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ABSTRACT

This paper introduces a novel approach for optimizing Generative Flow Networks
(GFlowNets) in stochastic environments by incorporating KL divergence objec-
tives with entropy-ratio estimation. We leverage the relationship between high and
low entropy states, as defined in entropy-regularized Markov Decision Processes
(MDPs), to dynamically adjust exploration and exploitation. Detailed proofs and
analysis demonstrate the efficacy of this methodology in enhancing mode discov-
ery, state coverage, and policy robustness in complex environments.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021a;b) have recently gained attention for
their application in a variety of tasks, such as molecule discovery (Bengio et al., 2021a; Jain et al.,
2022b), biological sequence design (Jain et al., 2022a), and robust scheduling (Zhang et al., 2023).
GFlowNets learn policies that generate objects x € X’ sequentially, where the generation process is
similar to Monte-Carlo Markov chain (MCMC) methods (Metropolis et al., 1953; Hastings, 1970;
Andrieu et al., 2003), generative models (Goodfellow et al., 2014; Ho et al., 2020), and amortized
variational inference (Kingma & Welling, 2013). This sequential process of generating objects
through a policy also closely resembles reinforcement learning (RL) (Sutton & Barto, 2018).

2 BACKGROUND

Generative Flow Networks (GFlowNets) are variational inference algorithms designed to treat sam-
pling from a target probability distribution as a sequential decision-making process (Bengio et al.
(2021a;b)). Below, we briefly summarize the formulation and primary training algorithms for
GFlowNets. Consider a fully observed, deterministic Markov Decision Process (MDP) with a state
space S and a set of actions A C S x §. The MDP has a designated inifial state sg, and cer-
tain states, called terminal states, are designated as having no outgoing actions. Let X" denote the
set of terminal states. We assume that all states in S are reachable from s( through a sequence
of actions, though not necessarily by a unique sequence. A complete trajectory is a sequence
of states 7 = (s9 — s; — -+ — s,), where s,, € X, and each pair of consecutive states
is connected by an action, i.e., Vi (s;,s;+1) € A. A policy in this MDP defines a distribution
Pr(s'|s) for each non-terminal state s € S \ X, specifying the probability of transitioning to the
next state s’ in a single action. The policy induces a distribution over complete trajectories as fol-
lows: Pp(sg =81 — -+ = 8,) = 1‘[;‘;01 Pr(sit1 | si). The marginal distribution over terminal
states, denoted P; , is the distribution on X" induced by the policy over all complete trajectories. It
may be computationally intractable to compute P directly, as Py (x) = >, Pp(7), where the
sum is taken over all complete trajectories that terminate at state x.

3 RELATED WORK

Unlike Reinforcement Learning (RL), where the goal is typically to maximize the expected reward
by learning a deterministic policy (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2017; Fu-
jimoto et al., 2018; Haarnoja et al., 2018), GFlowNets aim to learn a stochastic policy for generating
composite objects = with probability proportional to the reward function R(x). This is particularly
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useful in real-world tasks where diversity in solutions is crucial, such as recommender systems (Ku-
naver & Pozrl, 2017), drug discovery (Bengio et al., 2021a; Jain et al., 2022a), and sampling causal
models from a Bayesian posterior (Deleu et al., 2022). However, existing GFlowNet approaches
(Bengio et al., 2021a; Malkin et al., 2022; Madan et al., 2022) have primarily been developed for
deterministic environments, where state transitions are fixed. In real-world applications, stochastic-
ity in state transitions is common, presenting significant challenges for GFlowNets. Deterministic
GFlowNet methods can fail to model the correct state visitation distribution under stochastic transi-
tions. For instance, in the presence of stochastic dynamics, standard GFlowNets may learn incorrect
probabilities for visiting states, which do not align with the ideal distribution. This mismatch occurs
because existing methods do not properly account for randomness in state transitions. To address
these limitations, we propose a novel approach called KL Divergence Optimization with Entropy-
Ratio Estimation for Stochastic GFlowNets. Our method introduces a KL divergence objective
that optimizes the policy distribution while incorporating an entropy-ratio estimation mechanism
that dynamically balances exploration and exploitation. By adjusting the exploration-exploitation
trade-off through entropy-ratio estimation, our method enables GFlowNets to capture the correct
state visitation distribution, even in stochastic environments.

