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Abstract

Differentially private (DP) release of multidimensional statistics typically considers an ag-
gregate sensitivity, e.g. the vector norm of a high-dimensional vector. However, different
dimensions of that vector might have widely different magnitudes and therefore DP perturba-
tion disproportionately affects the signal across dimensions. We observe this problem in the
gradient release of the DP-SGD algorithm when using it for variational inference (VI), where
it manifests in poor convergence as well as high variance in outputs for certain variational
parameters, and make the following contributions: (i) We mathematically isolate the cause
for the difference in magnitudes between gradient parts corresponding to different variational
parameters. Using this as prior knowledge we establish a link between the gradients of the
variational parameters, and propose an efficient while simple fix for the problem to obtain
a less noisy gradient estimator, which we call aligned gradients. This approach allows us
to obtain the updates for the covariance parameter of a Gaussian posterior approximation
without a privacy cost. We compare this to alternative approaches for scaling the gradients
using analytically derived preconditioning, e.g. natural gradients. (ii) We suggest using
iterate averaging over the parameter iterates recovered during the training, to reduce the
DP-induced noise in parameter estimates at no additional cost in privacy. Finally, (iii) to
accurately capture the additional uncertainty DP introduces to the model parameters, we
infer the DP-induced noise from the parameter iterates and include that in the learned poste-
riors to make them noise aware. We demonstrate the efficacy of our proposed improvements
through various experiments on real data.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) protects privacy of data subjects by limiting how much about
the input data can be learned from the output of an algorithm. Additive noise mechanisms achieve DP by
adding noise calibrated to the maximum change in function output due to a single individual, known as
sensitivity. When releasing high-dimensional data through such mechanisms, different variables may have
widely different sensitivities. However, this issue of varying sensitivities is often neglected or overlooked.
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Instead, the sensitivity of the release is computed as an aggregate over all the dimensions, which we call total
sensitivity, in contrast to variable-specific sensitivity. As the DP noise is subsequently scaled with this total
sensitivity, it affects dimensions with lower sensitivities more. A prominent example where this occurs is the
gradient release in DP stochastic gradient descent (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi
et al., 2016), where it can affect the convergence rate of the corresponding parameters. Furthermore, the final
parameters released from DP-SGD are noisy estimators of the optimal parameters and the resulting error
is usually treated as an unavoidable trade-off of providing privacy (Abadi et al., 2016). As a result, final
parameter estimates with small variable-specific sensitivity may exhibit larger errors due to DP randomness
compared to other dimensions. The combination of these two issues means that parameters with relatively
small sensitivity are at a double disadvantage.

We discover these issues in the perturbed gradients used in the DP-SGD based DP variational inference (DPVI)
algorithm (Jälkö et al., 2017), which is a widely applicable state-of-the-art method for privacy-preserving
(approximate) Bayesian inference. We find that gradient magnitudes for different parameters in DPVI often
differ significantly, resulting in severe errors in capturing the posterior. This results e.g. in poor predictive
uncertainty estimation, making the predictions of the learned model less accurate.

We mathematically isolate the cause for these problems in DPVI and propose and evaluate two ways of
alleviating the problem of gradient scales in DPVI: one scales gradients with a preconditioning matrix before
applying the DP mechanism, the other is based on insights into the mathematical structure of the gradients,
which reveals that their components are mathematically linked and can be derived from each other in a
post-processing step.

Additionally, we theoretically and experimentally evaluate the method of iterate averaging as a way to further
improve the parameter estimate as well as approximate the additional variance induced by DP perturbations
to DPVI to make the posterior approximation noise aware at no additional cost in privacy.

1.1 Related work

In the context of DP-SGD, the following previous works acknowledge the different sensitivities of different
parts of the full gradient: McMahan et al. (2018) suggested clipping the gradients of a neural network
separately for each layer to avoid the clipping-induced bias (Chen et al., 2020). Other lines of work (Andrew
et al., 2021; Wang et al., 2022) suggest adaptive clipping, where the total sensitivity is re-evaluated throughout
the optimisation process to avoid adding excessive amounts of noise to the gradients. However, since in all
these the perturbation is still scaled with the total sensitivity aggregated over the dimensions, this approach
does not improve the disparate effect that the Gaussian noise will have on the dimensions with smaller
gradients, so we see these approaches as orthogonal to our work. Besides the aforementioned works that
study the tuning of clipping threshold, there are some recent works that study the use of clipping in terms of
obtaining optimal rates in DP convex optimization Kamath et al. (2022); Lowy & Razaviyayn (2023).

For noise aware DP Bayesian inference, the most related work is by Bernstein and Sheldon (Bernstein &
Sheldon, 2018; 2019) and Kulkarni et al. (2021). These works include the DP perturbation mechanism into a
probabilistic model using perturbed sufficient statistics as the inputs. This allows capturing the DP-induced
additional uncertainty in the posterior distribution of model parameters.

2 Preliminaries

2.1 Differential privacy

Definition 2.1 (Differential Privacy (Dwork et al., 2006)). For ϵ ≥ 0 and δ ∈ [0, 1], a randomised mechanism
M : D → R satisfies (ϵ, δ)-differential privacy if for any two data sets different in only one element, D, D′ ∈ D,
and for all outputs S ⊆ im(M), the following constraint holds:

Pr(M(D) ∈ S) ≤ eϵ Pr(M(D′) ∈ S) + δ. (1)

Property 2.1 (Post-processing immunity (cf. (Dwork et al., 2014))). Let M : D → R be a (ϵ, δ)-DP
mechanism and f : R → Z any function that does not access the sensitive data. Then f ◦M is (ϵ, δ)-DP.
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2.2 Variational inference

Variational inference is a commonly applied technique in probabilistic inference, where the aim is to learn an
approximation for a (typically intractable) posterior distribution of the parameters of a probabilistic model
(Jordan et al., 1999). The goal is to minimise the Kullback-Leibler (KL) divergence of this approximation
to the true posterior. However, computing the KL divergence directly is intractable as well, so instead we
maximise a quantity called evidence lower bound (ELBO) over the parameters of the variational approximation.
For a probabilistic model p(D,θ), where D denotes the observed variables and θ the model parameters, and
for a variational approximation q(θ) of the posterior, the ELBO L(q) is derived as follows:

KL(q(θ) || p(θ | D)) = Eq(θ)

[
log q(θ)p(D)

p(D,θ)

]
(2)

= log p(D)− Eq(θ)

[
log p(D,θ)

q(θ)

]
︸ ︷︷ ︸

:=L(q)

(3)

Now, as the KL divergence is positive we have

log p(D) ≥ L(q), (4)

hence the quantity L(q) is called the evidence lower bound. We can easily see that if the KL divergence
between the q and the posterior is 0, the ELBO matches the evidence. Since the evidence is independent of
the variational parameters, minimizing the KL divergence w.r.t the variational parameters is equivalent to
maximizing the ELBO.

In the remainder of this paper we use the following equivalent formulation of the ELBO:

L(q) = Eq(θ) [log p(D,θ)] + H(q), (5)

where H(q) denotes the (differential) entropy of q.

