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ABSTRACT

This paper studies close-loop task planning, which refers to the process of gener-
ating a sequence of skills (a plan) to accomplish a specific goal while adapting the
plan based on real-time observations. Recently, prompting Large Language Mod-
els (LLMs) to generate actions iteratively has become a prevalent paradigm due to
its superior performance and user-friendliness. However, this paradigm is plagued
by two inefficiencies: high token consumption and redundant error correction,
both of which hinder its scalability for large-scale testing and applications. To
address these issues, we propose TREE-PLANNER, which reframes task planning
with LLMs into three distinct phases: plan sampling, action tree construction, and
grounded deciding. TREE-PLANNER starts by using an LLM to sample a set of
potential plans before execution, followed by the aggregation of them to form an
action tree. Finally, the LLM performs a top-down decision-making process on
the tree, taking into account real-time environmental information. Experiments
show that TREE-PLANNER achieves state-of-the-art performance while maintain-
ing high efficiency. By decomposing LLM queries into a single plan-sampling call
and multiple grounded-deciding calls, a considerable part of the prompt are less
likely to be repeatedly consumed. As a result, token consumption is reduced by
92.2% compared to the previously best-performing model. Additionally, by en-
abling backtracking on the action tree as needed, the correction process becomes
more flexible, leading to a 40.5% decrease in error corrections.

1 INTRODUCTION

Task planning is a significant topic in the field of robotics, where a
system is tasked with crafting a sequence of mid-level actions (skills)
that enable a robot to complete complex high-level tasks (Kaelbling
& Lozano-Pérez, 2011). This involves a consideration of various fac-
tors, such as the capabilities of robots, the surrounding environment,
and any constraints or uncertainties that might exist. An emerging
trend within the field of task planning is using Large Language Mod-
els (LLMs) to generate actions directly (Huang et al., 2022a; Song
et al., 2023), rather than searching within a pre-defined domain (Ey-
senbach et al., 2019; Xu et al., 2019).

As shown in Figure 1, the commonly adopted paradigm for LLM-
based planning can be summarized as follows: (i) prompt an LLM
to generate one action at a time; (ii) execute the generated action and
then append the obtained observation to the LLM; and (iii) gener-
ate the next action. We categorize such approaches as ITERATIVE-
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Figure 1: An overview of
the traditional paradigm.

PLANNER, which enables the model to generate subsequent actions in an auto-regressive manner.
Based on ITERATIVE-PLANNER, when errors occur during action execution, existing research en-
deavors either re-generate actions at the current timestep (Raman et al., 2022; Guo et al., 2023)
or re-generate the entire plan from the initial timestep (Shinn et al., 2023), referred to as LOCAL

REPLAN and GLOBAL REPLAN, respectively.
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Figure 2: An overview of our TREE-PLANNER pipeline: (I) prompt an LLM to sample potential
plans for “Take nap” before execution; (II) construct an action tree to aggregate sampled plans; (IIT)
prompt the LLM again in closed loops to reason on the action tree. Bottom-left: “[WALK] <bed-
room>" is successfully executed. Move on to the next level. Bottom-right: “[WALK] <couch>"
fails because the absense of “couch”. Mark the failed node as invalid, then track back and re-decide.
The complete prompt and action tree can be found in Appendix F and Appendix G, respectively.

All methods above have the following two drawbacks: (i) Token Inefficiency: The expenses for a sin-
gle LLM call increase proportionally with the number of tokens utilized, including both the prompt
tokens and the generated tokens. However, in the scenario of task planning, the prompt tokens often
consists of instructions, global information about the environment, in-context learning examples,
and environmental observation (Vemprala et al., 2023) while the generated tokens predominantly
represent a concise action. The discrepancy in the number of tokens between prompt tokens and
generated tokens results in the issue of token inefficiency (Cheng et al., 2023). Moreover, due to the
multi-step nature of a complex task (usually involving 5-20 steps), the prompt tokens incur repeated
charges, leading to even higher costs. (ii) Correction Inefficiency: LOCAL REPLAN can be viewed
as a trial-and-error approach implemented at the execution-failed time step, which makes it difficult
for the model to detect errors that occurred several time steps earlier. While GLOBAL REPLAN can
mitigate this problem by regenerating the entire plan, it may still come at the cost of increased time
and token consumption. The token and correction inefficiencies inherent in ITERATIVE-PLANNER
limit its applicability for large-scale inference or frequent use in everyday life.

To address the issues above while maintaining high performance, we propose TREE-PLANNER as
illustrated in Figure 2. In general, TREE-PLANNER divides the queries to an LLM into two parts:
a single plan-sampling call and multiple grounded-deciding calls to reduce the repetitive computa-
tional cost for several components in prompt tokens. These two stages are bridged using a tree-like
structure, which leads to more effective logical correction. More specifically, TREE-PLANNER first
prompts the LLM to sample potential task plans with its inherent commonsense (Stage I). Sub-
sequently, an action tree is constructed to aggregate the sampled plans (Stage II). Lastly, TREE-
PLANNER instructs the LLM again in closed loops to reason on the action tree with the environ-
mental observations (Stage III). In terms of token efficiency, TREE-PLANNER only charges once for
global information about the environment and in-context examples in plan sampling. However, for
ITERATIVE-PLANNER, this information must be charged at each time step. In terms of correction
efficiency, the correction process based on the action tree can be seen as an intermediate between
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LocAL REPLAN and GLOBAL REPLAN. TREE-PLANNER not only reduces the likelihood of re-
dundant decision-making at a specific time step through backtracking but also significantly reduces
the time and tokens required to generate the entire plan from scratch.

We demonstrate the effectiveness of TREE-PLANNER framework in VirtualHome (Puig et al., 2018),
a simulated environment for complex household tasks. The experiments are conducted under two
different settings: with correction and without correction. In with correction setting, the model is
required to modify the plan when errors occur, while in without correction setting, the opposite is
true. The main result shows that TREE-PLANNER achieves state-of-the-art results in both experi-
mental settings, surpassing the best baseline models by 1.29% and 3.65% in terms of success rate,
respectively. At the same time, TREE-PLANNER exhibits high efficiency. In terms of token effi-
ciency, TREE-PLANNER reduces the token cost of ITERATIVE-PLANNER by 53.29%. Furthermore,
when compared to LOCAL REPLAN and GLOBAL REPLAN under the with correction setting, TREE-
PLANNER achieves even greater improvement with reductions of 74.36% and 92.24%, respectively.
In terms of correction efficiency, TREE-PLANNER reduces the number of corrections by 37.99%
and 40.52%, respectively. In further analysis, we formally verify the token efficiency of TREE-
PLANNER and derive the critical value of the number of sampled plans required for the model to
possess token efficiency. We also perform an ablation study on both plan sampling and grounded de-
ciding, demonstrating the effectiveness of the individual components of TREE-PLANNER. Finally,
we provide a manual error analysis of potential areas for improvement in the model.

2 PRELIMINARY

Task and Motion Planning (TAMP) (Kaelbling & Lozano-Pérez, 2011) is the process of generating
a sequence of actions and robot motions to achieve a desired goal in a given environment. As is
shown in Figure 2, a high-level task description such as “Take nap” is decomposed into several mid-
level actions. We assume the existence of a low-level controller that can execute these mid-level
actions, which typically requires training using reinforcement learning (RL) methods or fine-tuning
with expert data. Task planning can be categorized into closed-loop task planning and open-loop task
planning. Open-loop task planning aims to decompose a high-level task description into a mid-level
plan without any feedback from the environment. Closed-loop task planning, on the other hand,
involves continuously adjusting planning strategies through perception and feedback mechanisms to
adapt to environmental changes and uncertainties during execution. This paper focuses on closed-
loop task planning, which is more suitable for task execution in dynamic and complex environments.

