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ABSTRACT

Information Bottleneck (IB) theory provides a principled approach to analyze and
optimize how neural networks extract and learn latent representations from data,
aiming to enhance network performance and generalization. The IB framework
has been applied and validated across various domains in deep learning. How-
ever, most studies employing IB require tuning of Lagrange multipliers to bal-
ance compression and prediction during optimization. Finding the optimal La-
grange multiplier β to achieve the best balance between compression and pre-
diction is challenging, relying heavily on empirical tuning and potentially failing
to capture the complex trade-offs present within the IB paradigm. In this pa-
per, we redefine the IB problem as a multi-objective optimization problem with
respect to compression and prediction objectives. We employ a gradient-based
multi-objective optimization algorithm that adaptively determines the weights for
this optimization challenge. Our method is demonstrated to automatically find
Pareto-optimal solutions, achieving a balance between compression and predic-
tion, and exploring more complex Pareto frontiers than linear weighting. We
compare our approach with the Variational Information Bottleneck and its vari-
ants across different datasets. Empirical results confirm that our method achieves
a more stable and optimal trade-off compared to Information Bottleneck ap-
proaches with manually-tuned multipliers. The code is available in https:
//anonymous.4open.science/r/ASDGASDG.

1 INTRODUCTION

Neural networks are powerful learning models that can adapt to complex patterns in data and excel
at various tasks Blazek & Lin (2021); Kriegeskorte & Golan (2019); Dai (2021); Sutskever et al.
(2014). How do highly parameterized neural networks exhibit good fit performance as well as
generalization while memorizing datasets? One possible answer is that neural networks can learn
latent representations from datasets Dabagia et al. (2022); Kilinc & Uysal (2018); Yang et al. (2022).
Latent representations are features that capture fundamental and hidden information about the data,
such as shapes, colors, or textures in images, or themes, sentiments, or styles in text Ye & Shen
(2020); Pati & Lerch (2021); Bau et al. (2017). By learning these latent representations, neural
networks can ignore irrelevant or noisy details and focus on what matters for the task Schneider
et al. (2023); Dabagia et al. (2022).

A longstanding issue in deep learning is understanding the nature and quality of these latent rep-
resentations and how neural networks learn them from data Hafner et al. (2019); Mo et al. (2020);
Wieczorek et al. (2018). Good latent representations are those that capture the underlying features
and structure of the data while discarding irrelevant and noisy details Zhang et al. (2017); Kim et al.
(2020). Learning such representations is crucial for achieving high performance and generalization
in various deep learning tasks, including image classification, natural language processing, and rein-
forcement learning Mo et al. (2020); Gelada et al. (2019); Ye & Bors (2020). However, it is not yet
clear how neural networks learn these representations from data and what factors influence the qual-
ity and efficiency of the learned representations. How can neural networks be guided to learn more
optimized representations? One possible answer is through the use of Information Bottleneck the-
ory Harremoës & Tishby (2007); Tishby & Zaslavsky (2015), which provides a rigorous framework
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for examining the trade-off between the complexity and utility of latent representations in terms of
mutual information. The Information Bottleneck method aims to find a succinct representation of
the input random variable X that preserves relevant information about the target variable Y , given
their joint probability distribution p(X,Y ) Geiger & Kubin (2020); Li & Liu (2021).

Despite challenges in estimating mutual information, the Information Bottleneck method has been
applied with success in various deep learning tasks due to the theoretical insights of the Information
Bottleneck framework and the variational techniques implemented by it Geiger & Kubin (2020);
Tishby & Zaslavsky (2015), such as computer vision Voloshynovskiy et al. (2019); Su et al. (2023);
Lee et al. (2021), natural image processing Zhang et al. (2022); Geiger & Kubin (2020); Mai et al.
(2022), self-supervised learning of graphs Wu et al. (2020); Alemi et al. (2017); Gu et al. (2022),
and compression of neural networks Dai et al. (2018); Tishby & Zaslavsky (2015). However, while
these studies benefit from the IB framework Razeghi et al. (2023); Zhai & Zhang (2022); Dai et al.
(2018), they also face significant limitations: they follow the Information Bottleneck and VIB setup,
linearly weighting two important objectives with hyperparameters and conducting extensive experi-
ments to manually tune the parameters to achieve the desired compression-prediction trade-off, i.e.,
a complex and expensive manual process of finding trade-offs. As shown in Figure 1, we visualize
the information plane of the three mainstream IB methods on the MINIST dataset. It can be signifi-
cantly found that the process of finding trade-offs between different methods varies greatly, but they
all need complex optimization processes.
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Figure 1: The Information Plane of three different IB methods, i.e., VIB Alemi et al. (2017), DIB Pan
et al. (2021), and LoCoButakov et al. (2024).

