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ABSTRACT

Visual relationship, commonly defined as tuple consisting of subject, predicate
and object, plays an important role in visual scene understanding, Most existing
works are dedicated to generating discriminative predicate representation for the
detected objects, based on their appearances, relative positions and global context.
However, these global representations are inherently ambiguous and confounded,
often capturing irrelevant contextual information. To address this problem, we
propose to leverage object hierarchy to infer visual relationships. Our core in-
sight is that a seemingly holistic object-level interaction can be resolved into a set
of precise part-level interactions via an object hierarchy. Compared with object-
level interaction, part-level interaction not only has lower visual variability, but
also provides accurate guidance for model understanding predicates. To this end,
we introduce Hierarchical Inference Network (HINet). Specifically, we first con-
struct more robust and discriminative predicate representations by dynamically
fusing global object-level and local part-level representations. We then design a
structured constraint on predicate representations by explicitly constructing corre-
lations between object-level and part-level interactions, thereby guiding the model
to focus on the key information of the current interaction. Through the collabora-
tive processing of these strategies, our HINet transcends the superficial learning of
visual relations from objects and predicates, adopting a structured reasoning ap-
proach to explore their essence. Experiments have demonstrated the effectiveness
of our method. Furthermore, it exhibits strong versatility and can be efficiently
integrated with various existing models to enhance their performance.

1 INTRODUCTION

Visual relationship plays an important role in visual scene understanding, which is commonly de-
fined as a tuple consisting of subject, predicate and object (Lu et al., 2016). Such an interactive tuple
has potential applications in many vision tasks such as visual question answering (Qian et al., 2024;
Lin et al., 2024; Gao et al., 2024), visual relationship detection (Li et al., 2024c; Lu et al., 2016;
Liang et al., 2018) and scene graph generation (Li et al., 2024b; Zhao et al., 2024; Lin et al., 2024).
In recent years, object-centric techniques have matured significantly, thanks to learned visual repre-
sentations and advances in object detection. However, the modeling and understanding of predicates
remain a critical bottleneck, hindering progress in downstream tasks.

Most existing works follow a two-stage paradigm that detects objects first and then predicts their
predicates (Krishna et al., 2017; Tang et al., 2019). They are dedicated to generating discriminative
predicate representations for the detected objects, based on their appearances, relative positions, and
global context (Xu et al., 2017; Zellers et al., 2018; Li et al., 2021). However, these global represen-
tations are inherently ambiguous and confounded, often capturing irrelevant contextual information.
For example, the union region of “man” and “bat” may simultaneously include the information for
“man-hold-bat”, “man-wear-shirt” and “man-has-hand”, making it challenging to identify the key
interaction. Meanwhile, these global representations are often difficult to capture the subtle differ-
ences between some similar predicates. For example, “carrying” (a person having an object in their
hands) and “holding” (a person supporting an object in their hands) (Li et al., 2023). These problems
motivate the key question: how to extract key information from ambiguous and confounded global
representations to facilitate accurate predicate inference by the model?
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Figure 1: The overview of our idea. (a) We use external knowledge and object category to generate
part categories; (b) A visual relationship hierarchy caused by object hierarchy. (c) The structural
decoupling strategy of “man-hold-bat” caused by visual relationship hierarchy.

To address this problem, we propose to utilize object hierarchy (or the combination of object and
its parts) to accurately infer predicates (as shown in Fig.1.a). Our core insight is that a seemingly
holistic object-level interaction can be resolved into a set of precise part-level interactions via object
hierarchy. The effectiveness of our idea stems from the two key advantages. First, compared with
object-level interaction, part-level interaction can not only capture fine-grained information but also
exhibit less visual variability, thereby providing more robust and discriminative predicate representa-
tions. Second, object hierarchy can provide a structured decoupling of visual relationships, allowing
the model to focus on the key information of interaction. This idea stems from an interesting phe-
nomenon: although all visual relationships are composed of objects and predicates, some of them
can be effectively represented by the combination of others. For example in Fig.1.c, “man-hold-
bat” can be effectively represented by the combination of “man-has-hand”, “hand-hold-handle” and
“handle-of-bat”. From the hierarchical knowledge perspective, we summarize this phenomenon as
a visual relationship hierarchy caused by object hierarchy (as shown in Fig.1.b). In this structure,
any higher level entity can be represented by a combination of lower level entities.

Compared with the existing methods that simply represent visual relationships through objects and
predicates (Xu et al., 2017; Dai et al., 2017; Li et al., 2017), we reveal a reasoning association be-
tween different visual relationships via object hierarchy. Meanwhile, unlike any existing works on
hierarchy in SGG, our method neither performs explicit hierarchical modeling of predicates (Tang
et al., 2019; Zhou et al., 2020; Zhang et al., 2024) nor implicitly optimizes the context information
using object parts (Lu et al., 2018; Tian et al., 2020; Dong et al., 2021). It aims to guide the model
to perform a structured decoupling of relationships through the structural prior of object hierarchy,
thereby enabling the model to better understand visual relationships. For object-level interaction,
this strategy can effectively guide the model to focus on the key information; for part-level interac-
tion, this strategy provides a novel structured constraint for optimizing predicate representation.

To realize this idea, we introduce Hierarchical Inference Network (HINet), which utilizes object hi-
erarchy to guide the model to accurately infer predicates through two collaborative strategies. First,
to enhance the ability of predicate representation to perceive details, we propose Object-Part Hybrid
Perception strategy (OPHP). It dynamically integrates global object-level representations with lo-
cal part-level representations to construct more robust and discriminative predicate representations.
This hybrid representation alleviates the ambiguity of predicate representation by capturing global
context and local details. Second, to alleviate the problem of confounded information in global rep-
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resentations, we propose Hierarchical Consistency Reasoning strategy (HCR). It introduces a novel
structured constraint for predicate representation by explicitly constructing the correlations between
entities at different levels in our visual relationship hierarchy (as shown in Fig.1.b). By aligning
the representations of entities at different levels in the embedding space, this structured prior can
effectively guide the model to focus on the key information of the current interaction.

To verify the effectiveness of our method, we utilize Visual Genome (Krishna et al., 2017), Open
Images V6 (Kuznetsova et al., 2020), V-COCO (Gupta & Malik, 2015) and HICO-DET (Chao et al.,
2018). Extensive experimental results demonstrate the effectiveness of our ideas. Our main con-
tributions are summarized as follows: 1) We notice the ambiguity and information confounding of
the predicate representation used in the existing methods, and propose a novel structural decoupling
strategy to solve them by utilizing object hierarchy. 2) We introduce a novel Hierarchical Inference
Network (HINet). It dynamically fuses multi-level representations via OPHP strategy to enhance
predicate representation discriminability, and imposes a novel structured constraint on the model
through HCR strategy, guiding it to focus on key interaction information. 3) Our method achieves
competitive or state-of-the-art performance on various scene graph benchmarks. More importantly,
our idea is model-agnostic and can be applied to several existing SGG models.

