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Abstract

Humans excel at isolating relevant information from noisy data to predict the behavior
of dynamic systems, effectively disregarding non-informative, temporally-correlated noise.
In contrast, existing visual reinforcement learning algorithms face challenges in generat-
ing noise-free predictions within high-dimensional, noise-saturated environments, especially
when trained on world models featuring realistic background noise extracted from natural
video streams. We propose Task Relevant Masks Sampling (TRMS), a novel approach for
identifying task-specific and reward-relevant masks. TRMS utilizes existing segmentation
models as a masking prior, which is subsequently followed by a mask selector that dynami-
cally identifies subset of masks at each timestep, selecting those most probable to contribute
to task-specific rewards. To mitigate the high computational cost associated with these
masking priors, a lightweight student network is trained in parallel. This network learns
to perform masking independently and replaces the Segment Anything Model (SAM)-based
teacher network after a brief initial phase (< 10− 25% of total training). TRMS enhances
the generalization capabilities of Soft Actor-Critic agents under distractions, achieves bet-
ter performance on the RL-Vigen benchmark, which includes challenging variants of the
DeepMind Control Suite, Dexterous Manipulation and Quadruped Locomotion tasks.

1 Introduction

Visual Reinforcement Learning (RL) has garnered considerable success in mastering complex behaviors
derived directly from high-dimensional, image-based observations (Mnih et al., 2015; Levine et al., 2016;
Lee et al., 2020a; Laskin et al., 2020b). Conventionally, it is presumed that environmental observations,
often obtained through hand-crafted features, contain only task-relevant information (Ha & Schmidhuber,
2018; Hafner et al., 2020; 2021; Hansen et al., 2024). This assumption enables RL algorithms to function in
controlled settings with maximum efficiency, as it eliminates exogenous noise (irrelevant or uncontrollable
external factors), such as weather fluctuations or random background movements, that could disrupt or
impede the learning process. In the real world, the landscape is vastly different, rich in complex visual
information, much of which is irrelevant to a specific task. The true challenge lies in accurately distinguishing
task-relevant data while avoiding the unnecessary modeling of exogenous noise. Traditional RL approaches
often fails to provide robust representations under noise, consequently failing to generalize. As a result,
they inadvertently incorporate irrelevant data into their representations, leading to the modeling of noise
dynamics.

Recent approaches have sought to address this by selectively masking irrelevant parts of the input to focus
learning on relevant information. Focus then Decide (FTD) by Chen et al. (2024) leverages the Segment
Anything Model (SAM) (Kirillov et al., 2023) to select relevant segments via attention scores and attains high
rewards. However, using SAM throughout the training process incurs high computational costs, making FTD
impractical for complex tasks that require numerous masks. Contrary to this, methods like SGQN (Bertoin
et al., 2022) use binarized attribution maps as masks to enforce consistency between the Q-values of masked
and original images, highlighting relevant areas, but provides sub-optimal rewards and is extremely sensitivity
to hyperparameter choices. InfoGating (Tomar et al., 2023) focuses only on offline RL experiments, using
a multi-step inverse dynamics model and U-Nets (Ronneberger et al., 2015) to mask irrelevant features.
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Finally, SAM-G (Wang et al., 2023) employs the SAM model but depends on human intervention for mask
selection. However, it remains unclear how combining multiple encoders yields keypoints for task-relevant
masks.

To achieve robust performance and yield high rewards in noise-prone environmental settings, we propose
TRMS, a novel algorithm that leverages existing masking techniques to learn task-relevant masks and to
filter out irrelevant segments. This approach improves agent’s generalization capabilities with respect to
noise in multiple environments. The core idea of TRMS lies in employing pre-existing masking algorithms
that extract meaningful substructures within an image by segmentation. Much like how the human brain
processes visual information: decomposing scene into objects and selectively attending to task-relevant
elements (Kaiser et al., 2016; Seidl et al., 2012a; Peters & Kriegeskorte, 2021), our method focuses on high-
level abstractions, bypassing pixel-level relevance assessments. By segmenting the image into semantically
meaningful subregions, we substantially reduce the complexity of the selector’s task, requiring it to identify
relevance from a more refined subset of the scene. This approach sharply contrasts with methods that attempt
to infer such abstractions from raw pixel data (Bertoin et al., 2022; Hansen et al., 2021; Grooten et al., 2024),
which inevitably suffer from less efficient learning (as shown in the evaluations through empirical results).
Instead of evaluating every pixel individually, our method simplifies the process to determining whether a
mask (representing a smaller subset of pixels) is correct or not. A selector network, utilizing a Convolutional
Neural Network (CNN), provides a binary output for each mask, classifying it as relevant or irrelevant.

To improve the computational efficiency, we include the student network in our training procedure. The
pre-trained segmentation model remains frozen throughout training and is used solely to generate output
masks during inference. The approach is executed in two key phases: (i) Student Network is used to learn
the mask generation over a subset of the batch to mitigate the overhead of processing the entire batch.
(ii) After Ttrain steps, the student network, a lightweight CNN architecture, replaces the teacher network,
enabling faster computations. An empirical evaluation of wall time is shown in Appendix Section D. Since
the student network is co-optimized with the encoder, no auxiliary loss function is required beyond the initial
masking loss during the first phase. The encoder’s loss alone is sufficient to guide the optimization process.

To evaluate the performance of TRMS, we conducted experiments across modified version of eleven envi-
ronments from three benchmarks in RL-ViGen (Yuan et al., 2023): the Deepmind Control Generalization
Benchmark (Hansen et al., 2021), Quadruped Locomotion (Hansen et al., 2021) and Dexterous Manipula-
tion (Rajeswaran et al., 2018). Moreover, TRMS outperforms eight well-established methods in various
tasks in vision-based reinforcement learning (Hansen et al., 2021; Yuan et al., 2022b; Huang et al., 2022;
Bertoin et al., 2022; Yarats et al., 2021; 2022; Laskin et al., 2020a; Wang et al., 2022), achieving better
performance across multiple environments.

Our main contributions are:

• We propose TRMS, a novel algorithm with an actor-critic architecture that enhances task-relevant
masking by leveraging pre-trained segmentation for providing semantically meaningful subregions,
with a selector that identifies task-relevant information from these subregions, improving both gen-
eralization and robustness in visually complex environments.

• We further optimize TRMS through a two-phase training process, where a lightweight student
network incrementally replaces a teacher network, enabling faster mask learning and improving
computational efficiency as compared to solely relying on heavy segmentation model (SAM).

