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GEOMETRY IMAGE DIFFUSION:

FAST AND DATA-EFFICIENT TEXT-TO-3D

WITH IMAGE-BASED SURFACE REPRESENTATION

Slava Elizarov, Ciara Rowles, Simon Donné
Unity Technologies

ABSTRACT

Generating high-quality 3D objects from textual descriptions remains a challeng-
ing problem due to high computational costs, the scarcity of 3D data, and the com-
plexity of 3D representations. We introduce Geometry Image Diffusion (GIMD-
iffusion), a novel Text-to-3D model that utilizes geometry images to efficiently
represent 3D shapes using 2D images, thereby avoiding the need for complex 3D-
aware architectures. By integrating a Collaborative Control mechanism, we exploit
the rich 2D priors of existing Text-to-Image models, such as Stable Diffusion, to
achieve strong generalization despite limited 3D training data. This allows us to
use only high-quality training data while retaining compatibility with guidance
techniques such as IPAdapter. GIMDiffusion enables the generation of 3D assets
at speeds comparable to current Text-to-Image models, without being restricted to
manifold meshes during either training or inference. We simultaneously generate
a UV unwrapping for the objects, consisting of semantically meaningful parts as
well as internal structures, enhancing both usability and versatility.

1 INTRODUCTION

Automatic 3D object generation offers significant benefits across video game production, cinema,
manufacturing, and architecture. Despite notable progress in this area, particularly with Text-to-
3D diffusion models (Boss et al., 2024; Siddiqui et al., 2024; Wang et al., 2023), generating high-
quality 3D objects remains a challenging task due to computational costs, data scarcity, and the
complexity of typical 3D representations. For one, it is crucial that the generated objects can be re-lit
within graphics pipelines, necessitating the use of physically-based rendering (PBR) materials, for
which little data at scale exists. Furthermore, graphics pipelines predominantly use meshes as their
primary 3D representation: processing these at scale is notoriously difficult due to their irregular
graph structure. Most techniques instead generate an intermediate representation, which increases the
burden of training data pre-processing and generated object post-processing.

We propose diffusing joint albedo textures and geometry images (Gu et al., 2002), a 2D representation
of 3D surfaces, using a Collaborative Control scheme (Vainer et al., 2024). This enables 3D object
generation from text prompts, as shown in fig. 1. The image-based representation allows us to
repurpose existing image-based architectures, while the Collaborative Control scheme enables us to
leverage pre-trained Text-to-Image models, considerably reducing the required training data and costs.
Geometry images, and more specifically multi-chart geometry images (Sander et al., 2003), offer two
great advantages over other shape representations: they impose no constraints on the topology of the
generated object and inherently partition it into semantically meaningful parts, allowing for easier
manipulation and editing.

We believe that GIMDiffusion opens up a promising new research direction in Text-to-3D generation,
providing a practical and efficient approach that can inspire future advancements in the field. In
summary, the advantages of GIMDiffusion include:

• Image-based: By leveraging existing 2D image-based models instead of developing new 3D
architectures, we simplify both model design and training.

• Fast Generation: We generate well-defined 3D meshes in under 10 seconds per object, which
could be further enhanced using distillation techniques.
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Figure 1: The objects are generated entirely using our method, including the structure, texture, and
UV map layout, all created completely from scratch. For each object, we show the generated albedo
texture, the textured mesh, the untextured mesh, and the respective text prompt.

• Generalization: Through collaborative control, we reuse pre-trained Text-to-Image priors, allowing
for strong generalization beyond our limited 3D training data.

• Separable Parts: GIMDiffusion creates assets that consist of distinct, semantically-meaningful,
separable parts, facilitating easier manipulation and editing.

• Albedo Textures: The 3D assets generated by GIMDiffusion do not have baked-in lighting effects,
making them directly suitable for graphics pipelines.

• UV unwrapping: Our method jointly generates a UV unwrapping for the objects, learned from
the training dataset. To the best of our knowledge, this is the first Text-to-3D method capable of
achieving this.

• Direct geometry: Our 3D assets do not require the application of iso-surface extraction algorithms,
which reduces potential artifacts and simplifies the overall workflow.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020) and flow matching (Lipman et al.,
2022), alongside the rise of versatile, general-purpose architectures such as transformers (Vaswani
et al., 2017), have brought considerable progress in generative modeling. In particular, text-
conditioned image generation was revolutionized by approaches based on Latent Diffusion (Rom-
bach et al., 2021) and its further extensions (Podell et al., 2023; Pernias et al., 2024; Esser et al.,
2024). Foundational models like Stable Diffusion, trained on extensive internet-scale datasets (such
as LAION-5B (Schuhmann et al., 2022)), are capable of generating complex scenes from text prompts
while exhibiting an implicit understanding of scene geometry. Due to the high cost of training such
models, they are often repurposed for other tasks or modalities (Zhang et al., 2023; Hu et al., 2023;
Ke et al., 2023). Our proposed GIMDiffusion is a prime example of this, as it adapts the base model
to specifically output albedo textures.
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2.2 CONDITIONING DIFFUSION MODELS