2 OUR METHOD

Our proposed HINet is designed to address the challenges of ambiguity and information confounding
in predicate representation. An overview of our framework is illustrated in Fig.2. Following the
standard two-stage paradigm (Zellers et al., 2018; Li et al., 2021), we first generate a set of object
and relationship proposals. Then, we introduce a object hierarchy generation step to build a part-
level knowledge. This hierarchy then enables two core components of our model: OPHP strategy
for robust feature extraction, and HCR strategy for structured decoupling visual relationships.

2.1 PROPOSAL AND OBJECT HIERARCHY GENERATION

Proposal Generation. Follow the settings of existing works (Zellers et al., 2018; Li et al., 2021),
we first utilize an object detector network (e.g., Faster R-CNN (Ren et al., 2015)) to generate a
set of object and relationship proposals. The object proposals are taken directly from the detection
output with their categories and classification scores, while the relationship proposals are generated
by forming ordered pairs of all the object proposals.

Object Representation Calculation. For object representation, the calculating method is consistent
with BGNN (Li et al., 2021). Specifically, for the i-th object proposal, we denote its convolution
feature as vi, its bounding box as bi and its detected class as ci. Then, we can utilize bi to calculate
geometric feature gi, and utilize ci to calculate semantic feature wi. Finally, the object representation
oi is computed as

oi = fo(vi ⊕ gi ⊕ wi), (1)

where fo is a fully-connected network, and ⊕ is the concatenation operation.

Object Hierarchy Generation. Following the settings in Motif (Zellers et al., 2018), we classify
all detected object categories into two super-types: part-level object (such as: “foot”, “hand”, “leaf”,
“branch”) and non-part object (such as: “human”, “tree”). For all non-part objects, we utilize LLM
(such as: GPT-4) to collect their part categories. The relevant prompts can be found in Sec.B. For the
i-th object proposal, this process transforms a single class label ci into a set hi = {hk

i }
ki

k=0, where
h0
i = ci, hz

i represents the z-th part category of ci and ki represents category ci has ki parts. It is
worth noting that if ci belongs to part-level object, hi = {h0

i }. Meanwhile, to ensure fair comparison
and stability of the model, we additionally utilize WordNet to collect the part categories.

Through this strategy, we generate a set of object and relationship proposals for each image, calculate
the object representation for each object proposal, and generate object hierarchy for each object
category. Based on it, we propose OPHP strategy to calculate the predicate representation.
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Figure 2: Illustration of overall pipeline of our HINet model. It contains three modules: a) proposal
and object hierarchy generation; b) object-part hybrid perception; c) hierarchical consistency rea-
soning. RA denotes representation aggregation strategy; external knowledge represents the method
of generating object hierarchy; macij denotes the spatial activation map.

2.2 OBJECT-PART HYBRID PERCEPTION

To alleviate the ambiguity inherent in coarse global features, our OPHP strategy constructs a richer
predicate representation by dynamically fusing global context with fine-grained local details. This
process involves three steps: coarse-grained feature calculation (global representation), fine-grained
feature calculation (local representation) and representation aggregation (RA).

Coarse-grained feature calculation. In the process of human inferring visual relationships, we
first take a glance at the visual appearance and holistic position of objects. These coarse-grained
features usually determine the overall interpretation of visual relationships (Gao et al., 2021). In this
paper, our method for calculating coarse-grained feature is consistent with the previous works for
representing predicates (Li et al., 2021; 2022b; 2024a). Specifically, given the relationship proposal
from object i to j, its coarse-grained feature rcfij can be computed by

rcfij = fcv(vi ⊕ vj) + fcg(gi ⊕ gj), (2)
where fcv and fcg are two fully-connected networks that integrate the convolution features and
geometric features of objects i and j.

Fine-grained feature calculation. To make up for the lack of fine-grained information in global
representation, we utilize object hierarchy to capture more fine-grained features. A major reason
is that the fine-grained features that infer predicates rely on are generally strongly correlated with
parts. For example, “stand on” depends on the state of “leg”.

To calculate the fine-grained features, which are highly correlated with parts, we first map object
hierarchy from category label to text embedding. In this paper, we try two methods to calculate text
embedding, which are GloVe word embedding (Pennington et al., 2014) and CLIP text embedding
(Radford et al., 2021), respectively. The effectiveness of the former has been proved in a large
number of works (Zhang et al., 2021), while the latter is considered by some researchers to contain
better semantic knowledge (Yang et al., 2023). For the i-th object proposal, the text embedding of
its object hierarchy thiei = {tkhiei}

ki

k=0 is formulated as

tzhiei = ftext(h
z
i ), (3)

where ftext represents the method of mapping the z-th category label in object hierarchy to text
embedding.

Given the relationship proposal from object i to j, we then denote the convolution feature map
obtained by their union-box as uij ∈ Rd×h×w. And every text embedding of thiei and thiej will
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be used to perform a convolutional operation on the feature map and can obtain two sets of spatial
activation maps maci = {mk

aci}
ki

k=0 and macj = {mk
acj}

kj

k=0:

mz
aci = sigmoid(uij ,⊙tzhiei) (4)

where mz
aci ∈ Rh×w and ⊙ denotes the convolutional operation. Each value in the spatial activation

map represents how likely this local region contains the corresponding component. Since the last
operation is a sigmoid function, these values are bounded between [0, 1].

Finally, we utilize these spatial activation maps as region-based attention weights and process them
with the previously obtained convolution feature map to calculate fine-grained features. And for
the relationship proposal from object i to j, we can get two sets of fine-grained features rffi =

{rzffi}
z=ki
z=0 and rffj = {rzffj}

z=kj

z=0 :

rzffi = gap(uij ⊗mz
aci), (5)

where ⊗ denotes elements-wise product and gap is the global average pooling function.

Representation Aggregation (RA). Finally, we propose a representation aggregation (RA) strategy
to fuse the coarse-grained and fine-grained features to represent predicates. Recognizing that not
all parts are relevant to a given interaction, for the relationship proposal from object i to j, our RA
strategy first compute two sets of relevance score si→j = {ski→j}

ki

k=0 and sj→i = {skj→i}
kj

k=0 by

szi→j = cos sim(vj , r
z
ffi), (6)

where szi→j represents how important z-th part of object i is for interacting with object j. We then
treat them as weights to aggregate fine-grained features, and the predicate representation rij can be
calculated by the following formula:

rij = fr(rcfij ⊕
1

ki

ki∑
z=0

szi→j · rzffi ⊕
1

kj

kj∑
z=0

szj→i · rzffj ) (7)

where fr is a fully-connect network that integrates the coarse-grained and fine-grained features.