Our approach is general and can be applied to different GFlowNet learning objectives. It works
by minimizing the divergence between forward and backward policies, ensuring flow consistency
across stochastic transitions. The entropy-ratio estimation further enhances robustness by favoring
high-entropy states in situations where the environment exhibits higher stochasticity. This approach
allows for better mode discovery and improves state visitation coverage in stochastic tasks, such as
molecule discovery, biological sequence generation, and other structured object generation tasks.

Our contributions of this paper are as follows:

* We propose KL Divergence Optimization with Entropy-Ratio Estimation for Stochas-
tic GFlowNets, a novel approach that addresses the limitations of existing GFlowNet meth-
ods in stochastic environments.

* We provide a detailed analysis of how our method optimizes the flow consistency and
dynamically adjusts exploration in stochastic transitions, making it suitable for a wide range
of stochastic tasks.

* We conduct extensive experiments on benchmark tasks, demonstrating that our method sig-
nificantly outperforms existing baselines, including Stochastic GFlowNets (SGFN), PPO,
SAC and MCMC particularly in complex environments like biological sequence genera-
tion.

4 DETAILED BALANCE IN STOCHASTIC GFLOWNETS

Detailed balance (DB) is a fundamental principle in GFlowNets, ensuring the alignment between
forward and backward policies to maintain the desired state distribution. In stochastic GFlowNets,
DB must accommodate the randomness inherent in state transitions, which is crucial for accurately
representing the distribution over states under varying conditions.

4.1 STOCHASTIC ENVIRONMENTS

Stochastic GFlowNets (Pan et al. (2023)) extend the GFlowNet framework to environments where
state transitions are stochastic. These models introduce a decomposition of state transitions into
two steps: (1) a deterministic agent action and (2) a stochastic environment transition. This de-
composition helps in managing stochastic dynamics but increases the complexity of learning due
to the introduction of high variance in training, particularly when combined with trajectory balance
objectives. Flow consistency is defined in the forward policy:

F(som(als:) = Y Flser)mp((si,a0)lsein). (1)

St+1

This equation highlights the balance of flow at each state by equating the inflow (left-hand side)
and outflow (right-hand side). It ensures that the total probability mass flowing out of state s;
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via policy 7 matches the backward flow from subsequent states s, 1. The consistency is vital for
GFlowNets as it stabilizes policy training, ensuring each decision balances the resulting flows in a
manner proportional to the overall reward. The stochastic state transitions are then applied to the
Detailed-Balance(DB) condition as follow

F(si)m(ac]se) P(se1l(st, ar)) = F(ser1)mB (¢, ar)|se41)- 2)

This equation explicitly introduces the transition probability P(s¢+1]|(s¢, at)), capturing the stochas-
tic nature of moving from state-action pairs (s¢, a;) to the next state s;41. The need for this formu-
lation arises because stochastic transitions introduce variability that must be accounted for in both
forward and backward policies to ensure a robust and proportional sampling distribution. This rep-
resentation ensures that the detailed balance condition holds, preserving proportional flows between
forward and backward states, critical for maintaining the integrity of GFlowNets in stochastic envi-
ronments.

4.2 FROM DETAILED BALANCE TO KL DIVERGENCE WITH ENTROPY-RATIO ESTIMATION

To transform the detailed balance equation into a practical training objective, we express it as a KL
divergence minimization problem by incorporating entropy ratio density estimation:

Given:

Hpigh(St+1)
YHpign(st+1) + (1 =) Hiow(st41)

P(5t+1|(5t7 at)) = 3)

where Hpign(S¢+1) and Hjo,(S¢41) represent the densities related to high and low entropy states,
respectively and 0 < v < 1. We can rewrite the detailed balance in terms of this density ratio.
GFlowNet detailed balance is an off-policy algorithm that leverages training data from a variety of
distributions. Specifically, we can reframe the detailed balance objective from (Eq. 2) given the
environemnt dynamic (Eq. 3) into a KL divergence formulation

Hpign(st+1)
F((St7at))'YHhigh(5t+1)i(17;)Hlow(5t+l) (4)

F(st41)

m@in D | m8((st,a¢)|s¢41)

The KL divergence can also be expressed as a summation over state-action pairs for policy 7p:

Hhigh(sl)
YHhign(s") + (1 =) Hiouw(s')
(%)

Dgr =Y wp((s,a)ls) (1og7r3((s,a)|5’) —log F(s,a) — log

s,a,s’

+log F(s’)> .