To better understand the above limitations, we revisit and analyze the Information bottleneck (IB)
optimization problem, and experimentally find that the choice of Lagrange multiplier significantly
affects the performance and robustness of the model, as well as the mutual information between
the target and the data. In addition, manually setting a plausible β may not be the optimal solu-
tion to trade off compression and prediction goals. To this end, for the first time, we redefine this
problem as a multi-objective optimization problem with respect to compression and prediction ob-
jectives from the perspective of multi-objectives. Furthermore, based on the new problem definition,
we propose a gradient-based Multi-objective optimization Information Bottleneck algorithm, called
MIB, which introduces a gradient mapping mechanism to ensure that the model can effectively bal-
ance the weight allocation and optimization among multiple objectives along the non-convex Pareto
front. Furthermore, we conduct several experiments to compare MIB with existing IB methods and
show that MIB achieves state-of-the-art performance.

Our contributions can be summarized as follows:

• New problem and insight: we deeply analyze the potential drawbacks of existing information
bottleneck optimization methods, and experimentally show the complexity and inaccuracy of
manually finding Lagrange multipliers.

• New optimization objective: for the first time, we examine the information bottleneck prob-
lem from the multi-objective perspective, and redefine the trade-off between compression and
prediction objectives as a rigorous multi-objective optimization problem.
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• New learning paradigm: we propose a gradient-based Multi-objective optimization IB learning
paradigm (MIB), which ensures that we can find the trade-off between multiple objectives in
the optimal optimization direction.

• Compelling empirical results: extensive experiments demonstrate that our method achieves
higher performance ceilings and finds a more stable and optimal trade-off compared to manual-
based information bottleneck methods.

2 RETHINKING LAGRANGE MULTIPLIERS IN INFORMATION BOTTLENECK:
IS MANUAL TRADE-OFF TRULY OPTIMAL?
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Figure 2: Different β values influence the trade-
off between compression, prediction, and robust-
ness.

Previous research on the information bottle-
neck (IB) optimization problem has typically
adhered to a common paradigm: transforming
the IB problem into its Lagrangian relaxation
form using the method of Lagrange multipli-
ers, and empirically adjusting the trade-off be-
tween compression and prediction through mul-
tiple experimental iterations. While finding the
appropriate Lagrange multiplier is undoubtedly
exciting, it also prompts us to question whether
this empirical manual trade-off is truly the opti-
mal choice. In this section, we will further ana-
lyze the existing paradigm. Figure 2 illustrates
the challenges associated with Lagrange mul-
tipliers in the Information Bottleneck, where
the regulation of Lagrange multipliers in neu-
ral networks dramatically affects the mutual in-
formation between representations, objectives,
and data, significantly impacting model per-
formance and generalization ability, as demon-
strated in numerous applications. Inaccurate β
values may compromise the model’s trade-off
between compression and prediction.

2.1 PROBLEM REFORMULATION

To comprehensively understand the trade-off between compression and prediction, we reformulate
the Information Bottleneck problem as a multi-objective optimization problem. Here, we recall the
classic Information Bottleneck objective function:

min
p(Z|X)

I(X;Z)− βI(Y ;Z), (1)

where I(X;Z) represents the mutual information between input X and latent representation Z,
measuring compression loss; I(Y ;Z) represents the mutual information between target Y and latent
representation Z, measuring predictive power. β is the trade-off parameter balancing these two
terms.

Now, we reformulate Equation 1 as a multi-objective optimization problem. Given input variable
X ∈ X , target variable Y ∈ Y , and latent representation Z ∈ Z , our goal is to find a set of Pareto-
optimal solutions in the probability distribution space P(Z|X ) that simultaneously minimize the
following two objective functions:

min
p(Z|X)∈P(Z|X )

L(Z) = (I(X;Z),−I(Y ;Z)) (2)

Here, I(X;Z) corresponds to compression loss, i.e., the information loss from input X to latent
representation Z; −I(Y ;Z) corresponds to prediction loss, i.e., the negative mutual information
from latent representation Z to target Y . We multiply the second term by -1 to transform it into a
minimization problem. Equation 2 explicitly describes the multi-objective nature of the IB problem,
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namely minimizing mutual information between input and latent representation while maximizing
mutual information between latent representation and target.

Unlike the original single-objective formulation (Equation 1), the multi-objective formulation
(Equation 2) treats compression loss and prediction loss as two independent optimization objec-
tives, rather than combining them into a single scalar through the trade-off parameter β. This al-
lows us to directly search for and approximate the complete Pareto frontier describing the optimal
compression-prediction trade-off, rather than obtaining only a single trade-off point corresponding
to a specific β value. In the next section, we will formally define the Pareto-optimal frontier for the
Information Bottleneck and discuss the limitations of the traditional Lagrangian relaxation method.