Problem Setup We formulate the closed-loop task planning problem as a partially observable
Markov decision processes (POMDPs) denoted by (S, O, A, T), which is similar to Li et al. (2022a).
S,0,A are sets of states, observations and actions respectively and 7 (S¢41]|$¢, a¢) is a transition
model. In a POMDP setting, the observation o, represents a subset of the underlying state s;. Let g
be the task, the optimal policy 7 (a¢|g, ht, 0;) must take into account not only the current observation
o, but also the entire history of actions hy = {a1,...,a¢—1}.

3 MODEL

3.1 PLAN SAMPLING

Abstract specifications often restrict task planning. Take the “Take nap” task as an example, the
robot needs to understand that napping can be done on a bed, and the bed is typically located in a
bedroom. Many works hold the belief that LLMs trained on large-scale data encode commonsense
knowledge about the real-world (Davison et al., 2019; Li et al., 2022b; Bian et al., 2023). Recently,
several studies have investigated the integration of LLMs into task planning, which aims to address
language ambiguities and provide robots with background knowledge (Huang et al., 2022a; Li et al.,
2022a; Ahn et al., 2022). In contrast to these approaches, which typically use LLMs directly as
policies, TREE-PLANNER prompts an LLM to generate prospective task plans before executing them
in a specific environment. We consider this as a way to extract commonsense knowledge from LLM
through sampling, which serves as prior knowledge for task planning. Let p,,; be the prompt for plan
sampling, ¢ be the task name, the process of plan sampling can be formalized as: LLM(pys,g) =
¢ = {c1,ca,...,cn}, where N is a hyper-parameter which determines the number of sampled
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plans. Each plan candidate ¢; is a sequence of actions, i.e., ¢; = {a;|t = 1,...,m(2)}. m(i) is the
number of actions in plan ¢ and a;; is the action of plan ¢ at time step t. The prompt consists of four
parts: instruction, global information, initial observation, and in-context examples. The instruction
provides the LLM with a clear and concise explanation of the process of task planning. The global
information provides the LLM with background knowledge about the environment and available
action space. The initial observation provides the LLM with an initial snapshot at the starting point
of the task. The in-context examples are additional task plans that serve to indicate the format of the
output plan and have also been proven to be helpful in enhancing performance (Brown et al., 2020).
In Section 5.2, we provide a quantitive analysis of the upper-bound on plan sampling.

3.2 ACTION TREE CONSTRUCTION
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Figure 3: The process of constructing the action tree. Left: each path represents a sampled plan.
Right: plans with the same prefix are aggregated together. Note that although certain paths have the
same action ([Sleep]), they are not aggregated together due to inconsistent prefixes.

To select an optimal plan from potential plans, an obvious approach would be to execute and test
each plan in the environment. However, this approach has two drawbacks: (i) It is time-consuming
to execute multiple plans in the environment; (ii) Different plans may have overlapping parts, so
repeating the execution of these overlapping parts in the environment is redundant. For example,
in plan 1 and plan 2 shown in Figure 2, the first step in both plans is: “[Walk] <bedroom>".
Based on the previous analysis, we designed a structured representation that aggregates the sampled
potential plans called Action Tree. As is shown in Figure 3, when two plans share a common
prefix but differ in their actions at a specific time step, their shared prefix is aggregated into a single
branch, while their differing actions form divergent paths. This process repeats iteratively until all
sampled plans are organized into a complete tree structure. The motivation behind it is to convert
the filtering of the plan level into a search at the action level, thereby reducing the execution time
in the environment. an action tree with root node r can be formalized as T'(¢) = (V, E), where V
and E represent the sets of nodes and edges respectively. Each node v is associated with an action
a, and a time step t,, i.e., v = (a,, t,). Each edge e represents a pair of adjacent actions in plan
ci i, B = {e(vi, v2) |v1, va € V, v1 = (as,1), v2 = (ai+41),t + 1)}. The root node r is not
associated with any specific action, and its child nodes are the set of nodes obtained by aggregating
the first action of each plan. The construction process of the action tree is presented in Algorithm 1.

3.3 GROUNDED DECIDING

During grounded deciding, an LLM functions as the policy 7 (a¢|g, h¢, 0;). However, instead of
sampling from the entire corpus of LLMs as the ITERATIVE-PLANNER, we limit the choices to a
few child nodes of the current node at time ¢ on the action tree. This process simulates the decision-
making process of humans, who first propose several action options and then combine their current
real-world observations to make decisions. Specifically, we provide an LLM with instruction, ob-
servation, and history (the previously executed actions) as prompts, and then the LLM chooses one
from the child nodes of the current node. Furthermore, we also designed a corresponding error
correction method. When a chosen action fails to execute in the environment, TREE-PLANNER (i)
marks the nodes on the subtree rooted at the failed node as invalid nodes; (ii) traces back on the
action tree to find the previous valid fork node with available valid child nodes. If all the child nodes
of a particular node are invalid, then the fork node should also be marked as invalid. (iii) executes
the inverse process of previously executed actions (e.g., the inverse of [SwitchOn] is [SwitchOff])
to recover the state of the agent; (iv) re-decides at the fork node. Error correction with grounded
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Algorithm 1: Action Tree Construction
Input :c,r
Output:
Function ConstructActionTree (¢ 1)
forall c; € cdo
n<T;
fort = 1tom(i) do
cn + GetChildNode(n, a;t);
if cn is None then
cn <+ CreateChildNode(ait);
AddChildNode(n, cn);
end
n < cn;
end

end

deciding is more effective than the commonly adopted methods presented in Section 1. This is be-
cause the action tree serves as an important prior to completing the current task. Therefore, when
an error occurs at a node on the tree, it is possible to selectively backtrack on the action tree, thus
alleviating repetitive decisions at a particular time step as in LOCAL REPLAN. Performing error
correction on the action tree also relieves the need to return to the initial time step as in GLOBAL
REPLAN, thereby reducing time and token consumption. The process described above is displayed
in Figure 4. Quantitive analysis of the effectiveness of error correction is presented in Section 5.3.

(a) Error Correction (b) Successful Execution Legend
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Figure 4: An overview of the process of grounded deciding. Left: When an error occurs, TREE-
PLANNER tracks back and marks the nodes along the way as invalid. Afterward, TREE-PLANNER
makes a new decision at the previous fork node. Right: After the action is successfully executed,
TREE-PLANNER makes a decision at the current node, and then the agent moves on to the next level.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Environment. We conduct the experiments in the VirtualHome (VH) Environment (Puig et al.,
2018), a simulation platform for household tasks. Each scene in every VH environment contains
hundreds of objects. These objects may possess individual properties, and there may also be rela-
tionships between different objects. There are 28 different action types in VH, which are listed in
Appendix A.1. The task-relevant goal conditions refer to a set of specific states of objects or predi-
cates between objects. For example, a goal condition for Turn on TV would be On(TV), while a goal
condition for Sit would be On(character, chair).

