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ABSTRACT

We study what provable privacy attacks can be shown on trained, 2-layer ReLU
neural networks. We explore two types of attacks; data reconstruction attacks, and
membership inference attacks. We prove that theoretical results on the implicit
bias of 2-layer neural networks can be used to provably reconstruct a set of which
at least a constant fraction are training points in a univariate setting, and can also
be used to identify with high probability whether a given point was used in the
training set in a high dimensional setting. To the best of our knowledge, our work
is the first to show provable vulnerabilities in this setting.

1 INTRODUCTION

Recently, it was shown that theoretical tools used to study the implicit bias properties of successfully
trained neural networks can be leveraged to reconstruct certain portions of the dataset on which the
neural network was trained (Haim et al., 2022). The idea behind these attacks is that under some
conditions, trained neural networks must satisfy certain properties that are a consequence of the
implicit bias of the training algorithm, which can be used to extract information on the training
set. This was followed by many other works that applied the same techniques in a broader setting
(Buzaglo et al., 2023a;b; Andrew et al., 2023; Ye et al., 2023; Boenisch et al., 2024), raising this
vulnerability as a potential practical concern for the widespread use of neural networks. However,
despite the fact that these works were motivated by theory, none of them give an explanation for
why such a reconstruction is possible, since a given neural network, which satisfies these properties,
may have been trained on potentially many different datasets, including some that are significantly
different than the actual data the neural network was trained on.

In this paper, we take what is to the best of our knowledge the first step in developing a theoretical
understanding of the privacy vulnerabilities induced by the above implicit bias, by showing that
such attacks can be provably executed on trained neural networks under various assumptions. This
indicates that such attacks are successful since all neural networks satisfying these properties must
store at least some information on the training data, which can be used by a malicious attacker. More
specifically, we use known results on the implicit bias of ReLU neural networks, which establish
that such networks tend to converge to a certain margin maximization solution (Lyu and Li, 2020;
Ji and Telgarsky, 2020). This characterization of the implicit bias of neural networks allows us
to rigorously analyze certain cases in which the neural network memorizes the training data. In
particular, this includes examples where an attacker is capable of reconstructing certain portions of
the data in a univariate setting, or perform membership inference attacks with high success rates in a
high dimensional setting, effectively distinguishing between instances that are in the training set and
fresh instances that were generated by the same distribution that was used to generate the training
set.

While our attacks are applicable under certain input’s dimension, we also conduct experiments that
show that these vulnerabilities can be a concern in more generality, even when our assumptions on
the dimension of the input are not met. Nevertheless, it is currently not clear what is the extent
of the vulnerabilities that we reveal, and to what extent they can be circumvented. We leave the
intriguing question of how to provably defend against such exploits to future work, and we hope
that our work will pave the way for and motivate additional rigorous study of privacy attacks and
defenses in trained neural networks.
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The remainder of the paper is structured as follows: After specifying our contributions in more
detail below, we turn to discuss related work. In Section 2 we present our notations, some required
background, and the main assumptions we make throughout the paper. In Section 3 we study data
reconstruction in the univariate setting, and in Section 4 we study membership inference attacks in
high dimensions. Lastly, in Section 5, we conduct experiments to empirically support our findings,
even in cases where our assumptions do not necessarily hold.

OUR CONTRIBUTIONS

Our main contribution is to provide rigorous guarantees in this setting, since to the best of our
knowledge, all previous works are empirical. In more detail, our contributions can be summarized
as follows:

• We prove that in the univariate case, under Assumption 2.1, which states that the weights
of a trained neural network reach a stationary point of a maximum-margin problem that
can be expressed as a function of the training data, an attacker can reconstruct a portion
of the training data with a constant probability, which is independent of the training set
and the size of the network. We show how to extract that portion of the training data in
Algorithm 1.

• We prove that in the high dimensional case, under Assumption 4.1, i.e. that the vectors
in the training data are nearly orthogonal w.h.p., an attacker can execute a membership
inference attack with high success rates. We show that some commonly used continuous
distributions satisfy Assumption 4.1, and we also provide in Subsection 4.1 examples of
different attacks that can be performed depending on the information available to the at-
tacker.

• We empirically show that the membership inference attack we analyze in Section 4 may
still be executed successfully when we slightly relax Assumption 4.1. This suggests that
the vulnerabilities we study in this paper are potentially even more widespread than what
our theory establishes.

RELATED WORK

Privacy attacks in neural networks were studied extensively in recent years. Since this paper focuses
on two specific types of attacks, we only review here papers that also study these kinds of attacks,
or those that closely relate to it.

Data reconstruction attacks. Data reconstruction attacks aim to fully recover the training set
or parts of it. These include attacks on generative models such as large language models (Carlini
et al., 2019; 2021; Nasr et al., 2023), diffusion models (Somepalli et al., 2022; Carlini et al., 2023),
and in federated learning settings (Zhu et al., 2019; He et al., 2019; Hitaj et al., 2017; Geiping et al.,
2020; Huang et al., 2021; Wen et al., 2022). Perhaps the most relevant works that are concerned with
reconstruction attacks are Haim et al. (2022) and Buzaglo et al. (2023a). Using a known result on the
implicit bias of trained neural networks, they define and optimize over a loss function, which upon
empirical minimization, allows for the recovery of some of the training set. Inspired by these works,
we use the same constraints implied by the implicit bias to study this problem, but to rigorously
prove the existence of privacy vulnerabilities rather than empirically demonstrate them.

Membership inference attacks. The second type of attacks we consider in this paper are member-
ship inference attacks (Shokri et al., 2017; Hu et al., 2022a; Olatunji et al., 2021; Shejwalkar et al.,
2021), which discern the inclusion or exclusion of a particular data point within the training set.
This attack exploits the observation that machine learning models often behave differently on the
data that they were trained on versus fresh test examples. One such difference is that trained models
tend to output more confident predictions on training examples compared to test examples. This
difference can be used to determine if a certain point was in the training set or not. Olatunji et al.
(2021) used this confidence-based technique on graph neural networks. Jha et al. (2020); Farokhi
and Kaafar (2020) use tools from information theory to upper bound the probability of success of a
membership inference attack on neural networks, which is in contrast to our result which exempli-
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fies settings with provable lower bounds on the success rates. Attias et al. (2024) also show provable
membership inference attacks, but for models whose objective function is a convex function.

Differential privacy. A fundamental theoretical framework in the study of privacy is differential
privacy (Dwork, 2006; Abadi et al., 2016; Gong et al., 2020; Pannekoek and Spigler, 2021), which is
intuitively used to guarantee that sharing some information on a given dataset is done without leaking
too much information on specific instances. This framework constitutes a rather strong standard for
privacy guarantees, whereas we consider a setting where our assumptions on the implicit bias of
neural networks are typically not differentially private. Namely, we study a setting where our base
assumption is that there is already some data leakage in terms of differential privacy, and our work
explores what is the extent of the information that can be extracted. Thus, our results are not directly
comparable to those which study differential privacy.

Benign overfitting. Another well-studied phenomenon in the theory of deep learning, which may
explain the prevalence of privacy vulnerabilities, is benign overfitting (Bartlett et al., 2020; Cao et al.,
2022; Li et al., 2021). This is when a neural network overfits on the training set, essentially achieving
perfect training error, but still enjoys very good generalization on previously unseen instances. This
suggests that even well-performing neural networks can memorize their training sets, and therefore
become more prone to privacy attacks. While this provides a potential theoretical explanation for
this phenomenon, as does our work, it does not immediately imply a method for extracting any
information on the training set, nor does it prove the existence of such a method.

2 BACKGROUND, PRELIMINARIES AND NOTATION

In this section, we introduce the notations and settings used throughout this paper, and discuss
relevant background.

We consider a binary classification setting, where each data instance consists of a pair (x, y) ∈
Rd × {−1, 1}, and we define the training set as {(xi, yi)}ni=1 which consists of n data points. We
let Φ(θ; ·) : Rd → R denote a neural network, where θ ∈ Rk are the parameters of the network
represented as a vector. Let ℓ : R→ R denote the exponential loss function z 7→ e−z or the logistic
loss function z 7→ log(1+ e−z), and let L(θ) := 1

n

∑n
i=1 ℓ(yi ·Φ(θ;xi)) be the empirical (training)

loss. A network Φ(θ;x) is called homogeneous if there exists c > 0 such that for every b > 0, θ
and x, it holds that Φ(b · θ;x) = bcΦ(θ;x). The ReLU activation function is [x]+ := max(0, x),
and a homogeneous 2-layer ReLU network has the form Φ(θ,x) =

∑k
j=1 vj

[
w⊤
j x+ bj

]
+

where
θ encapsulates the parameters {wj , vj , bj}kj=1. We denote the (d − 1)-dimensional unit sphere in
Rd by Sd−1 := {x ∈ Rd : ∥x∥2 = 1} . We use standard asymptotic notation (e.g. O, o,Ω, etc.).

The following known result characterizes the implicit bias in homogeneous neural networks, by
showing that these networks converge to a critical point of a certain margin-maximization problem.