• We validate TRMS through comprehensive experiments across eleven modified environments from
the RL-ViGen benchmarks, where it surpasses relevant existing methods in most of the environments
in vision-based reinforcement learning tasks.

2 Related Work

Generalization in Visual RL. RL agents struggle with severe generalization limitations, where perfor-
mance degrades sharply in unfamiliar environments due to overfitting and insufficient adaptability to unseen
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variations (Kirk et al., 2023; Jiang et al., 2023; Raileanu et al., 2021; Zhang et al., 2018; Cobbe et al., 2019).
Numerous methods have been developed to improve generalization in reinforcement learning, including do-
main adaptation (Xing et al., 2021b; Li et al., 2022; Sun et al., 2022), domain randomization (Mehta et al.,
2020; Lee et al., 2020b; Tobin et al., 2017), and curriculum learning (Narvekar et al., 2020; Gupta et al.,
2022). Contrastive learning (Laskin et al., 2020a; Agarwal et al., 2021; Liu et al., 2023a; Yang et al., 2022),
bisimulation metrics (Ferns et al., 2011; Zhang et al., 2021; Liu et al., 2023b; Sun et al., 2024; Zang et al.,
2022), data augmentations (Hansen & Wang, 2021; Laskin et al., 2020b; Raileanu et al., 2021; Yarats et al.,
2021; 2022; Mumuni & Mumuni, 2022), keypoints (Wang et al., 2021; 2023), and information-theoretic ap-
proaches (Tomar et al., 2023; Fan & Li, 2022; Dave & Rueckert, 2024; You et al., 2022; Wang et al., 2024)
improve state representations, whereas imitation learning builds policies robust to perturbations (Fan et al.,
2021; Xing et al., 2021a; Wang & Hager, 2024).

Numerous works have proposed different ideas to mitigate the impact of task-irrelevant distractors in rein-
forcement learning environments (Yarats et al., 2022; Hansen et al., 2021; Huang et al., 2022; Laskin et al.,
2020a; Yang et al., 2023; Yuan et al., 2022a; Wang et al., 2024). SODA (Hansen & Wang, 2021) incorporates
a BYOL-like (Grill et al., 2020) architecture and augments data by linearly combining supplementary images
with observations. TLDA (Yuan et al., 2022a) takes a different approach, recommending the exclusion of
task-critical pixels from augmentation, determined through the use of Lipschitz constants. PIEG (Yuan et al.,
2022b) employs a pre-trained ResNet (He et al., 2016) as its backbone for generalization under distractors.
SRM (Huang et al., 2022) learns representations in frequency-domain and learns to discard certain frequency
in the observation to address domain shifts. CG2A (Liu et al., 2023c) identifies potential conflicts among
gradients generated by different augmentations and investigates how to better integrate these augmentations.

Masking Distractors in RL. Several approaches have been proposed to enhance the generaliza-
tion of RL agents by selectively masking parts of the input. SGQN (Bertoin et al., 2022) proposes a
saliency-guided method, where binarized attribution maps serve as input masks. It regularizes the value
function by enforcing consistency between the Q-values of the masked and original state images, improving
learning focus on relevant areas. MLR (Yu et al., 2022) introduces a self-supervised auxiliary objective that
performs random masking and reconstructs masked information in the latent space, encouraging dynamic-
relevant state representations. InfoGating (Tomar et al., 2023) utilizes a multi-step inverse dynamics model
as its primary objective and employs U-Nets to mask irrelevant information, with a focus on offline RL
experiments. MaDi (Grooten et al., 2024) closely aligns to our approach in utilising a small CNN for
masking (similar to our student network) and using reward-driven supervision to suppress irrelevant pixels,
but learns masks end-to-end without leveraging structured segmentation priors. SAM-G (Wang et al., 2023)
employs a frozen Segment Anything Model (SAM) (Kirillov et al., 2023) model to generate observation
masks. However, it fundamentally differs in its reliance on foundation-model prompts, necessitating human
intervention for mask selection. Moreover, the mechanism by which multiple encoders are combined to yield
task-relevant masks remains unclear. FTD (Chen et al., 2024) also uses the SAM to select relevant segments
via attention scores and regularizes the RL method with inverse dynamics and reward loss. However, the
use of SAM throughout the training process results in high computational costs, making it impractical for
complex tasks that require numerous masks. These methods rely on unstructured mask learning, costly
vision models, or lack spatial selectivity. In contrast to these methods, TRMS combines segmentation priors
from SAM with a dynamic selector and lightweight student network.

Relation to Cognitive Perception. Selecting visual information from cluttered real-world scenes
requires aligning visual input with the observer’s attentional set—an internal representation of objects
relevant to current behavioral goals—and as these goals shift, a new attentional set must be instantiated,
necessitating the suppression of the previous set to prevent distractions from irrelevant objects (Nasr
et al., 2008; Seidl et al., 2012b). Segmentation allows for the tracking and prediction of objects, enabling
cognitive functions like memory and action planning independent of sensory input (Scholl, 2001; Brady
et al., 2011). Processes such as perceptual grouping, proto-objects, and object files underpin how humans
segment and recognize relevant objects in complex scenes (Roelfsema & Ooyen, 2005; Gao et al., 2016).
Inspired by human-like segmentation and attention mechanisms, we introduce a segment sampling strategy
that leverages masking priors to learn robust and task-relevant representations.
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3 Preliminaries

3.1 Visual Reinforcement Learning

Reinforcement Learning (RL) aims to obtain optimal policies for sequential decision-making problems
through iterative interactions with the environment (Sutton, 2018). In contexts where agents receive
high-dimensional sensory inputs, such as visual observations, these problems are aptly modeled as Par-
tially Observable Markov Decision Processes (POMDPs). A POMDP is formally defined by the tuple
M = ⟨S,A,O, P,Ω, R, γ⟩, where S is the set of latent states, A is the action space, O is the observa-
tion space, P : S × A → P(S) is a state transition function, Ω : S → P(O) is the observation function,
R : S × A → R is the reward function, and γ ∈ [0, 1) is the discount factor, which attenuates future re-
wards. To mitigate the challenges associated with partial observability (Kaelbling et al., 1998), we redefine
the agent’s state st as a sequence of k consecutive observations, namely st = (ot, ot−1, . . . , ot−k+1), where
each oi ∈ O. Although this window does not capture the full action-observation history, it often serves
as a practical surrogate in visual domains, enriching the agent’s perceptual input and partially recovering
temporal dependencies lost in single-frame observations. The agent’s objective is to obtain a policy πϕa

,
parameterized by ϕa, that maximizes the expected cumulative discounted return: Eκ∼πϕa

[
∑∞

t=0 γ
tR(ot, at)],

where the trajectory κ is induced by the underlying dynamics of the POMDP.