Control mechanisms modify pre-trained foundational models, enabling them to accept additional
conditions. Existing pixel-aligned control techniques fall into two categories: fine-tuning the base
model with modified input and output spaces (Duan et al., 2023; Ke et al., 2023), or a separate model
that alters the base model’s internal states (Zhang et al., 2023; Zavadski et al., 2023). The latter
approaches, such as ControlNet (Zhang et al., 2023), have gained wide adoption due to their ability
to preserve the original model’s performance while adding conditions such as human poses or depth
images. AnimateAnyone (Hu et al., 2023) leverages a similar architecture to inject the base model’s
hidden states into a new branch that aligns with the base model’s output.

In our method, we need to both control the base model (which will output UV-space albedo textures)
and extract significant features from it (to generate the geometry image modality). Collaborative
Control (Vainer et al., 2024) achieves exactly this by introducing bidirectional communication
between both models, originally designed for Text-to-PBR-Texture generation.

2.3 TEXT-TO-3D GENERATION

We identify two main approaches to Text-to-3D generation: optimization-based and feed-forward
methods. Optimization-based methods adapt 2D diffusion models to 3D by applying score distillation
sampling (SDS) (Poole et al., 2022; Wang et al., 2022; 2023) to iteratively optimize a 3D scene,
represented e.g. by NeRF (Mildenhall et al., 2020) or Gaussian Splats (Kerbl et al., 2023). These
methods can produce content of high perceptual quality, but at the cost of impractically long generation
times (Lorraine et al., 2023; Xie et al., 2024). The key advantage of this approach is its ability to
utilize the rich 2D prior, allowing for 3D object generation without the need for expensive 3D data.

However, the lack of camera conditioning leads to discrepancies among different viewing angles
(Janus effect (Poole et al., 2022)) and projection artifacts. To mitigate these issues, 3D-aware
architectures and retraining on restrictive 3D datasets are often used, which can weaken the 2D prior
(Shi et al., 2023b; Liu et al., 2023; Höllein et al., 2024; Zheng & Vedaldi, 2023; Shi et al., 2023a;
Kant et al., 2024). Additionally, the original SDS formulation can lead to issues such as saturated
colors, oversmooth geometry, and limited diversity (Wang et al., 2023; Zhu et al., 2023; Katzir et al.,
2023; Alldieck et al., 2024; Liang et al., 2023; Wu et al., 2024).

Feed-forward methods directly generate 3D shapes without the need for iterative refinement. These
methods employ complex, specialized architectures and typically require training on expensive 3D
data from scratch. While seminal works like Point-E (Nichol et al., 2022) and its follow-ups (Huang
et al., 2024; Zeng et al., 2022) demonstrate impressive generalization and diversity, the inherent lack
of connectivity information limits the expressiveness of point clouds. Instead, many current methods
rely on other proxy representations, such as neural implicits (Xie et al., 2021; Mildenhall et al., 2020;
Malladi et al., 1995; Jun & Nichol, 2023; Zheng et al., 2022; Chen & Zhang, 2018; Mescheder et al.,
2018; Yariv et al., 2023) or triplanes (Hong et al., 2023; Chan et al., 2021; Tochilkin et al., 2024;
Boss et al., 2024; Bensadoun et al., 2024), to represent the objects.

Both groups of methods require pre- and post-processing to transform between the mesh domain and
the proxy representation, e.g. through marching cubes (Lorensen & Cline, 1987) or tetrahedra (Doi
& Koide, 1991). This process is costly and lossy, introducing issues such as quantization or grid-
like artifacts, and leading to information loss, the loss of part segmentation and internal structures.
Moreover, generated objects often require UV unwrapping, a complex post-processing step, for use
in artist workflows. In contrast, our model jointly generates the UV map along with the object shape,
requiring only a simple triangulation step.

2.4 GEOMETRY IMAGES

Geometry images (GIMs) (Gu et al., 2002; Sander et al., 2003) have been largely overlooked in deep
learning (Sinha et al., 2016). XDGAN (Alhaija et al., 2022) is a pioneering effort that utilizes GIMs
as the representation of choice for a StyleGAN-based architecture (Karras et al., 2018). However, due
to the architectural constraints, the training data must be perfectly aligned with a template atlas, which
limits its applicability to real-world data. Furthermore, the pre-processing algorithm provided in the
paper is restricted to shapes of genus zero — Section 3.3.2 shows how to handle arbitrary shapes.

