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ABSTRACT

The identification of unobserved links in drug-related biomedical networks is
essential for various drug discovery applications, which is also beneficial for
both disease diagnosis and treatment through exploring the underlying molecular
mechanisms. However, existing solutions face significant challenges due to three
main limitations: (1) lack of interpretability to provide comprehensive and reli-
able insights, (2) insufficient robustness and flexibility in cold-start scenarios, and
(3) inadequate interaction and sharing of multi-view information. In light of this,
we propose DrugXAS, an interpretable and adaptive cross-view contrastive learn-
ing framework with information sharing for biomedical link prediction. Specif-
ically, DrugXAS has three distinctive characteristics for addressing these chal-
lenges. To solve the first problem, we propose an attention-aware augmentation
scheme to provide understandable explanations of intrinsic mechanisms. To deal
with the second challenge, we propose an adaptive graph updater and neighbor-
hood sampler, which select proper neighbors according to the feedbacks from the
model to improve aggregation ability. To tackle the third issue, an information
sharing module with diffusion loss is proposed to incorporate chemical struc-
tures into heterogeneous relational semantics and facilitate the contrast process.
Empirically, extensive experiments on seven benchmark datasets involving multi-
type tasks demonstrate that the proposed DrugXAS outperforms the state-of-the-
art methods in terms of precision, robustness, and interpretability. The source
code of DrugXAS is available at https://anonymous.4open.science/
r/DrugXAS-8EC7.

1 INTRODUCTION

Discovering unknown molecular interactions and associations within biomedical networks is im-
mensely valuable in practical applications (Muzio et al., 2020), including finding novel biomarkers
for diseases, repurposing drugs for other purposes, and identifying drug side effects (Ding et al.,
2024a). While a vast number of links have been identified through wet experiments or clinic reports,
many remain undiscovered (Zhong & Mottin, 2023). Furthermore, determining potential links us-
ing wet experimental techniques is extremely expensive, time-consuming, and labor-intensive (Feng
et al., 2024b). Recently, researchers have exploited computational methods to predict links in drug-
related biomedical networks and achieved remarkable success (Ma et al., 2023; Li et al., 2022).
Considering that interactions/associations between molecules and entities can be readily expressed
as networks, with molecules as nodes and interactions as edges, graph neural networks (GNNs)
have demonstrated extraordinary capabilities and potential in biomedical link prediction tasks (Wang
et al., 2024a; Liu et al., 2024b). Despite numerous efforts and impressive achievements, the current
research state of biomedical link prediction faces several key challenges that limit the application.
Here, we highlight the following three issues and deficiencies that need to be addressed:

(1) Interpretability. Interpretability, the capacity to explain and elucidate the outputs of deep learn-
ing models, is particularly significant in drug-related research since it has a tremendous impact on
patients’ trust and assists medical professionals (Ding et al., 2024b). There is an emerging demand
for drug discovery methods that offer greater reliability and aid in the comprehension of underlying
models. However, a significant obstacle of existing drug-related link prediction lies in their lack
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of interpretability (Feng et al., 2024a; Yu et al., 2021). To this end, there is still ample scope for
investigation in the field of advanced interpretability to produce explanations that are more com-
prehensive and flexible, which is beneficial for understanding the inherent mechanisms and patterns
of the task. In essence, this leads us to the following problem: how to provide reasonable and
meaningful explanations for predictions to achieve interpretability from a biomedical perspective?

Figure 1: The illustration of cold-start problem.

(2) Cold-Start Scenario Applications. Ex-
isting models mainly focus on datasets where
drugs and entities are randomly split, with
drugs and entities in the test set having already
appeared in the training set. Nonetheless, this
situation is far from realistic, where the major-
ity of drugs or entities are absent from the train-
ing set (Pahikkala et al., 2014), leading to a dra-
matic drop in prediction performance of cur-
rent methods (Wang et al., 2022). This issue,
refers to the cold-start problem in recommen-
dation systems, severely restricts the practical
application of biomedical link prediction techniques (Ye et al., 2021). Learning robust and stable
representations of novel drugs and entities in the absence of known correlation information is one of
the primary challenges facing cold-start link prediction (Hao et al., 2021). For instance, in the warm
scenario depicted in Figure 1(a), messages from high-order neighbors can be aggregated to target
node drug d1. However, in the cold-start scenario, only the 1-order neighbor entities e2 and e4 can
be utilized to represent d1, which are both cold-start nodes without known associations, leading to
insufficient information and suboptimal representations. Towards this end, the cold-start problem
motivates us the second research question: how to enhance the representation learning capability
for cold-start scenarios?

(3) Exploration of Multi-view Information. Although graph contrastive learning (GCL), particu-
larly cross-view GCL, has emerged as an effective representation learning framework for biomedical
link prediction (Zhang et al., 2024), current GCL-based models only consider a portion of biomedi-
cal knowledge (Ma et al., 2023). Since molecular chemical information and biomedical interaction
modeling frequently have heterogeneous rather than monomorphic dependencies, with the former
focusing on fine-level and the latter based on coarse-level, it is crucial to achieve interaction and
sharing of information between the two views (Xie et al., 2024; Wu et al., 2024). Each drug has
unique chemical traits and a variety of link patterns for the inherent interaction mechanisms, thus
the influence and contribution of different source of data may be entirely different. For instance,
molecular structure information is more vital for tasks in which molecular actions and mechanisms
play a key role, such as drug-target interactions (DTIs) and drug-side effects (DSEs). Blindly en-
coding features without considering their individual and distinctive characteristics easily results in
suboptimal learned embeddings (Liu et al., 2024a). In view of this obstacle, we are intuitively in-
spired to ask the following question: how to effectively interact and share knowledge across different
views to make full use of both link and auxiliary information?

To address the above-mentioned challenges in Drug-related biomedical link prediction, a novel
Interpretable (X) and Adaptive contrastive learning model with Information Sharing is proposed,
termed as DrugXAS. We highlight our primary contributions as follows: (1) To overcome the first
limitation, DrugXAS devises a novel attention-aware graph augmentation strategy, enabling our
model adaptively focus on important molecular structures and potential biomedical associations.
Moreover, the network-view augmentation facilitates DrugXAS in providing rational explanations
of the prediction results thereby achieving interpretability. (2) To tackle the second challenge,
DrugXAS proposes an adaptive graph updater with a neighborhood sampler to dynamically se-
lect effective neighbors according to the feedbacks from the encoder. (3) To handle the third issue,
DrugXAS proposes an information sharing module between molecule- and network-view compo-
nents (InSMN) and a diffusion loss scheme to further advance cross-view contrastive learning. The
information sharing module extracts topological and chemical information from two views simulta-
neously, while the diffusion loss aims to bring the representations of the two views closer, optimizing
contrastive learning. (4) Extensive experiments are conducted on seven public datasets of different
types of tasks, demonstrating the superiority of DrugXAS compared with state-of-the-art methods
under both warm and cold-start scenarios.
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2 RELATED WORK

Biomedical Link Prediction. The goal of drug-related biomedical link prediction is to predict
whether there is a link between a particular pair of drugs and entities (Wang et al., 2024b). In partic-
ular, SkipGNN (Huang et al., 2020) introduces skip similarity into GNNs by aggregating information
from low to high orders. SiGrac (Coşkun & Koyutürk, 2021) designs a novel node similarity-based
graph convolution process with multiple measures of similarity. Zhao et al. (2021) propose CSGNN,
which leverages the GNN aggregator from mix-hop neighborhoods and utilizes contrastive learning
for multi-task prediction. MVGCN (Fu et al., 2021) devises a multi-view graph convolution network
(GCN) with inter- and intra-view neighborhood aggregators. HOGCN (KC et al., 2022) focuses on
high-order information, aggregating neighbor nodes information at different distances. Shen et al.
(2024) propose CGCN, which adopts a curvature-enhanced GCN to learn local geometric attributes.
Li et al. (2024a) propose SubKNet, which employs a graph kernel neural network to the extracted
subgraphs for learning node representations.