In the following we first restrict ourselves to the commonly used mean-field variational inference, i.e., using a
Gaussian with diagonal covariance as the posterior approximation. We will later generalise this to a full-rank
coveriance approximation. For d-dimensional data the diagonal approximation is parametrised by the means
mq ∈ Rd and the dimension-wise standard deviations σq ∈ Rd. We further reparametrise the model with
sq = T −1(σq), where T : R → R+ is monotonic, in order to facilitate optimisation in an unconstrained
domain. Both T and T −1 are applied element-wise for each of the parameters. Common choices for T are the
exponential function T (s) = exp(s) and the softplus function T (s) = log(exp(s) + 1) (used e.g. in the Pyro
probabilistic programming package (Bingham et al., 2019)). We use ξ = (mq, sq) to refer to the complete set
of variational parameters.

A draw from this posterior distribution can then be written as (Kingma & Welling, 2014):

θ := θ(η;mq, sq) = mq + T (sq)η, (6)

where η ∼ N(0, Id), θ,η ∈ Rd and Id is a d-dimensional identity matrix. Kucukelbir et al. (2017) use this
reparametrisation trick together with single-sample MC integration to give the ELBO a differentiable form
with gradients:

gm := ∇mqL(q) = ∇mq log p(D,θ(η;mq, sq)) (7)
gs := ∇sqL(q) = ∇sq log p(D,θ(η;mq, sq)) +∇sq H(q), (8)

where η ∼ N(0, I). Throughout this work we assume that the likelihood factorises as: p(D | θ) =
∏
x∈D p(x |

θ). Using N to denote the size of D, we can now further decompose the gradients in (7) and (8) as

gm =
∑
x∈D

(
∇mq

log p(x | θ(η;mq, sq)) + 1
N
∇mq

log p(θ(η;mq, sq))
)

(9)

gs =
∑
x∈D

(
∇sq

log p(x | θ(η;mq, sq)) + 1
N

(
∇sq

log p(θ(η;mq, sq)) +∇sq
H(q)

) )
. (10)
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We denote the per-example gradient components (i.e., those for each individual x) that appear in the above
sums with gm,x and gs,x respectively.

A common approach to performing variational inference in practice is to initialise sq to small values, which
allows the algorithm to move mq quickly close to their optimal values due to large error in the KL term of
the ELBO induced by the narrow approximation.

Assumptions for the probabilistic model and variational posterior For the rest of the paper, we
make the following assumptions:

• Exchangeability: We assume that there is no ordering in observing the elements of data set D:
p(D | θ) =

∏
x∈D p(x | θ)

• Gaussian posterior approximation: q(θ) = Nd(mq, Σq), where Nd denotes the pdf of a d-
dimensional Gaussian. When working with isotropic Gaussian posterior approximation (i.e. diagonal
covariance), we denote the dimension-wise standard deviations with σq.

• Optimising the σq: For the isotropic Gaussian, we use a mapping function T : R→ R+ to optimize
the variational standard deviations. We apply this function element-wise to the parameter vector
sq. Commonly used examples for this are the softplus function T (s) = log(1 + exp(s)) as well as the
exponential function T (s) = exp(s).

3 Differentially private variational inference

The first algorithm for differentially private variational inference for non-conjugate models (Jälkö et al., 2017)
optimises the ELBO using gradients (7) and (8) with differentially private stochastic gradient descent (Abadi
et al., 2016) to provide privacy. This involves concatenating each of the per-example gradients to obtain
gx = (gT

m,x, gT
s,x)T , clipping gx so that it has ℓ2 norm no larger than a threshold C to limit the sensitivity,

and finally adding Gaussian noise to the sum of these clipped per-example gradients to obtain g̃, which is
used for the parameter update. We refer to this algorithm in the following as vanilla DPVI.

This formulation induces a problem which, while seemingly minor at first glance, severely affects accuracy
of solutions. We next isolate this problem and then propose a solution through detailed analysis on the
gradients of the variational parameters.

3.1 Disparate perturbation of variational parameter gradients

While the clipping of the gradients allows us to bound the global sensitivity of the gradient vector, it completely
ignores any differences in gradient magnitudes across the dimensions. As DPVI (and more generally DP-SGD)
proceeds to add Gaussian noise with standard deviation proportional to the clipping threshold to all of the
dimensions, the signal-to-noise-ratio can vary greatly across the parameter dimensions. Parameter dimensions
that experience low signal-to-noise ratio will converge much slower than others (cf. Domke, 2019 and references
therein).1 Next, we will show that such a magnitude difference arises between the gradients of variational
parameters mq and sq.

Note that the gradient of Equation (6) w.r.t. mq is ∇mqθ(η;mq, sq) = 1, which leads to the following
proposition (a more detailed derivation can be found in Appendix B):
Proposition 3.1. Assume q to be diagonal Gaussian, then the gradient gs in Equation (8) becomes

gs = ηT ′(sq)gm +∇sq
H(q), (11)

where T ′ denotes the derivative of T .

As the entropy term is independent of the data, our update equation for sq depends on the data only through
gm. In order to show that this term gets affected by the noise more than gm itself, it suffices to inspect

1We also provide a high-level argument why this is the case in Appendix A.
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the magnitudes of η and T ′(sq). We have Pr
[
|ηj | < 2

]
> 97.5% and T ′(sq) ≤ σq for common choices of T

discussed above (a proof for softplus and exp can be found in Appendix C). For each dimension of the data
dependent part of gs it then follows that

|ηjT ′(sq,j)gm,j | ≤ σq,j |ηjgm,j | < 2σq,j |gm,j | with probability > 97.5%. (12)

Therefore, it is easy to see that as σq becomes small, the data-dependent part of the gradient gs becomes
small compared to gm in the overwhelming majority of cases. The entropy part of gs is typically small as
well, especially when we are far from the posterior mode, i.e., early in training. As a result, gs as a whole
becomes small in comparison to gm. Note that this is especially problematic combined with the practice of
initialising sq to small values to speed up the convergence of mq, discussed in Sec. 2.2.

3.1.1 Addressing the differing gradient scales

Above we have identified a magnitude difference between the gradient components, which leads to variational
standard deviation parameters being disproportionately affected by DP noise. Next we use this structural
knowledge to propose a method for scaling the gradients to more closely matching magnitudes, after discussing
two alternatives based on standard techniques.

Natural Gradients As a first solution, we consider natural gradients (Amari, 1998). This is a common
approach for improving convergence for VI (cf. e.g. Honkela et al., 2010; Khan & Nielsen, 2018; Salimbeni
et al., 2018), which relies on scaling the gradients using the information geometry of the optimisation problem.

The natural gradients gnat are computed using the inverse of the Fisher information matrix I as

I = Eθ|sq,mq

[
(∇θ log q(θ))(∇θ log q(θ))T

]
(13)

gnat = I−1g. (14)

For our setting this leads to

gnat
m = T (sq)2∇mqL(q) (15)

gnat
s = 1

2T ′(sq)

(
ηgnat

m + T (sq)2

T ′(sq)∇sq H(q)
)

. (16)

We observe that in the natural gradients the scaling by T ′(sq) in the gradients of sq is now reversed, meaning
that for small T ′(sq) the gradients of sq will tend to dominate over those of mq. Therefore we expect natural
gradients to result in a different instance of the problem of disproportionate DP noise instead of resolving it.

Preconditioning of Gradients The simplest way to fix the disproportionate DP noise is preconditioning of
the gradients to undo the downscaling of the data-dependent part in Eq. (11), by multiplying with (T ′(sq))−1,
to obtain

gprecon
s = 1

T ′(sq)gs = ηgm +
∇sq

H(q)
T ′(sq) . (17)

We can see that the data dependent part of gprecon
s (the first term) is of the same magnitude as gm, and

thus the noise affects the gradient components equally.2 Note that while this approach addresses the issue
of different magnitude in the gradients, it does so at the cost of increasing the overall ℓ2-norm of the full
gradient (by increasing that of gs while keeping gm fixed). This in turn requires a higher clipping threshold
in order to avoid additional bias due to clipping, which increases DP noise variance.