3



Published as a conference paper at ICLR 2025

Figure 2: The method overview. Two separate diffusion models generate respectively albedo textures
and geometry images. The former is a frozen pre-trained model, while the latter is an architectural
clone trained from scratch. Models interact via the Collaborative Control Scheme. To obtain a mesh,
generated geometry image is triangulated with the algorithm described in section 3.3.3

Recent concurrent work (Yan et al., 2024) has advocated for low-resolution 64 × 64 geometry
images as a 3D representation for class-conditioned diffusion models and highlights its efficiency
on a small-scale dataset of 8000 objects (Collins et al., 2021), albeit with limited generalization. In
contrast, GIMDiffusion addresses general Text-to-3D: rather than training a model from scratch,
we leverage a pre-trained Text-to-Image diffusion model (using a Collaborative Control scheme
trained on Objaverse (Deitke et al., 2022)) to retain generalization and diversity in the shapes, their
appearance, and the UV atlas layout.

3 METHOD

3.1 GEOMETRY IMAGES

Geometry images (Gu et al., 2002) encode 3D surfaces in image format. This is achieved by a

mapping function ϕ : [0, 1]2 → S ⊂ R
3, where S denotes the 3D surface, and [0, 1]

2
represents the

UV coordinates in the unit square, typically sampled on a uniform grid of the desired resolution. The
function ϕ, also known as a surface parametrization (Floater & Hormann, 2005), The choice of ϕ is
crucial and is usually designed to minimize spatial distortion (e.g. conformal mapping).

Unlike 3D meshes, which require explicit data structures to maintain connectivity, geometry images
implicitly connect each pixel to its neighbors. Gu et al. (2002) tackled surface mapping by cutting
the input surface and warping it onto a disc, but this approach is limited to manifold objects and
introduces significant distortions for high-genus shapes. Multi-Chart Geometry Images (Sander et al.,
2003) address this limitation by mapping surfaces piecewise onto multiple charts of arbitrary shape,
each homeomorphic to a disc. This approach adds flexibility (removing the manifold constraint) and
reduces distortion (providing greater geometric fidelity). However, Multi-Chart Geometry Images
lack connectivity information between charts and are susceptible to sampling artifacts, which can lead
to visible cracks along boundaries, as discussed in section 4.5. Additionally, the algorithm proposed
to construct ϕ is restricted to well-behaved manifold meshes. The optimal surface parametrization
remains an active area of research (Sawhney & Crane, 2017; Srinivasan et al., 2023).

Most available 3D meshes have textures applied through UV maps. We observe that these handcrafted
maps can be used to construct a desirable multi-chart ϕ. Beyond providing low-distortion mappings,
these UV maps strategically place chart boundaries in locations optimal for animation and downstream
processing tasks. Furthermore, charts in handcrafted UV maps often carry semantic meanings, which
propagate to the output of our model. This is evident in fig. 3, where the hands, face, and various
parts of the gunslinger’s appearance are separated in the UV atlas.
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(b) Extracted geometry image

(c) Extracted albedo texture(a) Input mesh (d) Reconstructed mesh

Figure 3: (a) Ground-truth geometry, (b) geometry image and (c) albedo texture from our data pre-
processing, and (d) the reconstruction using our dedicated VAE. We note the highly separable nature of
the ground truth object, which is split into small components. The only visible artifact after decoding
is the missing connection between charts of the geometry image, as discussed in sections 3.3 and 4.5.

As the density of the generated geometry’s triangulation is limited by the resolution of the underlying
geometry image, we follow Rombach et al. (2021) and use a VAE to increase the effective resolution
of our model. To address the irregularities in geometry images and better match their distribution —
particularly the need to accurately reconstruct the discontinuities at the boundaries of the charts — we
add a channel to represent the multi-chart mask and modify the loss function accordingly. Otherwise,
we follow the VAE training procedure from StableDiffusion1.5 (Rombach et al., 2021), leaving out
only the GAN and LPIPS losses (see details in appendix A). As shown in fig. 3, the reconstruction
using this VAE reconstructs everything well, except for the missing connections between the charts.

3.2 COLLABORATIVE CONTROL

To leverage the prior knowledge encoded in existing 2D Text-to-Image models, we use the Collabora-
tive Control approach (Vainer et al., 2024). As shown in fig. 2, this approach comprises two parallel
networks: a pre-trained RGB model and a new model for the geometry image. The former is respon-
sible for generating UV-space albedo textures, while the latter generates the geometry images. These
two models are connected by a simple linear cross-network communication layer, which allows them
to share information and collaborate in generating pixel-aligned outputs across these different modal-
ities. Crucially, this also enables the geometry model to influence the frozen model, guiding it to
generate UV-space textures that would otherwise lie at the fringes of its training distribution. The
frozen base model also drastically reduces the amount of data required to train the joint model while
retaining generalizability, diversity, and quality (Vainer et al., 2024).

3.3 DATA HANDLING

3.3.1 DATASET

We train our model on the Objaverse dataset (Deitke et al., 2022). We curate this dataset to include
only objects with both high-quality structures and semantically meaningful UV maps by filtering
out 3D scans and low-poly models. The final dataset contains approximately 100,000 objects. Each
data entry is accompanied by captions provided by Cap3D (Luo et al., 2023) and Hong et al. (2024).
During training, we randomly sample these captions and apply random rotations of 90, 180, or 270
degrees to the extracted texture atlases. We now discuss how to transform these meshes into geometry
images and back: the entire pre-processing was performed on consumer-grade PC hardware (AMD
Ryzen 9 7950X, GeForce RTX 3090, 64 GB RAM) and took approximately 20 hours.