Graph Contrastive Learning. Contrastive learning aims to maximize the agreement between
positive samples while pushing away negative samples under appropriate data augmentations (Li
et al., 2024b). Here we primarily focus on GCL methodologies. For example, Veličković et al.
(2018) propose DGI, which creates positive samples by combining local and global semantics while
the negatives are represented by nodes in a randomly damaged network. GMI (Peng et al., 2020)
proposes a fine-grained contrastive loss by comparing the topological structure and node properties.
Hassani & Khasahmadi (2020) propose MVGRL, which exploits cross-view contrastive learning of
nodes and graphs. With respect to heterogeneous graph representation learning, DMGI (Park et al.,
2020) performs contrastive learning between the original network and the corrupted network on
each individual view and meta-path. Wang et al. (2021) propose HeCo, which devises two views of
the heterogeneous graph, learning node features from both local and high-order structures. H-GCL
(Zhu et al., 2023) is proposed to employ hypergraph to establish the augmented view for learning
high-quality embeddings.

3 PRELIMINARY

Biomedical Heterogeneous Graph. A biomedical heterogeneous graph can be defined as an undi-
rected graph G = (V, E), with a node type mapping function ϕ : V → O and an edge type mapping
function φ : E → R. V represents the set of nodes which corresponds to drugs and other types of
biomedical entities such as targets, diseases and side effects, etc. E is the set of edges (i.e., links)
between nodes in V , corresponding to associations or interactions between biomedical entities.

Drug Molecular Graph. Given a drug di, the molecular graph is formulated as Gdi
= (M,A),

where M denotes the set of atoms of the drug and A represents the set of bonds between atoms.

Biomedical Link Prediction. Given the drug-entity pair (di, ej) in biomedical graph G, our work
aims to evaluate the probability score between this pair of drug and entity with correlation hetero-
geneity, i.e., learn a mapping function to predict the link probability between drug di and entity
ej .

Cold-start Scenario. (1) Cold-drug Task: Each drug that appears in the training set does not
appear in the test set, while each entity can appear in both training and test set. (2) Cold-entity Task:
Each entity that appears in the training set does not appear in the test set, while each drug can appear
in both training and test set. (3) Cold-pair Task: Neither the drug nor the entity in the training set
appear in the test set.

4 METHOD

In this section, we elaborate the detailed architecture of our proposed DrugXAS, an interpretable
and adaptive cross-view contrastive learning model with information sharing module, whose overall
framework is sketched in Figure 2.
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Figure 2: The overall framework of our proposed DrugXAS.

4.1 MOLECULE-VIEW REPRESENTATION LEARNING

Drug Molecular Graph Construction. To obtain chemical property as auxiliary information,
drugs are modeled as undirected molecular graphs to learn representations from molecule-view
encoder. For the given drug di, we construct the corresponding molecular graph Gdi

with 41-
dimensional node features (Jiang et al., 2021).

Molecule-view Augmentation. Inspired by (Chen et al., 2023b; Liu et al., 2022), we design an
attention-aware augmentation strategy for generating high-quality augmented molecular graphs,
which serves as a selection index to measure the contribution and importance of each atom and
bond. We propose to use the attention mechanism of GATv2 (Brody et al., 2021) to learn the infor-
mation strength of atoms and bonds, as follows:

αai,aj =
exp

(
aT

(
LeakyReLU

(
W

[
hai∥haj

])))∑
k∈Nai

exp (aT (LeakyReLU (W [hai∥hak ])))
. (1)

where αai,aj
denotes the calculated attention score between atom node ai and aj . Subsequently,

we employ two molecular graph augmentation methods for input drugs according to the learned
attention matrix, i.e., atom masking and bond deletion, whose detailed implementation is presented
in Appendix A due to the page limitation. Instead of utilizing a fixed augmentation ratio, we employ
a variable and dynamic augmentation ratio that allows our model to sustain stable performance
regardless of fluctuations in the amount of input information (Tian et al., 2023). To be concrete, the
augmentation ratio is gradually increased with regard to the training epoch, following a linear change
that enables the model to adaptively learn from easier to more difficult scenarios. Mathematically,
the augmentation ratio at epoch te can be defined as pte = p0 + te ·∆p, where p0 is the initial ratio
and the maximum ratio is set to px.

GNN Encoder. The augmented molecular graphs are then put into GNN encoders with the mean
pooling readout function. Here we also apply GATv2 as the backbone encoder due to its universal
and powerful attention layer. We denote the encoded molecule-level embedding as Hm ∈ Rnd×d.

4.2 NETWORK-VIEW REPRESENTATION LEARNING

Biomedical Heterogeneous Graph Construction. In the network-view, for better adaptation to
cold-start scenarios, we first supplement the constructed biomedical heterogeneous graph G with ad-
ditional similarity information. To be specific, we select the top kn nodes with the highest similarity
for each node and add them as new edges to construct the enhanced graph Ḡ.

Dynamic Neighborhood Sampling. Drawing inspiration from previous work (Mao et al., 2023),
we sample the fixed number of neighbors of each node as neighborhood sequence for message
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propagation. Given the target node, we iteratively add its neighbors from 1-hop to higher hop to
the neighborhood sequence until the sequence length reaches sn. Formally, taking target drug d

as an example, the sampled neighborhood can be represented as Sd = [d, d1, . . . , dsn−1]
T, and

the corresponding feature embedding is denoted as HS
d =

[
hd,hd1 , . . . ,hdsn−1

]T ∈ Rsn×d. The
fixed and unified length of neighborhood facilitates the capture of long-range dependencies, and is
compatible with the subsequent attention layer and HGNN encoder. Furthermore, the neighborhood
sampling operation is implemented at every epoch, resulting in dynamically sampled neighborhoods
that introduce stochastic uncertainty to enhance the generalization of our model.

Network-view Augmentation. The network-view augmentation is also based on the learned at-
tention matrix. To be precise, the attention layer of Eq.(1) is applied on each neighborhood sequence
to produce the attention matrix as a guidance of data augmentation. The three types of augmentation
strategy employed in the network-view are illustrated in Appendix A, including node masking, edge
adding, and edge deletion. The augmentation ratio in this view is also dynamically variable.