2.3 HIERARCHICAL CONSISTENCY REASONING

To address the information confounding problem, where predicate features are polluted by irrelevant
context, we introduce HCR strategy. Our idea stems from an interesting phenomenon: although
all visual relationships are composed of objects and predicates, some of them can be effectively
represented by the combination of others. We summarize this phenomenon as a visual relationship
hierarchy caused by object hierarchy (as shown in Fig.1.b). In this structure, higher level entities
can be represented by a combination of lower level entities. It is essentially a structured decoupling
strategy for visual relationships, which can effectively guide the model to focus on key information.
More detailed explanations can be found in our appendix. Based on it, we design HCR strategy to
provide a structured constraint for predicates, including the following two methods:

Bottom-to-others. At the center of this method lies the definition of visual relationship: visual
relationship is a pair of localized objects via a predicate (Lu et al., 2016). It means that the visual
appearance in union-box of the subject and the object is more like the visual relationship represen-
tation (or, the representation of triplet), rather than the predicate representation. In other words, the
connection of subject representation, predicate representation and object representation should be
similar to visual relationship representation. Formally, they follow the following formula:

rvre ≈ rsub + rpre + robj , (8)

where rvre, rsub, rpre, robj represent visual relationship representation, subject representation, pred-
icate representation and object representation, respectively.

We then construct it in embedding space. Concretely, for the relationship proposal from object i to
j, this method takes as input the object representations, predicate representation and coarse-grained
feature (treat it as visual relationship representation). And Eq.8 can be represented as

rcfij = oi + rij + oj . (9)
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It reflects the correlations between bottom-level and other levels in our hierarchy, thus it is applicable
to all relationship proposals. Based on it, we can provide a novel constraint Lbto for optimizing
predicate representation:

Lbto = max(cos sim(rij , rcfij − oi − oj)), (10)

where cos sim represents the cosine similarity between representations and Eq.10 represents maxi-
mize the cosine similarity at the representations of Eq.9.

Middle-to-top. This method stems from that some visual relations can be effectively represented
by the combination of others. The associations between objects and parts make us can always find
a set of object-predicate-part, part-predicate-part to represent object-predicate-object. For example,
“person-stand on-road” can be inferred by: “person-has-foot”, “foot-stand on-surface” and “surface-
of-road”. Here, we assume that there is a set of visual relationships satisfying the above description,
where S represents object-predicate-object, K represents part-predicate-part, and P1, P2 represent
object-predicate-part. And then they follow the following formula:

S ≈ P1 +K + P2. (11)

We then construct it in embedding space. Concretely, given the relationship proposal from object i
to j, if they are non-part objects, we will construct this correlation by the following steps.

Step 1: part selection. Among all predicates, some predicates are strongly related to parts. For
example, “stand on” is strongly correlated related to “foot” and “surface”. For these predicates,
we manually filter their parts to construct the correlation in Eq.11. And for other predicates, we
randomly select the parts of their subject and object. It is worth mentioning that, for each relationship
proposal, only one part is selected for each object.

Step 2: part proposal generation. We then generate the proposals of the selected parts. Due to the
lack of relevant annotations, we utilize the idea of RegionCLIP (Zhong et al., 2022) to complete this
task. For the relationship proposal from object i to j, we denote the proposals of their selected parts
be k, z, respectively. Based on it, we can get new three sets of relationship proposals: i to k, k to z
and z to j.

Step 3: hierarchical representation generation. Finally, we can calculate their representations
rcfik , rcfkz

, rcfzj by Eq.2. And Eq.11 can be represented as

rcfij = rcfik + rcfkz
+ rcfzj . (12)

It reflects the correlations between the middle-level and top-level in our hierarchy. It makes the
model’s understanding of the visual relationship no longer a simple combination of objects and
predicates, and provides a detailed reasoning way for the model to understand the visual relationship.
Based on it, we can provide a novel constraint Lmtt for optimizing the representations in Eq.12:

Lmtt = max(cos sim(rcfij , rcfik + rcfkz
+ rcfzj )). (13)

In general, this strategy designs a novel structured constraint for predicate representation by ex-
plicitly constructing the correlations between entities at the different levels in our visual relationship
hierarchy. Formally, our HCR strategy is similar to TransE (Bordes et al., 2013) in knowledge graph.
By aligning the representations of entities at different levels in the embedding space, this structured
prior can effectively guide the model to focus on the key information of the current interaction. More
details of this strategy can be found in Sec.C, including design idea (in Sec.C.1), overall structure
(in Sec.C.2) and visualized results (in Sec.C.2).

2.4 LEARNING STRATEGY

Prediction. To predict the object and predicate, we introduce two linear classifiers. For predicate,
our classifier integrates the predicate representation rij and a class frequency qij prior for classifi-
cation (Zellers et al., 2018). The distribution of predicate predrij is computed as

predrij = softmax(Wrelrij + qij), (14)

where Wrel is the parameter of predicate classifier. For object, our classifier takes as input the object
representation oi. The distribution of object predoi is computed as

predoi = softmax(Wobjoi), (15)
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where Wobj is the parameter of object classifier.

Training Loss. To train our HINet model, we design a multi-tasks loss Ltotal of three compo-
nents, including Lp for predicate classification, Lo for object classification, Lhcr for HCR strategy.
Formally,

Ltotal = Lp + λoLo + λhcrLhcr (16)

where λo, λhcr are weight parameters for calibrating the supervision from each sub-task. Here
Lp, Lo are the standard cross entropy loss for multi-class classification (foreground categories plus
background). The loss of HCR (Lhcr) is composed by two components: Lhcr = Lbto + Lmtt.

3 EXPERIMENTS

In general, to fully verify the effectiveness of our idea, we conduct experiments on four datasets.
Due to the page limitations, in this section, we only show the experimental results of Visual Genome,
and more detailed results can be found in our appendix (Open Images V6 in Sec.D, HICO-DET in
Sec.D.2 and V-COCO in Sec.D.2). The visualized results also can be found in Sec.D, and the related
works can be found in Sec.A. The LLMs usage description in our work can be found in Sec.E.

3.1 EXPERIMENTS CONFIGURATION OF VISUAL GENOME

Dataset Details. We utilize Visual Genome (VG) dataset to verify the effective of our idea. It
consists of 108,073 images, including tens of thousands of unique object and predicate categories.
In our experiments, we follow the most commonly used data splits proposed by (Xu et al., 2017;
Zellers et al., 2018). The 150 most frequent object categories and the 50 most frequent predicate
types are adopted for evaluation.