This summation highlights the direct contribution of state-action pairs, incorporating entropy ratio
estimations in the policy optimization process.

5 DyYNAMICS LOSS USING CROSS ENTROPY WITH ENTROPY-RATIO
ESTIMATION

5.1 DyNaMiIcS Loss

The dynamics loss is a crucial component that aligns the model’s predictions with the empirical
state transitions observed in stochastic environments. By integrating entropy-ratio estimations, this
loss function effectively adjusts the weight given to transitions based on their uncertainty, captured
through entropy measures. High-entropy transitions correspond to exploratory actions that increase
state visitation diversity, while low-entropy transitions focus on consolidating high-reward paths,
aiding exploitation.
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Deriving the Dynamics Loss (Mohammadpour et al. (2024)) defines the flow entropy which is
strictly concave function as

H(r)=FE

> H<w<-|st>>] = 3" () H(n(:]5)) ©

t=0 ses

where H(7(:|s)) = — ZaeA(s) m(als) log 7(als) measures the randomness of actions at state s.
The term p.,.(s) represents the state visitation frequency under the policy 7, denoting how often the
state s is encountered when following 7. The flow entropy is calculated as a weighted sum of the
entropy of the policy at each state, where 1 (s) acts as the weighting factor. This approach ensures
that states visited more frequently have a greater influence on the overall entropy, which is essential
for analyzing the exploration behavior of the policy over time. We express the density ratio entropy
for a given 7 as:

- Hpign (s)
T"/ (8) - i ’
lthzgh(S) + (]- - ’Y)Hlow(s)
which adjusts the probability of each state-action pair based on the weighted contributions of high
and low entropy states. The dynamics loss, incorporating this entropy ratio, is derived as:

‘CDynamics = - Z Mﬂ(s)H(ﬂ-(b)) (IOg T’Y(S) + (1 - 7)(1 - H(ﬂ-(ls))) log(l - T’Y(S») .
s€S,acA(s)

)

()

This loss penalizes deviations from expected entropy-weighted transitions, pushing the policy to
optimize flows that balance exploration with exploitation.

~ in Exploration vs. Exploitation Trade-off: The parameter  plays a pivotal role in managing the

trade-off between exploration and exploitation by modulating the influence of high and low entropy
states in the transition dynamics. High values of v emphasize high-entropy transitions, favoring
exploration by allowing the policy to sample diverse actions and visit more states. This promotes the
discovery of new modes, avoiding local optima by spreading the probability mass across a wider set
of states. Conversely, lower values of y increase the influence of low-entropy transitions, focusing on
exploitation by reinforcing actions that lead to predictable and high-reward states. This controlled
trade-off ensures that the policy can balance between exploring new opportunities and exploiting
known profitable actions, directly impacting state visitation patterns and the robustness of the learned
policy. We provide the algorithm of our proposed method in algorithm 1.

Algorithm 1 KL Divergence Optimization with Entropy-Ratio Estimation for Stochastic GFlowNets

1: Initialize policy parameters 6, environment dynamics, and -y (exploration-exploitation trade-off).
2: for each episode do

3 Initialize state sg.

4:  while not in terminal state s do

5: Sample action a; ~ mg(als:).

6: Transition to next state s;11 ~ P(s¢11]|s¢, at).