2Note that this scaling also affects the data-independent entropy term in the gradient for sq. While the scaling term
(T ′(sq))−1 does increase the entropy part for small sq , the data-dependent term is still typically much larger and will dominate
the gradient.
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Aligned Gradients We will now discuss a new alternative method for resolving the disproportionate DP
noise problem that addresses the gradient magnitude problem while avoiding the issues of the preconditioning
approach. Equation (11) shows that we can write gs in terms of gm and an additional entropy term. Since
neither the scaling factor ηT ′(sq) nor the entropy gradient ∇sq

H(q) depend on the data D, it suffices to
release the gradients gm under DP as g̃m, from which we obtain the g̃s via Eq. (11). As this is simply
post-processing, it does not incur additional DP cost. Because g̃s is now computed directly as a transformation
of g̃m, the noise term in both gradients is aligned in proportion to the gradient signals. We refer to this
approach as aligned DPVI for the rest of the paper. The procedure for computing the aligned DPVI gradients
is summarized in Algorithm 1.

Algorithm 1 The aligned gradient procedure (single step)
1: θ ←mq + ηT (sq) where η ∼ N (0, I) ▷ Draw sample from the variational posterior
2: gm,x ← ∇mqL(q) for x ∈ D ▷ Compute the per-example gradients for mq

3: γx ← min(1, C/||gm,x||) for x ∈ D ▷ Compute the clipping multiplier
4: g̃m ←

∑
x∈D γxgm,x + σDP Cψ, where ψ ∼ N (0, I) ▷ Get DP release for gm

5: g̃aligned
s ← ηT ′(sq)g̃m +∇sq

H(q) ▷ Get DP aligned gs via post-processing

Corrolary 3.1. Let δ(ϵ; σDP , T ) be any privacy accounting oracle. Let ϵ > 0, σDP > 0. Then aligned DPVI
consisting of T iterations of Alg. 1 is (ϵ, δ(ϵ; σDP , T ))-DP.

Proof. The g̃m released in step 4 of Algorithm 1 satisfies the privacy guarantee provided by the Gaussian
mechanism. As the η, T ′(sq) and the entropy contribution ∇sq H(q) are independent of the data, the g̃aligned

s

satisfies the same privacy guarantee through post-processing immunity (Property 2.1). Hence the privacy
guarantees of the entire algorithm follow from the composed privacy cost of the released gradients for the
variational means {g̃(t)

m }T
t=1.

The following theorem (proved in Appendix D) guarantees that the variance in the gradients of sq is reduced
in aligned DPVI:
Theorem 3.1. Assume that Cvanilla ≥ Caligned. If we obtain σq through transformation T such that
T ′(s) ≤ 1, then for any fixed batch,

Varη,ψ

[
g̃aligned

s

]
< Varη,ψ

[
g̃vanilla

s

]
, (18)

where η is the random variable of the MC approximation to the ELBO and ψ that of the DP perturbation.

Note that the softplus transformation used in our experiments satisfies the assumption T ′(s) ≤ 1.

Aligned Natural Gradients Finally we also consider a combination of natural gradients and aligning, to
enable the benefits of natural gradients for convergence while simultaneously removing the need to consider
the gradient of sq for DP clipping and perturbation. The full procedure is given in Algorithm 2. We use
Im, Is to refer to the blocks of I corresponding to the gradient components.

Algorithm 2 The aligned natural gradient procedure (single step)
1: θ ←mq + ηT (sq) where η ∼ N (0, I) ▷ Draw sample from the variational posterior
2: gnat

m,x ← I−1
m ∇mq

L(q) for x ∈ D ▷ Compute per-example natural gradients for mq

3: γx ← min(1, C/||gnat
m,x||) for x ∈ D ▷ Compute the clipping multiplier

4: g̃nat
m ←

∑
x∈D γxgm,x + σDP Cψ, where ψ ∼ N (0, I) ▷ Get DP release for gnat

m

5: g̃nat,aligned
s = I−1

s (ηT ′(sq)Img̃
nat
m +∇sq

H(q)). ▷ Get DP aligned gnat
s via post-processing

3.1.2 Extending to full-rank covariance matrices

So far we have only considered a diagonal Gaussian as the variational posterior. Due to the low dimensionality
of the variational parameters, this approach is computationally effective and often applied in practice, but it
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has limitations: It cannot capture correlations among different model parameters and, more importantly, it
will underestimate the marginal variances of the parameters when the true covariance structure is non-diagonal.
For those reasons, a full-rank covariance approximation would be favored to correctly capture the uncertainty
of the parameters.

However, learning the full-rank covariance approximation results in a quadratic (in the number of dimensions
d) expansion of the number of learnable parameters. This not only increases computational costs but
also implies less accurate learning of the parameters under DP, as the available privacy budget has to be
spread over more parameters. Fortunately, the aligning procedure can be extended to full-rank Gaussian
approximations as well, which allows us to alleviate the issue of increased sensitivity. The proof is very similar
to the diagonal case. Instead of the parameters sq corresponding to marginal standard deviations, we now
consider a parameter vector aq ∈ R

d(d+1)
2 and a transformation function T : R

d(d+1)
2 → Rd×d such that T (aq)

corresponds to the Cholesky factor of the posterior covariance. That is, T must guarantee that T (aq) is a
lower triangular with positive entries along its diagonal, which will require similar transformations as in the
purely diagonal covariance case discussed previously. Now, the reparametrisation step in (6) becomes

θ := mq + T (aq)η, (19)

and the gradient w.r.t aq can be written as

ga = Ja(T (aq)η)gm +∇aq
H(q), (20)

where Ja denotes the Jacobian of T w.r.t aq. Therefore, the gradient ga can again be written as a data-
independent transformation of gm. Thus under the post-processing immunity of DP, we can get the DP
gradients for aq from DP versions of gm without suffering the quadratic increase of the size of the input to
underlying the Gaussian mechanism present in vanilla DPVI.

3.2 Leveraging DP parameter iterates to reduce error and for uncertainty estimation

As other applications of DP-SGD, vanilla DPVI does not take the uncertainty that the DP mechanism
introduces into account. Instead, after a finite number of iterations, the values found in the last iteration are
usually treated as the true variational parameters. We argue that treating them this way can lead to severe
errors in accuracy because these values are merely a noisy estimate of the optimal values. Annealing the
learning rate to reduce fluctuations around the optimum does not help: Without knowledge of the convergence
point the distance to an optimum can still be large due to the random walk prior to annealing. Instead in
the following we suggest making use of some fraction of the DP parameter iterates output by the algorithm
to 1) average out and 2) estimate the additional variance introduced by DP noise additions, making the
learned model approximately noise-aware. While 1) is a known technique known as iterate averaging (Polyak
& Juditsky, 1992), 2) has not been previously applied in this context to the best of our knowledge. Note that
privacy guarantees of DP-SGD algorithms extend to all parameter iterates, so this comes at no additional
privacy cost. We first briefly review some theory about the random walk behavior around the optimum and
then discuss the details of our proposed approach.