Dataset. We constructed a dataset consisting of 4 VH scenes and 35 unique VH tasks. Each task
includes a task name, goal conditions, and a gold plan. We started by annotating goal conditions for
each task from ActivityPrograms knowledge base by Puig et al. (2018) via executing the programs.
And then, we applied simple heuristics to filter the low-quality annotations in the dataset: (i) the
length of the plan is less than 3; (ii) the execution of the program fails. To highlight the necessity of
grounding LLMs in the real environment which has variation in the objects and preconditions, we
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replicated the annotation above process across 4 distinct scenes provided in VirtualHome, ultimately
yielding 71 annotated tasks. We denote the 4 distinct scenes as ENV-{1, 2, 3, 4}. Then, we hired two
CS-majored graduate students to conduct manual quality control to ensure that the task descriptions
were in line with their corresponding goal conditions and programs. We eliminate cases that do
not meet the alignment criteria or were originally annotated with errors, resulting in a high-quality
dataset comprising 35 tasks. To double-check the quality of the dataset, we also study the agreement
between annotators. The results indicated “almost perfect agreement” with Fleiss Kappa (Landis &
Koch, 1977) scores of 0.88.

Evaluation Metrics. We use four metrics to evaluate the performance of different methods: exe-
cutability (EXEC.), success rate (SR), goal conditions recall (GCR), and the financial expenditure
for evaluation ($COST). EXEC. refers to whether the plan can be executed in the given environ-
ment, regardless of its relevance to the task. GCR is calculated by taking the difference between
the ground truth goal conditions and the goal conditions that were achieved with the generated plan
and then dividing this difference by the total number of goal conditions. SR measures whether all
goal conditions are fulfilled, i.e., SR = 1 only when GCR = 1. $COST is used to evaluate the to-
ken efficiency of different methods, which is calculated based on the pricing provided by OpenAl.'
For evaluation with error correction, we use NO.EC to represent the number of error corrections of
each method. NO.EC does not directly measure performance but rather evaluates how effectively
different models can correct errors.

Baselines. For experiments without error correction, we compare our method to two strong pub-
lished LLM-based task planning methods with OpenAl APIs, including: (i) ZERO-SHOT PLAN-
NER (Huang et al., 2022a); (ii) PROGPROMPT (Singh et al., 2022). Furthermore, we also implement
the ITERATIVE-PLANNER method discussed in Section 1 as a baseline model. For experiments with
error correction, we enhance the ITERATIVE-PLANNER method with the two re-planning methods:
LocAL REPLAN and GLOBAL REPLAN, and consider them as the baseline models. More imple-
mentation details and an introduction to each baseline model can be found in Appendix B.2.

Implementation Details. We use the OpenAl GPT-3.5 (text-davinci-003) API > model as a LLM
backbone in our experiments for all evaluated methods. The cost of this model is 0.02$ per 1000
tokens. The prompt for TREE-PLANNER and ITERATIVE-PLANNER was designed with the prin-
ciples proposed in Vemprala et al. (2023), and examples can be found in Appendix F. We take 4
representative tasks from the dataset as in-context learning exemplars and the rest as the validation
set. The examples are fixed to be: “Watch TV, “Turn on light”, “Go to sleep”, and “Brush teeth”.
To sample diverse plans, we applied a temperature of 0.8 and a top-p value of 0.95. We heuristically
set the number of samplings N € {25,50}. During grounded deciding, we set the temperature to
0.7, top-p to 1.0, and sampling parameter n to 20. Additionally, we utilize a majority vote to obtain
the final option in order to alleviate format errors in the output of LLMs. The maximum number of
error corrections is set to 10 for all evaluated approaches.

4.2 MAIN RESULTS

Based on the results presented in Table 1, several advantages of TREE-PLANNER can be derived:
(i) TREE-PLANNER outperforms listed baseline systems, surpassing the previous state-of-the-art
by absolute 11.2% and 7.04% on Executability, 6.71% and 7.29% on GCR and 1.29% and 3.65%
on SR under both experimental settings respectively. This experimental observation demonstrates
that reframing the LLM-based planning pipeline does not compromise its performance. (ii) TREE-
PLANNER has a significant advantage in token efficiency. In without correction setting, TREE-
PLANNER reduces the cost of ITERATIVE-PLANNER by 53.29%. In with correction setting, the
token cost is further reduced by 74.36% and 92.24%, respectively, compared to LOCAL REPLAN
and GLOBAL REPLAN. (iii) TREE-PLANNER also demonstrates high correction efficiency, resulting
in a reduction of the number of action-retry times for LOCAL REPLAN and GLOBAL REPLAN by
37.99% and 40.52%, respectively. A reduced amount of corrections also contributes to a decrease
in token consumption.

Note that, while not having a token efficiency advantage compared to ZERO-SHOT PLANNER and
PROGPROMPT, TREE-PLANNER significantly outperforms these methods in terms of performance

'https://openai.com/pricing
https://openai.com/
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Table 1: Performance of different methods on Virtual Home. w/o correction means that during the
plan execution, there is no allowance for retrying failed actions. While with correction implies the
opposite. The reported evaluation metrics are the average of 3 independent runs across the 4 scenes.

EXEC. 1 SR 1 GCR 1 $Cost, NO.EC |

w/o correction
ZERO-SHOT PLANNER  16.49+3.08 1.07£0.76 1.5240.75 1.364+0.09 N/A

PROGPROMPT 35.044+3.98 12.54+2.20 19.99+2.83 1.254+0.55 N/A
ITERATIVE-PLANNER  44.54+6.09 27.04+4.65 33.254+5.32 5.12+0.14 N/A
TREE-PLANNERy—25  55.744+0.92 28.33+1.18 39.96+0.16 2.39+0.44 N/A
TREE-PLANNERn—50 49.014+5.67 28.14+2.45 35.84+4.20 3.48+0.04 N/A
with correction

LOCAL REPLAN 79.66+2.33 37.46+1.71 51940.15 12.88+0.17 3.2940.46
GLOBAL REPLAN 82.09+1.32 37.93+1.22 52.46+0.86 42.554+0.09 3.43+0.15

TREE-PLANNERN—25  89.13+0.17 35.30£1.78 56.65+1.09 3.30+£0.01 1.85+0.05
TREE-PLANNERN—50  88.26+2.47 41.58£3.20 59.554+3.20 4.54£0.16 2.04+0.26

by 27.26% and 15.79% on SR respectively. It is also worth noting that increasing the hyper-
parameter NV does not result in consistently improved performance. This experimental phenomenon
will be further discussed in Section 5.2.

5 ANALYSIS

5.1 TOKEN EFFICIENCY

In Section 4.2, the quantitative analysis has demonstrated that TREE-PLANNER consumes fewer
tokens compared to ITERATIVE-PLANNER. In this section, we will further provide a specific for-
mulation to demonstrate this point. The number of tokens required for an LLM API call typically
includes two parts: prompt tokens and generated tokens. Let p and ¢ represent the prompt tokens
and generated tokens. Let ps, gd, ¢p stand for plan sampling, grounded deciding, and ITERATIVE-
PLANNER, respectively. Normally, we have p;, =~ p,s + pgq. That is because, as shown in Figure 2
and Figure 1, the prompt for plan sampling typically includes global information and in-context
examples, while the prompt for grounded deciding includes observation and history. These types
of information usually need to be included in every step of ITERATIVE-PLANNER. Assuming that
the number of tokens for each action type |a| is the same and the total number of steps M is the
same for each generated plan. The hyper-parameter number of sampling is N for plan sampling and
grounded decoding and is 1 for ITERATIVE-PLANNER. Based on the given information, we have
wps = MNlal, pga = N and ¢;, = |a|. The consumed tokens fioyrs and ji;;, can be calculated as
follows: Liours = Pps + @ps + M - (pga + ¢ga) and i, = M - (pip + @ip). Based on the above
formula, we can determine the boundary conditions for N that satisfy the inequality fipyrs < ftip as

follows: N < %//Ij\jl . “)2‘ + % And we have p,,s > |al, since the prompt of plan sampling may
contain thousands of tokens and an action only contains a few tokens. We use the average number
of tokens for all action types to estimate |a| and the average length of all gold plans to estimate M.
As a result, we obtain the critical value of N in our experiment as follows: N < 197.72. Detailed
derivation can be found in Appendix D. In conclusion, our model exhibits a remarkably high token

efficiency, especially in scenarios where NV is not particularly high.