Evaluation Protocol. Following the most existing works, we evaluate our model on three sub-
tasks: 1) predicate classification (PredCls); 2) scene graph classification (SGCls); 3) scene graph
generation (SGGen). In each task, following existing works (Zellers et al., 2018; Li et al., 2021;
Hayder & He, 2024), we take recall (R@K), mean recall (mR@K) and overall mean (M@K) as
evaluation metrics.

Implementation Details. In general, we introduce our implementation details from the follow-
ing aspects: 1) object detector: in our experiment, following the previous works (Li et al., 2021;
2024a), we adopt the pre-trained Faster-RCNN with ResNeXt-101-RPN (Xie et al., 2017) as object
detector to obtain the object and relationships proposals; 2) parameter setting: our experiments
were performed on three 3090 GPUs. The batch size and initial learning rate are set to 9 and 0.024,
respectively. And λo, λhcr in Eq.16 set to 1,5, respectively. Our model is optimized by the Adam
algorithm with the momentum of 0.9 and 0.999. 3) use of large models: in our method, we uti-
lize the “gpt-4-0613” API to generate part categories, and the relevant prompt can be found in our
appendix. And CLIP (VIT-B/16) (Radford et al., 2021) is used to provide text embedding.

3.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

According to the research content of the two-stage scene graph generation methods in recent years,
the SOTA methods we compared are mainly divided into two aspects:

1) The effectiveness of our method. Some works try to improve the predicate representation by
utilizing the context information of the scene, which have the similar purpose to us. It is worth
mentioning that our HINet is based on BGNN (shadow background in Tab.1). We directly compare
our method with them, and Tab.1 shows the comparison results of these methods. From Tab.1,
we have the following observations: 1) our proposed method has achieved significant improvement
on mR@K. More specifically, our method outperforms the EdgeSGG by 4.1%, 3.6% and 3.6% at
mR@100 on PredCls, SGCls and SGGen, respectively. Because the VG dataset has an imbalanced
data distribution, mR@K, which prefers tail predicates, can be said to be more reliable than R@K
metrics that focus on common predictions with abundant samples (Li et al., 2021; Zhang et al.,
2020). 2) Although our R@K decreases slightly, M@K has superior performance. It indicates that
our method doesn’t increase mR@K at the expense of reducing R@K, which is different from some
methods (e.g., DRM). These results prove that our method is effective for most predicates.
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Models PredCls SGCls SGGen

mR@50/100 R@50/100 M@50/100 mR@50/100 R@50/100 M@50/100 mR@50/100 R@50/100 M@50/100

VCTree (Tang et al., 2019) 17.9/19.4 66.4/68.1 42.1/43.7 10.1/10.8 38.1/38.8 24.1/24.8 5.9/8.0 27.9/31.3 16.9/19.6
Unbiased (Tang et al., 2020) 25.4/28.7 47.2/51.6 36.3/40.1 12.2/14.0 25.4/27.9 18.7/20.9 9.3/11.1 19.4/23.2 14.3/17.1

MSDN (Li et al., 2017) 19.2/20.5 65.0/66.7 42.1/43.6 11.6/12.6 38.9/39.8 25.2/26.2 7.7/9.0 30.3/33.3 19.0/21.1
GPS-Net (Lin et al., 2020) 15.2/16.6 65.2/67.1 40.2/41.8 8.5/9.1 37.8/39.2 23.1/24.1 6.7/8.6 31.1/35.9 18.9/22.2
SMN (Zellers et al., 2018) 13.3/14.8 65.2/67.1 39.2/40.9 7.1/7.6 35.8/36.5 21.4/22.0 5.3/6.1 27.2/30.3 16.2/18.2

BGNN (Li et al., 2021) 30.4/32.9 59.2/61.3 44.8/47.1 14.3/16.5 37.4/38.5 25.8/27.5 10.7/12.6 31.0/35.8 20.8/24.2
PPDL (Li et al., 2022b) 32.2/33.3 47.2/47.6 39.7/40.4 17.5/18.2 28.4/29.3 22.9/23.7 11.4/13.5 21.2/23.9 16.3/18.7

Nice-Motif (Li et al., 2022a) 29.9/32.3 55.1/57.2 42.5/44.7 16.6/17.9 33.1/34.0 24.8/25.9 12.2/14.4 27.8/31.8 20.0/23.1
HetSGG (Yoon et al., 2023) 31.6/33.5 57.8/58.9 44.7/46.2 17.2/18.7 37.6/38.5 27.4/28.6 12.2/14.4 30.0/34.6 21.1/24.5
EdgeSGG (Kim et al., 2023) 34.7/36.9 60.1/61.8 47.4/49.3 17.8/18.8 39.1/40.1 28.4/29.4 13.6/15.8 29.7/34.0 21.6/24.9

HIERCOM (Jiang et al., 2023) 23.9/26.7 75.6/79.2 49.7/52.9 37.5/39.2 11.7/12.9 24.6/26.0 8.2/10.0 29.8/32.7 19.0/21.3
ST-SGG (Kim et al., 2024) 28.1/31.5 53.9/57.7 41.0/44.6 16.9/18.0 33.4/34.9 25.1/26.4 11.6/14.2 26.7/30.7 19.1/22.4

HINet 38.9/41.0 57.6/60.2 48.2/50.6 21.6/22.4 40.8/41.6 31.2/32.0 17.8/19.4 25.6/30.1 21.7/24.7

Table 1: The performance of state-of-the-art SGG models on three SGG tasks with graph con-
straints setting on mR@50/100, R@50/100 and M@50/100 on the VG dataset. The best methods
are marked according to formats.