HGNN Encoder. Local structure information has been proven to be essential for the HGNN model
(Lv et al., 2021). We introduce GCN (Kipf & Welling, 2016) to provide local sub-structure enhanced
node features, which is simple yet competitive for HGNN since that the heterogeneity can be learned
through heterogeneous feature projection (Liu et al., 2023). Then we employ the transformer en-
coder (Vaswani et al., 2017) to capture information from long-range dependencies. The entire inputs
of the transformer module for drugs and entities are the sampled neighborhood sequences, denoted
by Hns(0) ∈ Rnd×sn×d and Hes(0) ∈ Rne×sn×d, respectively. We modify the two main com-
ponents in transformer to reduce parameters and increase efficiency. Specifically, we replace the
original dot-product self-attention mechanism with the GATv2 attention mechanism. Additionally,
the feed-forward network is removed, which has less negative impact on prediction performance.

Adaptive Graph Update. In order to adapt the real cold-start scenarios, inspired by (Hao et al.,
2021; 2023), we propose an adaptive graph update pipeline, dynamically updating edges and ex-
tracting similar node information according to the current model itself. Formally, we select the top
kn relevant nodes as new neighbors for di according to the calculated cosine similarity between drug
di and dj . Ultimately, we update the biomedical graph Ḡ by adding new neighbors to replace the
enhanced neighbors for each drug and entity according to similarity, which is then used in the next
epoch. The proposed update strategy enables considering the cold-start characteristics of the node
neighbors and adaptively selecting appropriate neighbors for message propagation.

Figure 3: Illustration of the inter-
action processes between InSMN
module and two views.

InSMN Module. Real-world scenarios demonstrate that the
significance of representations varies according to different
tasks and drugs/entities, which highlights the necessity of the
information sharing and interaction to comprehensively ex-
ploit drug information. Hence, the InSMN module is pro-
posed to integrate and fuse the fine-level molecular structure
knowledge with the semantic and heterogeneous information
in the biomedical graph. We first take the molecule-view em-
bedding Hm(l) from the l-th GNN layer and the network-view
representation Hn(l) of the l-th transformer layer as the input.
Subsequently, the meta network (Xia et al., 2021; Chen et al.,
2023a) is leveraged to extract meta knowledge for preserving
important properties from both auxiliary molecule-view and
network-view:

Hnm(l) = Hn(l)
∥∥∥Hm(l)

∥∥∥ ∑
j∈Ndi

h
n(l)
di

, (2)

W
nm(l)
1 = f l1

mlp

(
Hnm(l)

)
, W

nm(l)
2 = f l2

mlp

(
Hnm(l)

)
, (3)

where || is concatenation, Hnm(l) ∈ Rnd×3d denotes the meta knowledge with contextual infor-
mation for sharing and exchange; f l1

mlp and f l2
mlp are the meta knowledge transformation networks
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consisting of two PReLU-activated linear layers. Wnm(l)
1 ,W

nm(l)
2 ∈ Rnd×d×ki denote the sharing

matrices containing the unique characteristics of drugs, where the transformation rank is restricted
as ki < d to reduce parameters and boost the stability. The ultimate cross-view sharing embeddings
for two views are created through fusion as

Hm(l+1) = σ
(
W

nm(l)
1 W

nm(l)
2 Hm(l)

)
+Hm(l), (4)

Hn(l+1) = σ
(
W

nm(l)
1 W

nm(l)
2 Hn(l)

)
+Hn(l). (5)

where σ denotes the PReLU activation function. Hm(l+1) and Hn(l+1) are used as the inputs of
the next layer in the GNN encoder and transformer module, respectively. For the molecule-view
module, let h(l)

di
be the node feature vector of drug di in the l-th GNN layer, we mix the network-

view information into its molecular representation learning process as follows (Bi et al., 2023):

h
(l+1)
di

=
[
h
(l)
di

⊕ hm(l+1)
]
∥
[
h
(l)
di

⊖ hm(l+1)
]
. (6)

where ⊕ and ⊖ denote element-wise addition and subtraction operations, respectively. The drug
molecules can adaptively acquire coarse-level network link information through this manner for
enhancing representation learning ability. With respect to the network-view, Hn(l+1) is directly
leveraged to substitute Hns(l)[0] of the sampled neighborhood sequences at the l-th transformer
module to produce Hns(l), , which is then used as input of the (l + 1)-th transformer module. The
interaction processes between InSMN module and two views are illustrated in Figure 3.

4.3 CROSS-VIEW GRAPH CONTRASTIVE LEARNING

Contrastive Loss. The obtained drug representations from two views are fed into a three-layer
linear layer with ReLU activation function to map to the common space, denoted as H̃m and H̃n,
respectively. The InfoNCE-based contrastive loss is defined for the alignment of two view embed-
dings:

Lm
di = − log

∑
dj∈Pdi

exp
(
cos

(
h̃m
di
, h̃n

dj

)
/τ

)
∑

dk∈{Pdi∪Ndi} exp
(
cos

(
h̃m
di
, h̃n

dk

)
/τ

) , (7)

Ln
di = − log

∑
dj∈Pdi

exp
(
cos

(
h̃n
di
, h̃m

dj

)
/τ

)
∑

dk∈{Pdi∪Ndi} exp
(
cos

(
h̃n
di
, h̃m

dk

)
/τ

) , (8)

Lcon =
1

|Vd|
∑

di∈Vd

[
λ · Lm

di + (1− λ) · Ln
di

]
. (9)

where cos(·) denotes the cosine similarity function, τ and λ are temperature parameters. Pdi
and

Ndi represent the corresponding positive and negative sample sets for di, respectively.

Diffusion Loss. The above molecule- and network-view representation learning modules capture
drug embeddings at different granularities, where the molecule-view learns information from a sin-
gle molecular structure while the network-view extracts biomedical knowledge based on the hetero-
geneous topological attribute. To this end, we propose to employ the diffusion model to exchange
information between the two different views, bridging the gap between molecule and network rep-
resentations, and aiding the contrast process. Following the DDPM (Ho et al., 2020) framework, we
inject Gaussian noises into the acquired representations Hm and Hn for corruption. Concretely, the
noises are added into each representation as:

q
(
Hm

t | Hm
t−1

)
= N

(
Hm

t ,
√

1− βtH
m
t−1, βtI

)
, (10)

where t ∈ {1, 2, . . . , T} denotes the current diffusion step, βt is the variance schedule of the step
t, I is the identity matrix, and N denotes the Gaussian distribution which Hm

t is sampled from.
The reverse process aims to iteratively recover the corrupted embedding Hm

t through the denoising
module, where the neural network model is required to approximate the reverse distribution:

p
(
Hm

t−1 | Hm
t

)
= N

(
Hm

t−1;µθ (H
m
t , t) ,Σθ (H

m
t , t)

)
. (11)
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where θ represents the learnable parameters of the neural network, µθ (H
m
t , t) and Σθ (H

m
t , t) are

the mean and covariance of the Gaussian distribution. Regarding the denoising network fθ, moti-
vated by (Zhu et al., 2023; Yang et al., 2023), we utilize GNN to directly predict the embedding,
which is more suitable for the non-Euclidean data. Specifically, we construct the drug similarity
graph Gds by selecting top kn drugs with the highest similarity of representation Hn. Next, the
GATv2 is set as the denoising model to reconstruct Hn from Hn

t , yielding Ĥm. The recovered rep-
resentation of the network-view can be generated in the similar way, denoted as Ĥn. The diffusion
loss is formulated as the expected value of the L2 distance to optimize the two diffusion processes:

Ldiff = Eq

[∥∥∥Hn − Ĥm
∥∥∥2]+ Eq

[∥∥∥Hm − Ĥn
∥∥∥2] . (12)

4.4 OPTIMIZATION OBJECTIVES

The contrastive loss and diffusion loss are combined to jointly optimize our self-supervised cross-
view contrastive learning model:

Lssl = γ · Lcon + (1− γ) · Ldiff . (13)

where γ is the weighting coefficients. The trained DrugXAS model is then fine-tuned for the down-
stream link prediction task, where the fine-tuned drug representation Hn and entity representation
He are utilized to produce the link pair embedding via the dot product operation. The final prob-
ability of the corresponding link existence is output through a three-layer MLP. We use the binary
cross-entropy loss as the optimization objective for link prediction.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the performance of DrugXAS, we focus on five types of drug-related
biomedical link prediction tasks, including predicting DTIs, drug-disease associations (DDAs),
DSEs, miRNA-drug resistance associations (MDAs) and circRNA-drug sensitivity associations
(CDAs). Seven widely used benchmark datasets are employed, i.e., LuoDTI (Luo et al., 2017) and
ZhengDTI (Zheng et al., 2018) for DTI prediction, LiangDDA (Liang et al., 2017) and ZhangDDA
(Zhang et al., 2018) for DDA prediction, PauwelsDSE (Pauwels et al., 2011) for DSE prediction,
HuangMDA (Huang et al., 2019) for MDA prediction, and DengCDA (Deng et al., 2022) for CDA
prediction. The statistic information of these datasets is presented in Appendix B.

Evaluation Protocols. We treat the known links as the positive samples and randomly select an
equal number of unlinked drug and entity pairs as negative samples (Fu et al., 2021). Five-fold cross-
validation is implemented on each dataset to conduct both warm and cold-start experiments. Two
evaluation metrics are employed to measure the performance: the area under the receiver operating
characteristic curve (AUC) and the area under the precision-recall curve (AUPR). Please refer to
Appendix C for the implementation details and hyperparameter setups.

Table 1: Performance comparison in warm scenarios in terms of AUC and AUPR. The best results
are bold, and the second-best results are underlined.

Datasets Metric SkipGNN SiGraC CSGNN MVGCN HOGCN CGCN SubKNet DMGI HeCo HGMAE HERO DrugXAS

LuoDTI
AUC 0.8817 0.8499 0.8693 0.9046 0.8566 0.8655 0.9180 0.8572 0.8628 0.8859 0.8994 0.9358

AUPR 0.8871 0.8613 0.8711 0.9022 0.8690 0.8703 0.9272 0.8721 0.8852 0.8977 0.9017 0.9452

ZhengDTI
AUC 0.8967 0.8444 0.9234 0.9357 0.8567 0.9250 0.9439 0.9242 0.9401 0.9441 0.9426 0.9702

AUPR 0.8942 0.8256 0.9176 0.9312 0.8595 0.9183 0.9408 0.9226 0.9470 0.9429 0.9388 0.9695

LiangDDA
AUC 0.7460 0.7211 0.7989 0.8259 0.7148 0.8131 0.7686 0.8346 0.8174 0.8416 0.8622 0.9184

AUPR 0.7578 0.7390 0.7994 0.8405 0.7395 0.8165 0.7995 0.8469 0.8445 0.8523 0.8740 0.9216

ZhangDDA
AUC 0.7493 0.8135 0.8020 0.8439 0.7567 0.8007 0.8420 0.7628 0.7921 0.8091 0.8146 0.8630

AUPR 0.7355 0.7716 0.8006 0.8385 0.7462 0.7948 0.8417 0.7652 0.7928 0.8032 0.8127 0.8585

PauwelsDSE
AUC 0.9036 0.8889 0.9384 0.9294 0.9125 0.9409 0.9318 0.9118 0.9224 0.9208 0.9328 0.9451

AUPR 0.9007 0.8698 0.9372 0.9255 0.9107 0.9389 0.9303 0.9129 0.9244 0.9215 0.9315 0.9425

HuangMDA
AUC 0.9378 0.9184 0.9701 0.9442 0.9366 0.9681 0.9366 0.9175 0.8896 0.9024 0.9257 0.9535

AUPR 0.9343 0.9005 0.9671 0.9377 0.9337 0.9649 0.9361 0.9240 0.9012 0.9007 0.9246 0.9477

DengCDA
AUC 0.7825 0.7882 0.8711 0.8791 0.7732 0.8892 0.8810 0.8446 0.8659 0.8531 0.8680 0.8812

AUPR 0.7831 0.7587 0.8769 0.8820 0.7718 0.8971 0.8828 0.8462 0.8744 0.8548 0.8752 0.8835
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Baselines. We compare our proposed DrugXAS with two categories of state-of-the-art methods:
(1) biomedical link prediction methods, including SkipGNN (Huang et al., 2020), SiGraC (Coşkun
& Koyutürk, 2021), CSGNN (Zhao et al., 2021), MVGCN (Fu et al., 2021), HOGCN (KC et al.,
2022), CGCN (Shen et al., 2024) and SubKNet (Li et al., 2024a), (2) self-supervised heterogeneous
graph representation learning methods DMGI (Park et al., 2020), HeCo (Wang et al., 2021), HG-
MAE (Tian et al., 2023) and HERO (Mo et al., 2024).

5.2 PERFORMANCE COMPARISON IN WARM SCENARIOS

We first summarize the results of DrugXAS and baseline methods on seven datasets in warm sce-
nario in Table 1. As shown, our DrugXAS yields the best performance in terms of two metrics across
five of seven datasets. Besides, the experimental results yield the following observations: (1) Our
DrugXAS consistently achieves significant performance improvements in DTI and DDA prediction
tasks. We attribute these improvements to the auxiliary molecule-view and InSMN module. The for-
mer plays a major role in DTI and DDA processes, while the latter empowers our model to integrate
and interact fine-level drug molecular attributes with the semantic relations of the biomedical links.
(2) The performances of DrugXAS in MDA and CDA prediction tasks are relatively mediocre, infe-
rior to some other baselines. We assume the phenomena derives from the lower number of drugs in
these two datasets, which are insufficient for our multi-view GCL paradigm to explore discriminative
drug embeddings. (3) Compared to the self-supervised heterogeneous graph representation learning
methods, our model generally yields better performance, further justifying the effectiveness of the
molecule-view representation learning and the information sharing component. (4) With respect
to GNN-based models that focus on neighbor aggregation (SkipGNN, MVGCN, and HOGCN),
DrugXAS consistently surpasses them across all datasets, indicating the superiority and merit of our
proposed dynamic neighborhood sampler and adaptive graph updater in warm scenarios.

5.3 PERFORMANCE COMPARISON IN COLD-START SCENARIOS

Table 2: Performance comparison in different cold-start scenarios in terms of AUC and AUPR. The
best results are bold, and the second-best results are underlined.