7 Compute reward R(S¢41)-

8 Compute entropy ratio for state sy ;:

Hyign(5¢41)
YHuigh (5¢41) + (1 — ) Hiow (St+1)

7 (St41) =

9:  end while
10:  Minimize the KL divergence:

Dk = Z mo(s,als’) [logma(s,als’) —log F(s,a) — logr(s")]

11:  Update dynamics loss using entropy ratio estimation.
12:  Adjust v to balance exploration and exploitation.
13: end for
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Practical Approximation of Dynamics Loss To make this loss computationally tractable, we ap-
proximate it by discretizing the state-action pairs:

N
L(0) = _% Z (znH (mo(an|sn))logry(sn) + (1 — 2n) H(mg(an|sn)) log(1 = 4(sn))), (9)
n=1

where z,, denotes a binary classification that captures the occurrence of state-action pairs. This
practical form illustrates how high entropy (exploration) encourages broader state sampling, while
low entropy (exploitation) consolidates high-value trajectories, effectively guiding the policy.

Effect of Entropy on Loss Dynamics High entropy in state-action pairs incentivizes the policy
to discover new modes by exploring diverse states, preventing overfitting to high-reward areas and
maintaining broad state coverage. Low entropy, conversely, focuses on refining the policy toward
known high-reward paths, ensuring stability in high-reward regions. The balance between these
influences is controlled by +, enabling adaptive policy adjustments that enhance overall robustness.

6 OPTIMUM ANALYSIS WITH DENSITY-RATIO ENTROPY

Detailed Explanation of Optimal Dynamics Loss The optimal dynamics loss balances the entropy-
driven exploration and exploitation by incorporating density-ratio terms:

Li(m) == Y. pe(s)H(x(|s)) (ylogm(s,a) + (1 =) log(1 — (s, a))). (10)
s€S,acA(s)

The loss gradient is given by:

0L _ N~ (Hnign(s) (1= 7)Hiow(s)
omg Z( mo(s,a) 1 —7e(s,a) ‘ (1)
Solving this leads to:
(s, a) = Hrign(s) (12)

YHpign(s) + (1 — ) Hiow(s)

This result integrates entropy-driven state-action dynamics, demonstrating how policy tuning with
~ guides the exploration-exploitation trade-off, directly impacting the policy’s adaptive behavior.

7 IMPACT OF v AND a: MATHEMATICAL ANALYSIS WITH ENTROPY

7.1 SENSITIVITY OF 7y

The parameter y serves as a critical modulator in balancing exploration and exploitation. High values
of ~ amplify high-entropy states, promoting mode discovery by encouraging the policy to explore
less frequently visited areas. This expands the state visitation landscape, allowing the GFlowNet to
sample a broader set of states, which is crucial for uncovering new, potentially optimal paths.

In addition, the sensitivity of the loss to «y is given by:

OLkL

oy :*Sza:uw(S)H(ﬂ(aIS)) %bg(va:gh(ﬂ('IS)H(l*W)Hzow(ﬂCIS)))

This formulation explicitly connects « to the entropy-weighted adjustments, demonstrating how
increasing v enhances exploration, while lowering -y concentrates on exploitation.
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Influence of o on State-Action Transitions The parameter « controls the variability in state-action
transitions by modulating the transition probabilities through entropy adjustments:

OEL 57 (o) Hi(rlal)) | OBl 00)

This influence helps manage the exploration stability by adjusting how stochastic or deterministic
the transitions are, directly impacting the policy’s ability to explore while maintaining consistent
high-reward pathways.

7.2 OPTIMAL POLICY WITH ¥ AND «

Optimal policy performance emerges when ~ and « are tuned to balance the exploration-exploitation
trade-off effectively. High ~y fosters the discovery of novel modes by weighting high-entropy paths,
while a carefully adjusted « ensures transitions remain robust yet adaptive, leading to stable policy
convergence.

8 EXPERIMENTS

In this section, we conduct extensive experiments to investigate the following key questions: i) How
much can KL Divergence Optimization with Entropy-Ratio Estimation improve the performance of
Stochastic GFlowNets over standard GFlowNets in the presence of stochastic transition dynamics?
ii) Can our method scale to more complex and challenging tasks, such as generating biological
sequences and what is the effect of stochasticity level on its performance?