2.2 PARETO-OPTIMAL FRONTIER

Based on the above multi-objective optimization problem, we can formally define the Pareto-optimal
frontier for the Information Bottleneck. Let F ⊆ R2 represent the objective space, where each point
l = (I(X;Z),−I(Y ;Z)) ∈ F represents the loss values of a feasible solution on the two objectives.
We say that point l1 dominates point l2 if and only if I1(X;Z) ≤ I2(X;Z) and I1(Y ;Z) ≥
I2(Y ;Z), with at least one inequality being strict. A point l∗ ∈ F is called Pareto-optimal if it is
not dominated by any other point. The Pareto-optimal frontier F∗ for the information bottleneck is
the set of all Pareto-optimal points:

F∗ = {l∗ ∈ F|l ∈ F , such that l dominates l∗}. (3)

The Pareto frontier delineates the optimal trade-off curve between compression and prediction
losses. It provides a global perspective for analyzing the IB problem, revealing the inherent conflicts
and dependencies between the two objectives. Moreover, each solution on the frontier corresponds
to specific task requirements or preferences, thus having practical significance in different applica-
tion scenarios. This aligns with the motivation of the Information Bottleneck, which is to maximize
predictive performance under given compression constraints, or to minimize compression loss under
given predictive performance requirements.

2.3 LIMITATIONS OF THE TRADITIONAL APPROACH

Here, we revisit the challenges faced by the Lagrangian relaxation method in finding the Pareto
frontier:

• Discrete Trade-offs. The Lagrangian relaxation simplifies the original problem to a single-
objective optimization but can only produce discrete solutions corresponding to specific β val-
ues. As β varies in the range [0,+∞), the generated solutions constitute a discrete subset of the
Pareto frontier rather than a continuous curve. This may lead to suboptimal trade-off choices,
especially when the best trade-off lies between discrete solutions.

• Approximation Incompleteness. Even with an exhaustive search over β, the set of solutions
Sβ = {lβ |β ∈ [0,+∞)} generated by the Lagrangian relaxation method may not well approx-
imate the true Pareto frontier F∗. On the one hand, for many non-convex practical problems,
the Lagrangian relaxation method may fail to find Pareto-optimal solutions located in concave
regions. On the other hand, the mapping from β values to their induced trade-off points is often
highly nonlinear and irreversible, making it difficult to control the distribution and coverage of
trade-off points by adjusting β.

To overcome these limitations, we propose a new multi-objective optimization method aimed at
directly searching for and generating optimal solutions on the Pareto frontier without relying on
preset trade-off parameters. This method can adapt to complex frontier shapes, providing decision-
makers with comprehensive and fine-grained trade-off choices.

3 MIB FOR FINDING THE PARETO OPTIMAL SOLUTION

In this section, we will detail our proposed Multi-objective Information Bottleneck (MIB) method.
MIB aims to address the limitations of manually adjusting Lagrange multipliers in traditional infor-
mation bottleneck methods by automatically finding the optimal balance between compression and
prediction objectives through multi-objective optimization techniques.

4
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To apply the multi-objective optimization problem (Equation 2) in practice, we need to transform
the mutual information objectives into optimizable loss functions. Under the variational inference
framework, we introduce a parameterized encoder pϕ(Z|X) to approximate the true posterior dis-
tribution p(Z|X), and a parameterized decoder qθ(Y |Z) to approximate the true conditional dis-
tribution p(Y |Z). Here, ϕ and θ represent the learnable parameters of the encoder and decoder,
respectively. Using these variational approximations, we can rewrite the mutual information objec-
tives as:

I(X;Z) = Ep(X)[DKL(p(Z|X) ∥ q(Z))]

≈ Ep(X)[DKL(pϕ(Z|X) ∥ q(Z))],
(4)

I(Y ;Z) = H(Y )−H(Y |Z)

= H(Y ) + Ep(Y,Z)[log p(Y |Z)]

≈ H(Y ) + Ep(X,Y )[Epϕ(Z|X)[log qθ(Y |Z)]].

(5)

In Equation 4, we approximate the true posterior distribution p(Z|X) with the parameterized en-
coder pϕ(Z|X) and set the prior distribution q(Z) to be a standard normal distribution N (0, I). In
Equation 5, we approximate the true conditional distribution p(Y |Z) with the parameterized decoder
qθ(Y |Z) and ignore the constant term H(Y ) which is irrelevant to optimization. Substituting Equa-
tions 4 and 5 into the multi-objective optimization problem (Equation 2), we obtain the variational
objective for MIB:

min
ϕ

L(Z) = (Linfo(ϕ),Lpred(ϕ, θ))

where Linfo(ϕ) = Ep(X)[DKL(pϕ(Z|X) ∥ N (0, I))],

Lpred(ϕ, θ) = −Ep(X,Y )[Epϕ(Z|X)[log qθ(Y |Z)]].