3.3.2 GEOMETRY IMAGE CREATION

To create Multi-Chart Geometry Images for 3D meshes, we use their existing UV maps. UV mapping

is defined as the mapping ρ : V → [0, 1]
2
, where V is the set of vertices in a 3D mesh, and ρ maps each
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vertex to UV coordinates. Note that this mapping is not injective (multiple vertices can be mapped to
the same UV coordinates), nor is it a simple function of the vertex positions in R

3, as modern mesh
formats allow multiple vertices with distinct UV coordinates at the same 3D location. These issues
mean that ρ is not invertible, which would be a simple way to create a geometry image function.
However, we argue that ρ is locally invertible and propose constructing a Multi-Chart Geometry
Image based on the individually invertible areas of the available UV mapping. As mentioned before,
the charts in a UV atlas tend to be semantically meaningful, so we aim to preserve them.

We begin by identifying the connected components of the mesh, which provides an initial separation
into charts. Within each component, we identify two situations where ρ is not invertible: duplicated
vertices with distinct UV coordinates, and a “crease”, i.e. a line where the UV coordinates change
direction (similar to a “mirror” boundary condition). The former is straightforward to detect, as we
can find duplicated vertex positions with different UV coordinates. The second case is identified by
creating a heatmap of the UV-space access pattern and detecting local minima, which indicate an
indexing pattern that "doubles back" on itself. We then further split the individual charts along any
detected creases. In line with the desirable mapping properties discussed in (Sinha et al., 2016), we
adjust the geometry image mapping to approximate an equal-area projection by rescaling each 2D
chart with respect to the area of the corresponding surface.

In cases where only a partial UV mapping is available, we use XAtlas (Young, 2022) to UV-unwrap
the missing regions. However, since the XAtlas parametrization is of lower quality and lacks semantic
properties, we exclude meshes where less than 80% of the surface area has been unwrapped manually.
This simple heuristic allows us to construct multi-chart geometry images for nearly all training
examples. However, this method does not account for all possible degenerate cases of ρ. Therefore, we
verify that the constructed ρ is injective and skip any training meshes where this assumption is violated.

In Objaverse (Deitke et al., 2022), the objects are not aligned in a canonical way. Although most
shapes are oriented with the Y-axis pointing upward, there is no fixed front view, leading to rotational
ambiguity between the X- and Z-axes. To resolve this ambiguity and confine it to a single coordinate,
we leverage cylindrical coordinates (r, θ, ϕ) so that the ambiguity is restricted to the azimuth angle θ.

3.3.3 MESH EXTRACTION

Figure 4: The resulting triangulation of our gener-
ated objects is nearly uniform across the surface,
due to the area-preserving nature of the geometry
images in our training dataset.

As mentioned in section 3.1, geometry images
implicitly encode connectivity information of
the mesh by treating neighboring pixels as con-
nected in 3D space, i.e. a quad mesh. However,
to convert them into a more widely supported tri-
angular mesh, we need to specify exactly how to
triangulate the quads. For this, we closely follow
the algorithm from Sander et al. (2003). For any
2 × 2 block of pixels in the GIM, we create up
to two triangles depending on how many of the
pixels describe part of the object. If necessary,
the quad is split along its shorter diagonal. As
shown in fig. 4, and in line with our goal of area-preserving mapping (Sinha et al., 2016), the result-
ing triangulation is nearly uniform over the surface, which may or may not be desirable for specific
applications. With our model’s working resolution of 768× 768, our GIMs can encode meshes with
up to 589,824 vertices. We consider the generation of arbitrary topologies or mesh generation with
polygon constraints a promising area of future work for GIMDiffusion.

3.4 TRAINING

For the frozen base model, we used a zero-terminal-SNR (Lin et al., 2024) version fine-tuned from
StableDiffusion v2.1 (Rombach et al., 2021) as the base Text-to-Image model, which remains frozen
and generates albedo textures. The geometry model is an architectural clone with the cross-attention
layers omitted and is trained from scratch, along with the cross-network communication layers.
Initially, we trained the model at 256 × 256 resolution for 250,000 steps with a batch size of 384,
and then at the final output resolution of 768× 768 for a total of 100,000 steps with a batch size of
64. All stages of training were conducted with a learning rate of 3e−5 on 8 A100 GPUs.
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An organic alien
gun is style of H.R.

Giger

Wooden chest with
Van Gogh’s Starry

Night

A steampunk
airplane

An avocado-shaped
chair

A steampunk gun

Figure 5: GIMDiffusion generalizes well beyond the training data, successfully following more
outlandish prompts.
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Prompt: A fly agaric mushroom

Figure 6: Sample diversity of GIMDiffu-
sion for different random seeds.