Models PredCls SGCls SGGen

mR@50/100 R@50/100 M@50/100 mR@50/100 R@50/100 M@50/100 mR@50/100 R@50/100 M@50/100

BGNN (Li et al., 2021) 30.4/32.9 59.2/61.3 44.8/47.1 14.3/16.5 37.4/38.5 25.8/27.5 10.7/12.6 31.0/35.8 20.8/24.2
HINet 38.9/41.0 (+8.1) 57.6/60.2 (-1.1) 48.2/50.6 (+3.5) 21.6/22.4 (+5.9) 40.8/41.6 (+3.1) 31.2/32.0 (+4.5) 17.8/19.4 (+6.8) 25.6/30.1 (-5.7) 21.7/24.7 (+0.5)

PENET (Zheng et al., 2023) 31.5/33.8 68.2/70.1 49.8/51.9 17.8/18.9 39.4/40.7 28.6/29.8 12.4/14.5 30.7/35.2 21.5/24.8
HINet + PENET 39.2/41.1 (+7.4) 65.9/68.4 (-1.7) 52.3/54.8 (+2.9) 23.6/24.2 (+5.3) 41.2/42.6 (+1.9) 32.4/33.4 (+3.6) 18.2/19.9 (+5.4) 26.2/31.1 (-4.1) 22.2/25.5 (+0.7)

DRM (Li et al., 2024a) 47.1/49.6 43.9/45.8 45.5/47.7 27.8/29.2 27.5/28.4 27.6/28.8 20.4/24.1 19.0/22.9 19.7/23.5
HINet + DRM 49.2/51.9 (+2.3) 44.1/46.4 (+0.6) 46.1/49.2 (+1.5) 29.1/30.5 (+1.3) 30.2/31.4 (+3.0) 29.7/30.9 (+2.1) 22.1/25.9 (+1.8) 21.9/24.1 (+1.2) 22.0/25.0 (+1.5)

RepSGG (Liu & Bhanu, 2024) 39.7/43.7 27.8/28.8 33.7/36.2 22.3/27.7 17.9/20.3 20.1/24.0 15.3/18.9 12.1/14.6 13.7/16.7
HINet + RepSGG 42.1/47.4 (+3.7) 29.9/31.2 (+2.4) 36.0/39.3 (+3.1) 26.4/31.3 (+3.6) 20.1/22.6 (+2.3) 23.3/27.0 (+3.0) 18.4/21.7 (+2.8) 15.3/16.9 (+2.3) 16.9/19.3 (+2.6)

RA-SGG (Yoon et al., 2024) 36.2/39.1 62.2/64.1 49.2/51.6 20.9/22.5 38.2/39.1 29.5/30.8 14.1/17.1 26.0/30.3 20.2/23.7
HINet + RA-SGG 42.4/45.3 (+6.2) 61.7/63.9 (-0.2) 52.1/54.6 (+3.0) 23.1/24.3 (+1.8) 38.5/39.4 (+0.3) 30.1/31.9 (+1.1) 18.9/21.3 (+4.2) 25.8/28.2 (-2.1) 22.4/24.8 (+1.1)

Table 2: The performance of our method is combined with other advanced methods on three SGG
tasks with graph constraints setting on the VG dataset. The increased and decreased values are
marked according to formats.

2) Generalization of our method. Other works design some optimization strategies to help the
model learn predicate. These methods also apply to our method. Specifically, we replace the pred-
icate representation in their method with our predicate representation calculated by Eq.7, and add
Lhcr in Eq.16 to their loss function. Tab.2 shows the comparison results of these methods. From
these results, we have the following observations: 1) Our method is based on BGNN (Li et al.,
2021), so we first compare our method with it. It can be seen that our method significantly improves
mR@K and achieves competitive performance on R@K. More specifically, our method outperforms
the BGNN by 8.1%, 5.9% and 6.8% at mR@100 on PredCls, SGCls and SGGen, respectively. These
results prove that our method can effectively reduce the ambiguity of predicate representation. 2)
For other methods, our method shows excellent adaptability. It can not only significantly improve
the performance of mR@K, but also improve the performance of R@K.

Model overhead problem. Although we utilize GPT-4 to generate object hierarchy, it is the text
information generated for each category. Taking VG dataset as an example, it contains 150 object
categories. The processing time for these categories is less than 5 min. Meanwhile, the text encoder
of CLIP is also offline processing to extract embedding, which does not increase additional overhead.

Do not use large models for experiments. Taking into account the additional benefits of using
large models, we also conduct experiments using WordNet and Glove. These two stable external
information sources can provide stable experimental results. As shown in Tab.3, our methods still
have the superior performance under this setting.

The explanations of R@K performance. It can be seen from Tab.1 that R@K of our method
decreases slightly. It is worth mentioning that our method is based on BGNN (Li et al., 2021).
Compared with this method, for PredCls task, our mR@100 increased by 8.1%, while R@100
decreased by only 1.1%. Thus, it does not affect the effectiveness of our method. Meanwhile, to
further explore this phenomenon, we conducted a series of ablation experiments. We find that it is
HCR strategy that causes the R@K decrease. Thus, for some tasks that pursue R@K, you can use
only the OPHP strategy and still have SOTA performance.
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Method Settings Module PredCls SGCls SGGen

Kgpt Kwordnet Wclip Wglove OPHP HCR mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100

- - - - - - 30.4/32.9 59.2/61.3 14.3/16.5 37.4/38.5 10.7/12.6 31.0/35.8

HINet

✓ × ✓ × ✓ ✓ 38.9/41.0 57.6/60.2 21.6/22.4 40.8/41.6 17.8/19.4 25.6/30.1
✓ × × ✓ ✓ ✓ 38.4/40.5 57.4/59.7 21.2/21.9 40.1/41.2 17.6/19.2 25.4/29.7
× ✓ ✓ × ✓ ✓ 37.6/39.9 57.4/60.1 20.9/21.4 40.3/41.5 17.2/19.0 25.6/29.9
× ✓ × ✓ ✓ ✓ 37.2/39.4 57.1/59.5 20.8/21.2 40.1/41.1 17.2/18.8 25.2/29.6

OPHPonly ✓ × ✓ × ✓ × 35.9/37.1 62.0/63.1 19.2/19.9 41.2/41.9 15.4/16.2 29.2/32.1
+ PENET ✓ × ✓ × ✓ × 37.4/38.5 68.7/70.3 20.4/22.1 41.7/43.3 16.8/17.4 31.1/35.6
+ DRM ✓ × ✓ × ✓ × 48.1/50.8 44.3/46.7 28.2/28.6 30.9/32.1 20.9/22.8 22.9/25.4

+ RA-SGG ✓ × ✓ × ✓ × 39.2/42.9 62.8/65.1 21.8/23.2 38.9/40.1 16.7/19.1 26.5/31.2

HCRonly ✓ × ✓ × × ✓ 37.4/39.5 56.1/58.7 20.4/21.1 38.4/39.2 16.9/18.5 24.7/29.2
+ PENET ✓ × ✓ × × ✓ 38.4/40.6 64.4/67.2 22.6/23.1 37.9/39.3 17.2/19.1 25.9/30.0
+ DRM ✓ × ✓ × × ✓ 48.9/51.2 43.6/45.5 28.1/29.5 27.6/29.1 21.4/23.4 19.2/22.7

+ RA-SGG ✓ × ✓ × × ✓ 41.7/43.9 60.2/61.1 22.0/23.3 37.5/38.2 17.7/20.1 24.4/27.4

Table 3: The performance of our ablation study on different settings and modules on three SGG
tasks. Kgpt and Kwordnet denote the parts obtained from GPT and WordNet, respectively. Wclip

and Wglove denote the text embedding obtained from CLIP and Glove, respectively. The best and
worst values are marked according to formats.