5.2 PLAN SAMPLING

Since grounded deciding fundamentally involves selecting from the sampled plans, the upper limit
of our TREE-PLANNER is determined by plan sampling. We propose two additional metrics to study
the upper limit of plan sampling: (i) the maximum GCR for all generated plans, i.e., GCRynq.(c) =

mgfc(GCR(ci)); (ii) the average GCR for all generated plans, i.e., GCRquv4(c) = % Zﬁil(GCR(ci)).
GC R4, represents the upper limit of the performance of TREE-PLANNER. In other words, the

model can only succeed if there is a “correct” plan among the sampled plans. GC R4 reflects the
proportion of “correct” plans to sampled plans. When GC R4 is low, it undoubtedly poses greater
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Figure 5: Maximum and average GCR for
all sampled plans. The x-axis of the anno-
tated coordinate points represents the cho-
sen N for the main experiments.

50 60 70 80

EXEC. SR GCR
w/o correction
TREE-PLANNER N—25 55.74 28.33  38.96
1 with oracle 1 7.16 9.84 8.5
TREE-PLANNER N—50 49.01 28.14 35.84
1 with oracle T 341 6.54 4.78
with correction
TREE-PLANNER y=25 89.13 353 56.65
1 with oracle 1 8.45 26.8 19.76
TREE-PLANNER y=50 88.26 41.58  59.55
1 with oracle 1 6.9 10.57 7.47

Table 2: Ablation study on grounded deciding.
T represents the performance improvement after
adding a gold plan to action tree construction.

challenges for grounded deciding. Some conclusions can be drawn from Figure 5: (i) The maximum
value of GC R, being 81.2% indicates that plan sampling is effective. (ii) As NV increases, there
is a noticeable increase in GC R, 4., but it eventually reaches a threshold. Therefore, a large value
of N will lead to increased token consumption without necessarily improving the performance limit.
When applying TREE-PLANNER, it is essential to choose an appropriate value of N that balances
token assumption and model performance. (iii) GCR,,, does not consistently increase with an
increased IN. This implies that as /N becomes larger, the proportion of “correct” plans to sampled
plans may not necessarily increase.

5.3 GROUNDED DECIDING

To investigate the effectiveness of grounded deciding, we conducted ablation experiments. We in-
corporated the gold plan for each task into the construction of the action tree. As is shown in
Table 2, after incorporating the gold plan, there was a significant improvement in performance. Ad-
ditionally, there was also a decrease in the number of error corrections. For TREE-PLANNER y—25,
the number decreased from 1.85 to 1.21, and for TREE-PLANNER y—50, it decreased from 2.04 to
1.39. The quantitive experimental results presented above demonstrate the effectiveness of grounded
deciding. Another noteworthy experimental phenomenon is that the improvement in performance
for TREE-PLANNER y—o5 was greater than that for TREE-PLANNER y—5¢0. This further validates
the conclusion we drew in Section 5.2: when the number of plans increases, but the proportion of
correct plans decreases, the performance may be negatively impacted.

5.4 ERROR ANALYSIS

We categorize error types into two distinct classifications: (i) Missing Correct Plan; (ii) Grounded
Deciding Error. As is listed in Table 3, the majority of errors are attributed to the missing correct
plans (54.5%). Therefore, despite the ability of plan sampling to achieve relatively high GC R, 4, as
is discussed in Section 5.2, it still serves as a bottleneck for our model to some extent. Furthermore, a
considerable portion of the errors occurred due to mistakes made by LLM during grounded deciding
(45.5%). We also provide a qualitative analysis of each error type in Appendix E.

Table 3: Distribution of error types of the TREE-PLANNER y—25 W/0 correction model.

Error Type Explanation Proportion(%)

Missing Correct Plans Plan sampling did not yield correct plans 54.5%
Environment Misunderstanding ~ Misunderstandings on actions or objects 18.2%
Incomplete Plan The absence of essential steps 18.2%
Illogical Error The generated plan is logically incorrect 13.6%
Semantically Correct Execution failed but semantically correct 9.1%

Grounded Deciding Error Execution error during grounded deciding 45.5%
Incorrect Deciding Incorrect decisions at specific nodes 31.8%
Semantically Correct Execution failed but semantically correct 13.7%
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6 RELATED WORKS

Task Planning with Large Language Models. We categorize the mainstream methods in the task
planning domain into two groups: search-based methods (Jiang et al., 2018; Garrett et al., 2018) and
generate-based methods (Song et al., 2023; Wu et al., 2023a; Ding et al., 2023; Mu et al., 2023).
LLMs trained on a large-scale corpus contain a vast amount of commonsense knowledge for task
planning (Pallagani et al., 2023; Sun et al., 2023b;a). Thanks to this advancement, generate-based
methods have gradually become a hot topic of research in recent years. When considering the
utilization of LLM, some works directly generate the entire plan without executing in the environ-
ment (Singh et al., 2022; Liang et al., 2023; Wu et al., 2023b; Zeng et al., 2023; Lin et al., 2023b;
Yang et al., 2023). While these models possess token efficiency, they are unable to modify the plan
when encountering errors dynamically. Another line of works has adopted the paradigm presented
in Section 1 to generate actions iteratively (Vemprala et al., 2023; Yao et al., 2022; Huang et al.,
2022a;b; Shinn et al., 2023), which is more flexible for error correction, human interaction and the
grounding of environment. Works like Carta et al. (2023); Huang et al. (2023); Ahn et al. (2022) in-
volve the use of implicit representations of LLM. In contrast to these works, our study concentrates
on Black-box LLMs, which are utilized in a manner more frequently by researchers and industry, as
they provide only input and output without any additional information.

Tree-based Modeling for the Output of Large Language Models. Yao et al. (2023); Long (2023)
both propose an alternative for chain-of-thought, called “tree-of-thought”, for problem-solving.
These studies do not involve the interaction between inner steps in the tree and the environment but
rather focus on reasoning tasks. Considering the robotic area, Cao & Lee (2023) leverages LLMs for
automatic behavior-tree-based task generation. Zhao et al. (2023); Hao et al. (2023) propose using
an LLM as a world model to assist planning algorithms such as Monte Carlo Tree Search (MCTS).
However, TREE-PLANNER samples diverse paths once and aggregates the paths into an action tree
rather than requiring multiple calls to LLM like the aforementioned studies. This approach offers
advantages in terms of both run-time efficiency and token efficiency.

Generate then Select. From another perspective, grounded deciding selects a prediction from the
sampled potential plans. Hence, TREE-PLANNER follows the paradigm of generate then select,
which is commonly adopted to optimize the output of LLMs. Some models (Glass et al., 2022;
Suzgun et al., 2022; Wang et al., 2023b; Gu et al., 2023) use external controllers to re-rank the
generations. In Wang et al. (2023a), the best answer is selected from multiple generations of an LLM
through a majority vote. Logeswaran et al. (2022) proposes to incorporate the state information from
the environment to re-rank the generated plans. Unlike these works, instead of selecting at the level
of entire generation, we use action trees to perform more fine-grained selection (action-level).

Efficient Inference with Large Language Models. Most previous works suggest modifying the
architecture of transformer or decoding strategy to achieve efficient inference (Wang et al., 2020;
Katharopoulos et al., 2020; Leviathan et al., 2023; Chen et al., 2023). Cheng et al. (2023) pro-
pose a batch prompting method to reduce the frequency of invoking LLMs. Lin et al. (2023a)
achieve efficient inference with LLMs by incorporating a small LM fine-tuned on oracle trajectories.
TREE-PLANNER differs from previous studies by simply reframing the process of LLM planning to
alleviate repeated token consumption without the need for additional training.