Mandt et al. (2017) investigated the random walk behaviour around the optimum for regular (non-DP) SGD
arising from subsampling. They assume that near the optimum ξ∗ the loss function is well approximated by
a quadratic approximation L(ξ) ≈ 1

2 (ξ − ξ∗)TA(ξ − ξ∗), and show that the stochastic process around the
optimum can be characterised as an Ornstein-Uhlenbeck (OU) process

dξ(t) = −αA(ξ(t)− ξ∗)dt + 1√
S

αBdW (t), (21)

where W (t) is a Wiener process, α is the step size of the SGD (assumed constant), S is the size of the
subsampled data and B the Cholesky decomposition of the covariance matrix Z of the noise due to the
subsampling. Directly adapting this analysis, we suggest that under the same regularity assumptions, DP-SGD
still is an OU process. The principle of the proof is straightforward: DP-SGD adds an additional Gaussian
noise component, allowing us to add the (diagonal) covariance matrix of the DP noise to Z and obtain a B̂
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such that

Z + Sσ2
DP I = B̂B̂

T
. (22)

The more detailed proof can be found in Appendix E. This insight allows us to make the following two
suggestions to improve the parameter estimates of DPVI.

Iterate averaging to reduce noise in parameter estimate In order to reduce noise in our learned
variational parameters, we apply iterate averaging and average the parameter traces, i.e., the sequence of
parameter iterates during optimisation, over the last Tburn-out iterates for which we assume the trace has
converged. As the OU process in Equation (21) is symmetric around the optimum, the mean of the trace is
an unbiased estimator of ξ∗. Compared to using the final iterate of the chain (also an unbiased estimator of
ξ∗), the averaged trace reduces the variance of the estimator by up to a factor of T −1

burn-out. Iterate averaging
has been previously been used to reduce the noise of DP-SGD for example by Bassily et al. (2014) by scaling
the learning rate w.r.t total number of iterations and by Bassily et al. (2019) and Lowy & Razaviyayn (2021)
by taking average over all the iterates obtained during training. However, the key difference in our method is
that we are actively estimating the point of convergence for the iterates, and only averaging after that. The
convergence is required for estimating the DP induced noise from the OU process.

Estimating the increased variance due to DP Finally, since our posterior approximation is Gaussian
and the stationary distribution of the OU is Gaussian as well, we can add the variance of the averaged traces
to the variances of our posterior to absorb the remaining uncertainty due to the inference process, and recover
a noise-aware posterior approximation.

Now the remaining problem is to determine Tburn-out, the length of the trace where the parameters have
converged. For this we suggest a simple convergence check based on linear regression: For each of the traces,
we fit linear regression models over different candidate Tburn-out. The regressor X linreg is set to interval
[0, 1] split to Tburn-out points in an ascending order. The responses y are set to the corresponding parameter
values in the trace, e.g. y = {mq

(t)}T
t=T −Tburn−out

. If the linear regression model has a sufficiently small
slope coefficient, we consider the trace as converged and pick the longest Tburn-out for which this is the case.

4 Experiments

We experimentally test our methods for two different tasks using mean-field approximation with real data:
learning a probabilistic generative model for private data sharing and learning a logistic regression model.
We also experimentally explore aligned DPVI with full-rank Gaussian approximation using simulated data.

4.1 Implementation details

We implemented the different variants for DPVI introduced in Sec. 3.1.1 using the d3p package (Prediger
et al., 2022) for the NumPyro probabilistic programming framework (Phan et al., 2019; Bingham et al.,
2019). To compute the privacy cost in our experiments, we use the Fourier accountant method (Koskela
et al., 2021). The hyperparameters used in our experiments are discussed in the Appendix F. We use the
softplus function as our transformation T in all experiments. The code for reproducing the experiments can
be found at https://github.com/DPBayes/dpvim-experiments.

In order to asses learning over multiple parameters which converge to different values, and over repeated
runs with different initial values, we define a mean proportional absolute error (MPAE): Let ξ(t) ∈ RD be the
parameter vector at iteration t and ξ∗ be the parameter vector at the optimum.3 We measure the MPAE at
iteration t as

MPAE(ξ(t)) = 1
D

D∑
d=1

|ξ(t)
d − ξ

∗
d|

|ξ(0)
d − ξ

∗
d|

. (23)

An MPAE value of 0 indicates perfect recovery of the optimum, a value of 1 suggests that the parameters on
average did not move away from their initialisation.

3Since the optimal value ξ∗ is typically unknown, we instead use the results of classical non-DP variational inference in its
place in practice.
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Figure 1: UKB experiment: (a) Aligned DPVI makes the smallest error in learning the variational
parameters across all different initial values for σq, implying it is the most robust. (b) Aligned DPVI
converges faster than the other variants while also having less deviation across the repeats (all initialised at
σq = 1). Both subfigures show averaged MPAE for vanilla, aligned and preconditioned DPVI with error bars
in (b) indicating standard error over repeats.

4.2 Using DPVI to learn a generative model

Recently, Jälkö et al. (2021) suggested using DPVI to learn a probabilistic generative model for differentially
private data sharing. Note that in this application it is especially crucial to learn the posterior variances well
to faithfully reproduce the uncertainty in the original data in the synthetic data set.

A recent study by Niedzwiedz et al. (2020) on personal health data from the United Kingdom Biobank
(UKB) (Sudlow et al., 2015) studied how socio-economic factors affect an individual’s risk of catching the
SARS-CoV-2 virus. We aim to produce synthetic data, using DPVI to learn the generative model, from
which we can draw similar discoveries.

Following Niedzwiedz et al. (2020), we consider a subset of UKB data which comprises of 58 261 individuals
with d = 7 discrete (categorical) features. We split the features into a set of explanatory variables and a
response variable indicating whether the individual was infected by SARS-CoV-2.

We place a mixture model for the explanatory variables X, and a Poisson regression model mapping the
explanatory variables to the responses y, using θX , θy and π to designate the model parameters:

p(X | θX ,π) =
K∑

k=1
πk

d∏
j=1

Categorical(Xj | θ(k)
X ) (24)

p(y |X,θy) = Poisson(y | exp(Xθy)). (25)

In our experiments, we set the number of mixture components K = 16 which was chosen based on internal
tests. Priors for the model parameters are specified in Appendix G.1.

Aligned DPVI is more robust to initialisation We first demonstrate that aligned DPVI improves
robustness to initialisation over vanilla and preconditioned DPVI. To do so we fix a privacy budget of ε = 1
and the number of passes over the entire data set, i.e., epochs, to 1000 and vary the initial value of sq such
that σq is one of 0.01, 0.032, 0.1, 0.316 or 1. We perform 10 repetitions with different random seeds over which
we keep the initialisation of sq fixed but initialise mq randomly. We compute the MPAE over the parameters
of the Poisson regression part in the model, which corresponds directly to the downstream prediction task we
are ultimately interested in.
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Figure 2: UKB experiment: The aligned variant
remains the most accurate method, even if we run the
algorithm for longer. Initial σq = 1.
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Figure 3: UKB experiment: RMSE of parameters
found in downstream analysis when doing iterate aver-
aging with different Tburn-out. Iterative averaging can
reduce the error and significantly reduce variance of
error compared to using only the last iterate. Initial
σq = 1, 4000 epochs of aligned DPVI.

Figure 1a shows the trade-off different variants of DPVI make between the MPAE in variational means (mq)
and stds (sq) averaged over the 10 repetitions for the different initial values of sq. We observe that the
aligned variant is able to achieve small errors in mq and sq simultaneously while the alternatives cannot.
To see how the MPAEs for mq and sq behave individually w.r.t. the initial value for sq refer to Appendix
H. The natural gradient as well as the aligned natural gradient method performed slightly worse than the
aligned method in this experiment and we report results for them in the appendix as well.