(6)

Based on the variational objective (Equation 6), we can optimize the parameters of the encoder
and decoder using gradient descent algorithms. For each objective function Li(Z), we calculate its
corresponding gradient:

gi = ∇ϕLi(ϕ), i ∈ {info, pred}. (7)

We use a variant of the Frank-Wolfe algorithm Frank & Wolfe (1956) to find the minimum norm
element of the gradient vectors. This process can be formalized as the following optimization prob-
lem:

w∗ = argmin
w
∥

∑
i∈{pred,info}

wigi∥2,

s.t.
∑

i∈{pred,info}

wi = 1, wi ≥ 0
(8)

The Frank-Wolfe algorithm approximates the solution to the above optimization problem by itera-
tively solving linear programming problems. At the t-th iteration:

(i) Compute the gradient:
dt = ∇w∥

∑
i

wigi∥2|w=wt
(9)

(ii)) Solve the linear programming problem:

st = argmin
s
{dT

t s :
∑
i

si = 1, si ≥ 0} (10)

(iii) Update the weights:

wt+1 = (1− γt)wt + γtst, whereγt =
2

t+ 2
(11)

The iteration continues until convergence or reaching the maximum number of iterations. The final
w∗ gives the optimal weight combination for the objective functions. To enhance the flexibility of
optimization, we introduce a nonlinear weight combination:

w̃i = (w∗
i )

1+
√

sqrted, i ∈ {pred, info} (12)
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where sqrted is a boolean value controlling whether to apply the nonlinear transformation. This
nonlinear transformation allows for more flexible adjustment of the trade-off between different ob-
jectives.

To improve the stability of optimization, we adopt the Smooth Information Bottleneck (Smooth-IB)
method. Given the weighted loss functions L̃i = w̃iLi(Z), the Smooth-IB method defines a new
loss function:

LSmooth-IB =
∑

i∈{pred,info}

L̃i + µ log

 ∑
i∈{pred,info}

exp

(
L̃i −minj L̃j

µ

)+min
j
L̃j (13)

where µ > 0 is a temperature parameter controlling the smoothness of the loss function, typically
fixed at 0.2. The gradient of the Smooth-IB loss can be expressed as:

∇LSmooth-IB =
∑

i∈{pred,info}

w̃i∇Li(Z) +
∑

i∈{pred,info}

exp
(

L̃i−minj L̃j

µ

)
∑

k∈{pred,info} exp
(

L̃k−minj L̃j

µ

) w̃i∇Li(Z)

(14)
This gradient form ensures that all objectives receive appropriate attention during the optimization
process while providing a smoother optimization surface. We propose a proposition to summarize
that our method can effectively find the Pareto front in Equation 6. For the proof, please refer to
Appendix A.
Proposition 1 (Pareto Optimality). Let F∗ be the true Pareto front, defined as:

F∗ = {(Linfo(ϕ),Lpred(ϕ, θ))|ϕ′, θ′ : Linfo(ϕ
′) ≤ Linfo(ϕ) ∧ Lpred(ϕ

′, θ′) ≤ Lpred(ϕ, θ)}
Let SMIB be the set of solutions generated by the MIB method. Then for any ε > 0, there exists a
sufficiently large number of iterations T , such that:

∀s ∈ SMIB,∃s∗ ∈ F∗ : ∥s− s∗∥2 < ε

where ∥ · ∥2 denotes the Euclidean norm.

4 EXPERIMENTS

In this section, we conduct empirical evaluations on mainstream datasets to demonstrate the superi-
ority of the proposed MIB.

4.1 EXPERIMENT SETTINGS

Datasets. We applied our method to FashionMNIST Xiao et al. (2017) and CIFAR-10 Krizhevsky
et al. (2009), achieving consistent Pareto-optimal parameter adaptation across both datasets. Fash-
ionMNIST is a 10-category grayscale image dataset, and CIFAR-10 is a diverse 10-class color image
dataset with various objects, which are crucial for benchmarking image classification and analyzing
performance trends.

Baselines and Adversarial Attacks. We select a variety of IB methods as baselines, which are
based on different theoretical ideas, including RES18, VIB, NIB, VIB-squared, and NIB-squared.
For more detailed descriptions of these methods, please refer to Appendix D. In addition, to bet-
ter measure the performance and robustness of different IB methods, we introduce a variety of
attack methods. Depending on their complexity, these attacks can be classified as simple at-
tacks, e.g., [FGSM] Goodfellow et al. (2014), [PGD] Mądry et al. (2017), and complex attacks,
e.g., [NIFGSM] Lin et al. (2019), [EOTPGD] Liu et al. (2018), [MIFGSM] Dong et al. (2018),
[UPGD] Mądry et al. (2017), [Jitter] Schwinn et al. (2023). Here, we give a brief explanation of
these attacks:

• FGSM (Fast Gradient Sign Method): This is a quick method that perturbs images by adding
noise in the direction of the gradient of the loss with respect to the input image.

• PGD (Projected Gradient Descent): A more sophisticated method than FGSM, it iteratively
applies small perturbations and projects the perturbed image back to a valid range after each
step.

6
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• NIFGSM (Nesterov Iterative Fast Gradient Sign Method): An iterative method similar to FGSM
but includes Nesterov accelerated gradient, which can enhance the effectiveness of the attack.

• EOTPGD (Expectation Over Transformation Projected Gradient Descent): A variant of PGD
that considers transformations like rotation or translation of images during the attack process.