7 CONCLUSION

In this paper, we have introduced TREE-PLANNER, a novel framework for task planning with LLMs.
The motivation behind TREE-PLANNER is to address the inefficiencies of the commonly adopted
paradigm while still achieving high performance. Through extensive experiments in the Virtual-
Home environment, we have demonstrated that TREE-PLANNER outperforms other strong baselines
and achieves state-of-the-art performance. We have also shown that our framework is highly effi-
cient in terms of token consumption and error correction. To gain a deeper understanding of our
framework, we have conducted several studies analyzing its performance gains and identifying po-
tential bottlenecks. Furthermore, we have performed a qualitative error analysis to identify areas
where the model may fail. Overall, we believe that TREE-PLANNER represents a new paradigm for
LLM-based task planning that strikes a balance between efficiency and performance. We hope that
our work will inspire further research and the development of more efficient task-planning methods.
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Appendix

A ENVIRONMENT

A.1 ACTION SPACE

The action types in the Virtual Home Environment are listed as follows:

1. Sleep 8. Wipe 15. Touch 22. Drop
2. StandUp 9. Pull 16. Open 23. Lie
3. WakeUp 10. Push 17. Close 24. SwitchOn
4. Walk 11. Pour 18. Run 25. SwitchOff
5. Find 12. TurnTo 19. Sit 26. Drink
6. Grab 13. PointAt 20. Read 27. Putln
7. Wash 14. Watch 21. PutOn 28. PutBack
12 12
101
N
“ 3 3
5]
0

25 5.0 7.5 100 125 150 175 200 225
Plan Length

Figure 6: Distribution of plan length.

A.2 PARTIAL OBSERVATION

We implemented partial observation based on Li et al. (2022a). The official definition of partial
observation is that when the agent is situated in a room, its observation consists of all the objects
in the room that are not located inside enclosed objects. For instance, if an apple is placed inside a
closed refrigerator, it will not appear in the observation of the agent.

A.3 OBSERVATION REPRESENTATION

In the VirtualHome Environment (Puig et al., 2018), observations primarily consist of two compo-
nents: object states and inter-object relationships. The object states describes the state in which
an object exists. For example, the state of television can either be “on” or “off”, i.e., “On(TV)” or
“OffiTV)”. The inter-object relationships are represented using predicates to express the relation-
ships between objects. For example, when a character is in close proximity to a television, there
may be a predicate such as: “Close(character, TV)”. We convert the observations from VH into
English sentences using a rule-based approach. For example, the predicate “Close(character, TV)”
is transformed into “character is close to TV”, and the predicate “”Off(TV)” is transformed into TV
is off™.
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A.4 BASIC STATISTICS

In the gold plan annotated in the dataset, the plan with the longest length consists of 23 actions,
while the average length is 8.13. The frequency distribution histogram regarding the length of the
plan is shown in Figure 6. Furthermore, we have also computed the frequency histograms for actions
and objects, which are depicted in Figure 7 and Figure 8.

mmmmm

Figure 7: Histogram of action frequencies. Cer-  Figure 8: Histogram of object frequencies. Only
tain actions exhibit a significantly higher fre-  objects with a frequency in the top 20 are in-
quency than others, such as Find and Walk. cluded for better visualization.

B MORE IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETER SEARCH

For both Grounded Deciding and ITERATIVE-PLANNER, we conducted a grid search over the sam-
pling parameters of OpenAl APIs. The search range for temperature was set from 0.1 to 1.0 in
increments of 0.1, while the search range for top-p was set to 0.85, 0.9, 0.95, and 1.0.

In the case of Grounded Deciding, the optimal hyperparameter combination was found to be a
temperature of 0.7 and topp of 1.0. As for ITERATIVE-PLANNER, the optimal hyperparameter
combination was a temperature of 0 and topp of 1.0.

B.2 BASELINE MODELS

ZERO-SHOT PLANNER (Huang et al., 2022a) propose to translate each unstructured action gen-
erated by LLM into an admissible action via another pre-trained masked language model. The
translated action is then appended to the prompt used for generating the remaining steps. We uti-
lize the official implementation provided by Huang et al. (2022a), which employs a dynamically
retrieved plan as an exemplar in the prompt. Moreover, concerning the hyper-parameters, we con-
figure the maximum number of steps as 20 and set the early stopping threshold to 0.5 to achieve
optimal performance.

PROGPROMPT (Singh et al., 2022) proposes a programming language-inspired prompt with an
assert statement. These assert statements provide a mechanism for incorporating environment feed-
back into the plan generation process, ensuring that preconditions for each action are met;

B.3 POST-PROCESSING

To ensure the generated plan is actionable in the environment, we further implement a post-
processing module after plan sampling: (i) Format Checking: Actions that do not conform to the
required format and thus cannot be parsed, is discarded. Given the strong format following ability of
GPT-3.5, the number of discarded items is minimal; (ii) Object & Action Translation: Even with
the correct format, the plan generated by the LLM might include actions or objects not present in the
environment. This issue often arises from semantically accurate but not exactly matching results.
For instance, if the environment’s object name is “food_egg”, but the generated action includes
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“egg”, this discrepancy requires resolution. Firstly, we parse the LLM’s action string to identify
the action and object names. Then we use BERT similarity to match these with the environment’s
available actions and objects *. For example, for the LLM’s generated string ’/Switch On] <telly
>’, the action parser identifies "Switch On” as the action and “telly” as the object. These are then
matched with available actions and objects to result in the actionable action ”[SwitchOn] <TV >".

C MORE EXPERIMENTAL RESULTS

C.1 RESULTS BY PLAN LENGTH

EXEC. 1 SR 1 GCR1  NoO.EC/|

0<|al <5 100.00 £0.00 64.72+£5.20 77.12+4.13  0.30+0.15
5<|al <10 83.59+4.03  35.10+5.95 52.25+£3.33 2.47£0.35
10< |a] <15  88.09+8.48  26.98+4.89 55.98+7.00 3.20+1.12
15 < |al 66.67£0.00  22.2240.00 36.11£0.00 4.09£0.21

Table 4: The performance of TREE-PLANNER y—5¢ across different plan sequence lengths.

Table 4 above presents the performance of TREE-PLANNER y—50, categorized by different plan se-
quence lengths. In general, as the plan sequence length increases, the performance of the model
tends to decrease. Specifically, for tasks with plan lengths smaller than 5, the SR can reach 64.72%
and even 100% for EXEC.. However, for tasks with plan lengths larger than 15, the SR decreases
to 22.22% (-42.5%), and EXEC. decreases to 66.67% (-33.33%). Furthermore, as the plan length
increases, the number of corrections in the model also increases. This is due to the higher likeli-
hood of errors accumulating in longer sequential task planning, thus necessitating a greater need
for error correction. The above experimental results provide a more comprehensive analysis of the
performance of our approach, emphasizing potential directions for future enhancements. Further-
more, we have provided the results of LOCAL REPLAN as shown in Table 5. It can be observed that
while TREE-PLANNER maintains comparable performance across different plan lengths, it exhibits
a significant advantage in terms of the number of corrections.

EXEcC. 1 SR 1 GCR 1 No.EC |

0<lal <5 94.17 £2.04 5694+0.79 6946+1.70 1.05+0.32
5<|al <10 77.02£7.63 38.10+3.57 49.66 545 3.92+0.56
10<|a] <15 69.84 +297 2478 +583 4452+2.16 5.14+0.17
15 < |al 7222 £2833 22224+£0.00 35.65+£8.36 4.83+0.87

Table 5: The performance of LOCAL REPLAN across different plan sequence lengths.