Longer runs do not help vanilla DPVI Figure 1b suggests that vanilla DPVI has not converged in
terms of MPAE, in the allotted number of iterations for an initial σq = 1. An obvious solution then seems
to be to run the inference for longer. We now fix the initialisation of σq to 1, which designates the least
relative scaling of gradients at the beginning of training and thus a best-case scenario for vanilla DPVI. We
vary the number of training epochs from 200 to 8000 while always keeping the privacy budget fixed at ε = 1.
Since longer runs require more accesses to the data, the DP perturbation scale increases with the number of
iterations. As before, we repeat 10 inference runs for each parameter choice.

Figure 2 shows the final MPAE over all 10 repetitions and all parameters in the Poisson regression part of
the model for the different numbers of total epochs.4 The upper panel shows that with an increasing number
of epochs, the difference in MPAE of variational means between vanilla and aligned DPVI vanishes. However,
the lower panel shows clearly that even in a long training regime, vanilla DPVI still does not converge in
variational variances and is consistently beaten by our aligned variant.

Iterate averaging increases robustness of downstream task Next, we test the iterate averaging
of noisy parameters traces for the generative model. We use the linear regression technique discussed in
Sec. 3.1.2, individually for each parameter, to determine the length of the trace to average. We then use
synthetic data from the generative model to learn the Poisson regression model used by Niedzwiedz et al.
(2020) and compare the regression coefficients against those obtained from the original data. Further details
on the downstream analysis setup are given in Appendix I. Figure 3 shows that the results from iterate
averaged model are less noisy compared to just using the last iterate as the true parameters. However, the
approach appears to be somewhat unstable: Changing the initial values of σq to 0.1 causes the variance of
error for ε = 1. to increase over the non-averaged case. This is likely due to the simple linear regression
heuristic we used in this experiment not detecting convergence correctly in this case.

4Note that it is not showing the evolution of the error over a single training of 8000 epochs.
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4.2.1 Experiments on the US Census data set
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Figure 4: US Census experiment: Aligned DPVI
method learns the variational standard deviations faster
than the alternatives. The plot shows the average
MPAE and the standard deviation across 10 indepen-
dent repeats of the variational inference with σq ini-
tialized to 1.0 applied on the US Census data sharing
experiment.

To ensure the results are not specific to only a sin-
gle data set, we next applied DPVI on a large set
of US Census 1990 data (from UCI Dua & Graff
(2017)), in the same data sharing setting as the UK
Biobank experiment. We focused on individuals
having military background, and using the similar
mixture model/Poisson regression combination as
with the UK Biobank experiment, we tried to pre-
dict the poverty indicator of the individual given
military service related and demographic features.
After preprocessing the data comprised of 320 754
samples with 13 features. The hyperparameters for
the different DPVI variants were identical to the ones
used in UK Biobank experiment.

Figure 4 shows again that the aligned variant learns
the variational scales better in terms of the mean
proportional absolute error (MPAE) of DPVI param-
eters to the non-private optimum, as was the case
with UK Biobank data.

4.3 Logistic regression with the Adult data set

As the UK Biobank data is access-restricted, we further demonstrate our methods on the publicly available
Adult data set from the UCI machine learning repository (Dua & Graff, 2017), which contains 30 162 training
records. We learn a logistic regression model, classifying whether the income feature of the data exceeds $50k
based on all other features.

Aligned natural gradient outperforms the other variants We compare our private logistic regression
coefficients to the ones obtained using privacy-agnostic VI. We also test the aligned natural gradient and the
natural gradient variants for this data. Figure 5a shows the ℓ2-norm between variational parameters learned
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Figure 5: Adult logistic regression experiment: (a) The aligned natural gradient method is closest to
the non-private variational parameters. Error is computed as a mean ℓ2-norm against non-private baseline
over 20 repeats. Error bars show the standard error of the mean. (b) The standard deviation inferred
from the converged traces (determined by the linear regression method) is close to that computed over last
iterates across different repeats. Lines show the average MSE, error bars show the standard deviation across
repeats. The baselines show the mean squared norm of the standard deviation estimated from repeated runs,
corresponding to the MSE for not estimating DP-induced noise.
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with and without DP. From this figure we see that the aligned natural gradient method clearly outperforms
all the other variants in this setting. Additionally, we clearly see again that vanilla DPVI learns the stds
poorly, and also that the natural gradient variant reverses the problem compared to vanilla and struggles in
learning the variational means as suggested in Section 3.1.1.

DP noise can be inferred from the (converged) traces We test how well we can recover the DP
noise effect from the parameter traces. We limit the test to the coefficients that have converged according to
the linear regression test described in Section 3.1.2. Based on our internal tests, we chose a slope of 0.05 as
the threshold for convergence. We compare the standard deviation of the converged parameter trace to an
estimate of the DP-induced noise estimated by the standard deviation of the last iterates over 50 repeats in
terms of mean squared error over different parameter sites.

Figure 5b shows that the noise std estimated from the converged traces is close to the noise std we have
across the last iterates of multiple independent repeats.

4.4 Experiments with full-rank covariance

As a final experiment, we investigate aligned gradients for a full-rank Gaussian posterior approximation. We
perform Bayesian linear regression over a simulated data set where we can control the number of feature
dimensions as well as the strength of correlations. We control the latter by setting the rate of nonzero
off-diagonal entries in the covariance matrix for simulated data points. Further details of the experimental
setup can be found in Appendix J.
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Figure 6: Full-rank covariance experiment: DPVI
with aligned gradients achieves better predictive log-
likelihood for a full-rank approximation than vanilla
DPVI. Higher density means more nonzero entries in
data covariance. ε = 1. 50 repetitions.

Figure 6 confirms that aligned gradients improve
the average predictive log-likelihood of the posterior
approximation over a held-out test set. This is true
even when the data is not strongly correlated (panels
in the right column), as the large increase in parame-
ters over which vanilla DPVI has to split the privacy
budget negatively impacts the learning.

5 Discussion

In this paper we introduced the aligned gradient so-
lution for the specific task of learning a Gaussian
variational posterior. The technique should be appli-
cable also in other tasks where gradients with respect
to different parameters depend on data through a
common term. Detection of such cases could be even
automated by inspecting how the data enters the
computational graph of the task. This would be an
interesting future direction.

A limitation of DP in general is that it guarantees
indistinguishability among the individuals in the data set by aiming to preserve more common characteristics
of the data. Therefore the utility of a DP algorithm might be worse for individuals from less common groups.

The somewhat unexpected performance of aligned natural gradients in the UKB example might be due to
bad hyperparameter choices. While we performed some hyperparameter tuning with limited success, a more
comprehensive search would be needed to fully assess the performance of these methods.

The literature on MCMC holds many existing diagnostics for the converge of chains, such as the (split) R-hat
estimator (Gelman & Rubin, 1992; Vehtari et al., 2021), that could be used to test the convergence of the
parameter traces as well. Tuning these methods to work well in diagnosing the converge of the parameter
trace would require extensive testing which we leave for future work.
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Appendices
A Intuitive reasoning why larger noise would slow convergence

We consider only a single optimisation step in a single dimension for simplicity. Assume we are at θ(t) and
have noisy gradient

g(t) = ∇L(θ(t)) + η, η ∼ N (0, σ2) (A.1)
for some perturbation scale σ. We update the parameter as

g(t+1) = θ(t) − αg(t) (A.2)

with learning rate α.