Theorem 2.1 (paraphrased version of Lyu and Li (2020), Ji and Telgarsky (2020)). Let Φ(θ;x)
be a homogeneous ReLU neural network. Consider minimizing the logistic (z 7→ log(1 + e−z))
or exponential (z 7→ e−z) loss using gradient flow (which is a continuous time analog of gradient
descent) over a binary classification set {(xi, yi)}ni=1 ⊆ Rd × {−1, 1}. Assume that there is a time
t0 where L(θ(t0)) < 1

n . Then, gradient flow converges in direction1 to a first order stationary point
(KKT point) of the following maximum-margin problem:

min
θ

1

2
∥θ∥2 s.t ∀i ∈ [n] yiΦ(θ;xi) ≥ 1. (1)

Since exploring privacy vulnerabilities is less interesting in networks with poor training accuracy, it
is reasonable to assume that the training loss is reasonably small. Our paper specifically focuses on
settings where, as stated in the above theorem, all training points are correctly classified. Therefore,
throughout this paper, we assume that our target neural network has converged to a KKT point of
Eq. (1). Formally, this implies the constraints captured in the following assumption:

1We say that gradient flow converges in direction to θ̂ if limt→∞
θ(t)

∥θ(t)∥ = θ̂

∥θ̂∥ .
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Assumption 2.1. Let Φ(θ;x) be a 2-layer neural network, and let m := mini |Φ(θ;xi)| > 0. We
are given access to Φ(θ, ·), and we have full knowledge of the vector θ.2 Moreover, we have that θ
satisfies the following KKT conditions of Eq. (1):

θ =

n∑
i=1

λiyi∇θΦ(θ;xi), (2)

∀i ∈ [n], yiΦ(θ;xi) ≥ m > 0, (3)
λ1, . . . , λn ≥ 0, (4)
∀i ∈ [n], if yiΦ(θ;xi) ̸= m then λi = 0. (5)

We refer to the parameter m as the margin’s value, and we say that a set of points A ⊆ Rd lies on
the margin if Φ(θ;x) equals the margin’s value for all x ∈ A. We stress that in general, the attacker
does not have knowledge of the value of m. Nevertheless, it is still possible that the attacker might be
able to either deduce this value or obtain it in some way, and even if they cannot, this merely results
in a single additional hyperparameter that the attacker must accommodate for, which indicates that
our proposed attacks can reveal unwanted information. Throughout this paper, we present several
results which vary based on the information that we have on m.

3 ONE DIMENSIONAL INPUT

In this section, we consider univariate neural networks with ReLU activations. Such a network takes
the form

x 7→
k∑
j=1

vj [wjx+ bj ]+ , (6)

where x ∈ R. Note that this computes a piece-wise linear function (in x), and its breakpoints (i.e.
points where the function changes its linearity) are {− bj

wj
}kj=1. Assume w.l.o.g.− b1

w1
< . . . < − bk

wk
.

Throughout this section, we assume that the attacker has knowledge of the value of the margin, and
that this value is 1 without loss of generality.

3.1 WARMING UP – THE CASE n = k = 1

It is easy to show that for the simple case of n = k = 1 there is a single possible solution, and thus
the attacker can always recover the dataset:

Theorem 3.1. Suppose that Φ(θ; ·) is a univariate neural network as in Eq. (6), and that Assumption
2.1 holds. Moreover, suppose that n = k = 1. Then, there exists a single solution x. Moreover, it
can be easily recovered.

Proof. Eq. (3) implies that Φ(θ;x1) cannot be the zero function. By Eq. (5), y1Φ(θ;x1) ̸= 1
implies that Eq. (2) equals zero which thus leads to a contradiction, and therefore we deduce that
y1Φ(θ;x1) = m = 1 which implies that Φ(θ;x1) ∈ {−1, 1}. Since n = k = 1, we have
Φ(θ;x1) = v1 [w1x1 + b1]+. This function equals 0 whenever the ReLU neuron is inactive and is
necessarily not zero whenever the neuron is active, thus it has a non-zero slope, and it equals either
−1 or 1 at a unique point which is necessarily x1.

While the above example is highly degenerate, it nevertheless highlights the danger and exemplifies
the impact this theoretical tool may have in practice, and further motivates us to explore whether
such vulnerabilities exist in more general settings.

2Many of our results or similar ones can be proven even with only partial access to the network’s weights,
however for the sake of simplicity we assume full knowledge of the weights.
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3.2 THE GENERAL UNIVARIATE CASE

As we will see in this subsection, fully recovering the dataset in the more general univariate case as
in the previous case is much more complicated – if at all possible. Nevertheless, we will show that
under our assumptions, there is still some information on the training set that can be extracted.

Our analysis in the previous simple example relied on the observation that following from the KKT
conditions, points whose value lies on the margin are potential candidates for being training points.
However, it is unclear whether this holds in general, and what exactly is the portion of the points
whose value lies on the margin that are also training points. Moreover, in the univariate case which
we consider now, the neural network can either cross the margin with a non-zero slope, or have a
zero slope on an interval where it equals the margin. In the former case, we have at most two points
per each interval on which the network takes a linear form and crosses the margin, thus at most two
points are added to the set of potential candidates; but in the latter case, there is a continuum of
potential candidate points. However, a more careful analysis reveals that in both cases, there is a
finite set of candidates which must contain a training point.

The following theorems each addresses a different case from the cases described above, and estab-
lishes the existence of a discrete set of points that must contain a training point. All proofs can be
found in Appendix A.
Theorem 3.2. Let Φ(θ;x) be a 2-layer univariate network satisfying Assumption 2.1. Let
[− bi−1

wi−1
,− bi

wi
] and [− bi

wi
,− bi+1

wi+1
] be two adjacent intervals which none of them is constant on the

margin. Then, there must be a training point in the interval [− bi−1

wi−1
,− bi+1

wi+1
], and that training point

must lie on the margin. In addition, the number of points lying on the margin in this interval is at
most 4.

The proof of the above theorem relies on the observation that for any three breaking points, two
of them must belong to neurons with the same sign of the parameter w. If these two neurons are
active on the same set of training points, then by Assumption 2.1, they merge into a single neuron,
therefore there must exist some training point between them. Moreover, this training point must lie
on the margin. Since each interval crosses the margin at most twice, the number of possible points
lying on the margin is at most four.

Having presented our theorem for the case where the neural network is not constant on the margin,
we now present our theorem for the complementary case where it is constant.
Theorem 3.3. Let Φ(θ;x) be a 2-layer univariate network satisfying Assumption 2.1. In addition,
assume the following:

• There is a neuron c1 that is active on all the points in the training set.

• Φ(θ;x) is a local minimum of Eq. (1).

• Φ(θ;x) alternatingly lies on the margin on three adjacent intervals, i.e. it is constant on
[− bi−2

wi−2
,− bi−1

wi−1
] and on [− bi

wi
,− bi+1

wi+1
] (but not in between) and lies on the margin, for

some i.

Then, either − bi−1

wi−1
or − bi

wi
is a training point.

If by contradiction neither − bi−1

wi−1
nor − bi

wi
is a training point, then we can construct a modified

network with a slightly different breaking point − bi
wi

+ ϵ for any ϵ > 0. We show that this new
network has strictly smaller norm, yet it is still a feasible solution for Eq. (1) - A contradiction to
Φ(θ, ·) having minimal norm.

We note that in terms of the structure of the function Φ(θ; ·), the above case analysis is exhaustive
(excluding degenerate cases such as Φ(θ; ·) which consists of at most two different intervals, on
which it is linear). This holds true since if the conditions in Thm. 3.3 do not hold, then this implies
that Φ(θ; ·) does not lie on the margin in two adjacent intervals, hence the conditions for Thm. 3.2
must hold. We also remark that we have assumed that there is a neuron which is active on all
the training data points, which typically makes sense in settings where the network is highly over-
parameterized for example, but even if this assumption does not hold, then we can enforce it by
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modifying our architecture to have a linear neuron with no activation function in the first hidden
layer.

The next result demonstrates how our previous two theorems can be leveraged to construct a set of
which at least a quarter of the instances are training points.
Theorem 3.4. Let Φ : R → R be a 2-layer homogeneous network satisfying Assumption 2.1. In
addition, assume the following:

• There is a neuron c1 that is active on all the points in the training set.

• Φ(θ;x) is a local minimum of Eq. (1).

Then, the following algorithm builds a finite set of which a constant fraction p ≥ 1
4 of the points are

training points.

Algorithm 1 Build a finite set of candidates

1: S ← ∅
2: for i = 1 to n− 2 do
3: x← − bi

wi

4: y ← − bi+1

wi+1

5: z ← − bi+2

wi+2

6: if both [x, y] and [y, z] do not lie on the margin then
7: S ← S ∪ {p : p ∈ [x, y] ∩ p is on the margin} ∪ {p : p ∈ [y, z] ∩ p is on the margin}
8: end if
9: if [x, y] lies on the margin and i < n− 2 then

10: t← − bi+3

wi+3

11: if [z, t] lies on the margin then
12: S ← S ∪ {y} ∪ {z}
13: end if
14: end if
15: end for

The above algorithm essentially iterates over the linear intervals of the network, and uses either
Thm. 3.2 or Thm. 3.3 based on the structure of Φ(θ; ·) to add a constant number of candidate points,
until the final set of points is constructed. We point out that we have assumed that θ is a local
minimum of Eq. (1) rather than just a critical point. It is known that in general, not all critical points
of Eq. (1) are also local minima, and that gradient flow may converge to a critical point which is
not a local minimum (see Safran et al. (2022, Example 1)), but it is not clear what is the ‘typical’
behavior of gradient flow in this context. We also remark that despite our requirement to have full
knowledge of θ, the above results can also be implemented with partial knowledge of θ.3 In any
case, we leave the exploration of other privacy related questions on relaxations of our assumptions
for future work.

4 HIGH DIMENSIONAL INPUT

Having discussed the one-dimensional setting, we now investigate the case x ∈ Rd where d is large.
In this case, it is not obvious how to reconstruct the training data using an approach which is similar
to the previous section: even if one can identify a (d−1)-dimensional manifold (which corresponds
to domain points that lie on the margin) in which the data is contained, there is still a continuum of
potential candidates. For this reason, we instead investigate a different variant of privacy vulnerabil-
ity, called membership inference queries: Given a point x ∈ Rd which is either a random point from
the training set or a freshly sampled test point, sampled from the same distribution used to generate
the training set – can the attacker tell how x was generated with high probability?

3For example, if we have access to Φ(θ; ·) and only the breakpoints where the network changes its linearity
are known, we can still interpolate and compute the points which cross the margin.
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In very high dimensional settings, under many commonly used data distributions, we have that the
dataset is almost orthogonal with high probability. We exploit this property to show that also with
high probability over drawing the training set, all the points in the training set will lie on the margin.
On the other hand, if we draw a new data point from the same distribution, the neural network
will output a target value which is typically much smaller than the margin. These key observations
will allow us to make the distinction between training points and test points, effectively answering
membership inference queries.
Remark 4.1 (Black box attacks). We note that since our results in this section are only based on
querying the value of Φ(θ; ·), the attacker need not know θ to successfully execute the membership
inference attack, and therefore the attack can also be applied in the black box model.