C.2 RESULTS BY SCENE

As is shown in Table 6, TREE-PLANNER exhibits consistent performance across various scenes,
thereby further illustrating its robustness.

EXEC. 1 SR 1 GCRt  No.EC|

ENV-1 92.424+2.14 4545£3.71 64.7243.25 1.74+0.44
ENV-2  91.30+4.10 36.75£4.10 52.4347.13 2.33+0.47
ENV-3  85.184+2.62 37.04£2.62 50.80+3.19 1.834+0.39
ENV-4 88.89+3.14 48.89£3.14 66.74+1.72 2.354+0.58

Table 6: The performance of TREE-PLANNER y—5¢ across different scenes.

Shttps://www.sbert .net/
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C.3 DIVERSITY OF SAMPLED PLANS

As shown in Figure 9, the number of different plans varies approximately linearly with the change
in the sampling n. Therefore, when conducting plan sampling, the issue of homogenization due to
the sampled plans will not arise.
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Figure 9: The diversity of plans generated. The x-axis represents the number of programs sampled,
while the y-axis represents the average number of different plans generated.

C.4 UPPER LIMIT OF PLAN SAMPLING

We also compute the corresponding Success Rate (SR) result of Figure 5 by: (i) the maximum SR
for all generated plans, i.e., SRmaz(c) = mfafc(SR(ci)); (ii) the average SR for all generated plans,

i.e., SRavg(c) = SN (SR(c;)). As is shown in Figure 10, the trend of SR concerning N closely
aligns with the trajectory of GCR.
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Figure 10: Maximum and average Success Rate (SR) for all sampled plans.

C.5 EXPERIMENTAL RESULTS WITH BEST-FIRST SEARCH

Language-Guided Best-First Search The edges of the action tree are assigned weights based on
the log probabilities of the actions they lead to. These weights are aggregated when multiple paths
converge into the same action, thereby reflecting the cumulative likelihood of reaching that action
within the context of the tree’s structure. The evaluation function of Language-Guided Best-First

. log (Prob(a;)) .

Search is defined as: fi.(a;) = % Here, a; represents one of the child nodes of a
i€ :

given node and iterates over all child nodes. The softmax function normalizes the log probabilities,

making them suitable for probabilistic comparison and selection.

Environment-Guided Best-First Search Actions are weighted based on the observability of their
associated objects. If all objects involved in an action are observable in the environment, the action
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is assigned a higher weight (1), otherwise, a lower weight (0). To facilitate comparative analysis and
to account for varying numbers of actions and objects, a softmax function is applied to the weights
of actions emanating from each node. The evaluation function of Environment-Guided Best-First

. Observability (a; )
Search is defined as fg(a;) = X;Obib.[yza])
. e

J

Hybrid Best-First Search The Hybrid Method combines the probabilistic language and environ-
ment observability factors. The evaluation function is: fuypria(@i) = afi(a;)+ (1 — <) fe(a;) In this
function, « is a hyper-parameter between 0 and 1 that balances the influence of the language-based
probabilities and the environmental observability

Experimental Setup We conducted experiments in the case of N=50 without error correction. As
for the hyper-parameter o, we heuristically set it to 0.5.

Experimental Results As demonstrated by Table 7, although heuristic methods exhibit a greater
advantage in terms of token efficiency, their SR falls short compared to grounded deciding (using
LLM as an implicit evaluation function). Moreover, combining both evaluation functions yields
even greater performance improvements, thus demonstrating that there is still room for enhancement
through the optimization of the evaluation function in heuristic methods.

Table 7: Experimental Results with Best-First Search

EXEC. 1 SRt GCR 1 $CosT |
TREE-PLANNER 49.01+£5.67 28.14+2.45 35.84+4.20 3.48+0.04
LANGUAGEGUIDED 34.71+0.65 15.06+1.02 22.47+1.72 2.16+0.02
ENVIRONMENTGUIDED 37.26+0.17 6.24+0.65 12.10£1.41 2.163+0.02
HYBRID,—¢.5 38.71+£0.42 17.74+0.69 25.344+0.95 2.1640.02

C.6 PROPORTION OF NEW OBJECTS

The relationship between the number of steps and the proportion of new objects in evaluated tasks
is shown in Figure 11.

X x
x
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Figure 11: Each point represents a distinct task. The proportion of new objects is calculated with
gold plans in the dataset.
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D DETAILS ON TOKEN EFFICIENCY

The detailed derivation of the boundary conditions for NV is as follows:

to prove  [ours < [sbs
pps + MNla| + M - (pga + N) < M - (pps + pga + |a|)
MNla|+ M -N < (M —1)-pps +M - |a]
M-(la|+1)-N<(M—=1)-pps +M - |a

1= UM pp . ld

1+1/lal |a| = |a|+1

Pl

E QUALITATIVE ANALYSIS ON ERRORS

E.1 INCORRECT DECIDING

Task: Hang up jacket
Action Tree: See Figure 12

[Walk] <bedroom> (1)

[Walk] <clothes_jacket> (1)
Layer:0

[Walk] <hanger> (1)
Layer:3

[Find] <clothes_jacket> (1)

[Grab] <clothes_jacket> (1)
Layer:3

Layer:3

[Grab] <clothes_jacket> (1)
Layer:4

[Walk] <hanger> (1)
Layer:4

[PutBack] <clothes_jacket> (1) <hanger> (1)
Layer:5

Figure 12: Visualization of the action tree for Hang up jacket. The red path is the plan chosen by
LLM, while the green path is the correct plan.

Explanation: As depicted in Figure 12, the model made an incorrect decision during the second
step. This is due to the failure of TREE-PLANNER to comprehend the sequential order of searching
for a jacket and searching for a hanger.

E.2 ENVIRONMENT MISUNDERSTANDING

Task: Clean toilet
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Example Plan:

1. [Walk] <bathroom>(1) 7. [Wash] <toilet>(1)

2. [Walk] <toilet>(1) 8. [Find] <mop_bucket>(1)
3. [Pull] <toilet>(1) 9. [Walk] <detergent>(1)
4. [Wash] <toilet>(1) 10. [Grab] <detergent>(1)
5. [Wipe] <toilet>(1) 11. [Pour] <detergent>(1)
6. [Push] <toilet>(1) <mop_bucket>(1)

Explanation: The toilet is not movable, so the execution of step 3 would be failed.

E.3 INCOMPLETE PLAN

Task: Put alarm clock in bedroom

Example Plan:

[Walk] <bedroom>(1)
[Walk] <alarm_clock>(1)
[Find] <alarm_clock>(1)
[Grab] <alarm_clock>(1)
[Find] <dresser>(1)

[Open] <dresser>(1)
[SwitchOn] <alarm_clock>(1)

Nk w =

Explanation: After executing this plan, the alarm clock will be in the hand of the character. How-
ever, a step is missing: [PutBack] the <alarm_clock>(1) on the <dresser>(1) to place the alarm
clock in bedroom.

E.4 ILLOGICAL ERROR

Task: Shave

Example Plan:

1. [Walk] <bathroom>(1) 7. [Walk] <razor>(1)

2. [Find] <shaving_cream>(1) 8. [Find] <razor>(1)

3. [Grab] <shaving_cream>(1) 9. [Grab] <razor>(1)

4. [Walk] <after_shave>(1) 10. [PutOn] <shaving_cream>(1)
5. [Find] <after_shave>(1) 11. [Wash] <headset>(1)

6. [Grab] <after_shave>(1) 12. [PutOn] <after_shave>(1)

Explanation: The character does not have a free hand when executing step 9. This is because, in
steps 3 and 6, the character has already picked up two items.