Datasets Setting Metric SkipGNN SiGraC CSGNN MVGCN HOGCN CGCN SubKNet DMGI HeCo HGMAE HERO DrugXAS

LuoDTI

Cold-drug
AUC 0.8720 0.8962 0.8496 0.8347 0.8260 0.8837 0.8940 0.8494 0.8612 0.8863 0.8908 0.9051

AUPR 0.8785 0.8977 0.8295 0.8320 0.8419 0.8805 0.8984 0.8471 0.8557 0.8814 0.8922 0.9096

Cold-entity
AUC 0.7216 0.7835 0.6363 0.5782 0.5289 0.7262 0.8001 0.7556 0.7663 0.8185 0.8226 0.8497

AUPR 0.6782 0.7797 0.6117 0.5691 0.5607 0.7235 0.8040 0.7583 0.7779 0.8216 0.8273 0.8731

Cold-pair
AUC 0.6589 0.6322 0.6249 0.5593 0.5394 0.5358 0.7198 0.6604 0.6857 0.7359 0.7752 0.8310

AUPR 0.6341 0.6378 0.6308 0.5372 0.5488 0.5462 0.7126 0.6739 0.6992 0.7444 0.7861 0.8458

ZhengDTI

Cold-drug
AUC 0.8101 0.7762 0.7425 0.8462 0.7545 0.8131 0.8564 0.8137 0.8286 0.8284 0.8547 0.8884

AUPR 0.8279 0.7862 0.7534 0.8475 0.7474 0.8230 0.8439 0.8088 0.8105 0.8161 0.8468 0.8791

Cold-entity
AUC 0.6803 0.6976 0.5866 0.7264 0.6464 0.6709 0.7582 0.7621 0.7580 0.7854 0.8012 0.8106

AUPR 0.6896 0.6824 0.6027 0.7318 0.6456 0.6938 0.7691 0.7560 0.7427 0.7913 0.8053 0.8264

Cold-pair
AUC 0.5336 0.5585 0.5116 0.5987 0.5193 0.5274 0.6571 0.5982 0.5462 0.6625 0.6923 0.7012

AUPR 0.5269 0.5621 0.5175 0.5893 0.5164 0.5209 0.6508 0.5935 0.5409 0.6578 0.6792 0.6989

LiangDDA

Cold-drug
AUC 0.7020 0.7253 0.6461 0.5527 0.6803 0.7099 0.7497 0.6178 0.6383 0.7096 0.7466 0.7780

AUPR 0.7276 0.7398 0.6708 0.5759 0.7109 0.7260 0.7711 0.6338 0.6592 0.7172 0.7602 0.7968

Cold-entity
AUC 0.5979 0.6215 0.6544 0.5684 0.5767 0.6280 0.6774 0.6007 0.6129 0.6457 0.6687 0.8078

AUPR 0.5842 0.6084 0.6362 0.5571 0.5558 0.6085 0.6656 0.5981 0.6088 0.6384 0.6572 0.8016

Cold-pair
AUC 0.5408 0.5817 0.5494 0.5174 0.5239 0.5521 0.6257 0.5434 0.5671 0.6289 0.6433 0.6922

AUPR 0.5287 0.5680 0.5318 0.5096 0.5200 0.5472 0.6282 0.5372 0.5535 0.6307 0.6480 0.6764

ZhangDDA

Cold-drug
AUC 0.6542 0.7501 0.6925 0.7451 0.6462 0.6833 0.7577 0.7129 0.7056 0.7606 0.7629 0.7668

AUPR 0.6324 0.7412 0.6923 0.7162 0.6149 0.6827 0.7388 0.7214 0.7101 0.7529 0.7542 0.7628

Cold-entity
AUC 0.6806 0.7521 0.6545 0.7655 0.6531 0.7332 0.7746 0.7243 0.7276 0.7886 0.7630 0.7910

AUPR 0.6755 0.7586 0.6360 0.7454 0.6540 0.7241 0.7619 0.7186 0.7112 0.7762 0.7596 0.7911

Cold-pair
AUC 0.5589 0.6867 0.5603 0.6864 0.5302 0.5770 0.6752 0.6360 0.6257 0.6641 0.6527 0.7066

AUPR 0.5490 0.6802 0.5420 0.6620 0.5349 0.5654 0.6794 0.6328 0.6190 0.6615 0.6534 0.7047

PauwelsDSE

Cold-drug
AUC 0.8860 0.8024 0.7430 0.8230 0.7915 0.8800 0.8785 0.8796 0.8896 0.8822 0.8912 0.8945

AUPR 0.8829 0.7984 0.7540 0.8318 0.7791 0.8696 0.8694 0.8754 0.8844 0.8809 0.8858 0.8879

Cold-entity
AUC 0.6126 0.6847 0.7627 0.7458 0.6425 0.7301 0.8051 0.7285 0.7358 0.8275 0.8334 0.8698

AUPR 0.5927 0.6697 0.7601 0.7586 0.6219 0.7125 0.8096 0.7172 0.7234 0.8201 0.8332 0.8580

Cold-pair
AUC 0.5377 0.5314 0.5356 0.5854 0.5145 0.5409 0.8213 0.5233 0.5484 0.7857 0.8012 0.8440

AUPR 0.5321 0.5301 0.5361 0.5791 0.5212 0.5389 0.8178 0.5247 0.5463 0.7775 0.8026 0.8356

HuangMDA

Cold-drug
AUC 0.6959 0.7792 0.6882 0.7131 0.6472 0.7171 0.6931 0.7256 0.6864 0.7444 0.7691 0.7847

AUPR 0.6720 0.7775 0.6907 0.7151 0.6370 0.7014 0.6856 0.7292 0.7004 0.7526 0.7660 0.7783

Cold-entity
AUC 0.9240 0.9211 0.9187 0.9171 0.9167 0.9255 0.9247 0.9194 0.9165 0.9127 0.9208 0.9298

AUPR 0.9228 0.9195 0.9137 0.9110 0.9137 0.9193 0.9207 0.9153 0.9132 0.9108 0.9182 0.9244

Cold-pair
AUC 0.5955 0.6823 0.5789 0.7379 0.5402 0.6287 0.7982 0.6296 0.5568 0.7387 0.7431 0.8254

AUPR 0.5931 0.6787 0.5873 0.7350 0.5592 0.6331 0.7881 0.6258 0.5517 0.7286 0.7407 0.8109

DengCDA

Cold-drug
AUC 0.7969 0.7529 0.7845 0.7890 0.6729 0.7691 0.7888 0.7785 0.7899 0.7873 0.7848 0.8082

AUPR 0.7849 0.7508 0.7680 0.7745 0.6530 0.7551 0.7921 0.7759 0.7801 0.7790 0.7790 0.7951

Cold-entity
AUC 0.6430 0.6211 0.6667 0.7328 0.5994 0.6951 0.7403 0.7173 0.7375 0.7334 0.7156 0.7478

AUPR 0.5983 0.6084 0.6418 0.7292 0.5768 0.6619 0.7308 0.7057 0.7250 0.7227 0.7219 0.7321

Cold-pair
AUC 0.5277 0.5434 0.5874 0.6430 0.5181 0.5104 0.6221 0.5517 0.5786 0.6142 0.6384 0.6597

AUPR 0.5199 0.5468 0.5810 0.6317 0.5271 0.5075 0.6189 0.5406 0.5714 0.6070 0.6295 0.6411
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As illustrated in Table 2, DrugXAS significantly and consistently outperforms all state-of-the-art
models across seven benchmark datasets in all cold-start scenarios. The key observations are as
follows: (1) The performance benefits of DrugXAS are more pronounced in cold-pair settings, with
improvements ranging from 0.89% to 11.12% in terms of AUC. This further confirms that DrugXAS
is capable of learning high-quality, robust embeddings for drugs and entities without known links.
(2) GNN-based models which devise novel neighbor aggregators offer unsatisfactory performance,
implying that their proposed aggregators are not suitable for cold-start scenarios. These results
also justify the effectiveness of the dynamic neighborhood sampler and adaptive graph updater in
selecting appropriate and informative neighborhoods. (3) The self-supervised heterogeneous graph
representation learning baselines maintain relatively competitive and stable performance, indicating
the capacity of self-supervised learning for alleviating the data scarcity of cold-start issue.