We now formally state our assumptions on the underlying distributionD which generates the dataset:
Assumption 4.1. The following hold for some τ > 0.

1. For x1,x2 ∼ D, Pr[n · |x⊤
1 x2| ≤ o(d)] ≥ 1− τ

n2 .

2. For x ∼ D, p
[
∥x∥2 ≥ Ω(d)

]
≥ 1− τ

n .

where n is the size of the training set.

Note that we do not make any assumptions on the labels of the data, and therefore our results hold
for all possible labeling on the data. We also point out that even though this assumption may seem
somewhat restrictive at a first glance, it can be expected to hold for continuous distributions in suf-
ficiently large dimensions, and when the sample size is modest. We also prove that our assumption
is satisfied by several rather standard data distributions. This includes (but is not limited to) the
following concrete examples:

1. The uniform distribution over the sphere
√
d · Sd−1, where n = o

( √
d

log d

)
and τ = od(1).

2. The normal distribution N (µ, I) with mean µ, where ∥µ∥2 = o(d), and where n =
o(d)

∥µ∥2+dϵ for some 1
2 < ϵ < 1 and τ = od(1).

3. Mixture of k Gaussians with means µ(1), . . . ,µ(k), where ∥µ(1)∥2, . . . , ∥µ(k)∥2 = o(d),
identity covariance matrices, n = o(d)

max{∥µ(i)∥2}k
i=1

+dϵ
for some 1

2 < ϵ < 1, and τ = od(1).

The first two examples are rather standard in the literature, whereas the last example is somewhat
more complex, but is meant to exemplify a setting where our proposed attacks can be executed in
the statistically learnable case. For a more formal discussion about the statistically learnable case,
we refer the reader to Appendix C. For proofs that these distributions satisfy Assumption 4.1, we
refer the reader to Appendix D.

Before we continue, we will introduce some further notation to be used throughout this section.
Recall that m > 0 denotes the value of the network’s margin, and define δ := maxi ̸=j

{
|x⊤
i xj |

}
and ∆ := mini∈[n]

{
∥xi∥2

}
. Note that by Assumption 4.1 and by the union bound, we have that

n · δ = o(∆) with probability at least 1− 2τ .

Given a point x ∈ Rd, we would like to know whether x was in the training set, or if it was generated
from the same distribution that generated the training set. As previously discussed, our strategy is to
calculate the value of |Φ(θ;x)|. We expect to see larger values that are closer to the margin when x
is in the training set, and smaller values when it is not. Formalizing this idea, the following theorem
is used to determine w.h.p. whether a given point x ∈ Rd is in fact a training point, or a test point
which was freshly sampled from D.
Theorem 4.2. Let D be a distribution on Rd that satisfies Assumption 4.1. Let x ∈ Rd and let
Φ(θ; ·) be a 2-layer neural network satisfying Assumption 2.1. Then the following hold:

• With probability at least 1 − 2τ over the choice of the training set, if x is a training point
then |Φ(θ;x)| = m.

• If x ∼ D then with probability 1 − 2τ over the sampling of x and the sampling of the
training data, |Φ(θ;x)| = O(n·m·δ

∆ ) = od(m).
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This theorem gives us a useful tool to perform membership inference attacks. Given a point x ∈ Rd,
run x through the neural network, and consider the output Φ(θ;x). If |Φ(θ;x)| = m, then x is in
the training set, and if |Φ(θ;x)| = od(m), then x is not in the training set (with high probability).

The intuition behind the proof of the theorem can be explained as follows: Using Assumption 2.1,
we show that the value |Φ(θ;x)| can be expressed as a weighted combination of {x⊤

i x}ni=1 (where
{xi}ni=1 are the training points). Using Assumption 4.1, we know that if x is in the training set, then
x = xk for some k ∈ [n] and ∥xk∥2 must be large, while x⊤

j xk is small for all j ̸= k, and therefore
the weighted combination is large. On the other hand, when x ∼ D, then with high probability it is
“nearly orthogonal” to all training points, meaning that x⊤

j x is small for all j = 1, . . . , n, and thus
the weighted combination is small. For the complete proof of the theorem, we refer the reader to
Appendix B.

Having presented our main tool in this section, we now turn to discuss several particular use cases,
based on the amount of knowledge known to the attacker. Similarly to the previous section, we first
assume that the value of the margin is known to the attacker. However, since an attacker cannot
deduce the value of the margin in general, we also provide examples where membership inference
questions can be answered without this knowledge.

4.1 EXAMPLE USE CASES OF THM. 4.2

In all of the following cases, let Φ(θ;x) be a 2-layer neural network satisfying Assumption 2.1, and
let D be a distribution that satisfies Assumption 4.1, so as to satisfy the assumptions in Thm. 4.2.

We begin with the simplest case, where the value of the margin is known to the attacker.

Corollary 4.3 (Known margin value). Let x ∈ Rd, assume that d is sufficiently large, and further
assume that we know the value of the margin m. Then, w.h.p. over the randomness in sampling the
training set from D, we have that:

• If x is in the training set then |Φ(θ;x)| = m.

• If x ∼ D is a fresh example, then w.h.p. over the randomness in sampling x, |Φ(θ;x)| < m
2 .

Proof. From Thm. 4.2 we know that w.h.p. over the choice of the training set we have that if x is in
the training set then |Φ(θ;x)| = m and if x ∼ D then w.h.p.

|Φ(θ;x)| ≤ O

(
n ·m · δ

∆

)
= m ·O

(
n · δ
∆

)
<

m

2
,

where in the last inequality we used the fact that O(n·δ∆ ) = od(1).

Thus, by the above, if the margin’s value m is known to the attacker, they can simply compute
|Φ(θ;x)| and return that x is in the training set if and only if |Φ(θ;x)| ≈ m.

As previously discussed, in general, the value of the margin is not known to the attacker. Neverthe-
less, under different assumptions, the attacker can still execute a successful membership inference
attack.

Corollary 4.4 (Leaked data point). Let k be a constant (independent of d), let z1, . . . , zk ∼ D
be k points, and assume we know that at least one point in this set is in the training set. Let
α = max1≤i≤k {|Φ(θ; zi)|}, then w.h.p. over the choice of the training set, we have for all i ∈ [k]:

• If zi is in the training set then |Φ(θ; zi)| = α.

• If zi ∼ D then w.h.p. (over sampling zi) |Φ(θ; zi)| < α
2 .

Proof. W.l.o.g. let z1 be in the training set. Using Thm. 4.2 and the union bound over z1, . . . , zk, we
have |Φ(θ, zi)| ≤ m for all i with probability at least 1− 2kτ = 1− od(1), so in particular α ≤ m.
On the other hand, using Thm. 4.2 again, we have that with probability at least 1 − τ = 1 − od(1)
we have that |Φ(θ, z1)| = m, so m ≤ α. So we have that w.h.p. m = α. Now we complete the
proof by using Corollary 4.3.

8
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The above corollary implies that even if the attacker has no knowledge of the value of the margin,
but has knowledge that at least one element in a set of size k is in the training set, then this value
must achieve the maximal prediction value in absolute value among the set. This allows the attacker
to deduce the margin value by computing maxi |Φ(θ; zi)|. Thereafter, the attacker can continue in
the same manner as in Corollary 4.3.

One might argue that even the previous assumptions are somewhat restrictive, since they require
that at least one training point is leaked a priori. The following corollary makes some additional
assumptions on the underlying distribution and that the margin value is bounded rather than known,
which is much milder than in the previous result.
Corollary 4.5 (Bounded margin). Let D be a distribution that satisfies the following slightly
stronger version of Assumption 4.1:

Let τ > 0.

• For x, y ∼ D, n·|x⊤y| = o
(

d
t(d)

)
for some function t(d) with probability at least 1− τ

n2 .

• For x ∼ D, ∥x∥2 = Ω(d) with probability at least 1− τ
n .

Furthermore, let x ∼ D and suppose that C < m < t(d) for some constant C. Then the following
holds:

• W.p. at least 1− τ over the training set, if x is in the training set then |Φ(θ;x)| > C.

• If x ∼ D then w.p. at least 1− 2τ over the training set and x, |Φ(θ;x)| < od(1).

Proof. Assume that x is in the training set. From Thm. 4.2 we know that |Φ(θ;x)| = m > C with
probability at least 1− τ . Assume that x is not in the training set. From Thm. 4.2 and our stronger
assumption on D we know that

|Φ(θ;x)| = O

(
n · δ ·m

∆

)
≤ O

(
o

(
d

t(d)

)
· m
∆

)
= O

(
o

(
d

t(d)

)
· m
d

)
= od(1).

with probability at least 1− 2τ .

This corollary implies the following: for x ∈ Rd, let us compute |Φ(θ;x)|. If x is not in the training
set, then w.h.p. we get a number which is smaller than C, and if x is in the training set, w.h.p we get
a number which is larger than C.
Remark 4.6 (On the lower and upper bounds of the margin). We argue that the lower and upper
bound assumptions on the margin that we use above are mild. This follows from the fact that if we
assume an exponential or logistic loss function (which is a standard assumption in this setting), then
the gradient is exponentially small in the margin. Hence, if the margin is even just polylogarithmic in
d, then making further progress with training is extremely inefficient. Conversely, if the margin is too
small, then this implies that the loss over points that lie on the margin is large, which indicates that
the network had stopped training very early. For more formal arguments justifying this assumption,
we refer the reader to Remarks B.5 and B.6.

5 AN EXPERIMENT FOR INTERMEDIATE VALUES OF d

Thus far, our theory addressed the one-dimensional case, as well as the high-dimensional case where
the input’s dimension is much larger than the training set size. This naturally raises the question of
what happens in between these two regimes.

Exploring this question empirically, in this section, we conducted a few experiments focusing on
the membership inference problem, and observed that while our theoretical results’ assumptions do
not necessarily hold, their implications are nevertheless still valid. We sampled training and test sets
(both i.i.d.) uniformly from the scaled hypersphere, trained a 2-layer neural network until reaching
an approximate KKT point, and examined the network’s predictions on both the training and the test
sets in comparison to the margin. Our code is available in the supplementary material.