3.2 Soft Actor-Critic (SAC)

Our methodology builds upon the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018), a model-
free, off-policy RL approach that integrates entropy maximization into the policy optimization framework
to enhance exploration and stabilize learning. SAC employs a critic network Qθq

to approximate the soft
state-action value function, seeking to estimate the optimal action-value function Q∗(s, a) in the context
of stochastic policies. The actor is instantiated as a stochastic policy πϕa that aims to maximize both the
expected return and the entropy of the policy, thereby encouraging exploration of the action space. The
shared encoder maps the high-dimensional observation space O into a lower-dimensional representations. To
ensure the stability of the learning process, the critic and shared encoder have target networks start with the
same parameters θtgt = θq. These target networks are updated via an exponential moving average (EMA),
θtgt ← (1−ϵ)θtgt +ϵθq, where ϵ ∈ (0, 1). The EMA update serves to temper abrupt fluctuations in parameter
values, thereby contributing to the stability of the training process.

3.3 Generalization in Visual RL

Our work focuses on the challenge of generalization in visual reinforcement learning, where the agent is
trained on the environment without distractors (including augmentations) and then evaluated on previously
unseen environment with distractors. The goal is to obtain consistent behavious under domain (environment
distribution) shift. Formally, we consider a family of POMDPs, denoted by M = {M1,M2, ...,Mk}. Each
POMDP Mi ∼M shares the same underlying dynamics and reward structure but differs in its observation
space Oi, typically due to variations in visual appearances. Our objective is to learn a policy π that
maximizes the expected cumulative return across POMDPs sampled from M in a zero-shot manner i.e.
without additional training or fine-tuning on the test environments. The goal is to find a policy π that
maximizes the expected discounted return: ηM(π) = E(ot,at)∼(M,π)

[∑T −1
t=0 γtR(ot, at)

]
. We denote the

training environment as Mtrain and the set of test environments as Mtest. The generalization performance
of the policy can be quantified by the generalization gap (Kirk et al., 2023; Wang et al., 2024), defined as
Lgen = ηMtest(π)− ηMtrain(π).

4 Method

We propose Task-Relevant Segment Masking (TRMS), an algorithm designed to enhance generalization and
robustness in noise-prone environments by masking out irrelevant segments. In this section, we provide a de-
tailed overview of TRMS’s architectural design, training procedure and its inclusion within the reinforcement
learning framework.
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Figure 1: Depiction of the Task-Relevant Mask Sampling (TRMS) architecture, detailing its components
and sequential training phases. Initially, k-masks are generated by a frozen segmentation model, followed by
sampling and a logical OR operation to produce a single mask m∗. This mask is then applied to the non-
augmented image via a Hadamard product ⊗, producing the masked image om

t , which progresses through
the encoder and Q-network to yield the corresponding q-value. Simultaneously, m∗ is utilized to mask the
augmented image õm

t through the Hadamard operation. During the initial teaching phase, TTeach, only the
row in is activated. Beyond this phase, the student masking network replaces the segmentation and
sampler, and is trained utilizing the row.

4.1 Masking Prior

TRMS explicitly leverages existing pre-trained segmentation models as a backbone to extract masks from
non-augmented images. In this case, we employ the Fast Segment Anything Model (FastSAM) (Zhao et al.,
2023)1, known for its compact design that reduces memory usage and provides fast inference. As shown in
Figure 1, this network remains frozen throughout the training phase, operating solely as an inference model.

Let ot and ot+1 denote the observation at time step t and t + 1 respectively. Following the approach in
existing methods (Hansen & Wang, 2021), we apply an augmentation ψ by overlaying a random image onto
these observations, resulting in augmented pairs {õt, õt+1} = {ψ(ot), ψ(ot+1)}. Since these augmented images
hinder accurate mask extraction from SAM, we rely on non-augmented images for precise and consistent
masks (as shown in in Fig 1). Provided an non-augmented image o, we utilize a frozen mask extractor
(SAM), denoted by M , to obtain k−masks, {m1,m2, ...,mk}.

4.2 Mask Sampling Network

These k masks are fed into a CNN-based mask selection module, denoted as Gβ(m), which generates the
probability of selection for each mask w(mi). The goal of the mask selector is to identify task-relevant
masks, specifically those with selection probabilities exceeding the threshold 1/k and to disregard all others.
Formally, this selection is represented as follows:

p(mi) =
{

1, if w(mi) ≥ 1/k
0, otherwise

(1)

1As FastSAM is a variant of SAM, here we use FastSAM and SAM interchangably.
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The objective of the mask selector is to encourage the probabilities associated with task-relevant masks
to exceed 1/k. Subsequently, we compute the Hadamard product across all selected masks, resulting in a
final composite mask. This mask is then applied to both the original and augmented images, isolating the
task-relevant regions of the observations,

m∗ =
k∨

i=1

[
p(mi) ·mi

]
, (2)

where
∨

denotes the Logical OR operation. Following this, the Hadamard product is calculated with the
original and augmented observations, respectively, as follows,

om
t = m∗ ⊗ ot, (3)
õm

t = m∗ ⊗ õt, (4)

where ⊗ represents the Hadamard product. om
t and õm

t are the images obtained by applying the same
sampled masks on non-augmented and augmented observations. This process is applied to the observations
at both time steps, t and t+ 1, ensuring that the task-relevant features are preserved across temporal frames
for both the original and augmented observations.

Multiple masks may be relevant to the task; thus, the selector must be capable of selecting several masks
simultaneously. Empirical observations suggest that using only a Softmax activation function at the output
layer often results in higher selection probabilities for only a few masks (typically one or two). However,
complex scenes frequently require the use of multiple masks. To address this limitation, we employ the
Gumbel-Softmax distribution (Gumbel, 1954; Jang et al., 2017) at the output layer, which helps mitigate
this selection bias. By adjusting the temperature parameter τ , we can encourage a more uniform probability
distribution, making it easier for the selector by requiring only a slight increase in probability for the relevant
masks to be chosen. The Gumbel-Softmax is defined as

yi = exp ((log(xi) + gi)/τ)∑k
j=1 exp ((log(xj) + gj)/τ)

(5)

where gi are i.i.d. samples from a Gumbel distribution, typically computed as gi = − ln(− ln(ui)) with
ui ∼ Uniform(0, 1). This formulation enables more robust selection in complex scenes with multiple relevant
areas by reducing the chances of a single mask’s probability dominating the distribution. More details are
provided in the Supplementary Material. Since we perform a thresholding operation in Eq. equation 1,
we apply Straight-Through Estimators (STE) to address the backpropagation challenges associated with
discrete operations (Bengio et al., 2013).