8.1 GRIDWORLD

8.1.1 EXPERIMENTAL SETUP -
We begin by conducting a series of experi- & ..
ments in the GridWorld task, originally in- . .
troduced in Bengio et al. (2021a), to eval-
uate the effectiveness of GFlowNets op-
timization scheme. An illustration of the
task, with a grid size of H x H, is shown
in Figure 1. At each time step, the agent
selects an action to navigate the grid. The
available actions include increasing a co-

ordinate, and a stop operation, which ter-

minates the episode and ensures the un- . .

derlying Markov decision process (MDP) .. ..

forms a directed acyclic graph (DAG). The

agent receives a reward R(z), as defined . .

in Bengio et al. (2021a), when a trajec- Figure 1: The GridWorld environment. The agent
tory reaches a terminal state . The reward ~Starts at the top-left corner and receives the highest re-
function R(z) has four distinct modes, lo- ward at the four dark blue positions near the corners
cated in the corners of the map (Figure 1). (with keys), lower rewards at the 2 x 2 squares near the

The agent’s objective is to model the tar- COIMErs, and even lower rewards at the lighter blue po-
get reward distribution and capture all re- sitions. Different grid sizes H and noise levels o can

ward modes. The shade of color reflects b€ explored.

the magnitude of the rewards, with darker colors indicating higher rewards. We introduce stochas-
ticity into the environment by adopting the transition dynamics from Machado et al. (2017) and Yang
et al. (2022). Specifically, with probability 1 — «, the environment follows the selected action, but
with probability «, a uniformly chosen random action is executed (leading to slips or missteps to
neighboring regions, as shown in Figure 1).

We compare the performance of KL Divergence Optimization with Entropy-Ratio Estimation
against vanilla GFlowNets, which are trained using trajectory balance (TB) Malkin et al. (2022),
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GFN — PPO — KLSGFN = MCMC — GFN — SGFN = PPO = MCMC FN == GFN

0.0004

0.0003

0.0002 0.0002

0.0001 0.0001 ~

(a) Medium. (b) Large.

Figure 2: Comparison results of L error in GridWorld for varying map sizes.

Modes Modes

SGFN — PPO — KLSGFN — MCMC — GFN — SGFN — PPO = MCMC FN == GFN

(a) Medium. (b) Large.

Figure 3: Comparison results of the number of modes captured during training in GridWorld with
varying map sizes.

Stochastic GFlowNets (SGFN) Pan et al. (2023), as well as other methods like Metropolis-Hastings
MCMC Xie et al. (2021) and PPO Schulman et al. (2017). The evaluation is based on the empirical
L error, which measures the difference between the true reward distribution p(z) = @ and the
estimated distribution 7(x), derived by repeated sampling and frequency counting of visits to all
possible states x. Additionally, we compare the methods by counting the number of modes captured
during training. Each algorithm is run with five different random seeds, and we report the mean of

performance. The implementation details for each baseline are based on open-source code’.

8.1.2 PERFORMANCE COMPARISON

We now evaluate the effectiveness of KL Divergence Optimization with Entropy-Ratio Estimation
across different map sizes and stochasticity levels in the GridWorld environment.

Varying map sizes. Figure 2 shows the empirical L, error for each method in GridWorld (with
stochasticity level o = 0.25) as the grid size increases. The results demonstrate that MCMC strug-
gles with larger grids, and GFN fails to converge. Additionally, the performance of TB degrades
significantly as the grid size grows, likely due to higher gradient variance, as suggested by Madan
et al. (2022). In contrast, our proposed method (KL Divergence Optimization with Entropy-Ratio
Estimation) consistently achieves the lowest L, error and converges faster than all baselines, includ-
ing stochastic GFlowNets with DB-objective and Vanilla GFlowNets with TB-objective.

8.2 BIOLOGICAL SEQUENCE GENERATION

In biological sequence generation, the objective is to discover sequences with optimal properties by
maximizing a reward function corresponding to specific biological traits. This task is particularly
challenging due to the inherent complexity and stochasticity present in biological environments. For

"https://github.com/GFNOrg/gflownet



Under review as a conference paper at ICLR 2025

example, in the task of generating DNA sequences, the objective might be to find sequences that
exhibit high binding affinity to a particular transcription factor.

