trait Tissue/cell type/cell line ~ AUPRC
Mendelian traits
Beta-thalassemia aorta 0.997
stomach 0.988
adrenal gland 0.986
Hemophilia B liver 1.0
HepG2 1.0
hepatocyte 1.0
Hypercholes- CD8+ T cell 0.983
terolemia-1 HepG2 0.975
CD4+ T cell 0.972
Complex traits
Monocyte count neutrophil 0.559
CD14+ monocyte 0.559
HL-60 0.559
Hemoglobin Alc K562 0.449
erythroblast 0.423
hematopoietic progenitor  0.412
High density liver 0.44
lipoprotein abdominal adipose tissue ~ 0.42
cholesterol adrenal gland 0.417

sign therapeutics. For traits where Borzoi achieved a good performance, we inspected the tissue/cell
type of the top features, and found that they are usually well aligned with previous knowledge (Ta-
ble 5). For example, the top tissues for high density lipoprotein cholesterol are liver, abdominal
adipose tissue and adrenal gland.

7 DISCUSSION

Conclusion. TraitGym allows to benchmark DNA sequence models on the challenging task of pre-
dicting causal variants in human genetics. Alignment-based, conservation-aware models compare
favorably on Mendelian traits and complex disease traits, while functional-genomics-supervised
models achieve the best performance on complex non-disease traits. A reason for hope in the par-
ticularly challenging complex traits dataset is that ensembling predictions and input features from
different models yields consistent improvements. We find that alignment-free gl Ms are not com-
petitive on causal variant prediction. The best performing model among them—gLM-Promoter,
developed in this work—is not the largest gl.M, nor does it have a long context. However, one of its
defining characteristics is that it was trained only on functional regions; this suggests that, as previ-
ously proposed (Tang et al., 2024; Benegas et al., 2024), data curation may warrant more research
than architectures. We leave this as promising future work.

Limitations and future extensions. The major limitation for benchmarking causal variant predic-
tion for human traits is that the number of known causal variants is small, especially for non-coding
regions. In the long term, we expect the number of known causal variants to increase as experimen-
tal and statistical techniques improve, together with larger and more diverse patient cohorts. In the
short term, we hope to expand the dataset to include variants from other cohorts such as FinnGen
(Kurki et al., 2023) and BioBank Japan (Nagai et al., 2017). One of the challenges is that, while
many fine-mapping results are publicly available, it is still hard to get access to other quantities such
as LD scores, which are important for constructing a rigorous control set.

10
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A APPENDIX

A.1 DATASETS

A.1.1 MENDELIAN TRAITS

Non-coding pathogenic OMIM variants were obtained from Table S6 in Smedley et al. (2016).
Common variants were obtained from gnomAD (Chen et al., 2024) (version 3.1.2).

A.1.2 COMPLEX TRAITS

UK BioBank fine-mapping results (Kanai et al., 2021) were downloaded from https://www.
finucanelab.org/data (version: Dec. 3rd, 2019). As recommended to increase fine-mapping
accuracy (Kanai et al., 2021), we averaged the posterior inclusion probability (PIP) from FINEMAP
(Benner et al., 2016) and SuSiE (Wang et al., 2020), and excluded variants where the two methods
disagreed by more than 5%. Complex traits in our dataset that are considered diseases or disorders
are shown in Table A.1.

Table A.1: Disease or disorder complex traits in our dataset.

Trait

Atrial fibrillation

Autoimmune disease (Phecode + Self-reported)
Alzheimer disease (LTFH)

Asthma

Blood clot in the lung

Breast cancer

Coronary artery disease

Colorectal cancer

Cholelithiasis

Seen doctor (GP) for nerves, anxiety, tension or depression
Blood clot in the leg

Fibroblastic disorders

Glaucoma (Phecode + Self-reported)
Hypothyroidism

Inflammatory bowel disease
Inguinal hernia

Insomnia

Migraine (Self-reported)

Prostate cancer

Type 2 diabetes

Type 2 diabetes (adjusted by BMI)

A.1.3 VARIANT ANNOTATION

Consequences were annotated using Ensembl VEP (McLaren et al., 2016) (release 109.1), using
flags ——most_severe and ——distance 1000 (used to distinguish upstream and downstream
from intergenic variants). We only kept non-coding consequences (Table A.2). We discarded splice
region variants, such as splice donor variants, as these were very few in number. Coding variants, as
well as non-coding variants with a very high expected impact such as in splice donors, are excluded
from our analysis.

We refined the annotation of non-exonic variants by checking overlap with each of five different
ENCODE candidate cis-regulatory element (cCCRE) categories (Epstein et al., 2020) (Table A.3).
We additionally refined the annotation if a variant overlapped not a cCRE but the 500-bp flank of a
cCRE, similar to Finucane et al. (2015). When we match negative controls, we make sure to keep
the exact same proportion of consequences, including the distribution of cCRE elements and their
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Table A.2: Selected consequences in this study.