4.3 Q-relevant Mask Sampling

To effectively select task-relevant masks, we assume that the task is already well-performed in the original,
non-augmented environment. If the algorithm cannot solve the task without augmentation, then solving it
would be infeasible. Therefore, we consider the Q-values obtained from the non-augmented environment as
expert Q-values. For each pair of masked augmented and non-augmented observations, denoted as om and
õm, we obtain their corresponding state representations s and s̃. The target q function can be defined as
qtgt = r(st, at) + γmaxa′

t
Qtgt(st+1, a

′
t). The Q-loss function for the non-augmented images is then given by

LQ(θq, β) = E(st,at,rt,st+1)∼B

[
1
2

(
qtgt −Qθq

(st, at)
)2

]
, (6)

where B denotes the replay buffer. In a similar way, the q-target for the augmented images can be written
as qtgt = r(s̃t, at) + γmaxa′

t
Qtgt(s̃t+1, a

′
t) and the corresponding Q-loss is

LQ̃(θq, β) = E(st,at,rt,st+1)∼B

[
1
2

(
q̃tgt −Qθq

(s̃t, at)
)2

]
. (7)
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The Task-Relevant Mask Selection (TRMS) loss is defined as the average of these two losses:

LTRMS(θq, β) = 1
2

(
LQ(θq, β) + LQ̃(θq, β)

)
. (8)

This TRMS loss simultaneously optimizes the critic’s accuracy over both augmented and non-augmented
observations, thereby promoting robustness to input augmentations when identical masks are applied. If
task-irrelevant segments are selected, the loss will increase. By discarding visually irrelevant segments, the
mask selector reduces representational variance from distractor pixels and encourages the policy to focus on
task-relevant features. Consequently, this allows networks to consistently observe the same pixel value across
different augmentations, thus maintaining a coherent state representation regardless of the augmentation
applied. The Total Loss of the overall architecture can be defined as

LTotal = LTRMS + Lmasker (9)

4.4 Student Masking Networks

Although it is technically feasible to run the algorithm for 500K steps using the FastSAM models and a
mask sampler, this approach is highly computationally intensive due to the considerable time required by
the masking models. These models, while accurate, are not optimized for speed and may impose significant
delays. Our empirical results shows that the model utilizing only SAM can take upto 3 days on the Walker
Walk task (Appendix D). Moreover, FTD (Chen et al., 2024), which also relies on SAM, can require up to
3-6 days to process a single seed, depending on both the task complexity and the number of masks to be
generated. To mitigate this computational burden, we introduce a Student Masking Network, a CNN-based
network that effectively mimics the behavior of the Prior Masking model but only for a defined initial period,
denoted as Tteach. During this period, the student network learns directly from the teacher model, replicating
its outputs. Details regarding this initial phase are elaborated upon in the Supplementary Material.

The training objective for this student network capitalizes on the binary nature of the mask outputs. We
employ a Binary Cross-Entropy (BCE) loss to measure the discrepancy between the teacher network’s output
mask, m∗ (as defined in Eq. equation 2), and the mask generated by the student network, M∗

α(ot), which is
parameterized by α. Formally, this is expressed as

Lmasker = BCE(m∗,M∗
α(õt)). (10)

This BCE loss is then exclusively backpropagated through the student network, enabling it to gradually
learn the teacher’s masking strategy during the initial training period Tteach. After completing these Tteach
steps, the teacher network is omitted, and only the student network is utilised to generate task-relevant
masks, maintaining operational efficiency while significantly reducing computation time (Appendix Section
D). An additional strategy to further optimize training time is implemented after Tteach, we increase the
batch size. This adjustment expedites the learning process by enabling the student network to process more
data per training iteration. Detailed training description is provided in the Supplementary Material. The
details about the training of the entire architecture in Fig. 1 is provided in Algorithm 12. We augmented
the SAC algorithm with TRMS components, shown in blue.

5 Experiments

In this section, we present our experimental evaluations conducted on generalization benchmarks from
RL-ViGen (Yuan et al., 2023). These benchmarks were selected as they encompass a wide range of environ-
ments: (1) DeepMind Control Generalization Benchmark (Hansen et al., 2021) for evaluating continuous
control agents across tasks with complex dynamics and diverse rewards, essential for testing generalization
capabilities; (2) Quadruped Locomotion (Hansen et al., 2021), which includes a Unitree quadruped robot,
challenging agents with intricate balance and control requirements in dynamic environments; (3) Dexterous
Manipulation (Rajeswaran et al., 2018), featuring multi-object interactions and sparse rewards that require

2Temperature update in SAC, double critics and target network updates are omitted for clarity.
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Algorithm 1 Training Algorithm for SAC with TRMS
Require: Estep, ψ, k, λq, λπ, λα ▷ Variables Initialization
Require: ϕa, θq, M, M∗

α, Gβ ▷ Networks Initialization
1: D ← ∅ ▷ Initialize replay buffer
2: for each initial collection step do
3: at ∼ πrandom(·|ot) ▷ Sample random action
4: ot+1, rt+1 ∼ Estep(at) ▷ Apply action
5: D ← D ∪ (ot+1, at, rt+1) ▷ Append to buffer
6: end for
7: for every training step do
8: {(ot, at, rt, ot+1)}L+k

t=k ∼ D ▷ Sample minibatch
9: at ∼ πϕa

(at|ot) ▷ Sample action
10: ot+1, rt ∼ Estep(at)
11: D ← D ∪ (ot, at, rt, ot+1)
12: õt, õt+1 ← ψ(ot), ψ(ot+1) ▷ Augmentation
13: for each gradient step do
14: if step ≤ Tteach then
15: õm

t , õ
m
t+1 ← õt ⊗Gβ(M(ot)), õt+1 ⊗Gβ(M(ot+1)) ▷ SAM

16: else
17: õm

t , õ
m
t+1 ← õt ⊗M∗

α(õt), õt+1 ⊗M∗
α(õt+1) ▷ CNN Masking

18: end if
19: Update Encoder and Mask Sampler (Eq. equation 8)
20: θq ← θq − λq∇LTRMS(ot, ot+1, õ

m
t , õ

m
t+1; θq, β)

21: ϕa ← ϕa − λπ∇Lπ(ϕa) ▷ Update policy
22: α← α− λα∇Lmasker(ot, õt;α) ▷ Update Masker
23: end for
24: end for

precise control strategies to handle sophisticated manipulation tasks. We provide a comprehensive descrip-
tion of our experimental configurations and compare the performance of TRMS against relevant existing
approaches. This analysis demonstrates the effectiveness of TRMS in enhancing generalization across
diverse tasks in vision-based reinforcement learning. An evaluation of wall time comparing TRMS with the
Only-SAM method is presented in Appendix Section D. The analysis demonstrates that incorporating the
student network substantially enhances computational efficiency compared to relying solely on a heavily
parameterised segmentation model.