• MIFGSM (Momentum Iterative Fast Gradient Sign Method): Integrates momentum into the
iterative FGSM process to stabilize update directions and improve the attack’s success rate.

• UPGD (Universal Perturbation Gradient Descent): Aims to find universal perturbations appli-
cable to a wide range of inputs.

• Jitter: Involves adding random noise (jitter) to images to test the model’s sensitivity to small
variations.

Implementation. We evaluate the effectiveness of our proposed multi-objective optimization
method for information bottleneck by conducting comparisons with several established Lagrangian
variants of IB. Optimal settings for the Lagrange multiplier method, as sourced from prior stud-
ies, have been adopted. Our approach automatically uncovers the Pareto-optimal balance between
predictive accuracy and data compression, eliminating the need for manual tuning of β. Model
performance is gauged in terms of both generalization and robustness to adversarial attacks. We
employ ResNet-18 as the backbone model, with a three-layer MLP to facilitate the computation of
mutual information and to perform classification. Details concerning the model and experimental
procedures are furnished in Appendix C.

4.2 BENCHMARK RESULTS

Results on FashionMNIST. The empirical analysis conducted on the FashionMNIST dataset, as
summarized in Table 1, provides a comprehensive evaluation of our method against a suite of ad-
versarial attacks. The performance metrics reveal the superior robustness and efficacy of MIB in
comparison to other approaches that manually fix β.

In the non-adversarial setting [NONE], the MIB model exhibits a marginally higher accuracy than
the mainstream VIB model. Nevertheless, this minor trade-off is substantially outweighed by the
significant gains in robustness across all adversarial scenarios tested. Notably, under [FGSM], MIB
shows an improvement of 4.06% over the next best method (NIB), establishing its proficiency in
countering this attack. The advantage of MIB becomes more pronounced under sophisticated iter-
ative attack schemes. For example, against [PGD], MIB maintains a 4.57% higher accuracy than
VIB-squared. Under the [EOTPGD] and [UPGD] attacks, MIB demonstrates remarkable resilience,
proving its enhanced robust feature extraction capability. The most compelling evidence of MIB’s
robustness is its performance under the MIFGSM and Jitter attacks. These results underscore the
effectiveness of the MIB method in navigating the complex trade-off between accuracy and robust-
ness.

Results on CIFAR-10. We also conduct experiments on the CIFAR-10 dataset to determine the
advantages of our proposed MIB method against various adversarial attacks, and the results are
shown in Table 2. It can be found that in the absence of adversarial attacks [NONE], the MIB model
achieves a performance close to SOTA in accuracy. When facing more lenient attacks, e.g., [FGSM]
and [PGD], MIB significantly outperforms other IB methods, especially outperforming the standard
VIB model by about 10% under [PGD].

Furthermore, by analyzing the sophisticated [NIFGSM], [EOTPGD], [MIFGSM], [UPGD], and [Jit-
ter] attacks, we can gain more insight into the resilience of MIB. The experimental results also show
that MIB performs as well as ever in the face of both simple and complex attacks, which indicates
that MIB can effectively resist strong attacks such as [Jitter] attack and demonstrate the robustness
of MIB. More importantly, the standard deviation of MIB is lower than that of NIB-squared, which
is the closest method to MIB, reflecting the stability of MIB under random conditions.

These experimental results, when holistically reviewed, not only validate the superior robustness
of MIB against a wide spectrum of adversarial attacks but also showcase its ability to maintain
high accuracy with less variability in performance. This balance between precision and stability
exemplifies the model’s capacity to handle adversarial perturbations.

7
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Table 1: Comparative analysis of adversarial defense methods on the FashionMNIST dataset. Blod
indicates the best performance while underline indicates the second best. We report the average
results of three random trials.

Attack RES18 VIB NIB VIB-squared NIB-squared MIB

NONE 87.20 ±0.25 87.43 ±0.13 86.80 ±0.14 84.58 ±1.10 87.24 ±0.40 87.67 ±0.08
FGSM Goodfellow et al. (2014) 49.23 ±1.83 52.33 ±1.57 53.01 ±0.90 52.09 ±1.07 52.85 ±1.21 57.07 ±2.01

PGD Mądry et al. (2017) 39.37 ±2.14 42.53 ±2.06 37.94 ±1.89 46.70 ±1.84 42.37 ±1.16 51.27 ±2.53
NIFGSM Lin et al. (2019) 60.28 ±1.04 62.48 ±1.31 63.65 ±1.22 63.32 ±1.50 65.53 ±1.14 67.07 ±1.04
EOTPGD Liu et al. (2018) 38.42 ±2.14 41.84 ±2.26 37.81 ±1.63 46.75 ±2.00 42.49 ±1.10 50.73 ±2.62

MIFGSM Dong et al. (2018) 24.43 ±2.87 33.40 ±4.02 32.16 ±2.05 40.69 ±3.10 42.97 ±0.96 45.38 ±3.56
UPGD Mądry et al. (2017) 21.60 ±2.82 30.94 ±4.23 27.49 ±2.27 39.44 ±3.11 38.02 ±1.15 44.36 ±1.61
Jitter Schwinn et al. (2023) 41.99 ±1.90 45.38 ±1.86 44.54 ±1.44 48.07 ±1.42 50.34 ±1.02 53.76 ±2.16

Rank Avg. 5.50 3.75 4.63 3.50 2.63 1.00

Table 2: Comparative analysis of adversarial defense methods on the CIFAR-10 dataset. Blod
indicates the best performance while underline indicates the second best. We report the average
results of three random trials.