Figure 1 showcases the results of our method on a set of
text prompts, generating objects in a manner that aligns
with common queries, such as those in a gaming workflow.
The objects are well-defined and can be relit from any
direction, as the albedo textures are free from lighting-
related artifacts. The generated UV layouts closely resem-
ble those created by artists, offering editable assets.

In fig. 6 we highlight the method’s ability to generate
meaningful variations when the seed or prompt is per-
turbed. GIMDiffusion produces significantly different UV
layouts with even slight variations in the seed or prompt,
enabling diverse object creation. Leveraging the rich nat-
ural image prior, our model generalizes well beyond the
initial 3D dataset (see appendix E for the layout novelty study). Further examples illustrating this
generalization are shown in fig. 5.

4.1 SEPARABILITY AND INTERNAL STRUCTURE

Albedo texture
Exploded view

Figure 7: An exploded view of the gen-
erated “Fly agaric mushroom” shows se-
mantically meaningful chart separation.

A key advantage of our method is its ability to generate
objects divided into distinct semantic (or nearly semantic)
parts, as shown in fig. 7, making the generated objects
more suitable for editing and animation. This capabil-
ity arises from the multi-chart representation design and
the semantic information embedded in the training data
through handcrafted UV maps, which loosely correspond
to the semantic components of objects. This approach
also allows users to easily correct imperfections, such as
misaligned parts or extraneous geometry, and even com-
bine different parts from multiple generations. Addition-
ally, our method generates internal structures, such as the
filament inside a light bulb or the interior of a fish tank, because geometry images represent the entire
object holistically, not just its visible surfaces.

4.2 IPADAPTER COMPATIBILITY

IPAdapter input <No prompt> A kingsize bed

Figure 8: We can guide the reverse pro-
cess by applying a pre-trained IPAdapter
to the frozen base model (Ye et al., 2023).

Major efforts have been made to achieve style control in
diffusion models (Ye et al., 2023), and our method is com-
patible with these techniques. Since we leverage a frozen
base model to generate the albedo textures, we can ap-
ply a pre-trained IPAdapter and produce stylized output
meshes, as shown in fig. 8. Despite the significant mis-
match between the application domains (natural images
versus albedo atlases), the style guidance remains success-
ful. However, we find that this approach starts to break
when the text prompt deviates too much structurally from
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the content of the conditioning image. We attribute this to the fact that IPAdapter aims to leverage
every aspect of the conditioning image; but e.g. IPAdapterInstruct (Rowles et al., 2024) offers a selec-
tive extraction of just appearance style without entangling structural information.

4.3 EVALUATION
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Figure 9: The qualitative evaluation on prompts from T3Bench (He et al., 2023). Note that our model
produces well-defined shapes and detailed appearances due to high-resolution of underlying geometry
images. The only noticeable defects are visible cracks and minor misplacements of small parts, which
we aim to address in future work (see section 4.5).
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Figure 10: Our method generates layouts of higher
quality than parametrization algorithms used in
other methods.

We selected several recent works with avail-
able source code for comparison, including both
optimization-based and feed-forward methods.
Specifically, we chose GaussianDreamer (Yi
et al., 2023), DreamGaussian (Tang et al., 2023),
MVDream (Shi et al., 2023b), LGM (Tang et al.,
2024), CRM (Wang et al., 2024) and SF3D (Boss
et al., 2024). We adapted state-of-the-art Image-
to-3D models LGM, CRM and SF3D for Text-to-
3D by integrating the same Text-to-Image model
used in our approach (see more details on eval-
uation in appendix C).

We treated the 3D mesh as the final output1 and
included post-processing time in the total gener-
ation time, using default settings for all methods.
For Image-to-3D models, we also accounted for

1GaussianDreamer outputs Gaussian splats, which we converted using the method provided by LGM for
evaluation
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Table 1: Evaluations

Method Time UV-unwrapping Relightable Separable T 3 ↑ AR > 4 (%) ↓ RR > 4 (%) ↓ MA < 10 (%) ↓

GaussianDreamer 15 minutes No No No 28.7 - - -
MVDream 30 minutes XAtlas No No 47.8 - - -
DreamGaussian 7 minutes XAtlas No No 19.8 - - -

LGM 1.8 minutes XAtlas No No 29.9 0.068 0.081 0.060
CRM 13 sec XAtlas No No 39.6 0.012 0.017 0.013
SF3D 3.5 sec Cube projection Yes No 48.2 0.112 0.117 0.122

Ours 10 sec Generative Yes Yes 35.2 0.038 0.042 0.035

the 3-second generation time required by our base model to create a single image. All evaluations
were performed on a single A100 GPU.