Consequence

Non-exonic
intergenic_variant
upstream_gene_variant
downstream_gene_variant
intron_variant

Exonic

5_prime_UTR_variant
3_prime_UTR_variant
non_coding_transcript_exon_variant

Table A.3: ENCODE cCRE categories.

Category

PLS (promoter-like signature)

pELS (proximal enhancer-like signature)
dELS (distal enhancer-like signature)
DNase-H3K4me3

CTCF-only

flanks. For the analysis of performance by consequence, however, we simplify the categorization of
non-exonic variants into proximal (TSS dist. < 1 kb) and distal (TSS dist. > 1 kb).

TSS distance was computed with respect to protein coding transcripts only. MAF and LD scores
for the UK Biobank computed by the Pan-UK Biobank initiative (Karczewski et al., 2024) were
downloaded from s3://pan—-ukb-us—east-1/1d_release/UKBB.EUR.ldscore.ht.

GTEx fine-mapping results where downloaded from https://www.finucanelab.org/
data. We used a similar PIP cutoff of 0.9 in any tissue, combined between FINEMAP and SuSiE,
to define putative causal eQTL variants.

A.1.4 MATCHING CONTROLS

Nine negative control variants were sampled for each positive causal variant. Chromosome and
consequence were matched exactly. We matched variants with the most similar TSS distance, as
well as MAF and LD score in the complex traits dataset. More precisely, we defined a vector space
of (TSS distance, MAF, LD score) tuples, applied scikit-learn’s robust scaler (Pedregosa et al., 2011),
and selected negative variants minimizing the euclidean distance to the positive variant. Table A.4
shows that the matched features have minimal predictive power, as intended. For special cases
where there were not enough negative controls to match positive variants for a given chromosome
and consequence, we subsampled the positive variants until we had at least nine controls per positive
variant.

For the full version of the complex traits dataset, we created 100 equal-size MAF bins and subsam-
pled the negative set until the proportion of variants in each bin was equal to that of the positive
set.

A.2 MODELS
A.2.1 PUBLISHED MODELS

We downloaded several models from Hugging Face Hub (Wolf et al., 2020) (Table A.5). We down-
loaded Enformer and Borzoi from gReLU’s Model Zoo (Lal et al., 2024). Sei scores were obtained
via their web server: https://hb.flatironinstitute.org/sei. We obtained CADD
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Table A.4: Global AUPRC of matched features, close to baseline (0.1).

Dataset Feature AUPRC

Mendelian traits  (-) TSS distance 0.115
Complex traits (-) TSS distance 0.104
Complex traits MAF 0.101
Complex traits (-) LD score 0.104

Table A.5: Hugging Face Hub models.

Model Hugging Face Hub path

GPN-MSA songlab/gpn-msa-sapiens

NT InstaDeepAI/nucleotide-transformer-2.5b-multi-species
HyenaDNA LongSafari/hyenadna-medium-160k-seglen-hf

Caduceus kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16

v1.7 scores and annotations from https://krishna.gs.washington.edu/download/
CADD/v1.7/GRCh38/whole_genome_SNVs_inclAnno.tsv.gz.

A.2.2 OUR GLM-PROMOTER MODEL

gLM-Promoter was trained on 512-bp sequences centered at TSSs of protein-coding genes from
reference genomes of animal species. TSS coordinates were obtained from the gene annotations
available at NCBI Datasets (O’Leary et al., 2024). Species available at NCBI Datasets were sub-
sampled, among those with gene annotations, to keep at most one per family. This resulted in 434
reference genomes. gLM-Promoter’s training objective follows GPN: base-pair-level tokenization
and masked language modeling of local windows of 512-bp with downweighting of repeat positions
(soft-masked in the reference genome). gLM-Promoter’s architecture follows ByteNet (Kalchbren-
ner et al., 2017; Yang et al., 2024), consisting of blocks alternating dilated convolutions and feed-
forward layers. Hyperparameters are displayed in Table A.6. Training took approximately 2 weeks
using 4 NVIDIA A100 40GB GPUs.