3.3 ABLATION STUDY

To verify the contributions of the settings and modules, we conduct the following ablation studies.

Settings. In general, there are two settings that need to be discussed in this paper. The first is that
Eq.3 utilizes CLIP text encoder to calculate the text embedding of parts. In few shot learning, some
researchers have shown that text embedding obtained by CLIP contains better semantic knowledge
than Glove (Pennington et al., 2014) (Wclip). To ensure a fair comparison with existing methods, we
give the experimental results obtained by utilizing CLIP/Glove to calculate text embedding (Wglove).
The second is that we utilize GPT to generate object hierarchy. Considering the instability of the
LLMs, we additionally use WordNet, a stable external knowledge, obtain parts (in Tab.3).

OPHP. We then prove the effectiveness of our OPHP strategy. This strategy aims to alleviate the
ambiguity caused by utilizing a single-scale global representation to represent predicate in the pre-
vious works. We only retained this strategy for experiments. The experimental results are shown in
Tab.3 (OPHPonly). Meanwhile, we also combine our OPHP strategy with other methods to verify
the adaptability. We replace the method of calculating predicate representation in these papers with
Eq.7 (as shown in Tab.3). These results prove that part-level features can effectively make up for the
shortcomings of object-level features.

HCR. Finally, we prove the effectiveness of our HCR strategy. Through this strategy, we design a
novel constraint for optimizing predicate representation. We only retained this strategy for exper-
iments. The experimental results are shown in Tab.3 (HCRonly). It can be seen that this strategy
can significantly improve mR@K, but also reduce R@K. The reason for this phenomenon is that
our HCR strategy pays more attentions to details than the previous works. Meanwhile, we also com-
bine our HCR strategy with other methods to verify the generalization. We add our Lhcr (in Eq.16)
to their loss function (as shown in Tab.3). These results prove that detailed decoupling of visual
relationships can effectively help the model understand predicates.

4 CONCLUSION

In this paper, we creatively propose a method to structurally decouple the visual relationship through
object hierarchy. It can effectively alleviate the ambiguity and information confounding of predicate
representation in existing methods. Technically, we first construct more robust and discriminative
predicate representations by dynamically fusing global object-level and local part-level representa-
tions. We then design a novel structured constraint on predicate representations by explicitly con-
structing correlations between object-level interactions and part-level interactions, thereby guiding
the model to focus on the key information of the current interaction. Through the collaborative pro-
cessing of these strategies, our HINet transcends the superficial learning of visual relations from ob-
jects and predicates, adopting a structured reasoning approach to explore their essence. Experiments
have demonstrated the effectiveness of our method. Our work opens new avenues for understanding
complex visual relationships and encourages future exploration.
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A PROBLEM SETTING AND RELATED WORKS

A.1 PROBLEM SETTING AND METHOD OVERVIEW

Problem Setting. Given an image I, scene graph generation (SGG) aims to parse the input I into a
scene graph G = {E,R}, where E denotes the set of nodes representing objects, and R represents
the set of edges that encode the predicates between ordered pairs of entities. Typically, each node
ei ∈ E is assigned a category label from a pre-defined set of object class Ce and is associated with
a corresponding image location indicated by a bounding box. Additionally, each edge rij ∈ R,
which connects a pair of nodes ei and ej , is linked to a predicate label derived from a specified set
of predicate classes Cp relevant to this task.

Method Overview. Visual relationship, commonly defined as tuple consisting of subject, predicate
and object, plays an important role in visual scene understanding, Most existing works are dedi-
cated to generating discriminative predicate representation for the detected objects, based on their
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appearances, relative positions and global context. However, these global representations are inher-
ently ambiguous and confounded, often capturing irrelevant contextual information. To address this
problem, our core insight is that a seemingly holistic object-level interaction can be resolved into a
set of precise part-level interactions via an object hierarchy. Compared with object-level interaction,
part-level interaction not only has lower visual variability, but also provides accurate guidance for
model understanding predicates. To this end, we introduce Hierarchical Inference Network (HINet).
Specifically, we first construct more robust and discriminative predicate representations by dynam-
ically fusing global object-level and local part-level representations. We then design a structured
constraint on predicate representations by explicitly constructing correlations between object-level
and part-level interactions, thereby guiding the model to focus on the key information of the cur-
rent interaction. Through the collaborative processing of these strategies, our HINet transcends the
superficial learning of visual relations from objects and predicates, adopting a structured reasoning
approach to explore their essence.

A.2 STUDIES OF VISUAL RELATIONSHIPS

A central pursuit in computer vision is to understand the content of visual scenes. As an important
part of a visual scene, the visual relationship, which describes the interaction between a subject and
an object, also receives extensive attention in areas such as visual question answering (Qian et al.,
2024; Lin et al., 2024; Gao et al., 2024), visual relationship detection (Li et al., 2024c; Lu et al.,
2016; Liang et al., 2018), and scene graph generation (Li et al., 2024b; Zhao et al., 2024; Lin et al.,
2024). One approach to visual relationship detection is to classify the entire ”subject-predicate-
object” triplet as a single, holistic category (Divvala et al., 2014; Ramanathan et al., 2015).

Visual Genome

Objects

Category Examples Classes

Artifact arm, tail, wheel 32
Person boy, kid, woman 13
Clothes cap, jean, sneaker 16
Vehicle airplane, bike, truck 12
Flora flower, plant, tree 3

Location beach, room, sidewalk 11
Furniture bed, desk, table 9
Building building, house 2
Structure fence, post, sign 3

Food banana, orange, pizza 6
Part arm, tail, wheel 32

Predicates

Geometric above, behind, under 12
Possessive has, part of, wearing 8
Semantic carrying, eating, using 24

Misc for, from, made of 3

Table 4: Objects and predicates in the VG.

The primary challenge with this method is the com-
binatorial explosion of possible triplets as the num-
ber of object and predicate classes increases. This
leads to a severe long-tail data distribution prob-
lem, where the model struggles to learn effective
visual features for the majority of relationship cate-
gories due to a lack of sufficient training examples,
while a few high-frequency relationships dominate
the training process. To address this challenge, re-
search shifts towards strategies that decouple the
learning of the triplet’s three components: subject,
object, and predicate (Krishna et al., 2017; Tang
et al., 2019; Chen et al., 2019; Zhang et al., 2019).
A key work in this area by Lu (Lu et al., 2016)
proposes a model that leverages language priors
to aid visual relationship detection. This model
first uses a pre-trained object detector to extract vi-
sual features from object pairs and then integrates
a language model to predict the predicate. The
language model provides statistical likelihoods of
relationships (e.g., ”person-riding-horse” is more
common than ”person-eating-horse”), effectively
mitigating the data sparsity issue that arises when
relying solely on visual information. This method
helps establish the dominant two-stage research paradigm: a model first detects objects and then
infers pairwise predicates.