More specifically, we conducted all our simulations using the following settings:

9
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(a) The percentage of training
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Figure 1: The relative values of training and test points compared to the value of the margin, where
every point in the above graphs was averaged over 50 instantiations.

• Architecture: We focused on 2-layer ReLU networks, where the hidden layer has 10,000
neurons. The neurons in the hidden layer each have a bias term while the second layer does
not, thus making the network homogeneous.

• Range of the input dimension: We tested d for various values in the range between 1 and
1000. This range includes values of d where it is much larger than the training set as in our
theoretical results, but also includes more moderate values of d where our assumptions do
not necessarily hold.

• Data generation: All points were sampled uniformly and i.i.d. from
√
d · Sd−1. The

training set contains 20 instances, since this small size ensures that Assumption 4.1 holds
for the larger values of d that we tested. The test set contains 5,000 instances.

• Training: In order to converge faster to an approximate KKT point, we used a small ini-
tialization scheme as was done in Haim et al. (2022).

Our experiment focused on studying two objectives. The first studies how many training points lie
on the margin as a function of the dimension d,4 and the second studies how many test points that
were sampled from the same distribution as the training set lie on or above the margin.

Our results demonstrate that network outputs can serve as effective tools for privacy attacks across a
broader range of input dimensions, suggesting wider applicability of our theory. Specifically, Fig. 1a
shows that as input dimensions increase, more training points lie on the margin, indicating a higher
probability of this occurrence. Similarly, Fig. 1b and Fig. 1c reveal that the number of test points
lying on or above the margin decreases with higher dimensions, implying a reduced likelihood of test
points from the same distribution doing so. Notably, these findings align with our theory and extend
to much smaller dimensions than predicted. For instance, while Thm. 4.2 suggests a minimum
dimension of d = n2 = 4005 for a training set of size 20, our experiments show that nearly all test
points fall below the margin even at d = 100, and about 80% do so at d = 20, highlighting the
potential for membership inference attacks at much lower dimensions.

Following our empirical findings, we conclude that our theory is expected to hold more generally,
and that the magnitude of the output of the neural network on a data instance can provably reveal
whether it is a training point or a test point with high success rates. This is in line with many empir-
ical findings (see Hu et al. (2022b)), and provides a theoretical explanation for this phenomenon.

4It is noteworthy that a similar experiment was conducted in Vardi et al. (2022b), albeit under a different
context where the adversarial robustness of the neural network is studied.

5This is because of the fact that under the assumption n =
√
d, we have w.h.p. that n · |x⊤

1 x2| = Θ(d), so
Assumption 4.1 is very unlikely to hold for values of d that are smaller than that.

10
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A PROOFS FROM SUBSECTION 3.2

We start by stating a few notations: Denote by σ′
j the subgradient of

[
w⊤
j x+ bj

]
+

. If w⊤
j x+bj ̸= 0

then σ′
j is well defined, and if w⊤

j x + bj = 0 then σ′
j ∈ [0, 1]. In any case, σ′

j ≥ 0. For a training
point xi, denote by σ′

i,j the subgradient of
[
w⊤
j xi + bj

]
+

.

For all j ∈ [k] that the partial derivatives of our 2-layer homogeneous neural network are given by

∂

∂vj
Φ(θ;x) =

[
w⊤
j x+ bj

]
+
,

∂

∂wj
Φ(θ;x) = vjxσ

′
j ,

∂

∂bj
Φ(θ;x) = vjσ

′
j .

Combining the above with the KKT conditions, we arrive at

vj =

n∑
i=1

λiyi
[
w⊤
j xi + bj

]
+
, (7)

wj = vj

n∑
i=1

λiyixiσ
′
i,j , (8)

bj = vj

n∑
i=1

λiyiσ
′
i,j , (9)

for all j ∈ [k].
Lemma A.1. Let ϕ be a 2-layer homogeneous network that satisfy the KKT conditions. Let xl <
xl+1 be 2 adjacent marginal training points. The number of breaking points in the interval [xl, xl+1]

is at most 2, i.e. |{− bj
wj

: xl ≤ − bj
wj
≤ xl+1}| ≤ 2. Moreover, if there are 2 breaking points, the

neurons forming the breaking points must have different signs.

Proof. Let cj1(x) = vj1 [wj1x+bj1 ]+ and cj2(x) = vj2 [wj2x+bj2 ]+ be 2 neurons with wj1 < 0 and
wj2 < 0 such that their breaking points are between xl and xl+1. Both cj1 and cj2 are determined by
all the training points that are smaller than xl+1. let us look at their breaking point − bl

wl
and − bl+1

wl+1
.

From Eq. (8) and Eq. (9) we get that

− bj1
wj1

= −
vj1
∑l
i=1 λiyi

vj1
∑l
i=1 λiyixi

= −
∑l
i=1 λiyi∑l
i=1 λiyixi

= −
vj2
∑l
i=1 λiyi

vj2
∑l
i=1 λiyixi

= − bj2
wj2

This means the neurons have the same breaking point and are active on the same region, which
means they are the same neuron.

The same argument can be made to show that if wl > 0 and wl+1 > 0 the neurons have the same
breaking point.
We conclude that in this interval we can have at most one neuron with w > 0 and at most one neuron
with w < 0 with breaking points in the interval [xl, xl+1].

Lemma A.2. Let x1 < x2 < · · · < xn be the training points on the margin and ϕ(x; θ) be a
2-layers NN. If The network ϕ(x; θ) satisfies the KKT conditions, and is not constant in any interval,
then the number of times it crosses the margin is at most 6n.

Proof. between each xl, xl+1 there are at most 2 breaking points, i.e the networks crosses the
margin at most 6 times in the interval [xl, xl+1] (3 times the the margin y = 1 and 3 times the
margin y = −1). Before the point x1 and after the point xn the network crosses the line at most 6
times in each interval. So if we sum up all the crosses we get that the network crosses the margin at
most 6 · (n− 2) + 12 = 6n

14
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Figure 2: The blue network is a network which the breaking point is not a training point. The dotted-
red network has smaller norm.

Proof Of Thm. 3.2. Assume towards contradiction that there are no training points in the interval
[− bi−1

wi−1
,− bi+1

wi+1
]. Since there are 3 breaking points, two of the neurons must have the same sign.

W.l.o.g sgn(wi−1) = sgn(wi) (all other cases are similar). Since there are no marginal training
data in [− bi−1

wi−1
,− bi+1

wi+1
], they are active on the same set of training points, which means by Eq. (8)

and Eq. (9) that − bi−1

wi−1
= − bi

wi
.

Each interval crosses the margin at most twice, so the number points lying on the margin is at most
4.

Proof Of Thm. 3.3. This proof follows the same logic as the proof of Lemma A.6 in Kornowski et al.
(2023).

Assume towards contradiction that neither − bi
wi

nor − bi+1

wi+1
are in the training set, if x ∈

[− bi
wi

,− bi+1

wi+1
] then x ∈ (− bi

wi
,− bi+1

wi+1
).

Note that sgn(wi−1) = −sgn(wi) because there is no training point in the interval (− bi
wi

,− bi+1

wi+1
)

so by A.1 they must have different signs.

Also note that there must be a training point either in [− bi−2

wi−2
,− bi−1

wi−1
] or in [− bi

wi
,− bi+1

wi+1
] (or in

both). If it is not the case there are at least 3 breaking points between to training data points,
contradiction to A.1.

CASE 1: v2i +
viwivi−1

wi−1
+ bi

1−δ (
wibi−1

wi−1
− bi)− w1viwi

v1
− b1bi−1viwi

v1wi−1
> 0

Define the following neural network:

ϕ(θδ, x) :=
∑

j∈[n]\{i−1,i,1}

vj [wj · x+ bj ]+ +

(
1− δ

viwi
vi−1wi−1

)
vi−1 [wi−1x+ bi−1]+ +

(1− δ)vi

[
wix+ bi −

δ

1− δ

(
wibi−1

wi−1
− bi

)]
+

+

v1

[(
w1 + δ

viwi
v1

)
x+

(
b1 + δ

viwibi−1

v1wi−1

)]
+

For small enough δ, the new breaking points do not cross any training point so for any training
point xj we have that ϕ(θ, xj) = ϕ(θδ, xj) and in particular ϕ(θδ, x) satisfies the margin condition

15
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for each training point xj . Also note that ∥ϕ(θ, x) − ϕ(θδ, x)∥2 → 0 as δ → 0. Let us compute
∥ϕ(θδ, x)∥2:

∥ϕ(θδ, x)∥2 =
∑

j∈[n]\{i−1,i,1}

(v2j + w2
j + b2j ) +

(
1− δ

viwi
vi−1wi−1

)2

v2i−1 + w2
i−1 + b2i−1+

(1− δ)2v2i + w2
i +

(
bi −

δ

1− δ
(
wibi−1

wi−1
− bi)

)2

+

v21 +

(
w1 + δ

viwi
v1

)2

+

(
b1 + δ

viwibi−1

v1wi−1

)2

=

∥ϕ(θ, x)∥2 − 2δ

(
v2i +

viwivi−1

wi−1
+

bi
1− δ

(
wibi−1

wi−1
− bi)−

w1viwi
v1

− b1bi−1viwi
v1wi−1

)
+O(δ2)

< ∥ϕ(θ, x)∥2

CASE 2: v2i +
viwivi−1

wi−1
+ bi

1−δ (
wibi−1

wi−1
− bi)− w1viwi

v1
− b1bi−1viwi

v1wi−1
< 0

Define the following neural network:

ϕ(θδ, x) :=
∑

j∈[n]\{i−1,i,1}

vj [wj · x+ bj ]+ +

(
1 + δ

viwi
vi−1wi−1

)
vi−1 [wi−1x+ bi−1]+ +

(1 + δ)vi

[
wix+ bi +

δ

1 + δ

(
wibi−1

wi−1
− bi

)]
+

+

v1

[(
w1 − δ

viwi
v1

)
x+

(
b1 − δ

viwibi−1

v1wi−1

)]
+

The norm ∥ϕ(θδ, x)∥2 is:

∥ϕ(θδ, x)∥2 =
∑

j∈[n]\{i−1,i,1}

(v2j + w2
j + b2j ) +

(
1 + δ

viwi
vi−1wi−1

)2

v2i−1 + w2
i−1 + b2i−1+

(1 + δ)2v2i + w2
i +

(
bi +

δ

1− δ
(
wibi−1

wi−1
− bi)

)2

+

v21 +

(
w1 − δ

viwi
v1

)2

+

(
b1 − δ

viwibi−1

v1wi−1

)2

=

∥ϕ(θ, x)∥2 − 2δ

(
−v2i −

viwivi−1

wi−1
− bi

1− δ
(
wibi−1

wi−1
− bi) +

w1viwi
v1

+
b1bi−1viwi
v1wi−1

)
+O(δ2)

< ∥ϕ(θ, x)∥2

CASE 3: v2i +
viwivi−1

wi−1
+ bi

1−δ (
wibi−1

wi−1
− bi)− w1viwi

v1
− b1bi−1viwi

v1wi−1
= 0

In this case, define the following neural network:

ϕ(θδ, x) :=
∑

j∈[n]\{i−1,i,1}

vj [wj · x+ bj ]+ +

(1− δ)vi−1

[
wi−1x+ bi−1 −

δ

1− δ

(
wi−1bi
wi

− bi−1

)]
+

+(
1− δ

vi−1wi−1

viwi

)
vi [wix+ bi]+ +

v1

[(
w1 + δ

vi−1wi−1

v1

)
x+ b1 + δ

vi−1wi−1bi
v1wi

]
+

Before computing the norm, let us note a two observations:

1. By assumption, viwi = −vi−1wi−1 and hence vi
wi−1

= −vi−1

wi
,
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2. By definition of case 3, v2i +
viwivi−1

wi−1
+ bi

1−δ

(
wibi−1

wi−1
− bi

)
− w1viwi

v1
− b1bi−1viwi

v1wi−1
= 0,

Now let us compute the norm:

∥ϕ(θδ, x)∥2 =
∑

j∈[n]\{i−1,i,1}

(v2j + w2
j + b2j ) + (1− δ)2v2i−1 + w2

i−1 +

(
bi−1 −

δ

1− δ
(
wi−1bi
wi

− bi−1)

)2

+

(
1− δ

vi−1wi−1

viwi

)2

v2i + w2
i + b2i+(

w1 + δ
vi−1wi−1

v1

)2

+

(
b1 + δ

vi−1wi−1bi
v1wi

)2

=

∥ϕ(θ, x)∥2 − 2δ

(
v2i−1 +

bi−1

1− δ
(
wi−1bi

wi
− bi−1) +

vi−1wi−1vi
wi

− w1vi−1wi−1

v1
− b1bivi−1wi−1

v1wi

)
+O(δ2)

We need to show that

v2i−1 +
bi−1

1− δ

(
wi−1bi

wi
− bi−1

)
+

vi−1wi−1vi
wi

− w1vi−1wi−1

v1
− b1bivi−1wi−1

v1wi
̸= 0

(if v2i−1+
bi−1

1−δ (
wi−1bi

wi
−bi−1)+

vi−1wi−1vi
wi

− w1vi−1wi−1

v1
− b1bivi−1wi−1

v1wi
< 0 then, as in the previous

cases, we change every δ to −δ and every −δ to δ).
By observation 1 we know that:

vi−1wi−1vi
wi

= −viwivi
wi

= −v2i (10)

viwivi−1

wi−1
= −vi−1wi−1vi

wi−1
= −v2i−1 (11)

Combine this with observation 2 we get:

v2i +
viwivi−1

wi−1
+

bi
1− δ

(
wibi−1

wi−1
− bi)−

w1viwi
v1

− b1bi−1viwi
v1wi−1

= 0

⇒ bi
1− δ

(
wibi−1

wi−1
− bi)−

b1bi−1viwi
v1wi−1

=
w1viwi

v1
− viwivi−1

wi−1
− v2i

⇒ bi
1− δ

(
wibi−1

wi−1
− bi)−

b1bi−1viwi
v1wi−1

= v2i−1 − v2i +
w1viwi

v1
, (12)

where Eq. (12) follows by substitution of Eq. (11). Rewriting the equation in case 3 using Eq. (10),
we need to show that

v2i−1 − v2i +
w1viwi

v1
+

bi−1

1− δ
(
wi−1bi
wi

− bi−1)−
b1bivi−1wi−1

v1wi
̸= 0

and using Eq. (12), we can further simplify it to

bi
1− δ

(
wibi−1

wi−1
− bi)−

b1bi−1viwi
v1wi−1

+
bi−1

1− δ
(
wi−1bi
wi

− bi−1) +
b1biviwi
v1wi

̸= 0

That expression can be rewritten as

b1vi(biwi−1 − bi−1wi)

v1wi−1
+

1

1− δ
(−b2i−1 +

bi−1biwi
wi−1

+
bi−1biwi−1

wi
− b2i )

The only way this expression is equal to 0 for every sufficiently small δ > 0 is when both summands
are 0. let us look at the second summand.

1

1− δ
(−b2i−1 +

bi−1biwi
wi−1

+
bi−1biwi−1

wi
− b2i ) =

1

1− δ
(−b2i−1 + bi−1bi(

wi
wi−1

+
wi−1

wi
)− b2i ) ≤

1

1− δ
(−b2i−1 − 2bi−1bi − b2i ) = −

1

1− δ
(bi−1 + bi)

2
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Where the inequality stems from the inequality x + 1
x ≤ −2 for every x < 0 (and equality holds

when x = −1) where in our case x = wi

wi−1
, and they have different signs so wi

wi−1
< 0. For the

summand to be 0 it must holds that wi = −wi−1 and bi = −bi−1, but that can not happen because
if that would have happened then − bi

wi
= − bi−1

wi−1
; i.e., the two neurons have the same breakpoint.

An example of a network with smaller norm can be found in Figure 2.

Proof Of Thm. 3.4. We prove that for each iteration, we add at least one training point to the set S.
As the number of iteration is finite, and in each iteration the number of points added to S are finite,
S is finite.

If the condition in line 6 in Algorithm 1 is met, by Thm. 3.2 one of the points added to S must be a
training point, and the number of such points is at most 4.

If both conditions at lines 9 and 11 are met, by Thm. 3.3 either y or z is a training point. So the ratio
of training points in S is at least 1

4

B PROOFS OF LEMMAS AND THEOREMS IN SECTION 4

We show an upper bound on the value |ϕ(θ,x)| whenever x is sampled according to D (that holds
with high probability w.r.t the initialization and x) and a lower bound whenever x is in the train-
ing set (that holds with high probability w.r.t the initialization). We prove that the lower bound is
greater than the upper bound, thus giving us a way to differentiate between training and non training
examples.

We use the same notations as the previous section.

NOTATIONS

• Let J+ = {j : vj > 0} and J− = {j : vj < 0}.

• Let m be the value of the network’s margin.

• Let δ = maxi ̸=j
{
|x⊤
i xj |

}
and ∆ = mini∈[n]

{
∥xi∥2

}
.

• For x ∼ D let δx = max{δ,maxi ∈ [n]{|x⊤
i x|}}.

The following 2 lemmas are taken from Frei et al. (2023b). In their paper, they proved a similar
variant of the lemmas, and for the completeness of our proof, we give the proof of our variant.

Lemma B.1. For all l ∈ [n] we have

max

∑
j∈J+

v2jλlσ
′
l,j ,

∑
j∈J−

v2jλlσ
′
l,j

 ≤ m

∆+ 1− 2δ(n− 1)

Proof. Denote α+ = maxi∈[n]

(∑
j∈J+ v2jλiσ

′
i,j

)
and α− = maxi∈[n]

(∑
j∈J− v2jλiσ

′
i,j

)
. w.l.o.g

α+ ≥ α− (other direction is similar). Denote α = α+ and k ∈ argmaxi∈[n]

(∑
j∈J+ v2jλiσ

′
i,j

)
.

If λk = 0 we are done. Otherwise, by KKT we know that ykϕ(θ, xk) = m.
By Eq. (8) and Eq. (9) we have for all j

w⊤
j xk + bj =

n∑
i=1

λiyiσ
′
i,jvj(x

⊤
i xk + 1) = λkykσ

′
k,jvj(∥xk∥2 + 1) +

∑
i ̸=k

λiyiσ
′
i,jvj(x

⊤
i xk + 1)

(13)
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Consider 2 cases:
CASE 1: assume yk = 1.

m = ykϕ(θ,xk) =

n∑
i=1

vi
[
w⊤
i xk + bi

]
+

≥
∑
j∈J+

vj(w
⊤
j xk + bj) +

∑
j∈J−

vj
[
w⊤
j xk + bj

]
+

(14)

Using the fact that yk = 1 and Eq. (13) we get

∑
j∈J+

vj(w
⊤
j xk + bj) =

∑
j∈J+

λkσ
′
k,jv

2
j (∥xk∥2 + 1) +

∑
i ̸=k

λiyiσ
′
i,jv

2
j (x

⊤
i xk + 1)


≥
∑
j∈J+

λkv
2
jσ

′
k,j(∆ + 1)− δ

∑
j∈J+

∑
i ̸=k

λiσ
′
i,jv

2
j

≥ (∆ + 1)α− δ(n− 1)α (15)

Using yk = 1 and Eq. (13) again we get

∑
j∈J−

vj
[
w⊤
j xk + bj

]
+
=
∑
j∈J−

vj

λkykσ′
k,jvj(∥xk∥2 + 1) +

∑
i ̸=k

λiyiσ
′
i,jvj(x

⊤
i xk + 1)


+

≥
∑
j∈J−

vj

∑
i ̸=k

λiyiσ
′
i,jvj(x

⊤
i xk + 1)


+

=
∑
j∈J−

vj

∑
i̸=k

λiσ
′
i,j |vj |(x⊤

i xk + 1)


+

≥
∑
j∈j−

vj

∑
i ̸=k

λiσ
′
i,j |vj |(δ + 1)


+

≥ −(δ + 1)
∑
j∈j−

∑
i̸=k

λiσ
′
i,jv

2
j ≥ −(δ + 1)(n− 1)α (16)

Combining Eq. (14), Eq. (15) and Eq. (16) we get

m ≥ (∆ + 1)α− δ(n− 1)α− δ(n− 1)α

= (∆+ 1)α− 2δ(n− 1)α = α(∆ + 1− 2δ(n− 1))

⇒ α ≤ m

∆+ 1− 2δ(n− 1)

CASE 2: Assume yk = −1.
Fix some j ∈ J+. If σ′

j,k = 0 then

λkσ
′
k,jvj = 0 ≤ δ + 1

∆+ 1

∑
i ̸=k

λiσ
′
i,jv

2
j

Otherwise, by the definition of σ′
k,j we have w⊤

j xk + bj ≥ 0.