Table A.6: gLM-Promoter training hyperparameters

Window size 512
Repeat weight 0.01
Embedding dimension 1024
Slim True
Convolutional blocks 64
Convolutional kernel size (first block) 9
Convolutional kernel size (remaining blocks) 5
Convolutional dilation schedule 1,2,4,8,16,32,64,128,1, ...
Optimizer AdamW
Weight decay 0.01
Batch size 2048
Steps 370 K
Learning rate 1073
Learning rate warmup 1 K steps

A.2.3 FEATURE EXTRACTION

Functional-genomics-supervised models. Let y; € Rﬁ be the predicted activity for genomic track
i in each of L spatial positions. The “/5 score” (Linder et al., 2023) is defined as the norm of the
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log-fold-change between the predicted activity for the reference vs. alternate sequences:

5 score; := Hlog2 (1 + ygalt)) — log, (1 + yzgret)) H (1)

We define the “/5 of 5 score” as the norm of the ¢ scores across tracks in a set A (e.g. all genomic
tracks, or all genomic tracks from the same experimental assay):

Lo of {5 score(A) := ||(¢s score;,i € A)|| 2)

For Sei we used the official scores provided in their web server https://hb.
flatironinstitute.org/sei.

Self-supervised models. We compute the log-likelihood ratio between the reference and alternate
alleles:

P(alt)
©8 P(ref)

For masked language models, it can be computed from the output probabilities when the variant
position is masked. For autoregressive models (HyenaDNA), it can be computed from the likelihood
of the entire reference and alternate sequences. We also compute similarity in the embedding space.
Let Z € RP*L be the sequence embedding with D hidden dimensions and L spatial positions.
For HyenaDNA, an autoregressive model, we take the embedding of the rightmost position (could
be interpreted as L = 1). We compare the reference and alternate embedding using the Euclidean
distance:

3)

HZ(ref) _ Z(all) 4)
F
cosine distance:
Z(ref) Z(alt)
1- Z<(ref) 7 Z(a1>t)F ®)

|26 || 2]
and innner product:

<Z(ref)7 Z(alt)>F (6)

To obtain a high-dimensional featurization of a variant we calculate the inner product separately for
each individual hidden dimension d:

ef alt
(Zy, Z ) 7
For both functional-genomics-supervised and self-supervised models, we always average the pre-
dictions using the forward vs. reverse strand, to ensure reverse-complement invariance.

A.2.4 LINEAR PROBING

We train a ridge logistic regression classifier pipeline using scikit-learn (Pedregosa et al., 2011),
using default arguments as much as possible (Listing 1). The pipeline starts with imputation (only
relevant for CADD input features) and standardization. To choose the regularization hyperparam-
eter, we do a grid search using group K-fold cross-validation, with the groups consisting of the
training chromosomes. We use the default number (10)of grid points, but shift the range to allow for
heavier regularization given that our regression setting is very high-dimensional.

We repeat the entire pipeline training on all but one chromosome and predicting on the held-out
chromosome. At the end we obtain predictions for all chromosomes, but each from a separate logis-
tic regression model. Therefore, instead of calculating a global AUPRC, we calculate the AUPRC
within each chromosome, and then perform a weighted average based on sample size. To obtain a
standard error, we calculate the standard deviation of the distribution of weighted means performed
on 1000 bootstrap samples of chromosomes. To allow easy comparison, we also use the weighted
average AUPRC to evaluate zero-shot scores, even though it is not strictly necessary.

We only evaluate zero-shot scores on the full version of the datasets. We obtain standard errors from
100 bootstrap samples within the positive and negative sets, in order to maintain the proportion of
positives.
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from sklearn.impute import SimpleImputer
from sklearn.linear model import LogisticRegression

from sklearn.model_selection import GroupKFold, GridSearchCvV

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

def train_logistic_regression (X, y, groups):
pipeline = Pipeline ([

("imputer', SimpleImputer (
missing_values=np.nan, strategy='mean',
keep_empty_features=True,

) ),

('scaler', StandardScaler()),

('"linear', LogisticRegression (
class_weight="balanced",
random_state=42,

))

1)
Cs = np.logspace (-8, 0, 10)
param_grid = {

'linear_ C': Cs,

}
clf = GridSearchCV (

pipeline,

param_grid,

scoring="average_precision",

cv=GroupKFold(),

n_jobs=-1,

)
clf.fit (X, y, groups=groups)
return clf

Listing 1: Logistic regression classifier (the default penalty is /).
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A.3 ADDITIONAL TABLES AND FIGURES

Table A.7: ClinVar “Pathogenic” variant consequences (reviewed by expert panel or practice guide-
line). ClinVar release: 20240909.

consequence count
stop_gained 1687
missense_variant 988
splice_donor_variant 177
splice_acceptor_variant 157
start_lost 33
splice_region_variant 23
splice_donor_5th_base_variant 22
splice_polypyrimidine_tract_variant 20
splice_donor_region_variant 13
intron_variant 6
synonymous_variant 5
stop_lost 3
3_prime_UTR_variant 1
upstream_gene_variant 1

Table A.8: AUPRC for different gLM zero-shot scores. In boldface: scores within 1% of best score
(for a given model).

LLR abs(LLR) L2dist. Cosine dist. Inner prod.