Baselines. Our method is compared against several prominent Visual RL algorithms that are specifically
designed for generalization. DrQ (Yarats et al., 2021) improves SAC (Haarnoja et al., 2018) by augmenting
visual inputs while updating the TD loss. DrQ-v2 (Yarats et al., 2022), a DDPG (Lillicrap et al., 2016) and
DrQ-based model-free algorithm. CURL (Laskin et al., 2020a) enhances visual representations by using
a contrastive learning approach similar to SimCLR (Chen et al., 2020) i.e. aligning augmented views of
the same observation. SVEA (Hansen et al., 2021) stabilizes learning by using un-augmented images for
the target Q-value, while applying augmentation to reduce Q-value variance. SRM (Huang et al., 2022)
learns representations in frequency-domain and learns to discard certain frequency in the observation to
address domain shifts. PIE-G (Yuan et al., 2022b) incorporates ResNet (He et al., 2016) pre-trained models
to enhance generalization, while SGQN (Bertoin et al., 2022) uses saliency maps to focus on key pixels
crucial for decision-making. VRL3 (Wang et al., 2022) is SOTA algorithm for Adroit tasks, utilizing human
demonstrations.
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Augmentation. All of our baselines, except for SAC, leverage specific data augmentation techniques
during training. TRMS uses an augmentation strategy inspired by SVEA (Hansen et al., 2021), which has
proven effective for handling distracting video backgrounds through overlay augmentation. In this approach,
we overlay a randomly selected image n from the Places dataset (Zhou et al., 2018) onto our observation
frame as õt = δ · ot + (1− δ) · n, where δ is a weighting factor that controls the degree of image overlay. In
all the experiments, we set δ = 0.5.

Zero-shot Evaluation. To assess generalization, we perform zero-shot evaluations of the trained
agents on a range of unseen environments with different distraction intensities. Specifically, we evaluate
performance on the video-easy and video-hard configurations across all environments. Each seed undergoes
evaluation over 100 episodes, corresponding to the designated noise levels.

Figure 2: The figure on the left shows the probability of each mask out of the 10 masks provided. As there
are 10 masks, only the masks above the probability of 0.1 (1/10) are selected, resulting into the image on
the right.

5.1 Deepmind Control Suite

We evaluate our algorithm on the DMC-GB (Hansen & Wang, 2021) benchmark, spanning six tasks: Walker
Walk, Walker Stand, Ball in Cup Catch, Finger Spin, Cartpole Swingup, and Cheetah Run. RL-ViGen
integrates DMC-GB with two difficulty levels: video-easy (10 background videos) and video-hard (100 back-
ground videos without surface), where natural video backgrounds are used to rigorously test generalization
under varying visual distractions.

Generalization Performance. We evaluate generalization by running five seeds per task and calculating
the mean and standard deviation of returns. As shown in Table 1, TRMS surpasses all the baselines in

SRM: 535 PIEG: 641 SGQN: 655 TRMS (ours): 719
Figure 3: t-SNE visualization of clustering results for TRMS and three baselines. TRMS demonstrates a
more distinct and well-separated clustering pattern, with each cluster representing identical agent poses with
distinct backgrounds.
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Table 1: Performance on DMC Benchmark Environment in Video-Hard (VH) and Video-Easy (VE) settings.
S-up: Swingup.

Task (VE) SAC DrQ DrQ-v2 CURL SVEA SRM PIEG SGQN TRMS ∆
Cartpole S-up 398±60 485±105 267±41 404±67 782±27 724±75 482±51 717±35 787±35 +5 (0.63%)
Walker Walk 245±165 682±89 175±117 556±133 819±81 854±42 871±22 860±53 863±74 -8 (0.91%)
Walker Stand 389±131 873±83 560±48 852±75 961±8 966±42 957±12 955±9 967±5 +1 (0.10%)
Ball in Cup 192±157 318±157 871±106 316±119 871±106 924±35 910±37 761±171 938±10 +14 (1.15%)
Finger Spin 206±169 533±119 456±15 502±19 808±33 853±76 837±107 609±61 868±24 +31 (3.70%)
Cheetah Run 87±21 102±30 64±22 104±24 249±20 257±21 287±20 269±33 207±83 -80 (27.87%)
Average 253 499 457 456 757 763 724 697 772 +9 (1.18%)

Task (VH) SAC DrQ DrQ-v2 CURL SVEA SRM PIEG SGQN TRMS ∆
Cartpole S-up 158±17 138±9 130±3 114±15 393±45 475±75 323±24 488±18 514±102 +26 (5.33%)
Walker Walk 122±47 104±22 34±11 58±18 377±93 535±35 641±63 655±45 747±63 +92 (14.05%)
Walker Stand 231±57 289±49 151±13 45±5 834±46 863±57 852±56 851±24 906±20 +43 (4.98%)
Ball in Cup 101±37 100±40 97±27 115±33 403±174 566±135 773±74 782±57 837±20 +55 (7.05%)
Finger Spin 13±10 91±13 21±4 27±21 335±58 419±32 762±59 554±8 791±54 +29 (5.19%)
Cheetah Run 10±5 32±13 23±5 21±7 105±37 115±24 154±17 144±34 189±86 +35 (22.72%)
Average 106 126 76 63 408 496 584 579 664 +80 (13.70%)

10 out of 12 environments. Notably, TRMS demonstrates an advantage in the video-hard setting, the
most challenging environment due to its complex video perturbations, where it outperforms all the selected
relevant baselines. In the video-easy setting, TRMS exhibits an improvement of 1.18% over the second-best
performing method, SRM, and 5% over the average of the next four best methods (SVEA,SRM,PIEG and
SGQN). Interestingly, in the video-hard settings, TRMS not only outperforms all baselines across every
environment but also achieves an impressive average improvement of 13.70% over the second-best method,
SGQN, as shown by the ∆ in Table 1. Collectively, these results underscore TRMS’s robust generalization
capabilities, particularly under high-noise and complex video conditions, establishing it as a reliable solution
across diverse test environments.