In order to get closer to the optimum, we want sign(g(t)) = sign(∇L(θ(t))). Assume wlog that ∇L(θ(t)) > 0,
then

Pr
[
sign(g(t)) = sign(∇L(θ(t)))

]
= Pr

[
∇L(θ(t)) + η > 0

]
(A.3)

= Pr
[
η > −∇L(θ(t))

]
(A.4)

= 1− Pr
[
η ≤ −∇L(θ(t))

]
(A.5)

= 1− Φ(−∇L(θ(t))) (A.6)
= Φ(∇L(θ(t))) (A.7)

= 1
2

(
1 + erf

(
∇L(θ(t))

σ
√

2

))
. (A.8)

erf(·) is a monotonically increasing function, so we see from the above that the probability of progressing
towards the optimum decreases with decreasing ∇L(θ(t))

σ . I.e., for a fixed gradient, larger variance σ2 will
decrease the probability of progressing towards the optimum in each step.

B Proof of Proposition 3.1

We begin by restating Proposition 3.1.
Proposition B.1 (Proposition 3.1). Assume q to be diagonal Gaussian, then the gradient gs in Equation
(8) becomes

gs = ηT ′(sq)gm +∇sq
H(q),

where T ′ denotes the derivative of T .

Proof. We first recall the reparametrisation for the diagonal Gaussian approximation from Eq. (6) as
θ(η;mq, sq) = mq + T (sq)η and observe that ∇mq

θ = 1 and ∇sq
θ = ηT ′(sq) (where we abbreviate

θ(η;mq, sq) to simply θ). With this we obtain the gradient of the ELBO with respect to mq by applying
the chain rule in Eq. (7) as:

gm = ∇mq
L(q) = ∇θ log p(D,θ) (B.1)

Similarly applying the chain rule in Eq. 8 and inserting the above yields

gs = ∇sq
log p(D,θ) +∇sq

H(q) (B.2)
= ∇θ log p(D,θ)∇sq

θ +∇sq
H(q) (B.3)

= ∇θ log p(D,θ)ηT ′(sq) +∇sq
H(q) (B.4)

= ηT ′(sq)gm +∇sq
H(q). (B.5)
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C Proof of T ′(sq) ≤ T (sq) for softplus and exponential function

T (sq) = softplus(sq) Consider we transform sq in positive real numbers using the softplus function:

T (sq) = log(1 + exp(sq)). (C.1)

First, we make the following observation which connects the softplus to the sigmoid function

T (sq) = − log
(

1
1 + exp(sq)

)
= − log

(
1− 1

1 + exp(−sq)

)
= − log (1− σ(sq)) , (C.2)

where σ denotes the sigmoid function. We then get T ′(sq) = σ(sq). It is easy to see that log(x) ≤ x− 1 and
hence

T (sq) = − log (1− σ(sq))
≥ 1− (1− σ(sq)) = σ(sq) = T ′(sq). (C.3)

We have therefore shown that T (sq) ≥ T ′(sq)∀sq ∈ R.

T (sq) = exp(sq) For T (sq) = exp(sq) the proof follows immediately from the fact that T ′(sq) = exp(sq) =
T (sq).

D Proof of Theorem 3.1: Variance in aligned scale gradients is smaller

We begin by restating the theorem:

Theorem D.1 (Theorem 3.1). Assume that Cvanilla ≥ Caligned. If we obtain σq through transformation
T such that T ′(s) ≤ 1, then for any fixed batch,

Varη,ψ

[
g̃aligned

s

]
< Varη,ψ

[
g̃vanilla

s

]
,

where η ∈ N (0, 1) is the random variable of the MC approximation to the ELBO in the reparametrisation
approach and ψ ∈ N (0, 1) that of the DP perturbation.

Proof. We want to show, that the variance of the perturbed std parameter gradient for the aligned method
is less or equal than the one for the vanilla approach in all the dimensions of the gradient. We start by
setting the clipping threshold for the vanilla approach as C and the one for the aligned as Ca. Denote the
jth dimension of gs obtained from the vanilla approach as g̃s,j , and similarly g̃aligned

s,j for the aligned. For
the vanilla approach, we have

Varη,ψ

[
g̃s,j

]
= Varη,ψ

[
ηjT ′(sq,j) ∂

∂mq,j
L(q) + ∂

∂sq,j
H(q) +ψjσDP C

]
(D.1)

= Varη
[
ηjT ′(sq,j) ∂

∂mq,j
L(q)

]
+ σ2

DP C2 Varψ
[
ψj

]
(D.2)

= Varη
[
ηjT ′(sq,j) ∂

∂mq,j
L(q)

]
+ σ2

DP C2, (D.3)
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and for the aligned

Varη,ψ

[
g̃aligned

s,j

]
= Varη,ψ

[
ηjT ′(sq,j) ∂

∂mq,j
L(q) + ∂

∂sq,j
H(q) + ηjT ′(sq,j)ψjσDP Ca

]
(D.4)

= Varη
[
Eψ|η

[
ηjT ′(sq,j) ∂

∂mq,j
L(q) + ∂

∂sq,j
H(q) + ηjT ′(sq,j)ψjσDP Ca

]]
(D.5)

+ Eη
[
Varψ|η

[
ηjT ′(sq,j) ∂

∂mq,j
L(q) + ∂

∂sq,j
H(q) + ηjT ′(sq,j)ψjσDP Ca

]]
(D.6)

= Varη
[
ηjT ′(sq,j) ∂

∂mq,j
L(q)

]
+ Eη

[
η2

jT ′(sq,j)2σ2
DP C2

a

]
(D.7)

= Varη
[
ηjT ′(sq,j) ∂

∂mq,j
L(q)

]
+ T ′(sq,j)2σ2

DP C2
a . (D.8)

We can easily see that the two variances differ only in the noise term. Now, it is easy to see, that if we set
Ca = C and have a transformation T s.t. T ′(s) ≤ 1, we have

Varη,ψ

[
g̃aligned

s,j

]
≤ Varη,ψ

[
g̃s,j

]
, ∀j. (D.9)

Setting C = Ca already shows that the aligned method’s variance cannot exceed the vanilla method. However,
consider now that Ca is a clipping threshold that satisfies Pr(||gm|| > Ca) < α for some α ∈ [0, 1), i.e. only
an α fraction of the gradients get clipped in the aligned approach. Now, since the vanilla method clips based
on the norm ||g||2 = ||gm||2 + ||gs||2 ≥ ||gm||2, we need to set the C at least as large as Ca to facilitate
the same probability of clipping. Furthermore, we have the equality ||g||2 = ||gm||2 only in the case when
||gs|| = 0 which would only happen if the std parameter has converged. Therefore, the C should be chosen
larger than Ca to avoid clipping prior to the convergence of sq. Note that the magnitude of the gs does not
affect the aligned approach, and therefore the clipping bound Ca. Now, as we need to choose C > Ca and we
have assumed T ′(s) ≤ 1, we have

Varη,ψ

[
g̃aligned

s,j

]
< Varη,ψ

[
g̃s,j

]
, ∀j. (D.10)

Furthermore, from the above variance expressions, it is easy to see that the variance in the aligned approach
gets significantly smaller than the vanilla one when T ′(s) ≪ 1. This would be the case for example if we
initialize the variational posterior with small sq, or similarly towards the end of the convergence for models
with small posterior variance.