0 ≤ w⊤
j xk + bj =

∑
i̸=k

λiyiσ
′
i,jvj(x

⊤
i xk + 1) + λkykσ

′
k,jvj(∥xk∥2 + 1)

≤
∑
i ̸=k

λiσ
′
i,jvj(δ + 1)− λkσ

′
k,jvj(∆ + 1)

⇒ λkσ
′
k,jvj ≤

δ + 1

∆+ 1

∑
i ̸=k

λiσ
′
i,jvj

⇒ λkσ
′
k,jv

2
j ≤

δ + 1

∆+ 1

∑
i ̸=k

λiσ
′
i,jv

2
j
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This is true for every j ∈ J+, so by summing over all j ∈ J+ we get∑
j∈J+

λkσ
′
k,jv

2
j ≤

δ + 1

∆+ 1

∑
j∈J+

∑
i̸=k

λiσ
′
i,jv

2
j

≤ δ + 1

∆+ 1
(n− 1) ·max

i∈[n]

∑
j∈J+

λiσ
′
i,jv

2
j


< max

i∈[n]

∑
j∈J+

λiσ
′
i,jv

2
j

 =
∑
j∈J+

λkσ
′
k,jv

2
j

Where the last equality is the definition of k. This case can not happen, so yk = 1 and we have
already proved that case.

Lemma B.2. For all l ∈ [n] such that yl = 1 we have∑
j∈J+

v2jλlσ
′
l,j ≥

(
m− (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

)
· 1

∆ + 1

and for all l ∈ [n] such that yl = −1 we have∑
j∈J−

v2jλlσ
′
l,j ≥

(
m− (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

)
· 1

∆ + 1

Proof. Let k ∈ [n] such that yk = 1. We have

m ≤ ϕ(θ, xk) =
∑
j∈J

vj
[
w⊤
j xk + bj

]
+
≤
∑
j∈J+

vj
[
w⊤
j xk + bj

]
+
≤
∑
j∈J+

vj |w⊤
j xk + bj |

Let us upper bound it

∑
j∈J+

vj

∣∣∣∣∣∣λkykσ′
k,jvj(∥xk∥2 + 1) +

∑
i ̸=k

λiyiσ
′
i,jvj(x

⊤
i xk + 1)

∣∣∣∣∣∣
≤
∑
j∈J+

vj

λkσ
′
k,jvj(∥xk∥2 + 1) +

∑
i̸=k

λiσ
′
i,jvj |x⊤

i xk + 1|


=
∑
j∈J+

λkσ
′
k,jv

2
j (∥xk∥2 + 1) +

∑
i ̸=k

λiσ
′
i,jv

2
j |x⊤

i xk + 1|


≤
∑
j∈J+

(∆ + 1)λkσ
′
k,jv

2
j + (δ + 1)

∑
i ̸=k

λiσ
′
i,jv

2
j


= (∆+ 1)

∑
j∈J+

λkσ
′
k,jv

2
j + (δ + 1)

∑
j∈J+

∑
i ̸=k

λiσ
′
i,jv

2
j

Using B.1 we get

m ≤ (∆ + 1)
∑
j∈J+

λkσ
′
k,jv

2
j + (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

⇒
∑
j∈J+

λkσ
′
k,jv

2
j ≥

(
m− (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

)
· 1

∆ + 1

Similar arguments yield the other inequality
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Lemma B.3. Under Assumption 4.1, with probability at least 1− 2τ

O(
n · δ
∆

) = od(1)

Proof. First, we prove using the union bound that Pr[n · δ ≥ Ω(d)] < τ .

Pr[n · δ ≥ Ω(d)] ≤
n∑

i,j=1
i ̸=j

Pr[n · |x⊤
i xj | ≥ Ω(d)] ≤

(
n

2

)
· τ
n2

< τ

Secondly, we prove using the union bound that Pr[∆ < o(d)] < τ

Pr[∆ < o(d)] ≤
n∑
i=1

Pr[∥xi∥2 < o(d)] ≤ n · τ
n
= τ

Now, using the union bound again, we get

Pr[
n · δ
∆

> Ωd(1)] ≤ Pr[∆ < o(d)] + Pr[n · δ ≥ Ω(d)] ≤ 2τ

And hence with probability at least 1− 2τ we have that

O(
n · δ
∆

) = od(1)

Lemma B.4. Let x ∼ D. Under Assumption 4.1, with probability at least 1− 2τ

O(
n · δx
∆

) = od(1)

Proof. First, we prove using the union bound that Pr[∆ < o(d)] < τ

Pr[∆ < o(d)] ≤
n∑
i=1

Pr[∥xi∥2 < o(d)] ≤ n · τ
n
= τ

Second, we prove using the union bound that Pr[n · δx ≥ Ω(d)] < τ .

Pr[n · δx ≥ Ω(d)] ≤
n∑

i,j=1
i ̸=j

Pr[n · |x⊤
i xj | ≥ Ω(d)] +

n∑
i=1

Pr[n|x⊤
i x| ≥ Ω(d)]

≤
(
n+ 1

2

)
· τ
n2

< τ

Where in last inequality we used the fact that n ≥ 3. Now, using the union bound again, we get

Pr[
n · δx
∆

> Ωd(1)] ≤ Pr[∆ < o(d)] + Pr[n · δx ≥ Ω(d)] ≤ 2τ

And hence with probability at least 1− 2τ we have that

O(
n · δx
∆

) = od(1)

Proof Of Thm. 4.2. Assume x is in the training data, i.e there is k ∈ [n] such that x = xk. Assume
w.l.o.g that ϕ(θ,xk) > 0, i.e yk = 1 (the case yk = −1 is similar).
We can decompose the network into 2 components, as follow:

ϕ(θ,xk) =

n∑
i=1

vi
[
w⊤
i xk + bi

]
+
=
∑
j∈J+

vj
[
w⊤
j xk + bj

]
+
+
∑
j∈J−

vj
[
w⊤
j xk + bj

]
+

(17)
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Let us bound every sum from below. Using Eq. (8), Eq. (9) and the fact that [x]+ ≥ x we get

∑
j∈J+

vj
[
w⊤
j xk + bj

]
+
≥
∑
j∈J+

vj(w
⊤
j xk + bj) =

∑
j∈J+

vj

[
n∑
i=1

λiyivjσ
′
i,j(x

⊤
i xk + 1)

]
=
∑
j∈J+

v2jλkykσ
′
k,j(∥xk∥2 + 1) +

∑
j∈J+

∑
i ̸=k

v2jλiyiσ
′
i,j(x

⊤
i xk + 1)

≥
∑
j∈J+

v2jλkσ
′
k,j(∥xk∥2 + 1)−

∑
j∈J+

∑
i ̸=k

v2jλiσ
′
i,j |x⊤

i xk + 1| (18)

And for the second sum∑
j∈J−

vj
[
w⊤
j xk + bj

]
+
=
∑
j∈J−

vj

[
n∑
i=1

λiyivjσ
′
i,j(x

⊤
i xk + 1)

]
+

=
∑
j∈J−

vj

λkykvjσ′
k,j(∥xk∥2 + 1) +

∑
i ̸=k

λiyivjσ
′
i,j(x

⊤
i xk + 1)


+

≥
∑
j∈J−

vj

∑
i ̸=k

λiyivjσ
′
i,j(x

⊤
i xk + 1)


+

(19)

We need to show that
∑
j∈J+ v2jλkσ

′
k,j ,

∑
j∈J+

∑
i̸=k v

2
jλiσ

′
i,j ,

∑
j∈J−

∑
i̸=k λiyiv

2
jσ

′
i,j and∑

j∈J− v2jλkσ
′
k,j are not too small and not too large.

From Lemma B.2 we have that∑
j∈J+

v2jλkσ
′
k,j ≥

(
m− (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

)
· 1

∆ + 1

By Lemma B.3 we have that with probability at least 1− 2τ

O(
n · δ
∆

) = O(
n · δ
∆

) = od(1)

which means that (
m− (δ + 1)(n− 1)

m

∆+ 1− 2δ(n− 1)

)
· 1

∆ + 1
> 0

which means that λk > 0, which means that xk is on the margin and hence ϕ(θ, xk) = m.
If x is not a training point, then

|ϕ(θ, x)| =

∣∣∣∣∣∣
∑
j∈J+

vj
∑
i∈[n]

λiyiσ
′
i,jvj(x

⊤
i x+ 1) +

∑
j∈J−

vj
∑
i∈[n]

λiyiσ
′
i,jvj(x

⊤
i x+ 1)

∣∣∣∣∣∣
≤
∑
j∈J+

∑
i∈[n]

λiσ
′
i,jv

2
j |x⊤

i x+ 1|+
∑
j∈J−

∑
i∈[n]

λiσ
′
i,jv

2
j |x⊤

i x+ 1|

≤ 2 · n · (δx + 1) · m

∆+ 1− 2δ · (n− 1)
≤ 2 · n · (δx + 1) · m

∆+ 1− 2δx · (n− 1)
= O(

n ·m · δx
∆

)

Where in the second inequality we used Lemma B.1. By Lemma B.4 we have that with probability
at least 1− 2τ

2 · n · (δx + 1) · m

∆+ 1− 2δx · (n− 1)
= O(

n ·m · δx
∆

) = m ·O(
n · δx
∆

) = od(m)
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Remark B.5 (On the lower bound of the margin). From Thm. 4.2 we know that w.h.p. at least n2
training points lie on the margin. Our loss function is

ℓ(Φ(θ;x) · y) = log(1 + e−y·Φ(θ;x))

so we have that
1

2e
> L(θ) =

1

n

n∑
i=1

ℓ(Φ(xi), yi) ≥
1

n
· n
2
· log(1 + e−m)

⇒ 1

e
> log(1 + e−m)

Now we can extract a lower bound on m:

log(1 + e−m) <
1

e
⇒ 1 + e−m < ee

−1

⇒ e−m < ee
−1

⇒ m >
1

e
.