Attack RES18 VIB NIB VIB-squared NIB-squared MIB

NONE 66.32 ±0.55 66.59 ±1.48 66.91 ±0.35 62.38 ±0.23 67.38 ±1.62 66.96 ±0.79
FGSM Goodfellow et al. (2014) 44.06 ±0.54 44.14 ±1.14 44.89 ±0.57 40.84 ±0.21 45.68 ±1.23 46.28 ±0.52

PGD Mądry et al. (2017) 42.57 ±0.57 42.70 ±1.11 43.25 ±0.37 39.61 ±0.39 44.13 ±1.38 44.93 ±0.54
NIFGSM Lin et al. (2019) 52.69 ±0.51 52.86 ±1.32 54.05 ±0.37 49.49 ±0.09 54.37 ±1.60 55.06 ±0.55
EOTPGD Liu et al. (2018) 42.50 ±0.67 42.63 ±1.16 43.34 ±0.46 39.60 ±0.39 43.90 ±1.11 44.70 ±0.46

MIFGSM Dong et al. (2018) 40.62 ±0.79 40.82 ±1.14 41.53 ±0.67 37.54 ±0.19 42.61 ±1.21 43.47 ±0.74
UPGD Mądry et al. (2017) 40.63 ±0.86 40.85 ±1.17 41.74 ±0.61 37.91 ±0.43 42.41 ±1.13 43.57 ±0.66
Jitter Schwinn et al. (2023) 42.65 ±0.61 42.79 ±1.06 43.80 ±0.50 39.43 ±0.17 44.63 ±1.31 45.93 ±0.62

Rank Avg. 5.00 4.00 3.00 6.00 1.88 1.13

4.3 FURTHER ANALYSIS

In this section, we conduct a detailed analysis of the mechanism of MIB and discuss the following
issues. All the analysis experiments are conducted on FashionMNIST. More empirical results are
reported in Appendix E.

Q1: Why is MIB a better choice for finding complex trade-offs than other IB methods?

Figure 3 illustrates the advantages of our MIB over linear weighting in searching for the Pareto front
of the Information Bottleneck. From left to right, the figures correspond to Pareto fronts of different
shapes, all of which are represented in Figure 1. When the shape of the Pareto front is convex,
corresponding to Figure 3(a) and the first subplot in 1, linear weighting can effectively search the
Pareto front (although this may rely on experience or extensive manual experimentation). However,
when the Pareto front has complex shapes or non-convex regions, as shown in Figure 3(b), linear
weighting fails to find certain solutions on the Pareto front because this method can only search for
points tangent to the front (blue dotted line). In fact, such complex scenarios are likely to occur in
the broad context of deep learning (as represented by the third subplot in Figure 1). Our method
MIB, through gradient projection and reconciliation, allows for a freer descent direction than linear
weighting. The joint descent direction for both objectives enables us to find solutions on complex-
shaped Pareto fronts, as shown in Figure 3(c). In Appendix A, we provide detailed proof that our
method can converge to the Pareto front and search regions that linear weighting cannot reach.

Q2: Does MIB effectively find the complex trade-off between compression and prediction?

The t-SNE visualization in Figure 4 reflects the multi-objective optimization strengths of our method
within the Information Bottleneck (IB) framework, compared to the traditional manual-based IB

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0

O
b

jectiv
e B

Objective A
0.0 0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0

O
b

jectiv
e B

Objective A
0.0 0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0

O
b

jectiv
e B

Objective A

Pareto Front Non-Convex Pareto Front Non-Convex Pareto Front

（a） （b） （c）

Figure 3: The difference between linear weighting-based IB and multi-objective optimization IB on
Pareto fronts of different shapes. (a) Effectiveness of conventional IB on the convex Pareto front.
(b) Limitations of the conventional IB on the non-convex Pareto front. (c) MIB can find solutions
on complex-shaped Pareto fronts.
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Figure 4: t-SNE visualization of MIB and VIB (with two β settings) under different adversarial
attacks [FGSM], [PGD], and [Jitter].

methods. MIB, our method, achieves distinctly separated data clusters, even under adversarial attack
conditions like [FGSM], [PGD], and [Jitter], which suggests an effective trade-off between infor-
mation compression and prediction. This separation exemplifies how our multi-objective approach
not only maintains the integrity of the latent space but also ensures robustness, a key advantage
over traditional IB methods that rely on a fixed beta for the trade-off. Our method’s adaptability to
automatically tune this balance is a significant leap toward practical and resilient machine learning
models.