Mask Sampling Probabilities Visualization. The mask selection probability from the masker is
illustrated in Figure 2. Given that there are 10 masks, the selector’s objective is to increase the probability
of task-relevant segments above the threshold of 1/10 (i.e., 0.1) while reducing the probability of irrelevant
segments below this threshold. this case, only the first two segments are selected (i.e., only their masks,
without the overlayed image). These selected segments are then subjected to the Logical OR operation
and the Hadamard product, as depicted in Eq. equation 2 and Eq. equation 3 respectively. The image on
the right of the figure represents the resulting output, clearly demonstrating the selective focus on relevant
regions.

Representations under Distractors. To demonstrate that TRMS’ capability of learning domain-
invariant representations, we employ t-SNE (van der Maaten & Hinton, 2008) to visualize the features
extracted by the encoder. We select 10 distinct observations from different states and replace their
backgrounds with 40 unseen images. These images are then encoded using the learned representations
from each algorithm. Observations corresponding to the same state are marked with identical col-
ors. As illustrated in Figure 3, representations of images with varying backgrounds (distractors) but
identical agent poses are embedded into tight clusters, indicating that the learned embeddings capture
pose-invariant features. Notably, TRMS exhibits the most compact clustering and achieves the highest re-
wards under distracting backgrounds, suggesting a stronger ability to learn domain-invariant representations.

Robustness to Distraction Levels. Figure 4 illustrates the absolute difference in average rewards
as the distraction level increases from video-easy to video-hard. The figure reveals that all methods
experience considerable performance drops under higher distraction levels. Notably, TRMS exhibits the
smallest fluctuation, closest to SGQN, while achieving considerable higher rewards than it, underscoring its
resilience to elevated noise levels.
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Figure 4: For each method, paired bars display the average performance under Video Easy and Video
Hard conditions, and the annotated ∆ indicates the absolute difference between the two settings. Standard
deviations are omitted, as the underlying tasks differ significantly, making such variance comparisons unin-
formative.

5.2 Locomotion

For Locomotion tasks, we utilise Unitree Series tasks (Hansen et al., 2021): Unitree Stand and Unitree
Walk. The training and evaluation are performed in a similar way as described in Section 5.1 for DMC
settings.

Generalization Performance. We evaluate generalization by running three seeds per task and
computing the mean and standard deviation of returns. As shown in Table 2, TRMS outperforms the
baselines across 3 out of 4 environments. In the video-easy setting, TRMS demonstrates a substantial
33.5% improvement in the Unitree Walk task, though it lags in Unitree Stand, resulting into lower average
performance as compared to the baselines. However, as distractions intensify in the video-hard setting,
TRMS consistently outperforms all baselines, showcasing remarkable resilience to distractor noise. Overall,
TRMS achieves a 77.46% increase in performance in video-hard setting relative to the second-best method.

Table 2: Performance of various methods on Unitree Walk and Unitree Stand tasks for Video-Easy (VE)
and Video-Hard (VH)

Task (VE) DrQ DrQ-v2 CURL SVEA SRM PIEG SGQN TRMS (ours)
Walk 67.4±9.2 97.8±15.7 74.8±14.2 98.4±28.3 98.0±9.4 140.2±63.9 151.7±87.1 202.6±47.2 (+33.55%)
Stand 341.4±19.8 374.8±64.7 431.4±38.3 587.0±39.6 553.2±27.9 379.6±65.8 447.0±50.3 315.4±105.8 (-46.26%)

Average 204.4 236.3 253.1 342.7 325.6 259.9 332.0 259.0 (-24.42%)

Task (VH) DrQ DrQ-v2 CURL SVEA SRM PIEG SGQN TRMS (ours)
Walk 39.6±22.3 83.0±24.2 61.2±25.9 73.8±52.2 72.4±29.0 203.7±75.6 122.8±68.2 214.4±31.5 (+5.25%)
Stand 65.6±25.7 95.8±37.4 99.4±25.3 279.3±10.7 300.0±34.5 202.0±43.1 139.8±47.0 305.4±101.7 (+1.80%)

Average 52.6 89.4 80.3 176.6 186.2 202.8 131.3 259.9 (+77.46%)

5.3 Dexterous Manipulation

Adroit (Rajeswaran et al., 2018) is an environment specifically designed for complex dexterous hand ma-
nipulation tasks, requiring substantial exploration and detailed feature extraction due to its sparse reward
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structure and the intricacy of its high-dimensional action space. In our experiments, we consider three of its
tasks from a single view in RL-ViGen: Door, Hammer and Pen. This environment involves a magnitude of
objects that needs to be masked, which makes the task extremely difficult.

TRMS achieved the highest average performance across tasks with scores of 59.5 in the video-easy setting
and 54.9 in the video-hard setting. GQN matched TRMS at 59.5 in video-easy but scored lower in video-hard
(30.3) due to heavy distractions. Notably, SGQN excelled on specific tasks like Door and Hammer, where
TRMS’s scores were comparatively lower, suggesting that while TRMS provides robust overall performance.
However, there is a room for improvement in these environments. See the future directions below.

Table 3: Performance comparison of various methods on Adroit tasks with Video Easy (VE) and Video Hard
(VH) background.