E.5 SEMANTICALLY CORRECT

Task: Use computer

Example Plan:

1. [Walk] <home_office>(1)
2. [Walk] <computer>(1)
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. [Find] <chair>(1)

. [Sit] <chair>(1)

. [SwitchOn] <computer>(1)
. [Type] <keyboard>(1)

AN L B~ W

Explanation: The error information from the environment is as follows: “<keyboard > cannot be
found when executing “[Type] <keyboard >(1)”. However, at this moment, the character is seated
in front of the computer, indicating that the keyboard should be located near the character.

E.6 MORE RESULTS ON ERROR TYPES

As illustrated in Table 8, we conducted a further analysis of the error types in the
TREE-PLANNER y—25 model with correction. The distribution is strikingly similar to that of the
model without correction. Moreover, owing to the presence of error correction, the model demon-
strates enhanced capability in avoiding semantically correct errors during the grounded deciding
stage.

F PROMPTS

F.1 ITERATIVE-PLANNER

(Instruction) You need to act as a task planner who decomposes a high-level household task into
several sub-tasks. The temporal relationship between subtask sequences must adhere to common-
sense logic. Each sub-task can be one of the following form: 1. [action_name]; 2. [action_name]
<object name 1>(object id 1). 3. [action_name] <object name 1>(object id 1) <object name
2>(object id 2). The number of arguments depends on the action type. The (object id) is used to tell
the simulator that the actions should be done on the same object instance. For example a program
as: [Walk] <glass>(1) [Grab] <glass>(1) Indicates that the agent should first walk to a glass and
then grab that same glass. If you think your task has been successful, you can output [END], which
is action type 1.

(Global Information) For action type 1, the available actions are: [Sleep], [StandUp], [WakeUp]
For action type 2, the available actions are: [Walk], [Find], [Grab], [Wash], [Wipe], [Pull], [Push],
[Pour], [TurnTo], [PointAt], [Watch], [Touch], [Open], [Close], [Run], [Sit], [Read], [PutOn],
[Drop], [Lie], [SwitchOn], [SwitchOff], [Drink] For action type 3, the available actions are: [Putln],
[PutBack] All action_name of the sub-tasks must be chosen from the above actions, and follow the
corresponding format. You are in a house that consists of four rooms. These rooms are bathroom,
dining_room, bedroom, home_office. Available objects in the house are : clothes_hat, ceilinglamp,
cpuscreen, orchid, couch, trashcan, dresser, dishwasher, centerpiece, phone, toaster, measuring_cup,
stereo, mat, computer, envelope, oven_mitts, piano_bench, box, photoframe, shower, ceiling, wall,
window, freezer, faucet, detergent, light, desk, napkin, food_rice, kitchen_counter, folder, stovefan,
walllamp, food_food, coffee_pot, food_steak, jelly, vacuum_cleaner, powersocket, filing_cabinet, al-
cohol, bathroom, door, bathroom_counter, clothes_gloves, microwave, oven, sink, milk, ice, bed-
room, laptop, doorjamb, food_cake, bills, tea_bag, television, laser_pointer, toilet, board_game,
sponge, food_carrot, table, tray, cupboard, mousepad, picture, tvstand, tablelamp, hanger, pot,

Table 8: Distribution of error types of the TREE-PLANNER y—25 with correction model.

Error Type Explanation Proportion(%)

Missing Correct Plans Plan sampling did not yield correct plans 52.6%
Environment Misunderstanding ~ Misunderstandings on actions or objects 21.1%
Incomplete Plan The absence of essential steps 15.8%
Illogical Error The generated plan is logically incorrect 5.3%
Semantically Correct Execution failed but semantically correct 10.5%

Grounded Deciding Error Errors during grounded deciding 47.4%
Incorrect Deciding Incorrect decisions at specific nodes 47.4%
Semantically Correct Execution failed but semantically correct 0.0%
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dry_pasta, floor, knifeblock, curtain, chair, food_bread, drawing, creditcard, check, coffe_maker,
character, pasta, bag, food_bacon, bookshelf, toothbrush_holder, cutting_board, home_office, din-
ing_room, nail_polish, pillow, tape, nightstand, bathroom_cabinet, bench, conditioner, cat, bed, key-
board, mouse All object names must be chosen from the above object list

(Observation) Currently, you are standing in the bedroom, and holding nothing in your right hand
and nothing in your left hand. pillow is clean. napkin is clean. pillow is dirty. bed is clean. mat is
dirty. pillow is close to drawing. tablelamp is close to bed. mat is facing drawing. pillow is inside
bedroom. mat is close to table. bed is close to drawing. table is close to mat. pillow is on floor. floor
is close to bed. tablelamp is close to pillow. mat is close to curtain. bed is facing computer. mat is
close to floor. pillow is facing drawing. curtain is close to mat. bed is close to tablelamp. wall is
close to mat. napkin is inside bedroom. window is close to mat. pillow is close to tablelamp. bed is
close to floor. pillow is close to wall. mat is close to filing_cabinet. drawing is close to bed. pillow
is close to floor. bed is close to wall. filing_cabinet is close to mat. bed is close to nightstand. mat is
inside bedroom. pillow is close to pillow. pillow is close to nightstand. mat is close to wall. wall is
close to pillow. nightstand is close to pillow. nightstand is close to bed. drawing is close to pillow.
floor is close to pillow. bed is inside bedroom. floor is close to mat. wall is close to bed. mat is close
to window. pillow,napkin,pillow,mat,bed,pillow,pillow is inside bedroom.

(In-Context Examples)
Task: Watch TV

[Find] <remote_control>(1)
[Find] <television>(1)
[SwitchOn] <television>(1)
[Find] <couch>(1)

[Sit] <couch>(1)

[Touch] <remote_control>(1)
[TurnTo] <television>(1)
[LookAt] <television>(1)

Task: Turn on light

Walk] <dining_room>(1)
Walk] <light>(1)

Find] <light>(1)
SwitchOn] <light>(1)
Find] <light>(2)
SwitchOn] <light>(2)

S

Task: Go to sleep
[Walk] <bedroom>(1)
[Walk] <bed>(1)
[Lie] <bed>(1)
[Sleep]

Task: Brush teeth
[Walk] <bathroom>(1)
[Walk] <toothbrush_holder>(1)

[Find] <toothbrush_holder>(1)

[Find] <toothbrush>(1)

[Grab] <toothbrush>(1)

[Walk] <tooth_paste>(1)

[Find] <tooth_paste>(1)

[Grab] <tooth_paste>(1)

[Pour] <tooth_paste>(1) <toothbrush>(1)
[Find] <teeth>(1)

[Scrub] <teeth>(1)
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Task: Take nap
[Walk] <bedroom>(1)

F.2 PLAN SAMPLING

(Instruction) You need to act as a task planner, who decompose a high-level household task into
several sub-tasks. The temporal relationship between subtask sequences must adhere to common-
sense logic. Each sub-task can be one of the following form: 1. [action_name]; 2. [action_name]
<object name 1 >(object id 1). 3. [action_name] <object name 1 >(object id 1) <object name 2
>(object id 2). The number of arguments depends on the action type. The (object id) is used to tell
the simulator that the actions should be done on the same object instance. For example a program
as: [Walk] <glass>(1) [Grab] <glass>(1) Indicates that the agent should first walk to a glass, and
then grab that same glass.