Same argument shows a similar bound for the exponential loss ℓ(x) = e−x.
Remark B.6 (On the upper bound of the margin). When training a neural network using gradient-
based methods, the training process usually halts once the gradient is sufficiently small. When
considering the exponential or logistic losses as in our case, a large margin implies small loss
which in turn implies that the gradient is small. This suggests that making further progress when the
margin is large becomes very difficult, and the training process is expected to halt. More formally,
recall the logistic loss function (a similar argument implies the same result for the exponential loss):

ℓ(Φ(θ;x) · y) = log(1 + e−y·Φ(θ;x)).

This function is monotonically decreasing in the expression yΦ(θ;x), so the loss is maximized for
points that are on the margin, and we can upper bound∣∣∣∣∂ℓ(Φ(θ;x) · y)∂Φ(θ;x)

∣∣∣∣ = ∣∣∣∣−y · Φ(θ;x) · e−y·Φ(θ;x)

1 + e−y·Φ(θ;x)

∣∣∣∣ ≤ ∣∣∣∣ me−m

1 + e−m

∣∣∣∣ .
The above yields∣∣∣∣∂L(θ)∂θj

∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∂ℓ(Φ(θ;xi) · yi)∂Φ(θ;xi)

∣∣∣∣ · ∣∣∣∣∂Φ(θ;xi)∂θj

∣∣∣∣ ≤ poly(d) ·
∣∣∣∣ me−m

1 + e−m

∣∣∣∣ ,
which allows us to bound the norm of the gradient by:

∥∇θL(θ)∥ ≤ w · poly(d) ·
∣∣∣∣ me−m

1 + e−m

∣∣∣∣ = poly(d) ·
∣∣∣∣ me−m

1 + e−m

∣∣∣∣ ,
where w denotes the width of the network which we assume to be polynomial in d (since otherwise
even making a prediction is computationally inefficient).

If, for example, the margin is m = log2 d = o(
√
d), we get that

∥∇θL(θ)∥ ≤ poly(d)

∣∣∣∣∣ log2 de− log2 d

1 + e− log2 d

∣∣∣∣∣ ≤ poly(d) log2 d · e− log2 d = poly(d) log2 d · d− log d,

which is smaller than any inverse polynomial in d. Hence, if we train for at most polynomially many
iterations and label all the data points correctly (i.e. the margin is strictly positive), then training
effectively stops when the margin reaches O(log2 d) = o(

√
d), and all the data points on the margin

(which consist of at least one point) will have an output of magnitude O(polylog(d)).

C HIGH-DIMENSIONAL ATTACKS IN THE STATISTICALLY LEARNABLE CASE

In this appendix, we show that Item 3 exemplifies a setting where Assumption 4.1 is satisfied, yet
the distribution being considered is statistically learnable. This was shown in several recent works,
which considered the optimization of a shallow neural network, in a setting similar to ours.

Consider for example the setting studied in Xu et al. (2023). In that paper, the authors prove a gener-
alization result under the assumption of a certain target distribution of a mixture of four Gaussians.
Such a distribution is captured by Item 3 in our examples for distributions which satisfy Assump-
tion 4.1, which indicates that our proposed membership inference attack will work. Specifically, to
make sure that both Assumption 4.1 and the requirements made in Xu et al. (2023) are satisfied, it
must hold in addition that:
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• The norm of each mean satisfies ∥µ(i)∥2 ≥ Ω(n0.51
√
d).

• The dimension of the feature space satisfies d ≥ Ω(n2 max{∥µ(i)∥2}).
• The number of neurons satisfies k ≥ Ω(n0.02).

A bit more precisely, their theorem states the following:

Theorem C.1 (Xu et al. (2023), Theorem 3.1, informal). Suppose that the above assumptions are
satisfied, then with high probability over the training set and the initialization of the weights, we
have

Pr
(x,y)∼D

[y ̸= sign(ϕ(θ,x))] ≤ exp(−Ω(n2.01))

These assumptions essentially imply Assumption 4.1.

Similarly, Assumption 4.1, and specifically Item 3 in our examples, also holds in other settings
where generalization was proved in previous works:

• Xu and Gu (2023); Frei et al. (2022); Chatterji and Long (2021) proved generalization in
a setting where the data distribution consists of two opposite Gaussians (or more broadly
in an even more general setting) with covariance Id and means ±µ, where ∥µ∥ = dβ with
β ∈ (0.25, 0.5). Their sample size is n = Ω̃(1). This setting satisfies our condition from
Item 3. Specifically, the result of Xu and Gu (2023) holds for 2-layer ReLU networks.

• In Frei et al. (2023a) (see the discussion after Theorem 11 therein), the authors mention
two specific settings that satisfy their theorem requirements, and thus good generalization
performance can be achieved (and more specifically, in Corollaries 12 and 13, they further
show that in these settings good generalization is achieved by the max-margin linear pre-
dictor and by a trained 2-layer leaky-ReLU network). Note that these settings satisfy our
condition from Item 3.

D PROOFS OF DISTRIBUTIONS

In this section we prove the examples in section 4.

Uniform Distribution For the uniform distribution on
√
d · Sd−1,the next lemma shows why is

satisfies our assumptions.
The lemma is from Vardi et al. (2022a), and we give a paraphrased version of it for the sake of the
reader.

Lemma D.1. Let x,y ∼ U(
√
d · Sd−1). Then, with probability at least 1− d1−ln(d)/4 = 1− od(1)

we have |⟨x,y⟩| ≤
√
d · log d = o(d).

Remark D.2. For the uniform distribution, the training set size can be n = o
( √

d
log d

)
and

τ = n2 · d1−ln(d)/4 = od(1)

Normal Distribution As for the normal distribution, the following two lemmas prove its correct-
ness

Lemma D.3. Let N = N (µ, I) be a normal distribution on Rd. Let x, y ∼ N (µ, I). Assume that
∥µ∥2 = o(d). then with probability at least

1− 2 exp

(
− c1
16c22

· d2ϵ

∥µ∥2

)
−max

(
2 exp

(
− c1
2c22

dϵ
)
, 2 exp

(
− c1
4c42
· d2ϵ−1

))
−max

(
2 exp

(
−c1
c42

d2ϵ−1

)
, 2 exp

(
−c1
c22

dϵ
))

= 1− od(1)

we have |⟨x,y⟩| = o(d) and ∥x∥2 = O(d), where c1, c2 are constants independent of d, and
1
2 < ϵ < 1.
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Proof. Let x,y ∼ N (µ,Σ) independently.
W.l.o.g Σ is diagonal, otherwise there is a unitary matrix U such that Ux, Uy ∼ N (Uµ, UΣU⊤)
where UΣU⊤ is diagonal. Since U is unitary we have that

⟨Ux, Uy⟩ = ⟨x,y⟩
∥Ux∥ = ∥x∥

So we can assume that Σ is diagonal.
For comfort, we define some notations:

• The sub-Gaussian norm ∥ · ∥ψ2
for a sub-Gaussian random variable x is defined by

∥x∥ψ2
= inf

{
t > 0 : E

[
exp

(
x2

t

)]
≤ 2

}
• The sub-exponential norm ∥ · ∥ψ1 for a sub-exponential random variable x is defined by

∥x∥ψ1
= inf

{
t > 0 : E

[
exp

(
|x|
t

)]
≤ 2

}

First, let us compute E
[
∥x∥2

]
. Note that

∥x∥2 =

d∑
i=1

x2
i ,

then E[x2
i ] = E[xi]

2 + Var(xi) = µ2
i + 1

E
[
∥x∥2

]
= E

[
d∑
i=1

x2
i

]
=

d∑
i=1

E[x2
i ] =

d∑
i=1

Var(xi) + µ2
i = tr(I) + ∥µ∥2 = O(d)

Note that we can write x as x = µ + z where z ∼ N (0, I). We can write ∥x∥2 = ∥µ + z∥2 =
∥µ∥2 + 2|µ⊤z|+ ∥z∥2. So we need to upper bound

∥x∥2−E
[
∥x∥2

]
= ∥µ∥2+2µ⊤z+∥z∥2−∥µ∥2−2µ⊤E[z]−E

[
∥z∥2

]
= ∥z∥2−E

[
∥z∥2

]
+2µ⊤z

Where in the last equality we used the fact that E[z] = 0

From the union bound we get that for every t > 0

Pr
[∣∣x2 − E[∥x∥2]

∣∣ > t
]
= Pr

[∣∣∥z∥2 − E[∥z∥2] + 2µ⊤z
∣∣ > t

]
≤ Pr

[∣∣∥z∥2 − E[∥z∥2]
∣∣+ 2

∣∣µ⊤z
∣∣ > t

]
≤ Pr

[∣∣∥z∥2 − E[∥z∥2]
∣∣ > t

2

]
+ Pr

[
2
∣∣µ⊤z

∣∣ > t

2

]
Let us bound the first term. To do so, we use Hanson-Wright Inequality (Vershynin (2018) Theorem
6.2.1).

Pr

[∣∣∥z∥2 − E[∥z∥2]
∣∣ > t

2

]
≤ 2exp

[
−c1 min

(
t2

4 ·K4 · d
,

t

2 ·K2

)]
Where K = maxi ∥xi∥ψ2 = c2 and c1, c2 are constant independent of d. We set t = dϵ for
1
2 < ϵ < 1.