To demonstrate the efficacy of our proposed method, we evaluate it on the TFBind8 task, where the
goal is to generate strings of nucleotides (e.g., DNA sequences of length 8). Conventionally, such
tasks are modeled using an autoregressive Markov Decision Process (MDP). However, we utilize a
prepend-append MDP (PA-MDP), where actions involve adding tokens (e.g., nucleotides) either to
the beginning or the end of a partial sequence. The reward function, in this case, measures the DNA
binding affinity to a human transcription factor, providing feedback on the sequence’s fitness.

The complexity of the biological sequence generation problem lies in handling the vast combi-
natorial search space and the stochastic nature of sequence interactions with biological targets. By
introducing stochasticity into the environment through transition dynamics, our method dynamically
balances exploration and exploitation using KL divergence optimization and entropy-ratio estima-
tion, which improves the robustness of the generated sequences and ensures better mode discovery.

TFBind8. Our goal is to generate a string of length 8 of nucleotides. Though an autoregressive MDP
is conventionally used for strings, we use a prepend-append MDP (PA-MDP) Shen et al. (2023), in
which the action involves either adding one token to the beginning or the end of a partial sequence.
The reward is a DNA binding affinity to a human transcription factor Trabucco et al. (2022).

top10% reward top10% reward
SGFN — MCMC FN = GFN SGFN — PPO — KLSGFN — MCMC — GFN

0 5k 10k 15k 20k 0 5k 10k 15k 20k

(a) o = 0.25. (b) o = 0.50.

top10% reward
— SGFN — MCM; KLSGFN = PPO == GFN

(c) a=0.75.

Figure 4: Comparison results of the quality of rewards captured during training for TFBIND exper-
iment for different levels of stochasticity.

Quality of Rewards. In Figure 4, highlights the quality of rewards achieved by the models during
training, for various levels of stochasticity level @ = (0.25,0.75). With increasing stochasticity,
both SGFN and GFN show a significant decline in reward quality, reflecting their inability to handle
uncertain transitions. In contrast, our method, equipped with entropy-ratio estimation, maintains
high reward quality across all stochasticity levels. This result implies that our method not only
captures more modes but also generates sequences with superior biological properties (e.g., higher
binding affinities), thus ensuring better performance in biological sequence generation tasks.

Effect of Gamma on Entropy Search, Number of Modes, and Dynamic Loss. Figure 5, illus-
trates the impact of varying ~y values on entropy search, mode discovery, and dynamic loss for a
stochasticity level o = (0.25,0.75). The parameter -y controls the exploration-exploitation trade-off
by adjusting the balance between high-entropy (exploratory) and low-entropy (exploitative) states.
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(a) Entropy Search. (b) Number of modes.

forward_dynamics_loss
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(c) Dynamic Loss.

Figure 5: Comparison results of the Entropy Search, number of modes, and dynamic loss captured
during training for TFBIND experiment for different levels of gamma with stochasticity level o =
0.25.

r_gamma r_gamma

0 — SGFN-KL_gamma0.25_stick0.25_seed0 — SGFN-KL_gamma0.5_stick0.75_seed0

SGFN-KL_gamma0.75 "
5_stick0.25_seed0 — SGFN-KL_gamma0.25_stick0.75_seed0

5_stick0.25.
— SGFN-KL.

7.2 76
7 - et e Wyl A s o ”
66 Step 6.8 Step
0 1k 2k 3k 4k 5k 0 1k 2k 3k 4k 5k
(a) Entropy Search with o = 0.25. (b) Entropy Search with v = 0.75.

Figure 6: Entropy Search on handling dynamic stochasticity, for TFBIND experiment for different
level of « with low stochasticity (left) and low stochasticity (right).

As 7 increases, the policy becomes more exploratory, leading to greater mode discovery (i.e., cap-
turing a larger variety of solutions). This high entropy search encourages the model to explore less-
visited regions of the sequence space, avoiding premature convergence to suboptimal sequences.
The dynamic loss also decreases as < increases, indicating more effective learning. This dynamic
adjustment is crucial in biological sequence generation, where exploration can uncover novel, high-
reward sequences.