Task (VE) VRL3 SVEA SGQN PIE-G TRMS
Pen 1.7±0.6 46.7±3.8 64.0±9.0 53.6±4.7 72.4±9.1 (+13.10%)
Door 0.0±0.0 44.8±8.5 58.2±12.3 56.6±11.1 50.7±12.3 (-12.90%)
Hammer 0.0±0.0 8.4±8.6 56.3±6.3 44.3±13.0 55.3±5.3 (-1.80%)
Average 0.6 33.3 59.5 51.5 59.5
Task (VH) VRL3 SVEA SGQN PIE-G TRMS
Pen 2.7±1.5 41.7±6.1 56.0±2.4 54.0±9.4 67.3±5.2 (+20.20%)
Door 0.0±0.0 7.6±1.8 20.3±6.1 52.6±3.3 43.7±5.4 (-17.0%)
Hammer 0.0±0.0 4.2±3.7 14.6±4.7 46.0±4.6 53.7±7.6 (+16.70%)
Average 0.9 17.8 30.3 50.8 54.9 (+8.10%)

6 Conclusion

To address the challenge of task-irrelevant distracting visual features in Visual Reinforcement Learning,
we introduce TRMS, a method that utilizes existing masking strategies to extract masks from the visual
scene. It segments and samples only the task-relevant masks. This approach eliminates the need for
additional segmentation labels for individual tasks. We bypass the heavy computation time and resources
by employing student network that learns these masks in few training steps. We evaluate TRMS on
the RL-ViGen (Yuan et al., 2023) benchmark, covering tasks from the DeepMind Control Suite, Unitree
locomotion, and Dexterous manipulation under varied distractions. TRMS achieves a 13.70% higher
average reward in video-hard DeepMind tasks and surpasses baselines in 10 out of 12 tasks. It also yields a
77.46% improvement in locomotion tasks and comparable performance in dexterous manipulation, all while
demonstrating robust resilience to increasing noise levels compared to baselines.

Limitations and Future Directions. Currently, the prior masking approach, FastSAM, generates
masks independently for each state. Incorporating recent advancements like SAM2 (Ravi et al., 2024),
which leverages temporal dependencies to refine mask extraction, could greatly enhance sampling efficiency.
We need to select k−masks and initial teaching steps TTeach for distinct environments, depending on the
complexity of the environment. An extension for automated selection of this hyperparameter would be
extremely useful. Utilizing segmentation models with human-in-the-loop guidance via natural language
descriptions (Zhang et al., 2024) can significantly enhance masking performance, especially in complex
environments (Rajeswaran et al., 2018). Extending TRMS to non-agent-centric environments, such as
CARLA, presents unique challenges, as masking-based methods often face limitations in these domains,
warranting further investigation. Additionally, future research will explore the applicability of TRMS in
more complex, real-world robotic applications, an area that remains largely underexplored in this domain.
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A Implementation Details

We provide additional details on our implementation of TRMS. Table 4 summarizes the hyperparameters
utilized in our study. For the DMC Generalization Benchmark (Hansen & Wang, 2021) and Locomotion
Task (Hansen et al., 2021), we used the default hyperparameters specified in RL-ViGen (Yuan et al., 2023)
for all the respective baselines.

Table 4: Hyperparameters for TRSM in DMC-GB.

Hyperparameter Values
Input size 84× 84
Optimizer Adam (Kingma, 2014)
Learning Rate (Actor,Critic, Masker) 10−4

Adam β1, β2 (All Networks) 0.9, 0.999
Discount (γ) 0.99
Frame Stack 3
Action Repeat 2
Initial Batch Size 8
Batch Size 256
Feature Dimension 256
Initial Sampling Steps 2000
Replay Buffer Size 150K
Environment Steps 500K
Gradient Steps Per Training Step 1
Target Update Interval 2
Target Smoothing Coefficient Critic 0.01
Target Smoothing Coefficient Encoder 0.05
Initial Temperature (α in SAC) 0.1
Temperature Learning Rate 10−4

Mask Sampler AdamW (Loshchilov & Hutter, 2019)
Learning Rate 10−5

Number of Masks 4
Gumbel Softmax temperature (τ) 5.0
Segmentation Model FastSAM (Zhao et al., 2023) (default)
Image Size 640
IoU Threshold 0.75
Confidence Threshold 0.40
Overlap Mask False
Initial Teaching Steps (Tteach) 25K (DMC-GB) and 50K (Otherwise)

20



Under review as submission to TMLR

The common Reinforcement Learning Hyperparameters were kept consistent with those used for TRMS,
while method-specific parameters followed the configurations provided in their respective papers. Details on
the specific hyperparameters are listed in Table 5.

Table 5: Hyperparameters for baselines in DMC-GB

Hyper-parameters Value
Feature dim DrQ-v2, CURL: 50; otherwise: 256
N-step return DrQ: 1; otherwise: 3
Optimizer Adam
Hidden dim 1024
Frame stack 3
SGQN Quantile Threshold 0.95 or 0.98
Critic Weight Decay 10−5

SGQN Auxiliary Learning Rate 8e-5

For the Dexterous Manipulation tasks, we use the same hyperparameters utilised for the respective baselines
as mentioned in their papers and for environments as mentioned in RL-ViGen (Yuan et al., 2023). They are
described in the Table 6.

Table 6: Adroit Hyperparameters.

Hyper-parameter Task Value
Training Frames Hammer 106

Door 106

Pen 2× 106

Learning Rate Hammer 10−4

Door 10−4

Pen 10−4

k−Masks Hammer 15
Door 15
Pen 10

SGQN Quantile Hammer 0.9
Door 0.9
Pen 0.9

SGQN Critic Weight Hammer 0.9
Door 0.5
Pen 0.9

SGQN Auxiliary Learning Rate Hammer 8× 10−5

Door 8× 10−5

Pen 8× 10−5

B Soft Actor-Critic Algorithm

The Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm is an off-policy reinforcement learning method
that maximizes cumulative rewards while promoting entropy to encourage exploration. The objective for
SAC is given by

π∗ = arg max
πϕa

E(st,at)∼πϕa

[
T∑

t=0
r(st, at) + αH(πϕa(·|st))

]
(11)
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where α is a temperature parameter that balances reward and entropy terms. SAC employs two critic
networks, Qθq1

and Qθq2
, trained to minimize the soft Bellman residual

L(θqi) = E(s,a,r,s′)∼D

[(
Qθqi

(s, a)−
(
r + γ Ea′∼πϕa

[
min
j=1,2

Qθqj
(s′, a′)− α log π(a′|s′)

]))2
]

(12)

The actor network πϕa is updated to maximize the expected Q-value regularized by an entropy term, defined
as

Lπ(ϕa) = Es∼D,a∼πϕa

[
α log πϕa(a|s)−Qθq (s, a)

]
, (13)

where α is the entropy temperature coefficient. The corresponding policy gradient is given by

∇Lπ(ϕa) = Es,a

[
∇ϕa

log πϕa
(a|s)

(
α−Qθq

(s, a)
)]
. (14)

To balance exploration and exploitation, SAC adapts α by minimizing the temperature objective:

L(α) = Ea∼πϕa
[−α log πϕa

(a|s)− αH] , (15)

where H denotes the target entropy, encouraging diverse action sampling in high-dimensional action spaces.