E Variance of DP from OU process on convergence

We follow closely the analysis performed by Mandt et al. (2017), Sec. 3.2., which makes the following
assumptions for the loss function L around its optimum ξ∗:

1. Mini-batch gradients of the loss functions are well approximated by a zero-mean Gaussian distribution
with covariance matrix 1

SZ, where S denotes the size of mini-batch,

2. L is locally well approximated by a quadratic function.

We make the additional assumption that the clipping threshold C is chosen such that no clipping occurs for
gradients close to the optimum in order to avoid clipping-induced bias.

We begin by stating the SGD parameter update equation and the resulting update step ∆ξ(t) for update
steps close to the optimum.
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ξ(t + 1) = ξ(t)− α

(
∇ξL(ξ(t)) + 1√

S
Bν + σDP Iψ

)
, ν ∼ N (0, I) , ψ ∼ N (0, I)

= ξ(t)− α

(
∇ξL(ξ(t)) +

(
1√
S
B + σDP I

)
ψ′

)
, ψ′ ∼ N (0, I) (E.1)

∆ξ(t) := ξ(t + 1)− ξ(t) = −α∇ξL(ξ(t))− α

(
1√
S
B + σDP I

)
ψ′ (E.2)

We denote with B the triangular matrix resulting from Cholesky decomposition of Z = BBT . Since we are
performing DP-SGD, we have an additional independent noise term with scale σDP . However, as both sources
of stochasticity are independent zero-mean Gaussians, we can easily reformulate using a single Gaussian
source of noise with the total variance.

We now restate E.2 by the following stochastic differential equation:

dξ(t) = −α∇ξL(ξ(t))− α( 1√
S
B + σDP I)dW (t) (E.3)

From our second assumption, we know that

L(ξ) ≈ 1
2(ξ − ξ∗)TA(ξ − ξ∗), (E.4)

where A = ∂2

(∂ξ)2L(ξ∗).

Inserting (E.3) in (E.4), we get

dξ(t) = −αA(ξ − ξ∗)dt + α( 1√
S
B + σDP I)dW (t) (E.5)

with describes an Ornstein-Uhlenbeck (OU) process with Gaussian stationary distribution

q(ξ) ∝ exp
{
−1

2(ξ − ξ∗)T Σ−1(ξ − ξ∗)
}

(E.6)

where Σ satisfies the Lyapunov equation

ΣA+AΣ = α

(
1
S
Z + σ2

DP I

)
. (E.7)

Even without determining A we can already make an important discovery from this: Since A is fixed around
the optimum, we see that the noise covariance of our OU process scales linearly with respect to σ2

DP .

Note that the above analysis holds for a constant learning rate. We have used the Adam optimization method
(Kingma & Ba, 2015) in our experiments throughout the paper. While Adam does adapt the learning rate,
recently Mohapatra et al. (2021) showed that the learning rate of Adam will converge to a static value, which
means that the analysis above still holds as it is only concerned with the learning rate at convergence.

F Hyperparameters

We use Adam (Kingma & Ba, 2015) as the optimiser for all the experiments with starting learning rate of
10−3. In all of our experiments, the δ privacy parameter was set to 1/N where N denotes the size of the
training data.

For the UKB experiment In the experiments, we used various different training lengths (depicted e.g.
in Figure 2). For all of our runs, we set the subsampling rate as 0.01. The clipping threshold C was set to
C = 2.0 for the aligned and vanilla, 4.0 for the preconditioned variant and to 0.1 for the natural gradient
based variants.
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For the Adult experiment The training was run for 4 000 epochs with subsampling ratio of 0.01,
corresponding to total of 400 000 gradient steps.

We chose the clipping thresholds for the gradient perturbation algorithm as the 97.5% upper quantile of the
training data gradient norms at the non-private optima. This was done to avoid clipping-induced bias, thus
making the models comparable to the non-private baseline. This lead to clipping thresholds C presented in
Table F.1.

Table F.1: Clipping thresholds for the Adult data logistic regression model

Variant C
Aligned 3.0
Aligned Natural Grad. 0.1
Natural Grad. 0.1
Vanilla 3.0
Preconditioned 4.0

G Model priors

G.1 For the UKB and the US Census experiments

Recall the probabilistic model used in the experiments:

p(X | θX ,π) =
K∑

k=1
πk

d∏
j=1

Categorical(Xj | θ(k)
X ) (G.1)

p(y |X,θy) = Poisson(y | exp(Xθy)). (G.2)

The categorical probabilities θ(k)
Xj

for each of the categorical features Xj , were given a uniform Dirichlet(1)
prior. Similarly the mixture weights π we assigned a uniform Dirichlet prior. The regression coefficients θy
were given a std. normal N(0, I) prior.

G.2 For the Adult experiment

We use the following model and prior

y ∼ σ(Xw), (G.3)
w ∼ N (0, I), (G.4)

where σ(·) denotes the logistic regression function, σ(x) = 1/1+exp{−x}.

H More results for robustness

Figure H.1 shows how the MPAE for the different DPVI variants behave for the different initial values for sq

for both, variational mean (upper panel) and standard deviation (lower panel) after 1 000 epochs.

Figure H.2 shows the parameters traces for sq initialised such that σq = 0.01 (left) and σq = 0.1 (right) with
the same split in upper and lower panels, similar to Figure 1b for σq = 1.0 in the main body of the paper.

We observe that with decreasing initial values for sq (/σq) it becomes increasingly difficult for vanilla DPVI
to learn variational standard deviation but learning of means is slightly improved. Preconditioned DPVI
performs better overall in terms of standard deviation but learns means worse. Aligned DPVI consistently
outperforms both competing variants.

21



Published in Transactions on Machine Learning Research (09/2023)

1.4 × 10 1
1.6 × 10 1
1.8 × 10 1

2 × 10 1
2.2 × 10 12.4 × 10 12.6 × 10 1

M
PA

E 
in

 m
ea

n

10 2 10 1 100

initial values for qs

10 1

100

M
PA

E 
in

 st
d. vanilla

aligned
precon

Error in parameters over initialization
= 1.0, after1000epochs

Figure H.1: The aligned variant has consistently low error across different initial values of qσ. Figure shows
the error for ϵ = 1 for 1000 epochs of training.
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Figure H.2: Aligned DPVI consistently converges faster than the other methods for different initialisation of
sq. On left, the sq is initialised such that σq = 0.01 and on right such that σq = 0.1.

H.1 Natural gradients and the aligned natural gradients in the UKB experiment

Besides the vanilla and aligned variant, we also fitted the UKB model using the natural gradient and aligned
natural gradient variants. From Figure H.3 we can see the trade-off natural gradients make; the means are
learned worse than standard deviations, which is what we expect based on the analysis of Section 3.1.1.
Somewhat surprisingly, the aligned natural grad. variant performs slightly worse than the aligned variant in
this experiment. This might be due to poor choice of hyperparameter, for example the learning rate for the
Adam optimiser used in the experiments was set to 10−3 for all the variants, while we know that the natural
grad. variants tend to have smaller gradients than the others - although Adam should in theory be able to
adapt to that.