Entropy Search on Dynamic Stochasticity In Figure 6, we explore the interaction between y and
the stochasticity level o during entropy search. A higher ~ value leads to a broader exploration of
the sequence space, especially under lower stochasticity ( &« = 0.25), where the environment is more
predictable. However, as « increases (making the environment more random), the search becomes
more erratic. Our method, by adjusting v dynamically, manages to stabilize the exploration process,
maintaining a balance between discovering new high-quality sequences and exploiting the already
learned ones. This adaptive behavior is key in environments with varying degrees of uncertainty,
ensuring that the model can handle dynamic stochasticity effectively.
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Impact on Performance and Search The introduction of v and ain the KL divergence optimiza-
tion framework plays a pivotal role in improving the search process for biological sequences. -,
by modulating the entropy ratio, allows the model to dynamically adjust its behavior based on the
task’s stochastic nature, promoting exploration when necessary and ensuring reliable exploitation
when high-quality sequences are found. «, on the other hand, controls the environment’s stochastic-
ity, influencing how the model handles uncertain transitions. Together, these parameters ensure that
the model strikes an optimal balance between exploring diverse sequences and refining high-reward
ones, leading to improved performance in biological sequence generation tasks.

9 CONCLUSION

In this paper, we introduced a novel methodology, KL Divergence Optimization with Entropy-Ratio
Estimation for Stochastic GFlowNets, which effectively extends GFlowNets to more complex and
realistic stochastic environments, where existing GFlowNet approaches tend to underperform. Our
method not only learns the GFlowNet policy but also incorporates entropy-ratio estimation to dy-
namically balance exploration and exploitation, making it more robust to stochastic transitions.

We conducted extensive experiments on standard GFlowNet benchmark tasks augmented with
stochastic transition dynamics, demonstrating that our method significantly outperforms previous
methods in terms of both mode discovery and state visitation coverage. The results show that by
leveraging KL divergence optimization and entropy-ratio estimation, our approach can better handle
the stochasticity in environments, leading to more efficient and accurate policy learning.

Future research could explore advanced model-based approaches for approximating transition dy-
namics in stochastic environments. Additionally, our method opens new possibilities for apply-
ing GFlowNets to other challenging real-world tasks, such as biological sequence generation and
molecule discovery, where stochasticity plays a key role.
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ARCHITECTURAL DETAILS FOR EXPERIMENTS

GRIDWORLD EXPERIMENTS
To reproduce the GridWorld experiments, we used the following network architecture:

* Policy Network:
— Input Layer: The state representation is a 2D grid encoded as a flattened vector of
size H x H, where H is the grid size.
— Hidden Layers:
+ Layer 1: Fully connected layer with 128 neurons, ReLU activation.
# Layer 2: Fully connected layer with 64 neurons, ReLU activation.
— Output Layer: Outputs the probabilities over all possible actions, implemented as a
softmax layer to ensure a valid probability distribution.

* Training Details:

Optimizer: Adam optimizer with a learning rate of 0.001.

Batch Size: 32.

Exploration Parameter (): Initially set to 0.5 and adjusted adaptively during train-
ing based on the observed variance in the state-action values.

Entropy Regularization: An additional entropy regularization term is added to the
loss function to encourage exploration, with a weight of 0.01.

BIOLOGICAL SEQUENCE GENERATION (TFBINDS)
For the TFBind8 biological sequence generation experiment, we used the following architecture:

* Policy Network:

— Input Layer: The input is a partial sequence of nucleotides represented as a one-hot
encoded vector. For sequences of length 8, the input size is 8 x4 (since each nucleotide
can be one of 4 bases).

— Embedding Layer: An embedding layer maps the one-hot encoded representation to
a continuous vector space of dimension 16.

— LSTM Layer: A single LSTM layer with 128 hidden units is used to capture depen-
dencies between different positions in the sequence.

— Fully Connected Layer: The LSTM output is passed through a fully connected layer
with 64 neurons and ReLU activation.

— Output Layer: Outputs the probability distribution over the four nucleotides for the
next position, implemented as a softmax layer.
* Training Details:
— Optimizer: Adam optimizer with a learning rate of 0.0005.
— Batch Size: 64.

— Sequence Augmentation: During training, random noise is added to the nucleotide
embeddings to simulate stochasticity in biological environments.

— Entropy Regularization: To ensure mode discovery, we add an entropy regulariza-
tion term with a weight of 0.05.
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