We used T3Bench (He et al., 2023) for automatic evaluation, measuring both generation quality
and prompt alignment of the resulting meshes. T3Bench includes three prompt sets: Single Object,
Single Object with Surroundings, and Multiple Objects. Since our model is specifically designed for
single-object generation, we focused our evaluation on that track. We used the code provided in the
T3Bench repository2 for comparisons. Overall, we evaluated 100 prompts (see appendix D). Visual
comparisons are provided in fig. 9.

T3Bench evaluates only multi-view renderings, it does not assess the underlying mesh quality. To
address this, we followed Shen et al. (2023) and calculated metrics such as the percentage of triangle
aspect ratios > 4 (AR>4(%)), radius ratios > 4 (RR>4(%)), and minimum angles < 10 (MA<10(%)),
using PyVista (Sullivan & Kaszynski, 2019) for all feed-forward methods. While these intrinsic
metrics cannot guarantee overall quality, they provide reasonable proxy for some applications.

As shown in table 1, our method achieves competitive results compared to state-of-the-art models,
while providing superior editability via separable parts and producing nearly artistic UV maps. Unlike
other approaches that rely on vertex colors or pre-defined fixed unwrapping, our method natively
generates UV-space textures. This results in more logical chart separation, better area utilization, and
sharper details compared to other methods, as demonstrated in fig. 10.

4.4 ABLATION STUDY
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Figure 11: The first row shows our full
method’s performance, with subsequent
rows removing key design elements.

In this section, we validate our method by ablating key
design choices and evaluating their impact. Specifically,
we ablated three aspects of our approach: the absence
of cross-attention layers in the geometry image branch,
the use of the Collaborative Control mechanism, and the
cylindrical coordinate transform. To ensure consistency,
all experiments used the same batch size, number of steps,
and hardware.

First, we reintroduced cross-attention layers in the geom-
etry image branch, making it a full architectural clone of
the frozen branch. As shown in the second row of fig. 11,
while the model still follows the prompts, its generaliza-
tion ability significantly deteriorates, especially with out-
of-distribution prompts like “a steampunk gun”, which is
consistent with the observations in Vainer et al. (2024).

Next, we removed the Collaborative Control mechanism
and fine-tuned the base model to generate both albedo
textures and geometry images, concatenating their latents.
This resulted in a significant drop in both shape and tex-
ture quality, as seen in the third row of fig. 11.

Finally, we ablated cylindrical coordinates by fine-
tuning the model as before but omitting the coordinate
transformation. Without this step, the model struggled to generate even basic shapes.

2https://github.com/THU-LYJ-Lab/T3Bench
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4.5 LIMITATIONS

Figure 12: The blue area repre-
sents a chart, undersampling at
insufficient resolutions can af-
fect chart boundaries. Affected
pixels are highlighted in red.

Our current method has certain limitations. The most common
issue is the appearance of visible cracks in the generated meshes.
These artifacts result from two key factors: Multi-Chart Geometry
Images lack inter-chart connectivity information, and irregular chart
boundaries are prone to undersampling (see fig. 12), as analyzed
by Sander et al. (2003). The original paper proposed a zippering
algorithm to close the cracks between adjacent charts, but this
approach assumes the watertightness of the underlying mesh, which
is not generally true for real-world meshes. In future work, we aim
to generalize and adapt the zippering algorithm. Sampling-related
modifications, such as those proposed by Gauthier & Poulin (2009);
Yan et al. (2024), could further improve the results.

Additionally, we believe this issue is exacerbated by the VAE’s
latent compression. Areas smaller than 8× 8 pixels fall below the VAE’s latent resolution, leading to
visual artifacts such as noisy edges and misaligned charts. We hypothesize that integrating wavelets
into the VAE, as suggested by Sadat et al. (2024), could mitigate these issues.

Another limitation stems from the discrepancy between the natural image prior and the domain of our
model. Although individual charts in a geometry image can be arbitrarily rotated and still represent
the same 3D object, the frozen base model is not rotationally equivariant (Weiler et al., 2021). Human
faces serve as a good example — while typically upright in natural images, they can appear in
random orientations on texture maps, leading to varying quality for such prompts (see examples in
appendix B). In future work, we plan to investigate ways to establish canonical orientations for these
charts, ensuring better alignment with the diffusion prior.

Additionally, we sometimes observe that the model duplicates parts of the object, which can result
in visual artifacts in the generated meshes due to z-fighting. However, the segmented nature of the
generated objects makes these artifacts easy to resolve manually.

5 DISCUSSION AND FUTURE WORK

In this work, we present Geometry Image Diffusion (GIMDiffusion), a novel Text-to-3D generation
paradigm that utilizes geometry images as its core 3D representation in combination with powerful
natural image priors in the form of pre-trained diffusion models. Our results show that GIMDiffusion
can generate relightable 3D assets with high-quality UV maps as efficiently as existing Text-to-
Image methods generate normal images, while avoiding the need for complex, custom 3D-aware
architectures. We believe that our research lays the groundwork for a new direction in Text-to-3D
generation.