(Global Information) For action type 1, the available actions are: [Sleep], [StandUp], [WakeUp]
For action type 2, the available actions are: [Walk], [Find], [Grab], [Wash], [Wipe], [Pull], [Push],
[Pour], [TurnTo], [PointAt], [Watch], [Touch], [Open], [Close], [Run], [Sit], [Read], [PutOn],
[Drop], [Lie], [SwitchOn], [SwitchOff], [Drink] For action type 3, the available actions are: [Putln],
[PutBack] All action_name of the sub-tasks must be chosen from the above actions, and follow the
corresponding format. You are in a house that consists of four rooms. These rooms are bathroom,
dining_room, bedroom, home_office. Available objects in the house are : clothes_hat, ceilinglamp,
cpuscreen, orchid, couch, trashcan, dresser, dishwasher, centerpiece, phone, toaster, measuring_cup,
stereo, mat, computer, envelope, oven_mitts, piano_bench, box, photoframe, shower, ceiling, wall,
window, freezer, faucet, detergent, light, desk, napkin, food_rice, kitchen_counter, folder, stovefan,
walllamp, food_food, coffee_pot, food_steak, jelly, vacuum _cleaner, powersocket, filing_cabinet, al-
cohol, bathroom, door, bathroom_counter, clothes_gloves, microwave, oven, sink, milk, ice, bed-
room, laptop, doorjamb, food_cake, bills, tea_bag, television, laser_pointer, toilet, board_game,
sponge, food_carrot, table, tray, cupboard, mousepad, picture, tvstand, tablelamp, hanger, pot,
dry_pasta, floor, knifeblock, curtain, chair, food_bread, drawing, creditcard, check, coffe_maker,
character, pasta, bag, food_bacon, bookshelf, toothbrush_holder, cutting_board, home_office, din-
ing_room, nail_polish, pillow, tape, nightstand, bathroom_cabinet, bench, conditioner, cat, bed, key-
board, mouse All object names must be chosen from the above object list

(Initial Observation) Currently, you are standing in the home_office, and holding nothing in your
right hand and nothing in your left hand.

(In-Context Examples)
Task: Watch TV

[Find] <remote_control>(1)
[Find] <television>(1)
[SwitchOn] <television>(1)
[Find] <couch>(1)

[Sit] <couch>(1)

[Touch] <remote_control>(1)
[TarnTo] <television>(1)
[LookAt] <television>(1)

Task: Turn on light

[Walk] <dining_room>(1)
[Walk] <light>(1)

[Find] <light>(1)
[SwitchOn] <light>(1)
[Find] <light>(2)
[SwitchOn] <light>(2)

Task: Go to sleep
[Walk] <bedroom>(1)
[Walk] <bed>(1)
[Lie] <bed>(1)
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[Sleep]

Task: Brush teeth
[Walk] <bathroom>(1)
[Walk] <toothbrush_holder>(1)

[Find] <toothbrush_holder>(1)

[Find] <toothbrush>(1)

[Grab] <toothbrush>(1)

[Walk] <tooth_paste>(1)

[Find] <tooth_paste>(1)

[Grab] <tooth_paste>(1)

[Pour] <tooth_paste>(1) <toothbrush>(1)
[Find] <teeth>(1)

[Scrub] <teeth>(1)

Task: Take nap

F.3 GROUNDED DECIDING

(Instruction) You need to act as a home robot. At each moment, [ will provide you with observations
of your current environment, as well as the high-level task I want you to do, and previous mid-level
sub-tasks that have been executed. Then, you need to select the best sub-task from the options I
provide to complete the designated home task based on the observation and your past experience.
When one choosed sub-task causes an error in the environment, you will be provided with the error
information and the corresponding sub-task, and you need to re-choose a corrective sub-task at the
current time step. For example, The sub-tasks that have been executed in the environment are:
[GRAB] <plate>(1)

[WALK] <dining room>(1)

The choosed sub-task is: [PUTBACK] <plate>(1) <table>(1)

The prompt (error information) would be: The sub-task: "[PUTBACK] <plate>(1) <table>(1)”
caused an error: Script is not executable, since <character>(1) is not close to <table>(1) when
executing "[PUTBACK] <plate>(1) <table>(1) [1]” Among the following actions, which action
would you take.

A. [Find] <table>(1)

B. [Find] <plate>(1)

A corrective choice of sub-task would be (You just need to provide the mark before the option you
want to choose): A

(Observation) Currently, you are standing in the bedroom, and holding nothing in your right hand
and nothing in your left hand. pillow is clean. napkin is clean. pillow is dirty. bed is clean. mat is
dirty. pillow is close to drawing. tablelamp is close to bed. mat is facing drawing. pillow is inside
bedroom. mat is close to table. bed is close to drawing. table is close to mat. pillow is on floor. floor
is close to bed. tablelamp is close to pillow. mat is close to curtain. bed is facing computer. mat is
close to floor. pillow is facing drawing. curtain is close to mat. bed is close to tablelamp. wall is
close to mat. napkin is inside bedroom. window is close to mat. pillow is close to tablelamp. bed is
close to floor. pillow is close to wall. mat is close to filing_cabinet. drawing is close to bed. pillow
is close to floor. bed is close to wall. filing_cabinet is close to mat. bed is close to nightstand. mat is
inside bedroom. pillow is close to pillow. pillow is close to nightstand. mat is close to wall. wall is
close to pillow. nightstand is close to pillow. nightstand is close to bed. drawing is close to pillow.
floor is close to pillow. bed is inside bedroom. floor is close to mat. wall is close to bed. mat is close
to window. pillow,napkin,pillow,mat,bed,pillow,pillow is inside bedroom.

Your task is: Take nap.

(History)
Your previously executed sub-tasks are:
[Walk] <bedroom>(1)

Among the following sub-tasks, which one would you take.
A. [FIND] <bed>(1)
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B. [WALK] <couch>(1)

C. [WALK] <bed>(1)

D. [FIND] <couch>(1)

E. [FIND] <pillow>(1)

The best choice of sub-task is:

G VISUALIZED ACTION TREE

‘We visualized the action trees for the tasks listed in Table 9 for interested readers.

Task Action Tree
Take nap See Figure 13
Put on your shoes See Figure 14
Pick up spare change on dresser ~ See Figure 15
Clean toilet See Figure 16
Put alarm clock in bedroom See Figure 17

Table 9: Action trees for various tasks.

[Walk] <couch> (1)
Layer0

[Walk] <bed> (1)
Layer:1

[Walk] <bedroom> (1)
Layer)

[LookAt] <bed> (1)
Layer4

Figure 13: Visualization of the action tree for Take nap.
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Figure 14: Visualization of the action tree for Put on your shoes.
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Pick up spare change on dresser
Layer:-1
[Walk] <bedroom> (1)
Layer:0
[Walk] <dresser> (1)
Layer:1

[Find] <dresser> (1)
Layer:2

[Pull] <dresser> (1) [Grab] <coin> (1) [Open] <dresser> (1) [Find] <coin> (1)
Layer:3 Layer:3 Layer:3 Layer:3
[Find] <coin> (1) [Grab] <coin> (2) [END] [Find] <coin> (1) [Grab] <coin> (1)
Layer:4 Layer:4 Layer:4 Layer:4 Layer:4

[Grab] <coin> (1) [END] [Grab] <coin> (1) [END]

Layer:5 Layer:5 Layer:5 Layer:5
[Close] <dresser> (1) [END]
Layer:6 Layer:6

Figure 15: Visualization of the action tree for Pick up spare change on dresser.

Figure 16: Visualization of the action tree for Clean foilet.
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Figure 17: Visualization of the action tree for Put alarm clock in bedroom.
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