Q3: What are the key factors that make MIB efficient?

Figure 5 compares the robustness of different Information Bottleneck (IB) methods against various
adversarial attacks. It demonstrates that the Multi-objective Information Bottleneck (MIB) method,

9
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Figure 5: Ablation experiment results. The methods compared include Variational Information
Bottleneck (VIB), VIB with automatic weight adjustment (VIB w. aw), Multi-objective IB without
automatic weight adjustment (MIB w.o. aw), MIB without smoothing (MIB w.o. s.), and the full
MIB method.

which incorporates automatic weight adjustment, multi-objective optimization, and smoothing tech-
niques, progressively approaches the Pareto frontier. The complete MIB method shows the best
performance across most attack types, highlighting its effectiveness in balancing compression and
prediction objectives and achieving superior robustness against adversarial attacks.

5 CHALLENGES AND FUTURE

The Information Bottleneck (IB) provides a profound perspective for deep learning. On the one
hand, incorporating the IB principle has led to significant improvements across numerous domains.
More importantly, IB offers a multitude of insights and considerations for deciphering the "black
box" of neural networks. Nevertheless, the IB approach still faces several limitations and challenges,
such as accurately estimating mutual information, delving deeper into the profound implications of
IB, and providing more comprehensive explanations from an optimization standpoint. We attempt
to re-evaluate the trade-off inherent in the IB from a multi-objective perspective. However, to pursue
deeper exploration in this direction, a more precise understanding of this series of issues is requisite.
In subsequent work, we will undertake a more comprehensive investigation of these matters.
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Appendix
Exploring Complex Trade-offs in Information Bottleneck

through Multi-Objective Optimization
The content of the Appendix is summarized as follows:

1) in Sec. A, we provide rigorous proofs to support the relevant definitions in the main paper.

2) in Sec. B, we briefly present the state of the art in the field of information bottlenecks.

3) in Sec. C, we make further additions to the aforementioned experimental details.

4) in Sec. D, we demonstrate the details of baselines we use in experiments of MIB.

5) in Sec. E, we illustrate more detailed empirical results and analyses of MIB.

6) in Sec. ??, we present the related work on multi-objective optimization.

7) in Sec. G, to better illustrate the execution process of MIB, we provide a detailed execution
flow in Algorithm 1.

A DETAILED PROOF

Proposition 2 (Pareto Optimality). Let F∗ be the true Pareto frontier, defined as:

F∗ = {(Linfo(ϕ),Lpred(ϕ, θ))|ϕ′, θ′ : Linfo(ϕ
′) ≤ Linfo(ϕ) ∧ Lpred(ϕ

′, θ′) ≤ Lpred(ϕ, θ)}

Let SMIB be the set of solutions generated by the MIB method. Then for any ε > 0, there exists a
sufficiently large number of iterations T such that:

∀s ∈ SMIB,∃s∗ ∈ F∗ : ∥s− s∗∥2 < ε

where ∥ · ∥2 denotes the Euclidean norm.

Theorem 1 (Pareto Optimality and Invariance of the MIB Method). Let F∗ be the true Pareto front,
SMIB be the solution set generated by the MIB method, w∗ be the optimal weight vector obtained by
the Frank-Wolfe algorithm, and w̃ the weight vector after a nonlinear transformation. Then:

• Pareto Optimality: ∀ε > 0,∃T ∈ N,∀t > T : ∀st ∈ SMIB,∃s∗ ∈ F∗ : ∥st − s∗∥2 < ε

• Invariance: ∀µ ≥ 0,P(LMIB(w
∗)) = P(LSmooth-IB(w̃))

where P(·) denotes the Pareto optimal solution set of an optimization problem.

Proof. Part 1: Pareto Optimality

1. Define the true Pareto front F∗:

F∗ =
{
(Linfo(ϕ),Lpred(ϕ, θ)) ∈ R2

∣∣ (ϕ′, θ′) :

Linfo(ϕ
′) ≤ Linfo(ϕ) ∧ Lpred(ϕ

′, θ′) ≤ Lpred(ϕ, θ)∧
(Linfo(ϕ

′),Lpred(ϕ
′, θ′)) ̸= (Linfo(ϕ),Lpred(ϕ, θ))}

(15)

2. Frank-Wolfe algorithm iterative process: at the k-th iteration, the weight vector is updated
as:

w(k+1) = (1− γk)w
(k) + γks

(k) (16)

where γk = 2
k+2 , and s(k) = argmins∈∆2⟨s,∇f(w(k))⟩.