C Architecture Details

Encoder. The encoder network consists of two main components: a shared convolutional module and a
subsequent linear projection. The shared convolutional module is an 11-layer network designed to process
input observations composed of 3 stacked RGB frames, with dimensions [9, 84, 84], ultimately generating
spatial feature maps. The first layer employs a 3 × 3 convolutional kernel with a stride of 2 and 32 output
channels, allowing for an early reduction in spatial resolution. The remaining layers are structured as
sequential ReLU-convolution blocks, each composed of a ReLU activation followed by a 3 × 3 convolution
with a stride of 1 and maintaining 32 channels across all layers. This uniform channel depth preserves
consistency in feature representation throughout the network.

The final convolutional output is then flattened into a feature vector of size 32 × 21 × 21. This vector
is subsequently passed through a linear projection layer, which reduces the dimensionality to 512, thus
producing a condensed latent representation suitable for further processing. This final representation
serves as the input to the policy and value networks, allowing for efficient and effective state encoding.
Furthermore, input frames are normalized by scaling to the range [−0.5, 0.5]

Actor. The actor network comprises a feature extractor and a policy head. The feature extractor maps the
512-dimensional input representation to a 256-dimensional latent space via a fully connected layer, followed by
layer normalization and Tanh activations for normalized, non-linear transformations. The resulting features
are then passed through two hidden layers with 1024 units and ReLU activations, capturing complex action-
value mappings.

The final layer outputs action means, µ, which are scaled by a Tanh activation to enforce bounded action
outputs. The standard deviation, σ, is constant and scaled by an input parameter, std. Together, µ and σ
parameterize a Truncated Normal distribution for continuous action sampling.

Critic. The critic network comprises two parallel Q-networks, Q1 and Q2, which are employed to estimate
state-action values and mitigate overestimation bias. Initially, observations are passed through a shared
feature extraction module that projects the input representation of dimension 512 into a 256-dimensional
feature vector. This transformation is accomplished through a fully connected layer, followed by layer
normalization and Tanh activation, which ensures normalized outputs and reduces the likelihood of activation
saturation.
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The resulting 256-dimensional feature vector is concatenated with the action input, forming a joint
representation that is processed by each Q-network independently. Both Q1 and Q2 are structured with two
hidden layers, each containing 1024 units, and use ReLU activations to introduce non-linearity, enabling the
networks to model complex value functions effectively. The final layer of each Q-network outputs a single
scalar, representing the Q-value for the given state-action pair. By using two independent Q-networks, the
critic can take the minimum of both Q-value estimates, which reduces overestimation—an issue commonly
encountered in value-based reinforcement learning. This design contributes to the stability and robustness
of the learned policy.

Mask Sampler. The Mask Sampler network is designed to process multiple input masks and output
selection probabilities for each. A single input has the shape of (k, 84, 84), where k is the number of masks.
The network comprises three convolutional layers, each with 3 × 3 kernels and a padding of 1 to maintain
spatial dimensions. The first layer maps the input channels, corresponding to the number of masks, to 32
feature maps, followed by batch normalization and ReLU activation. The feature depth is then sequentially
increased to 64 and 128 channels by the subsequent convolutional layers, each followed by batch normalization
and ReLU to enhance spatial feature extraction.

The output of the final convolutional layer undergoes global average pooling to reduce the spatial dimensions
to 1× 1, yielding a 128-dimensional vector. This vector is then passed through a fully connected layer with
64 units and a ReLU activation, followed by a final linear layer that outputs logits corresponding to the
number of masks. A Gumbel-Softmax activation with subsequent temperature is applied to these logits.

Masker. The Masker network is a convolutional architecture designed to produce a single-channel mask
from RGB inputs. The network consists of five convolutional layers, each with a 3×3 kernel and a padding of
1 to maintain spatial dimensions. The first two layers map the input image, with three color channels, to 64
feature channels through successive applications of convolution, ReLU activation, and Batch Normalization,
promoting feature extraction while stabilizing training.

The third and fourth layers reduce the feature depth to 32 channels, employing similar ReLU and batch
normalization operations to preserve spatial information while refining feature representations. The final
convolutional layer outputs a single-channel feature map, which represents the generated mask.

The output feature map is then passed through a sigmoid activation function, designed to constrain output
values between 0 and 1. All convolutional layers are initialized with Xavier uniform initialization, ensur-
ing balanced weight distributions. This architecture allows Masker to effectively learn spatial patterns for
producing accurate binary masks from RGB input data.
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D Wall Time

As TRMS incorporates both SAM and a student network to enhance computational efficiency, here we
compare the wall time required for convergence between TRMS and the SAM-only variant. Evaluation is
performed across three seeds of the Walker Walk task, where the teacher network is employed for the first
25k steps.

As shown, TRMS achieves an average wall time of approximately 15 hours, whereas the SAM-only variant
reaches up to 3 days and 1 hour (∼73 hours). This substantial reduction demonstrates that TRMS not
only accelerates learning early on but also sustains faster convergence through its student network (due to
its small architecture), which absorbs knowledge from the heavy parameterised teacher network.

Figure 5: Comparison of TRMS and SAM-Only Wall time for Walker Walk on three seeds.
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E Additional Visual Results

The following visual demonstrations showcase selected frames from the video-hard environment. On the left,
each image displays the actual observation, while the corresponding masked observation is presented on the
right. These comparisons highlight the complexity of the environment, where the masking process isolates
relevant features, facilitating the agent’s focus on relevant task elements amidst challenging distractors.

(a) Finger Spin (b) Cartpole Swingup

(c) Walker Stand (d) Walker Walk

(e) Walker Walk (f) Door Open

Figure 6: Visual examples from the video-hard environment, showing actual observations (left) and corre-
sponding masked observations (right), highlighting relevant feature isolation.

F Baseline Results:

Baseline results presented in this paper were obtained as follows. For the DMC-GB environments, we re-
implemented most baselines ourselves, with the exceptions of DrQ, DrQ-v2, and SVEA, whose performance
numbers were directly cited from the PIE-G paper (Yuan et al., 2022b). For the PIE-G baseline, we con-
ducted experiments using the authors’ original implementation. SGQN (Bertoin et al., 2022) results were
reproduced using the official implementation provided with the RL-ViGen (Yuan et al., 2023) benchmark.
For Locomotion and Manipulation environments, all baseline performances are directly cited from the RL-
ViGen benchmark 3.

3https://github.com/gemcollector/RL-ViGen/tree/master/results
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