Dataset Model

Mendelian traits GPN-MSA 0.694 0.654 0.207 0.208 0.301
gLM-Promoter 0.422 0.379 0.345 0.263 0.169
NT 0.120  0.098 0.188 0.186 0.185
HyenaDNA 0.115 0.106 0.117 0.116 0.165
Caduceus 0.108 0.088 0.135 0.135 0.131

Complex traits ~ GPN-MSA 0.212  0.224 0.150 0.150 0.177
gLM-Promoter 0.112 0.110 0.126 0.126 0.125
NT 0.101  0.100 0.118 0.119 0.136
HyenaDNA 0.110 0.111 0.102 0.102 0.118
Caduceus 0.098  0.097 0.115 0.115 0.117

Table A.9: Selected zero-shot approach for each gLM.

Mendelian traits Complex traits

GPN-MSA LLR abs(LLR)
gL M-Promoter LLR L2 dist.
NT L2 dist. Inner prod.
HyenaDNA Inner prod. Inner prod.
Caduceus L2 dist. Inner prod.
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Table A.10: Number of overlapping variants with CADD training set.

CADD training positives CADD training negatives

Mendelian traits positives 0 0
Mendelian traits negatives 18 19
Complex traits positives 8 1
Complex traits negatives 79 55

Table A.11: AUPRC for selected traits (at least 10 causal variants and less than 10% overlap of
causal variants with other traits). The best score is reported between zero-shot and linear probing.
Full feature ensemble is evaluated for complex traits, but lightweight feature ensemble is evaluated
for Mendelian traits. In boldface: scores within 1% of best score.

Borzoi GPN-MSA CADD Ensemble

Mendelian traits

Hyperferritinemia 0.315  0.965 0.981 0.985
Beta-thalassemia 0.927  0.796 0926  0.955
Pulmonary fibrosis 0.564  0.948 1.000 1.000
Hemophilia B 0914  0.709 1.000  0.991
Cartilage-hair hypoplasia 0.594  0.987 0.923 0.918
Preaxial polydactyly II 0.546  0.959 0.969  0.967
Hypercholesterolemia-1 0.844  0.974 0.887 0.938
Dwarfism (MOPD1) 0.484  1.000 1.000  1.000
Complex traits

Adult height 0292  0.383 0.407  0.339
Platelet count 0.426  0.309 0.397 0.478
Estimated heel bone mineral density 0.308  0.432 0.422  0.406
Mean corpuscular volume 0.434  0.319 0.391 0.454
Monocyte count 0.561 0.404 0.375 0.535
Hemoglobin Alc 0.475 0375 0426  0.517
Albumin/Globulin ratio 0455 0.431 0.516  0.559
High density lipoprotein cholesterol 0.521  0.362 0.425 0.554
Estimated glomerular filtration rate (cystain C) 0.457  0.456 0.421 0.470
Alkaline phosphatase 0.492 0.292 0.352  0.446
Gamma-glutamy] transferase 0.515 0.382 0.460  0.527
FEV1/FVC ratio 0430 0.494 0.505  0.487
Pulse pressure 0.457 0435 0.420 0.489
Calcium 0468 0.433 0.425  0.408
Albumin 0.615 0.544 0.480  0.602
Body mass index 0.344  0.514 0436  0.499
Balding Type 4 0459  0.536 0414  0.625
Blood clot in the leg 0.574  0.551 0.498  0.565
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Figure A.1: Ablation of MAF cutoff for positive variants in Mendelian traits dataset.
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Figure A.2: Mendelian traits results when positive variants are additionally matched by gene (vari-
ants that cannot be matched are dropped).
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Figure A.3: Results after removing a small amount of variants overlapping CADD training set.
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Figure A.4: Results varying the PIP threshold for positive variants.
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Figure A.5: Complex traits results when positive variants are additionally matched by gene (variants
that cannot be matched are dropped).

Mendelian traits Complex traits

Enformer
Borzoi
CADD

Sei
GPN-MSA
NT
gLM-Promoter
HyenaDNA
Caduceus

CADD

Enformer

Borzoi

GPN-MSA

gLM-Promoter

Sei

NT

Caduceus

HyenaDNA

0.6 0.8 1.0 0.5 0.6 0.7
AUROC AUROC

GPN-MSA
CADD

Borzoi
Enformer
gLM-Promoter
Sei

NT

HyenaDNA
Caduceus

10YS-0497

CADD
GPN-MSA
Borzoi
Enformer
gLM-Promoter
Sei

Caduceus

NT

HyenaDNA

puiqoad aeaui

i

Figure A.6: Results using the AUROC metric.
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Figure A.7: Results with a much larger negative set of millions of variants. The x-axis range starts
at the baseline which is the proportion of positives.
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Figure A.8: gLM-Promoter results by consequence.
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