However, researchers realize that this localized perspective neglects crucial global context. For in-
stance, a ”person” and a ”cake” are more likely to have an ”eating” relationship in a kitchen scene but
a ”buying” relationship in a store. Following this insight, Scene Graph Generation (SGG) emerges
as a mainstream research direction to make better use of scene context. Unlike merely detecting
isolated relationship triplets, SGG aims to construct a structured graph that integrates all objects and
their pairwise relationships within an image. The release of the Visual Genome dataset (Krishna
et al., 2017) is a major catalyst for the field, providing large-scale, densely annotated objects, at-
tributes, and relationships that enable the development of data-driven SGG models. Typical SGG
models (Xu et al., 2017; Zellers et al., 2018) adopt a two-stage approach: first, a pre-trained object
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detector (like Faster R-CNN) is used to identify objects, and then a relationship classification mod-
ule is applied to all potential object pairs. These models are dedicated to generating discriminative
predicate representations for the detected objects, based on their appearances, relative positions, and
global context (Xu et al., 2017; Zellers et al., 2018; Li et al., 2021).

Currently, SGG research focuses on designing various message passing strategies to capture the
context information of the scene. These methods typically utilize graph-based context-modeling
strategies to learn discriminative representations for node and edge prediction (Li et al., 2021). A
popular idea is to model the context based on a sequential model or a fully-connected graph (Xu
et al., 2017; Dai et al., 2017; Li et al., 2017; Woo et al., 2018; Wang et al., 2019). In addition,
some works explore sparse graph structures, which are either associated with downstream tasks
or are built by trimming relationship proposals according to the category or geometry information
of subject-object pairs (Tang et al., 2019; Yin et al., 2018). However, these works often rely on
their specific designs for downstream tasks, which limits the flexibility of their representations. To
address this problem, other works explore adaptive messaging strategies (Li et al., 2021; Kim et al.,
2023; 2024). They calculate more flexible contextual representations by dynamically learning the
weights of message passing, effectively capturing the contextual information of the scene.

Although these methods greatly promote the development of the field, their global representations
are inherently ambiguous and confounded, often capturing irrelevant contextual information. For
example, the union region of a ”man” and a ”bat” may simultaneously include information for
”man-hold-bat,” ”man-wear-shirt,” and ”man-has-hand,” making it challenging to isolate the key
interaction. Meanwhile, there are only subtle differences between some similar predicates, for ex-
ample, ”carrying” (a person having an object in their hands) and ”holding” (a person supporting an
object in their hands) (Li et al., 2023). In this case, these coarse-grained global representations are
difficult to provide sufficient discriminability.

A.3 OBJECT HIERARCHY

Object hierarchy elucidates the composition of objects (Salakhutdinov et al., 2011; Deng et al.,
2011). This part-object correlation provides a powerful structural prior that can be exploited to
understand, recognize, and represent visual information more efficiently. For example, a “face” is
composed of “eyes”, a “nose”, and a “mouth”. By understanding these parts, a model can develop a
more robust and generalizable representation of an object.

Figure 3: Examples of prompt used for generating
parts.

In existing works, numerous endeavors have
leveraged this hierarchy to accomplish com-
puter vision tasks (Marszałek & Schmid, 2008;
Griffin & Perona, 2008; Sivic et al., 2008). In
image classification tasks, some studies em-
ploy both top-down and bottom-up approaches
to learn hierarchical structures (Marszałek &
Schmid, 2008; Li et al., 2010), while others
attempt to pre-defined such structures to help
model recognize objects (Marszalek & Schmid,
2007; Verma et al., 2012; Jia et al., 2013).
(Deng et al., 2012) utilizes this hierarchical
framework to enhance object categories with
insufficient training examples; (Liu et al., 2013)
employs a pre-defined hierarchy from the Ima-
geNet dataset to balance classification distribution. And in few-shot learning, some works (Banik
et al., 2018; Tokmakov et al., 2019; Hu et al., 2019) try to enhance object representation by aggre-
gating image features and some visual features of object components.

For visual relationships, some studies also pay attention to the help of components for the model to
understand predicates (Lu et al., 2018; Tian et al., 2020; Dong et al., 2021). But these methods are
completely different from our core concepts. They focus on the part itself, aiming to analyze the state
of the part to enrich the semantic understanding of the image, while we aim to explore the association
between objects and components, and through this association to structurally decouple the visual
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relationship. From the ideological level, we rise the decoupling of objects to the decoupling of
relations, which is a new perspective on SGG research.

B OBJECT HIERARCHY GENERATION

The division standard of part object and non-part object. Following the setting in Motifs (Zellers
et al., 2018), we present the details of VG dataset in Tab.4. Based on it, all non-part objects are
in the Tab.4 except “Part” (the shadow row). And in addition to what is contained in the table,
component objects are complemented by WordNet or GPT-4. In this paper, we utilize GPT-4 to get
the categories of parts. We realize that an object may contain a large number of parts, but only a few
parts is useful for inferring visual relationships. Thus, inspired by Li et al. (2024c), we design the
following prompt to get the parts (as shown in Fig.3).

C HIERARCHICAL CONSISTENCY REASONING

This section is a supplement of our HCR strategy, which consists of the following three components:
1) the design idea of our idea; 2) the overall structure of our idea; 3) some visualized examples.

C.1 DESIGN IDEA

Our HCR strategy stems for the fact that although all visual relationships are compose of objects
and predicates, some of them can be effectively represented by the combinations of others. In this
paper, we summarize this phenomenon as a visual relationship hierarchy caused by object hierarchy.

On the one hand, the interaction between parts is usually the key to our recognition of visual re-
lationships. For example, we judge “man-stand on-rood” by observing “foot-on-surface”. But for
a pair of non-part objects, the interaction between parts is obviously not enough. We can never
infer “man-stand on-road” from “foot-on-surface” alone (it could be some other answers, such
as: ”woman-stand on-floor”). Therefore, we propose a question: how to infer object-predicate-
object from pat-predicate-part? The answer is obvious: we need to determine which object
these parts belong to. So far, we have obtained a reasoning way for us to understand visual
relationships. For object-predicate-object, part-predicate-part represents the key for us to iden-
tify it and object-predicate-part helps us to establish the relationship between parts and objects.