5.4 ABLATION STUDY

Table 3: Performance comparison of the ablation experiment in warm
scenarios.

Datasets Metric w/o-MA w/o-NA w/o-DNS w/o-AGU w/o-InSMN w/o-Diff DrugXAS

LuoDTI
AUC 0.9142 0.9307 0.9233 0.9324 0.9126 0.9320 0.9358

AUPR 0.9223 0.9384 0.9363 0.9419 0.9168 0.9421 0.9452

ZhengDTI
AUC 0.9482 0.9567 0.9684 0.9692 0.9502 0.9651 0.9702

AUPR 0.9475 0.9532 0.9652 0.9670 0.9473 0.9617 0.9695

LiangDDA
AUC 0.9017 0.9167 0.9102 0.9119 0.9028 0.9118 0.9184

AUPR 0.9095 0.9207 0.9187 0.9168 0.9050 0.9189 0.9216

ZhangDDA
AUC 0.8609 0.8511 0.8567 0.8621 0.8436 0.8563 0.8630

AUPR 0.8581 0.8474 0.8536 0.8570 0.8397 0.8540 0.8585

PauwelsDSE
AUC 0.9307 0.9338 0.9409 0.9398 0.9220 0.9349 0.9451

AUPR 0.9302 0.9319 0.9389 0.9372 0.9197 0.9318 0.9425

HuangMDA
AUC 0.9462 0.9467 0.9471 0.9447 0.9379 0.9441 0.9535

AUPR 0.9408 0.9395 0.9422 0.9365 0.9344 0.9357 0.9477

DengCDA
AUC 0.8796 0.8787 0.8803 0.8785 0.8751 0.8801 0.8812

AUPR 0.8831 0.8811 0.8810 0.8786 0.8759 0.8812 0.8835

To gain deeper insights
into each essential mod-
ule of DrugXAS, we con-
duct the ablation study
by constructing the follow-
ing variant models: (A)
w/o-MA: The molecule-
view augmentation scheme
is removed in this variant;
(B) w/o-NA: The network-
view augmentation scheme
is removed in this vari-
ant; (C) w/o-DNS: The dy-
namic neighborhood sam-
pler is dropped, sampling neighborhood sequences only once at the beginning of the training; (D)
w/o-AGU: We do not include the adaptive graph updater, where the biomedical graph is fixed during
training and inference; (E) w/o-InSMN: The InSMN component is disabled; and (F) w/o-Diff: The
diffusion loss is excluded, adopting only the contrastive loss in the contrast process.

The comparison results of DrugXAS and variants in warm scenarios are presented in Table 3. From
the results, we have the following observations: (1) All modules have different levels of positive
contributions to the model performance. For the augmentation strategy, DrugXAS is consistently
superior to w/o-MA and w/o-NA, verifying the positive impact of attention-aware augmentation
in both two views. (2) The removal of the dynamic neighborhood sampler and adaptive graph
updater results in a slight performance reduction. We speculate that it is because the normal neighbor
sampling strategy of GNN is sufficient to handle the warm scenario, where all nodes have a certain
number of neighbor nodes to message passing. (3) The performance of w/o-InSMN is considerably
inferior, reflecting the necessity of information interaction and sharing between different level of
drug data. More detailed ablation experiments are provided in Appendix D.

5.5 EMBEDDING VISUALIZATION

Figure 4: The t-SNE visualization of the learned
drug representations on the LiangDDA dataset.

To verify the effectiveness of the InSMN mod-
ule, we further compare the learned drug em-
beddings intuitively. More specifically, we em-
ploy t-SNE (Van der Maaten & Hinton, 2008)
to visualize the learned drug representations of
DrugXAS and w/o-InSMN, classifying drugs
according to Anatomical Therapeutic Chemi-
cal (ATC) codes. As presented in Figure 4,
it can be observed that DrugXAS outperforms
its variant w/o-InSMN in grouping 14 types of
drugs, with DrugXAS depicting better drug do-
main alignment capacity and w/o-InSMN dis-
playing blurry boundaries to some degree. For instance, for the 110 cardiovascular and 104 antiin-
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Figure 5: The explanatory subgraphs of case studies. Left: The attention scores of nodes and their
sampled neighborhoods. Right: Network visualization of drugs/diseases and the predicted candi-
date targets/drugs. (a) The interpretability illustration on LuoDTI dataset. (b) The interpretability
illustration on ZhangDDA dataset.

fectives drugs, which constitute large proportions of the dataset, DrugXAS exhibits more accurate
and separable clusters compared to w/o-InSMN. The results indicate that the discriminative and ex-
pressive drug representations encoded by DrugXAS can be primarily attributed to the fine-grained
information sharing and interaction provided by InSMN.

5.6 INTERPRETABILITY

To explore the in-depth interpretability of DrugXAS, we provide a comprehensive analysis of the
novel biomedical link prediction scenario. For the two case study examples in Appendix G, we
visualize the target drugs/diseases and predicted proteins/drugs, along with their sampled neighbor
nodes within neighborhood sequence and the attention scores, as depicted in Figure 5. We can
observe that most predicted candidate proteins/diseases have known interactions/associations with
the target drug/disease in their corresponding neighborhood sequence. For example, for the pre-
dicted protein DRD5 related to Clozapine, our model infers this novel interaction based on existing
DTIs, such as Pramipexole and DRD4, Aripiprazole and CHRM1, which are all sampled neighbor
nodes for DRD5 and Clozapine, respectively. Another example is the target HRH2, where its neigh-
bors Asenapine and Doxepin both interact with Clozapine’s neighbor targets, DRD4 and ADRA2B,
which are also predicted with high attention scores. With respect to the novel link prediction on
ZhangDDA dataset, DrugXAS also captures confirmed DDAs to facilitate prediction. For instance,
according to the existing DDAs (Folic Acid and Anemia Hemolytic, Tamoxifen and Cardiovascular
diseases), Acetaminophen and Ethinyl Estradiol are predicted as candidate drugs for Alzheimer’s
disease and breast neoplasms, respectively, which align with the known data in the dataset. Through
the application of attention-aware augmentation, useful and informative knowledge can be extracted
from the neighborhood subgraph. Moreover, the learned attention matrices can be utilized to aug-
ment and prune the neighborhood subgraph, thus creating pathways for mechanisms that summarize
the biomedical links. To sum up, our investigation verifies and evaluates the generated explanations,
underscoring the promising capability of DrugXAS to provide interpretable insights for identifying
latent links from a biomedical perspective.