Case 1 - t2

4·K4·d is the minimum

Pr

[∣∣∥z∥2 − E[∥z∥2]
∣∣ > t

2

]
≤ 2 exp

(
−c1

d2ϵ

c42 · 4 · d

)
= 2 exp

(
− c1
4 · c42

· d2ϵ−1

)
= od(1)
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Case 2 - t
2·K2 is the minimum

Pr

[∣∣∥z∥2 − E[∥z∥2]
∣∣ > t

2

]
≤ 2 exp

(
−c1

dϵ

2 · c22

)
= od(1)

Now we upper bound the term Pr
[
2|µ⊤z| > t

2

]
= Pr

[
|µ⊤z| > t

4

]
.

From General Hoeffding’s inequality (Vershynin (2018) Theorem 2.6.3) we get that

Pr

[
|µ⊤z| > t

4

]
≤ 2 exp

(
− c1t

2

16 ·K2 · ∥µ∥2

)
Where K = maxi ∥xi∥ψ2

= c2 and c1, c2 are constant independent of d. Putting it all together we
get

Pr

[
|µ⊤z| > t

4

]
≤ 2 exp

(
− c1t

2

16 ·K2 · ∥µ∥2

)
= 2 exp

(
− c1
16c22

d2ϵ

∥µ∥2

)
= 2 exp

(
− c1
16c22

d2ϵ

∥µ∥2

)
= od(1)

Where in last inequality we used the fact that 2ϵ > 1.

All in all, we showed that E[∥x∥2] = O(d) and that with probability

1−max

(
2 exp

(
− c1
4c22
· d2ϵ−1

)
, 2 exp

(
− c1
2c22
· dϵ
))
− 2 exp

(
− c1
16c22

d2ϵ

∥µ∥2

)
= 1− od(1)

we have that ∣∣∥x∥2 − E[∥x∥2]
∣∣ < dϵ = o(d)

and specifically ∥x∥2 = O(d)

Since x is normal, each xi is sub-Gaussian (and the same for y).
Let us have a look at x⊤y: Since xi,yi are sub-Gaussians, xi · yi is sub-exponential (Vershynin
(2018), Lemma 2.7.7). It is also known that a sum of sub-exponential random variables is in itself
sub-exponential, so we get that

x⊤y =

d∑
i=1

xiyi

is sub-exponential. By the centering lemma (Vershynin (2018) Exercise 2.7.10), xiyi − E[xiyi] =
xiyi − µ2

i is also sub-exponential, with mean zero. We can use Bernstein’s inequality (Vershynin
(2018), Theorem 2.8.1) to get:

Pr
[∣∣x⊤y − ∥µ∥2

∣∣ > t
]
= Pr

[∣∣∣∣∣
d∑
i=1

xiyi − µ2
i

∣∣∣∣∣ > t

]

≤ 2exp

[
−c1 ·min

(
t

maxi ∥xiyi − µi∥ψ1

,
t2∑d

i=1 ∥xiyi − µi∥2ψ1

)]

≤ 2exp

[
−c1 ·min

(
t

maxi ∥xiyi∥ψ1

,
t2∑d

i=1 ∥xiyi∥2ψ1

)]

≤ 2exp

[
−c1 ·min

(
t

maxi ∥xi∥ψ2
∥yi∥ψ2

,
t2∑d

i=1 ∥xi∥2ψ2
∥yi∥2ψ2

)]

= 2exp

[
−c1 ·min

(
t

c22
,

t2∑d
i=1 c

4
2

)]
Where c1, c2 are constants that do not depend on the dimension d. In the second inequality we used
the fact that ∥x− E[x]∥ψ1

≤ ∥x∥ψ1
(Vershynin (2018) Exercise 2.7.10) and in the third inequality

we used the fact that ∥xiyi∥ψ1
≤ ∥xi∥ψ2

∥yi∥ψ2
(Vershynin (2018) Lemma 2.7.7). Setting t = dϵ

for some 1
2 < ϵ < 1 we get:
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Case 1 - t
c22

is the minimum

Pr[
∣∣x⊤y − ∥µ∥2

∣∣ > dϵ] ≤ 2exp
[
−c1 ·

dϵ

c22

]
= od(1)

And since both ∥µ∥2 = o(d) and dϵ = o(d) we get that w.h.p. x⊤y = o(d)

Case 2 - t2∑d
i=1 c

4
2

is the minimum

Pr[
∣∣x⊤y − ∥µ∥2

∣∣ > dϵ] ≤ 2exp
[
−c1 ·

d2ϵ

c42 · d

]
= 2exp

[
−c1
c42
· d2ϵ−1

]
= od(1)

Using the union bound, with probability at least

1− 2 exp

(
− c1
16c22

· d2ϵ

∥µ∥2

)
−max

(
2 exp

(
− c1
2c22

dϵ
)
, 2 exp

(
− c1
4c42
· d2ϵ−1

))
−max

(
2 exp

(
−c1
c42

d2ϵ−1

)
, 2 exp

(
−c1
c22

dϵ
))

= 1− od(1)

we have |⟨x,y⟩| = o(d) and ∥x∥2 = O(d).

Remark D.4. we want n · |x⊤y| = o(d) to hold, so

n · |x⊤y| ≤ n · (∥µ∥2 + dϵ) = o(d)⇒ n =
o(d)

∥µ∥2 + dϵ

Lemma D.5. LetN = N (µ, I) be a normal distribution on Rd. Let x, y ∼ N (µ, I). Assume that
∥µ∥2 = o(d), and n = o(d)

∥µ∥2+dϵ for 1
2 < ϵ < 1. Denote

k = 2 exp

(
− c1
16c22

· d2ϵ

∥µ∥2

)
+max

(
2 exp

(
− c1
2c22

dϵ
)
, 2 exp

(
− c1
4c42
· d2ϵ−1

))
+max

(
2 exp

(
−c1
c42

d2ϵ−1

)
, 2 exp

(
−c1
c22

dϵ
))

where c1, c2 are the constants from Lemma D.3. Let τ = k ·n. Then with probability at least 1− τ
n2

have |n · ⟨x,y⟩| = o(d) and ∥x∥2 = O(d). In particular, those n and τ satisfy Assumption 4.1.

Proof. From Lemma D.3 we know that with probability at least 1 − k we have that |⟨x,y⟩| ≤
∥µ∥2 + dϵ, so with probability at least 1− k we have that n · |⟨x,y⟩| = o(d)

∥µ∥2+dϵ · |⟨x,y⟩| ≤ o(d).
We also know from Lemma D.3 that with probability at least 1 − k we have that ∥x∥2 = Ω(d).
Setting τ = k · n2 = od(1) completes the proof.

Mixture of k Gaussians We prove the case where we have 2 Gaussians, but the proof is similar
for any number of Gaussians.

Lemma D.6. LetN = πN (µ(1), I) + (1− π)N (µ(2), I) where 0 ≤ π ≤ 1 be a mixture of normal
distributions on Rd. Assume the following:

• ∥µ(1)∥2 = o(d), ∥µ(2)∥2 = o(d)

• n = o(d)
max(∥µ(1)∥2,∥µ(2)∥2)+dϵ

for 1
2 < ϵ < 1.

• k defined as in Lemma D.5

• τ = k · n2
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then with probability at least 1− τ
n2 we have n · |⟨x,y⟩| = o(d) and ∥x∥2 = O(d)

Proof. Let x,y ∼ πN (µ(1), I) + (1− π)N (µ(2), I) where 0 ≤ π ≤ 1. Let us compute E
[
∥x∥2

]
.

We can think of x as

x =

{
x1, with probability π

x2, with probability 1− π

where x1 ∼ N (µ(1), I) and x2 ∼ N (µ(2), I). From the law of total expectation we get

E[∥x∥2] = πE[∥x1∥2] + (1− π)E[∥x2∥2]

and from D.5 we get

E[∥x∥2] = π ·
(
∥µ(1)∥2 + tr(I)

)
+ (1− π) ·

(
∥µ(2)∥2 + tr(I)

)
= O(d)

Denote A = {x :
∣∣∥x∥2 − E[∥x∥]2

∣∣ > dϵ} where 1
2 < ϵ < 1.

From the law of total probability we get:

p(A) = p(A|x = x1) · π + p(A|x = x2) · (1− π)

= 1−max

(
2 exp

(
− c1
4c22
· d2ϵ−1

)
, 2 exp

(
− c1
2c22
· dϵ
))
− 2 exp

(
− c1
16c22

d2ϵ

∥µ∥2

)
= 1− od(1)

and specifically, ∥x∥2 = O(d).

Now, let us show that E[x⊤y] = o(d):

E[x⊤y] = E[x⊤]E[y] =
(
πµ(1) + (1− π)µ(2)

)⊤ (
πµ(1) + (1− π)µ(2)

)
= π2∥µ(1)∥2 + 2π(1− π)µ(1)⊤µ(2) + (1− π)2∥µ(2)∥2

= π2o(d) + 2π(1− π)o(d) + (1− π)2o(d) = o(d)

We divide the proof into 4 cases.

Case 1: x, y ∼ N (µ(1), I)

In this case, both points came from the same normal distribution, which we have already proven.

Case 2: x ∼ N (µ(1), I) and y ∼ N (µ(2), I)

For every i we have that xi and yi are sub-Gaussians and ∥xi∥ψ2
≤ c, ∥yi∥ψ2

≤ c, so we can use
the same logic as in Lemma D.3 do prove that x⊤y = o(d) with the same probability.

Case 3: x ∼ N (µ(2), I) and y ∼ N (µ(1), I)

Same as case 2.

Case 4: x ∼ N (µ(2), I) and y ∼ N (µ(2), I)

Same as case 1

Similar to D.4, with probability at least 1− k we have that

n · ⟨x,y⟩ ≤ n ·max(∥µ(1)∥2, ∥µ(2)∥2) + dϵ = o(d)⇒ n =
o(d)

max
{
∥µ(1)∥2, ∥µ(2)∥2

}
+ dϵ

and also that ∥x∥2 = Ω(d). Setting τ = k · n2 = od(1) completes the proof.
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