Figure 4: The example of our visual relationship
hierarchy.

On the other hand, the associations between
objects and parts indicate that there are pos-
sessive relations between objects and parts. It
means that we can always find a set of object-
predicate-part, part-predicate-part to represent
object-predicate-object. Meanwhile in the pre-
vious works, visual relationship is defined as:
visual relationship is a pair of localized ob-
jects via a predicate (Lu et al., 2016). From
the hierarchical knowledge perspective (Deng
et al., 2011; Salakhutdinov et al., 2011), objects
and predicates are treated as primitives, which
are located the lowest level; object-predicate-
object is located at a highest level. This struc-
ture is essentially a detailed decoupling method
for visual relationship, and can help the model
to infer visual relationship more accurately.

C.2 OVERALL STRUCTURE

Inspired by the procedure described above, we extend object hierarchy to a visual relationship hi-
erarchy to reveal the correlations between different visual relationships. Specifically, it contains
three levels: bottom-level with objects and predicates, top-level with object-predicate-object, and
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Figure 5: Some examples of the detailed reasoning rules in our visual relationship hierarchy.

middle-level with object-predicate-part and part-predicate-part (as shown in Fig.4). In this structure,
higher-level entities can be represented by a combination of lower-level entities.

For humans, it seems that we do not need to understand visual relationships in this way. It is because
this way is simple and intuitive for us. But for a machine, it doesn’t have the ability to find this way
on its own, nor does it have enough data to learn every visual relationship. It means that we need
to guide the model to understand visual relationships. We show some visualized results of our
reasoning rules in Fig.5.

D EXPERIMENTS

Method mR@50 R@50 wmAPrel wmAPphr scorewtd

VCTree 33.9 74.1 34.2 33.1 40.2
RelDN 37.2 75.3 32.2 33.4 42.0
Motifs 32.7 71.6 29.9 31.6 38.9
BGNN 40.5 75.0 33.5 34.1 42.1

HetSGG 42.7 76.8 34.6 35.5 43.3
Unbiased 35.5 69.3 30.7 32.8 39.3
PENET - 76.5 36.6 37.4 44.9

EdgeSGG 43.3 77.1 36.4 37.4 44.9

HINet 45.1 76.9 37.7 38.4 45.8

Table 5: Performance comparison with the
SoTA methods on Open Images V6 dataset.
The best method is marked according to for-
mats.

In general, to fully verify the effectiveness of our
idea, we conducted experiments on four datasets:
Visual Genome (Krishna et al., 2017), Open Im-
ages V6 (Kuznetsova et al., 2020), V-COCO
(Gupta & Malik, 2015) and HICO-DET (Chao
et al., 2018). In our paper, we have reported the
results of Visual Genome. Thus in this section, we
show the experimental results of Open Images V6,
V-COCO and HICO-DET. It is worth mentioning
that HOI has been very different from SGG after
the long-term development. Thus, we can only
improve TIN (Li et al., 2019) to verify the effec-
tiveness of our idea. These experimental results do
not have the ability to compare with the advanced
models in HOI. We show some visualized result in
Fig.6.

D.1 EXPERIMENTS OF OPEN IMAGES V6

Dataset Details. Open Images V6 dataset is a large-scale dataset commonly used for SGG tasks
(Kuznetsova et al., 2020). It contains a diverse collection of over 133k images with 126,368 training,
1,813 validation, and 5,322 testing images. This dataset provides object-level annotations for each
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Figure 6: The visualized results of our method.

image, including bounding boxes and 301 object categories. In addition, it includes 31 relationship
annotations that describe the interactions between pairs of objects within a scene.
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Metrics. For this dataset, we follow the same data processing and evaluation protocols in the existing
works (Li et al., 2021; Zhang et al., 2019). The mR@50, R@50, weighted mean AP of relation-
ships (wmAPrel), and weighted mean AP of phrase (wmAPphr) are used as evaluation metrics.
Following standard evaluation metrics of Open Images refers to (Li et al., 2021; Zhang et al., 2019),
the weight metric scorewtd is computed as: scorewtd = 0.2 × R@50 + 0.4 × wmAPrel + 0.4 ×
wmAPphr.

Quantitative Results. The quantitative results are shown in Tab.5. Our method achieves the SOTA
performance on mean recall and competitive results on weighted metric score. These results demon-
strate the effectiveness of our method.

Default Known Object
Method Full Rare Non-Rare Full Rare Non-Rare

HO-RCNN (Chao et al., 2018) 7.81 5.37 8.54 10.41 8.94 10.85
InteractNet (Gkioxari et al., 2018) 9.94 7.16 10.77 - - -

GPNN (Qi et al., 2018) 13.11 9.34 14.23 - - -
iCAN (Gao et al., 2018) 14.84 10.45 16.15 16.26 11.33 17.73

TIK (Li et al., 2019) 17.22 13.51 18.32 19.38 15.38 20.57

HINet 20.46 15.33 21.51 22.71 16.15 23.23

Table 6: Results comparison on HICO-DET.

D.2 HOI

HICO-DET. HICO-DET (Chao et al., 2018) includes 47,776 images, including 38,118 in train set,
9658 in test set, 600 HOI categories on 80 object categories and 117 verbs, and provides more than
150k annotated human-object pairs.

V-COCO. V-COCO (Gupta & Malik, 2015) includes 10,346 images, including 2,553 in train set,
2,867 in validate set, 4,946 in test set, and 16,199 person instances. Each person has annotations for
29 action categories. The objects are divided into two types: “objects” and “instrument”.

Metrics. Following the settings adopted in (Chao et al., 2018; Li et al., 2019), the role mean average
precision is used to measure the performance.

D.3 RESULTS

Method AProle

InteractNet 40.0
GPNN 44.0
iCAN 44.7
TIN 47.8

HINet 49.6

Table 7: Results comparison on V-COCO.

The result of our model in HICO-DET is shown in
Tab.6 and the result of our model in V-COCO is shown
in Tab.7. For SGG task, VG dataset and Open Im-
ages V6 dataset are more representative. The improve-
ment of M@K and mR@K is enough to show that
our method is effective for most predicates. How-
ever, these datasets contain very few similar predi-
cates. Thus, we conduct experiments on two datasets
of HOI. Extensive experimental results demonstrate
the effectiveness of our method. Our work opens
new avenues for understanding complex visual rela-

tionships and encourages future exploration.

E LLMS USAGE DESCRIPTION

Our experiment uses LLM to generate object hierarchy, and the specific configuration can be found
in Sec.3.1. In the process of writing, GPT-4o and Gemini are used for polishing, but only as an
auxiliary tool.
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