Future improvements include eliminating visible cracks, achieving better alignment with 2D priors,
and enhancing the precision of generations. Incorporating topology prediction and conditioning
on specific polygon budgets could provide greater control over the generated 3D objects, making
them more practical for gaming and other graphics pipelines. Furthermore, the inherent capability
of GIMDiffusion to model both geometry and parameterization makes it particularly well-suited
to addressing the longstanding challenge of UV mapping creation for existing geometries. Equally
promising is the potential of GIMDiffusion in related fields such as interactive editing, animation and
Text-to-Video generation.
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A VAE DESIGN AND TRAINING DETAILS

SD VAE reconstruction
GIM VAE reconstruction

Figure 13: Comparison of geometry reconstruction between the SD VAE and our GIM VAE. The SD
VAE reconstruction could not be meaningfully triangulated, a point cloud is visualized instead of a
mesh

The Stable Diffusion Variational Autoencoder (SD VAE) is trained on natural images and achieves
high reconstruction quality in that domain. However, it does not transfer well to the domain of
geometry images.

The first issue is that the reconstructed images contain a considerable amount of noise (see fig. 13).
While these perturbations may be imperceptible in the image domain, they cause significant problems
in the 3D domain, such as the loss of fine geometric details. We hypothesize that this behavior arises
from the LPIPS (Zhang et al., 2018) and GAN losses used during training, as GANs are known for
introducing high-frequency noise into images.

The second issue is the color range bias of the SD VAE, which favors the most common colors in
natural images. When applied to points in 3D space, this bias can cause undesirable warping and
other artifacts.

Table 2: VAE evaluations

Method Latent dim PSNR ↑

SD VAE 96× 96× 4 31.87
GIM VAE 96× 96× 8 49.02

Lastly, the original VAE struggles to accu-
rately reconstruct discontinuities at chart bound-
aries, which is critical for triangulation (see sec-
tion 3.3.3). Convolutional layers tend to interpo-
late across boundaries, leading to false geometry
due to the creation of smooth transitions instead
of sharp ones.

To address these issues, we made the following
design choices:

• Disentangling chart boundaries from geometry: We introduced additional input and output
channels for a multi-chart mask. This mask can be thresholded to model sharp boundaries, avoiding
interpolation artifacts.

• Removing GAN and perceptual losses: These were removed to prevent noise from being
introduced during training.

• Increasing latent dimension: We expanded the latent dimension to 8 to better capture geometric
details.
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We trained our VAE following the procedure and codebase3 of Stable Diffusion (Rombach et al.,
2021). The model was trained on 8 A100 GPUs with a batch size of 128 for 100k steps. The PSNR
results are reported in table 2.

B FAILURE CASES

Charts in the Geometry Image layout can be randomly rotated without affecting the resulting 3D
shape, as this rotation alters only the parameterization. However, GIMDiffusion relies on Stable
Diffusion 2.1 as a prior, which is not rotationally equivariant and exhibits strong orientational biases
for certain features. For example, it struggles to reliably generate an upside-down face. Consequently,
the quality of generated outputs may degrade for certain prompts. With the prompt “human head”,
for instance, the quality can vary depending on the seed, particularly when the chart containing the
face is oriented unfavorably.

Fortunately, GIMDiffusion’s fast inference speed enables efficient seed exploration to achieve the
desired quality. In future work, we aim to introduce canonical orientations for charts to mitigate this
issue.

Prompt: A human head

Figure 14: Generation results for human head for three different seeds.

C EVALUATION DETAILS

T 3Bench (He et al., 2023) evaluates both quality and alignment in text-to-3D generation. Quality is
assessed through a standardized multi-view rendering pipeline provided by the authors. This process
generates 2D images of the 3D object from various angles and uses scoring models (Radford et al.,
2021; Xu et al., 2024) to evaluate overall visual consistency and fidelity. To spot issues such as
view inconsistency (e.g., the Janus problem), a regional convolution technique is applied. Alignment
measures the semantic consistency between the generated 3D object and the input text prompts using
a multi-view captioning process coupled with GPT-4 (Achiam et al., 2023) evaluation. The final score
is computed as the average of the quality and alignment metrics.

To compare our method with state-of-the-art image-to-3D approaches, we generated a set of images
based on the T 3Bench evaluation prompts (see appendix D) using the same base model as our method
(Stable Diffusion 2.1). For compatibility with image-to-3D methods, we appended the phrase “single
object, uniform background” to each prompt. For each prompt, three images were generated, and the

3https://github.com/Stability-AI/generative-models
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one best aligning with the text and depicting the object from natural angles was manually selected.
Figure 15 showcases several examples.

A bright red fire
hydrant

A ceramic teapot
with floral patterns

A worn-out leather
briefcase

A crumpled silver
aluminum soda can

A cherry red vintage
lipstick tube

A plush velvet
armchair

An old, frayed straw
hat

A sleek stainless
steel teapot

Figure 15: Examples of images used to condition Image-to-3D models during evaluation.