To evaluate whether the difference between aligned and aligned natural grad. results is due to clipping
threshold being too large or too small for the aligned natural grad. approach, thus perturbing the gradients
excessively or introducing excessive clipping bias, we repeat the experiment with higher and lower clipping
thresholds. Figure H.4a shows that increasing the clipping threshold to C = 0.1 harms the natural gradient
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Figure H.3: The natural gradient based variants variant achieve comparable performance in terms of variational
parameters for std but perform worse for variational means. This is strongly observable for the plain natural
gradients while aligned natural gradients improve error in variational means in comparison. However, both
are outperformed by (non-natural) aligned gradients in this experiment. Lines show the mean MPAE over 10
independent repeats as well as std. of mean as error bars. Clipping threshold for both natural gradient based
variants is set to C = 0.02, σq was initialised to 1. The natural gradient variant appears to diverge from
the true variational std. which might be caused by clipping-induced bias, while still struggling to learn the
correct variational mean.

based variants, most likely due to introducing too much privacy noise and thus preventing convergence of the
variational mean parameters. Conversely, Figure H.4b shows that setting clipping threshold C = 0.01 natural
gradient variants is too small, and the aligned natural gradients start to suffer from clipping-induced bias.

These observations highlight the importance of choosing the clipping threshold appropriately to the method,
which is not a trivial task. For this experiment, this seems to have a direct influence on how well aligned
natural gradients can reign in the inversal of relative scaling of components present in plain natural gradients.
For future work, it would be interesting to perform a more extensive hyperparameter tuning including for
example the learning rate and number of iterations as the tunable hyperparameters, to see if the natural
gradient methods make some non-trivial trade-offs in the learning that differ fundamentally from the aligned
and vanilla methods.

I Further details on downstream analysis for UKB data

In the UKB experiment, we use the learned variational posterior to sample a synthetic data set from the
posterior predictive distribution (PPD) as suggested by Jälkö et al. (2021). We test the method by comparing
the synthetic data in downstream analysis to the original data. As the downstream task, we fitted a Poisson
regression model that aims to predict whether individual catches SARS-CoV-2 based on the predictors in the
data. Note that this downstream perfectly overlaps with our generative model.

In order to properly reflect the uncertainty rising from the data generating process to the final results
computed from the synthetic data, we will employ so called Rubin’s rules (Rubin, 2004). In this procedure,
we first sample multiple synthetic data sets from the PPD and compute the downstream analysis on each of
the sampled synthetic data. Next, the results are aggregated according to a set of rules and we recover finally
a more robust estimator for our downstream analysis. Further discussion about the Rubin’s rules can be
found for example in (Reiter & Raghunathan, 2007).
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(a) The natural gradient based variants struggle to
converge in the UKB experiment with clipping thresh-
old set to 0.1. Figure shows the evolution of MPAE for
both of the variational parameters over 1000 epochs.
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Figure H.4: Tests with smaller clipping threshold for the natural gradient variants. The clipping threshold
for the vanilla and aligned is still set to 2.0.

In our experiments, we sampled 100 data sets from the PPD learned using the aligned variant, and applied
the Rubin’s rules to compute a mean and std. estimate for the Poisson regression coefficients. Finally, the
obtained means were compared to the Poisson regression coefficients learned using the original data.

J Experimental setup for full-rank Gaussian approximation

In this experiment we create simulated data where we control the amount of correlations between data
dimensions as the ratio ρ of non-zero off-diagonal entries in the correlation matrix. To generate data with d
dimensions and correlation density ρ, we

1. generate a correlation matrix C using Algorithm J.1 with inputs d, ρ, α = 8, β = 10,

2. sample a diagonal matrix D of marginal variances, where {D}ii ∼ exp
{
N (0, 0.22)

}
,

3. obtain the covariance matrix Σ = DCD

4. sample N = 10 000 data points xn ∼ N (0, Σ)

5. sample random regression weight vector w ∼ N (0, I)

6. sample y ∼ N (Xw, σ2
y), with σy = 1.

We perform the above for all combinations of d = 100, 200 and ρ = 0.2, 0.8. We then use vanilla DPVI and
DPVI with aligned gradients to learn the full-rank Gaussian posterior approximation to the Bayesian linear
regression model with priors

y ∼ N (Xw, σ2
y), (J.1)

w ∼ N (0, I) (J.2)
σy ∼ Gamma(0.1, 0.1). (J.3)

We run the inference for 1 000 epochs, gradient clipping threshold 0.2 and subsampling ratio 0.01.

For the same d, ρ we then generate another 10 000 data points and compute the log-likelihood using the
obtained posterior approximation. We repeat the inference and evaluation 50 times for each method and
combination of d and ρ, keeping the generated training and testing set fixed.
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Algorithm J.1 Routine to generate a d-dimensional correlation matrix with given density ρ and strength of
correlations controlled by α, β.
Require: d, ρ ∈ [0, 1], α > 0, β > 0
Ensure: correlation matrix C

K ← ρ d(d−1)
2 ▷ number of non-zero off-diagonal entries

U ← ∅
k ← 0
C ← Id

for k = 1, . . . , K do
sample (i, j) ∈ T \ U at random
sample c ∼ Beta(α, β) ▷ sample correlation strength, controlled by α and β
sample f ∈ {−1, 1} at random ▷ sample sign of correlation
Cij ← fc
Cji ← Cij

U ← U ∪ {(i, j), (j, i)}
end for

Table K.1: Estimated runtimes for UKB experiment

#epochs single repeat runtime repeats # epsilon values # initial values
200 4-8min 10 4 5
400 8-16min 10 4 1
600 12-18min 10 4 1
800 16-32min 10 4 1
1000 20-40min 10 4 1
2000 40-80min 10 4 1
4000 80-160min 10 4 1
8000 160-320min 10 4 1

K Runtimes

K.1 UKB experiments

In this experiment, we ran all the variants separately for 10 seeds and 4 levels of privacy. Additionally, we
experimented with different runtimes and initialisations. For a training of 1 000 epochs, a single repeat takes
between 20 to 40 minutes. The runtime scales linearly with the number of epochs.

Further, we computed the downstream task for the aligned variants, which includes generating the 100
synthetic data sets and fitting the downstream Poisson regression model on those 100 synthetic data. This
procedure takes between 30 to 60 minutes to complete.

A rough estimate of the runtimes for the UKB experiment is given in Table K.1. A single CPU core with 8gb
of memory was used for all the runs.

K.2 Adult experiments

A single training repeat of learning the logistic regression model for all the different variants of DPVI, took
between 10 and 30 minutes to finish on a single CPU core with 8gb of memory assigned. In total, the Adult
experiment was repeated 50 times for four different levels of privacy. Therefore the total runtime of all the
experiments is between 2 000 and 6 000 minutes.

The variance in running times is likely due to differences in computation nodes in the clustered assigned by a
automatic run scheduler.
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K.3 Full-rank experiments

A single run for this experiment consisted of the inference using both vanilla and aligned DPVI with full-rank
approximations. All runs were executed on a computing cluster utilising Nvidia K80, A100, P100, V100
GPU hardware, to which the runs were allocated automatically to balance overall load. As a result, runtimes
varied slightly: Runs for and 100 dimensional data took 6-8 minutes to finish, runs for 200 dimensions took
8-10 minutes. With a total of 4 data set configurations and 50 repeats for each, the total runtime is 1 400 to
1 800 minutes.

L Gradient distributions for different variants
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Figure L.1

Figure L.1 shows the distributions of gradient norms for variational means and scales for different variants of
DPVI discussed in Section 3.1.1 when sq is set to 0.1. Figure L.1a clearly shows the different magnitudes
for variational standard deviation in vanilla DPVI. Figure L.1b demonstrates that natural gradients simply
reverse the problem. Figure L.1c shows that the scaling approach achieves matching magnitudes quite well.
However, it comes at the cost of increasing the norm of the full (combined) gradient and therefore increased
sensitivity.
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