6 CONCLUSION

In this paper, motivated to address the limitations of previous work, we propose DrugXAS, an in-
terpretable and adaptive graph contrastive learning framework with information sharing for drug-
related biomedical link prediction. DrugXAS introduces the molecule-view learning as an auxil-
iary aspect to comprehensively exploit biomedical information. The adaptive and dynamic update
technique ensures the resilience of DrugXAS in cold-start scenarios, and the augmentation scheme
enables achieving interpretability from a biological perspective. A novel information sharing mod-
ule is devised to jointly capture semantic relations and topological patterns while preserving the
chemical properties of drug molecules. In addition, the diffusion model is employed to fill the gap
between the two distinct views, enhancing the GCL procedure. Extensive experiments compared
with the state-of-the-arts demonstrate the superior effectiveness and robustness of DrugXAS, with
competitive interpretability.
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APPENDIX

A AUGMENTATION STRATEGY

A.1 MOLECULE-VIEW AUGMENTATION

Atom masking. Atoms/nodes with the smallest attention scores based on a certain ratio are
masked, where their node feature vectors are set to 0. Our drug encoder can learn intrinsic chemical
properties through the masking operation.

Bond deletion. Bonds/edges with the smallest attention scores based on a certain ratio are deleted,
where the edges are removed completely to block the message propagation of GNN encoder. Bond
deletion enables our model to discern correlations between a molecule’s participation in diverse
biomedical reactions.

A.2 NETWORK-VIEW AUGMENTATION

Node masking. Drugs and entities with the smallest attention scores within neighborhood se-
quences based on a certain ratio are masked, where their node feature vectors are set to 0. This type
of node-level augmentation ensures that the selected node provides the strongest information.

Edge adding. The 2-hop neighbors with the highest attention scores within neighborhood se-
quences based on a certain ratio are connected to the target node as new neighbors, where the
new edges can be added to the subsequent message propagation of HGNN encoder. The idea of
this type of augmentation lies in that the original graph structure is not necessarily reliable and the
unconnected 2-hop neighbors may contain more structural information.

Edge deletion. The 1-hop neighbors with the smallest attention scores within neighborhood se-
quences based on a certain ratio are deleted, where the edges are removed completely to block the
message propagation of HGNN encoder. Our goal of this component is to judge and reduce noise,
such as incomplete or insufficient biomedical interaction data, to enable meaningful and effective
integration of information.

B DATASETS

Table 4: Statistics of seven experimented datasets

Dataset Type #Drugs #Entities #Edges Sparsity

LuoDTI DTI 708 1,512 1,923 0.9982
ZhengDTI DTI 1,094 1,556 11,819 0.9931
LiangDDA DDA 763 681 3,051 0.9941
ZhangDDA DDA 269 598 18,416 0.8855
PauwelsDSE DSE 888 1,385 61,102 0.9503
HuangMDA MDA 106 754 3,338 0.9582
DengCDA CDA 218 271 4,134 0.9300

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

The proposed DrugXAS is optimized by Adam with the learning rate searching from 1e-4 to 2e-3.
We apply the ReduceLROnPlateau scheduler of Pytorch and the early stopping strategy to prevent
overfitting. The embedding dimension d is set to 128. We set the molecule-view GNN encoder
layer to 2, the network-view local structure encoder layer to 2, and the HGNN encoder layer to 2.
The coefficients λ and γ are set to 0.5 and 1, respectively. The search space of the low-rank ki
in InSMN is {1, 2, 3, 5, 8, 10}. Minimum and maximum augmentation ratios are tuned from 0.1 to
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Figure 6: Comparison results of different graph augmentation strategy.

0.5. The number of similarity neighbors kn and the length of neighborhood sequence sn are ranged
from {1, 2, 3, 5} and {3, 4, 5, 6, 8, 10}, respectively. Table 5 elaborates the detailed hyperparameter
settings for each dataset of DrugXAS.

Table 5: Specified hyperparameters of each dataset.

Dataset epochs lr d p0 px kn sn ki τ λ γ

LuoDTI 1,000 2e-4 128 0.3 0.4 3 6 5 0.8 0.5 0.5
ZhengDTI 1,000 2e-4 128 0.2 0.3 3 5 5 0.8 0.5 0.5
LiangDDA 1,000 2e-4 128 0.1 0.3 3 6 5 0.8 0.5 0.5
ZhangDDA 1,500 5e-4 128 0.2 0.3 5 10 8 0.8 0.5 0.5
PauwelsDSE 2,000 5e-4 128 0.2 0.5 5 10 10 0.8 0.5 0.5
HuangMDA 1,000 2e-4 128 0.1 0.3 3 5 5 0.8 0.5 0.5
DengCDA 1,000 2e-4 128 0.2 0.4 3 6 5 0.8 0.5 0.5

D ADDITIONAL ABLATION STUDY

D.1 EFFECT OF ATTENTION-AWARE AUGMENTATION STRATEGY

To explore the impact of our attention-aware augmentation pipelines, we compare the performance
of DrugXAS with the random augmentation strategy, which randomly augments molecular graphs
and the biomedical graph using the same augmentation method and ratio: (A) DrugXAS-Rm: Atoms
and Bonds in the molecule-view are augmented randomly based on a certain ratio, ignoring the
learned attention scores; and (B) DrugXAS-Rn: Nodes and edges in the network-view are aug-
mented randomly based on a certain ratio, ignoring the learned attention scores.

As illustrated in Figure 6, we draw the following conclusions: (1) Both random augmentation strate-
gies of the two views display varying degrees of performance degradation, verifying the contribution
of our attention-aware graph augmentation methods. The random perturbation approach might dis-
rupt the molecular structure and introduce meaningless noise for the biomedical links, resulting
in their negative impacts. Our devised graph augmentation methods alleviate this problem by us-
ing attention scores as an indicator for providing the model with more effective information. (2)
DrugXAS-Rm yields outperformance over DrugXAS-Rn in the majority of instances, emphasizing
that semantic knowledge is more essential for these types of link prediction tasks. Nevertheless,
DrugXAS-Rm exhibits inferior performance for DTI prediction, which is consistent with our as-
sumption that molecular structure information is more beneficial for this type of task.

D.2 EFFECT OF DYNAMIC NEIGHBORHOOD SAMPLING AND ADAPTIVE GRAPH UPDATE

Our motivation to construct the dynamic neighborhood sampling and adaptive graph update compo-
nent is to enhance the representation learning capability for cold-start scenarios. Here we investigate
whether our proposed two modules can improve performance under cold-start settings to alleviate
the issue. To this end, we compare the performance of DrugXAS and two variants, w/o-DNS and
w/o-AGU, in cold-start scenarios. According to the results reported in Figure 7, the following find-
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Figure 7: Comparison results of dynamic neighborhood sampling and adaptive graph update in
cold-start scenarios.

ings can be made: (1) DrugXAS outperforms both w/o-DNS and w/o-AGU in all cold-start cases,
reflecting the rationality of introducing dynamism and adaptivity into cold-start scenarios, which can
facilitate our model to adaptively identify neighbors based on the encoder performance and thus en-
hancing the aggregation ability. (2) The two variants exhibit similar performances, with w/o-AGU
slightly exceeding w/o-DNS in the majority of cases, indicating that the dynamic neighborhood
sampling is more imperative and effective. This module empowers our DrugXAS to aggregate node
information from different high-order neighbors, thereby improving the generalization capability by
generating robust embeddings for unseen nodes.