D EVALUATION PROMPTS

1. A cactus with pink flowers
2. A rainbow-colored umbrella
3. An antique wooden rocking horse
4. A golden retriever with a blue bowtie
5. An ivory candlestick holder
6. A pair of polka-dotted sneakers
7. A steaming mug of hot chocolate with

whipped cream
8. A bright red fire hydrant
9. A gleaming silver saxophone

10. A leather-bound book with gold details
11. A vibrant sunflower with green leaves
12. A castle-shaped sandcastle
13. A neon green skateboard with black wheels
14. A pirate flag with skull and crossbones
15. A plush teddy bear with a satin bow
16. A ripe watermelon sliced in half
17. A sparkling diamond ring in a velvet box
18. A vintage porcelain doll with a frilly dress
19. A chameleon perched on a tree branch
20. A tarnished brass pocket watch
21. A ceramic teapot with floral patterns
22. An antique ruby-studded brooch
23. A simple burgundy colored feather quill
24. A vintage iron-cast typewriter
25. A shiny emerald green beetle
26. A crystal glass paperweight with abstract de-

sign
27. A velvet cushion stitched with golden threads
28. A small porcelain white rabbit figurine
29. A left-handed electric guitar painted black
30. A bright blue plastic swimming goggles

31. A partly broken shell of a tortoise
32. A long woolen scarf, striped red and black
33. A tattered old explorer’s map
34. A well-used black iron frying pan
35. A crumpled silver aluminum soda can
36. A thick, green-spined book with yellowed

pages
37. A shimmering emerald pendant necklace
38. A well-worn straw sun hat
39. A tarnished silver letter opener
40. An antique glass perfume bottle
41. A polished mahogany grand piano
42. A dented brass trumpet
43. A pristine white wedding gown
44. A chipped porcelain teacup
45. A rustic wrought-iron candle holder
46. A vibrant, handmade patchwork quilt
47. A plush velvet armchair
48. A sleek, black top hat
49. A paint-splattered easel
50. A bent steel crowbar
51. A crisp paper airplane
52. A worn-out rubber tire swing
53. An intricately-carved wooden chess set
54. A bright red kite with a frayed tail
55. A smooth, round opal stone
56. A rusty, vintage metal key
57. A delicate, handmade lace doily
58. A sturdy mahogany walking cane
59. A sparkling crystal chandelier
60. A worn-out red flannel shirt
61. A cracked porcelain doll’s face
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62. A dusty classic typewriter
63. A glossy grand black piano
64. A faux-fur leopard print hat
65. A futuristic, sleek electric car model
66. A cherry red vintage lipstick tube
67. A cobweb-covered old wooden chest
68. A gold glittery carnival mask
69. A tattered world map with stained edges
70. A shiny red apple
71. A worn-out leather briefcase
72. An antique gold pocket watch
73. A sleek, slim smartphone
74. A wet, vibrant beach ball
75. A rusty, abandoned bicycle
76. A fluffy, orange cat
77. Crisp, folded origami paper
78. A shiny, new electric guitar
79. A weather-beaten wooden bat
80. A delicate crystal champagne flute
81. An old, frayed straw hat

82. A scuffed up soccer ball
83. A pair of worn-in blue jeans
84. A well-loved stuffed teddy bear
85. A chipped, white coffee mug
86. A bright, yellow rubber duck
87. A sleek stainless steel teapot
88. A water-streaked glass window pane
89. An intricate ceramic vase with peonies painted

on it
90. A fuzzy pink flamingo lawn ornament
91. A blooming potted orchid with purple flowers
92. An old bronze ship’s wheel
93. A sparkling diamond tiara
94. A vintage plaid woolen blanket
95. A pair of shiny black patent leather shoes
96. An elegant feather-quill ink pen
97. A fragrant pine Christmas wreath
98. A silver mirror with ornate detailing
99. A green enameled watering can

100. A classic leatherette radio with dials

E LAYOUT NOVELTY

Render Texture Layout mask

Generated objects

Layout mask Texture Render

Nearest neighbors

Figure 16: Each row displays a generated object alongside its nearest neighbor by layout mask from
the dataset. The nearest UV layouts differ significantly from the corresponding generated ones, often
representing entirely different object types.

To demonstrate our model’s ability to generate novel UV layouts not present in the training data,
we visualize dataset entries that are closest to the generated samples in terms of layout similarity.
For this purpose, we constructed an index of binary multi-chart masks extracted from all geometry
images in our dataset using the Faiss library (Douze et al., 2024). We then queried this index to find
the nearest neighbors for the generated samples.

During the training phase of our model, the input data were augmented with random rotations by
angles that are multiples of 90 degrees. Accordingly, for each query image, we computed the nearest
neighbors across four rotations and selected the neighbor with the lowest Euclidean distance.

The visualizations in fig. 16 reveal that there are non-trivial differences between the generated layouts
and those present in the training data, highlighting the model’s capability for generating novel layouts.
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