Furthermore, we provide an example on LuoDTI dataset to understand and illustrate how the dy-
namic neighborhood sampler and adaptive graph updater sample appropriate neighbors for cold-start
nodes. As depicted in Figure 8, under the cold-drug setting, for the cold drug node Ibutilide, our
proposed dynamic neighborhood sampler samples six drugs. Among them, Pimozide, Terazosin,
Amlodipine and Nicardipine are relevant high-order neighbor drugs that interact with target proteins
of Ibutilide, also demonstrating a high degree of similarity. Moreover, Amlodipine and Nicardip-
ine are both cardiovascular drugs with the identical ATC codes as Ibutilide, causing them to be
updated by the adaptive graph updater to Ibutilide’s new neighbors. The results indicate that our
devised neighborhood sampler and graph updater adaptively selects the high-order neighbors with
informative and effective knowledge. However, the GNN-based baselines ignore the cold-start char-
acteristics of the neighbors in the graph convolution process, failing to specifically handle cold-start
neighbor nodes.

E HYPERPARAMETER ANALYSIS

In this part, we investigate the performance variation of DrugXAS on several key hyperparameters.

E.1 IMPACT OF AUGMENTATION RATIO p0 AND px

We perform the grid search experiments on the initial augmentation ratio p0 and maximum aug-
mentation ratio px, which are both selected from {0.1, 0.2, 0.3, 0.4, 0.5}, respectively. Due to the
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Figure 8: An example of the dynamic neighborhood sampling and adaptive graph update in the
cold-start scenario.

Figure 9: Hyperparameter analysis of the augmentation ratio.

page limit, we only report the AUC metric results since the AUPR metric shows the same trend.
As shown in Figure 9, with the increase of p0 and px, the performance displays a similar trend of
rising and then dropping. DrugXAS achieves the best performance on all datasets when both ratios
are in the range of {0.2, 0.3, 0.4}. These results imply that a low augmentation ratio is not capable
of generating effective augmented graphs, while an excessive ratio leads to the destruction of the
original chemical and semantic information, corrupting the learned node representations.

E.2 IMPACT OF kn AND sn

This experiment is conducted to investigate the impact of our dynamic and adaptive HGNN model
by varying the combinations of similarity neighbor number kn and sequence length sn, with the set
{1, 2, 3, 5} for kn and {3, 4, 5, 6, 8, 10} for sn. The results are reported in Figure 10, from which we
note that both too small and too large kn and sn cause performance degradation. One possible expla-
nation is that when these two hyperparameters are too low, the sampled similar node and neighbor
are not informative enough to generate discriminative and expressive embeddings. By contrast, high
values of these parameters introduce noisy high-order neighbors with less meaningful information,
confusing and weakening message propagation capability of the HGNN encoder. Additionally, it is
observed that the optimal values of kn and sn vary across different datasets, which can be attributed
to the varying sparsity and distribution, where the distribution of node degrees and edges affects the
performance.

E.3 IMPACT OF LOW-RANK TRANSFORMATION DIMENSION ki

Here, we test the sensitivity of the low-rank dimension ki of InSMN from 1 to 10. As presented
in Figure 11, we observe that increasing ki doesn’t guarantee an improved outcome for all datasets,
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Figure 10: Hyperparameter analysis of kn and sn.

Figure 11: Hyperparameter analysis of the low-rank transformation dimension ki.

and the optimal performance is reached when ki = 5 or 8. The performance becomes stable when ki
is in the range of 5 to 8, and a relatively large value of ki is required for the high-density ZhangDDA
dataset. In general, our model performance reaches its optimum with an appropriate low-rank di-
mension, while excessive values result in increased training resources and time, decreasing link
prediction.

F EMBEDDING VISUALIZATION

To provide an intuitive understanding and evaluation, we visualize the t-SNE embeddings of positive
and negative drug-entity pairs under the warm scenario setting. The node pair embeddings learned
by CSGNN, MVGCN, CGCN, SubKNet, and DrugXAS on the ZhangDDA dataset are projected
into a 2-dimensional space, as depicted in Figure 12. According to the figure, we can observe that
CSGNN, MVGCN, CGCN, and SubKNet have the tendency to separate the positive (blue points)
and negative samples (green points), while their embeddings are still mixed to a certain extent with
blurry boundaries. In contrast, DrugXAS exhibits the best embedding alignment apparently, cor-
rectly separating positive and negative pairs with relatively clear and distinct boundaries. Further-
more, we provide a quantitative analysis by calculating the silhouette scores of the clusters, and our
DrugXAS also outperforms other baseline methods with the highest silhouette score.

Figure 12: The t-SNE visualization of the learned pair embeddings on the ZhangDDA dataset.
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Table 6: The top 5 candidate targets predicted by DrugXAS for two drugs on LuoDTI dataset.

Drug Rank Target ID Target Name Evidence

Clozapine

1 P21918 DRD5 DrugBank
2 P30939 HTR1F DrugCentral
3 P25021 HRH2 DrugCentral
4 P41595 HTR2B DrugCentral
5 P25100 ADRA1D DrugCentral

Quetiapine

1 P30939 HTR1F DrugCentral
2 Q9NYX4 CALY DrugBank
3 P23975 SLC6A2 DrugCentral
4 Q12809 KCNH2 DrugCentral
5 P41595 HTR2B DrugCentral

Table 7: The top 5 candidate drugs predicted by DrugXAS for two diseases on ZhangDDA dataset.

Disease Rank Drug ID Drug Name Evidence (PMID)

Alzheimer’s Disease

1 DB00316 Acetaminophen 19291322
2 DB00313 Valproic Acid 19748552
3 DB00201 Caffeine 24780254
4 DB01037 Selegiline 8998375
5 DB00788 Naproxen 21504739

Breast Neoplasms

1 DB00655 Estrone 29660508
2 DB00977 Ethinyl Estradiol 7226163
3 DB00313 Valproic Acid 30075223
4 DB01065 Melatonin 26292662
5 DB00257 Clotrimazole 22347377

G CASE STUDY

The case study section aims to validate the practical capability of DrugXAS in discovering novel
biomedical links. We deploy DrugXAS on LuoDTI and ZhangDDA datasets, constructing training
data with all known DTIs/DDAs and establishing test samples with all unknowing pairs. For LuoDTI
dataset, two drugs are selected for the case study, i.e., Clozapine and Quetiapine, which have the
largest number of existing interactions in the dataset. The top 5 predicted candidate targets with
the highest prediction probabilities are presented in Table 6. We can observe that all predicted
potential targets can be confirmed in DrugBank or DrugCentral databases, with 2 candidate proteins
reported by DrugBank and 8 candidate proteins identified by DrugCentral, implying the veracity of
interactions between these predicted targets and two chosen drugs. Regarding ZhangDDA dataset,
Alzheimer’s disease and breast neoplasms are chosen to conduct the case study due to the thorough
profile of their known drugs in the dataset. The top 5 candidate drugs predicted by DrugXAS for the
two diseases are listed in Table 7, showcasing that all predicted drugs are supported by corresponding
literature. In summary, the case studies further demonstrate the potential of DrugXAS as a promising
tool for discovering novel biomedical links.
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