Convergence:

∥w(k) −w∗∥2 ≤
2D

k + 2
(17)

where D is the problem’s diameter.
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3. Define δ-approximate Pareto optimal solution:

F∗
δ = {(Linfo(ϕ),Lpred(ϕ, θ)) | (ϕ′, θ′) :

Linfo(ϕ
′) ≤ Linfo(ϕ)− δ ∧ Lpred(ϕ

′, θ′) ≤ Lpred(ϕ, θ)− δ

}
(18)

4. MIB method iterative process: at the t-th iteration, the parameters (ϕt, θt) are updated as:

(ϕt+1, θt+1) = (ϕt, θt)− ηt∇ϕ,θLSmooth-IB(w̃, ϕt, θt) (19)

where ηt is the learning rate.

5. Lemma: ∀δ > 0,∃Tδ ∈ N,∀t > Tδ : st ∈ F∗
δ

Proof of Lemma: By contradiction. Suppose ∃δ0 > 0,∀T ∈ N,∃t > T : st /∈ F∗
δ0

.

This implies that ∃(ϕ′, θ′), such that:

Linfo(ϕ
′) ≤ Linfo(ϕt)− δ0 and Lpred(ϕ

′, θ′) ≤ Lpred(ϕt, θt)− δ0 (20)

By the definition of LSmooth-IB, we have:

LSmooth-IB(w̃, ϕ′, θ′) < LSmooth-IB(w̃, ϕt, θt)−min(w̃info, w̃pred)δ0 (21)

This contradicts the convergence properties of the MIB method. Thus, the assumption is
false.

6. From the lemma and the definition of F∗
δ , we can deduce:

∀ε > 0,∃δ > 0, Tδ ∈ N,∀t > Tδ : ∀st ∈ SMIB,∃s∗ ∈ F∗ : ∥st − s∗∥2 < ε (22)

Part 2: Invariance

1. Define the nonlinear weight transformation:

w̃i = g(w∗
i ) = (w∗

i )
1+
√

sqrted, i ∈ {pred, info} (23)

Monotonicity of the transformation g:

dg

dw
= (1 +

√
sqrted)(w∗)

√
sqrted > 0, ∀w∗ ∈ (0, 1] (24)

2. Define LMIB and LSmooth-IB:

LMIB(w
∗, ϕ, θ) = w∗

predLpred(ϕ, θ) + w∗
infoLinfo(ϕ) (25)

LSmooth-IB(w̃, ϕ, θ) =
∑
i

w̃iLi(ϕ, θ)

+ µ log

(∑
i

exp

(
w̃iLi(ϕ, θ)−minj(w̃jLj(ϕ, θ))

µ

))
+min

j
(w̃jLj(ϕ, θ))

(26)

3. Lemma: ∀(ϕ, θ), (ϕ′, θ′), if LMIB(w
∗, ϕ, θ) ≤ LMIB(w

∗, ϕ′, θ′), then
LSmooth-IB(w̃, ϕ, θ) ≤ LSmooth-IB(w̃, ϕ′, θ′)

Proof of Lemma: Use the monotonicity of the nonlinear transformation g and the definition
of LSmooth-IB.

4. Define the Pareto optimal solution set:

P(L) = {(ϕ∗, θ∗) | (ϕ, θ) : L(ϕ, θ) < L(ϕ∗, θ∗)} (27)
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5. Assume (ϕ∗, θ∗) ∈ P(LMIB(w
∗)). By contradiction, suppose (ϕ∗, θ∗) /∈

P(LSmooth-IB(w̃)).

Then ∃(ϕ′, θ′), such that:

LSmooth-IB(w̃, ϕ′, θ′) < LSmooth-IB(w̃, ϕ∗, θ∗) (28)

According to the lemma, this implies:

LMIB(w
∗, ϕ′, θ′) < LMIB(w

∗, ϕ∗, θ∗) (29)

This contradicts the assumption that (ϕ∗, θ∗) ∈ P(LMIB(w
∗)).

Therefore, P(LMIB(w
∗)) ⊆ P(LSmooth-IB(w̃)).

6. Similarly, we can prove that P(LSmooth-IB(w̃)) ⊆ P(LMIB(w
∗)).

7. Therefore, P(LMIB(w
∗)) = P(LSmooth-IB(w̃)).

Thus, the theorem is proven.

This proof proven that the MIB method not only converges to solutions arbitrarily close to the
true Pareto front, but also preserves the Pareto optimal solution set of the original problem through
nonlinear weight transformations and the introduction of the SmoothIB loss function. This result
emphasizes the MIB method’s ability to maintain optimality while improving efficiency and adapt-
ability, especially highlighting its superiority when dealing with non-convex Pareto fronts.
Proposition 3 (Solutions for Non-Convex Pareto Frontiers). LetF∗

nc be a non-convex Pareto frontier,
SMNE be the set of solutions obtained using only the minimum norm element method, SMIB be the set
of solutions obtained by the MIB method. Then there exists:

∃s ∈ F∗
nc : s ∈ SMIB ∧ s /∈ SMNE

where the MIB method uses nonlinear weight transformation:

w̃i = (w∗
i )

1+
√

sqrted, i ∈ {pred, info}
and SmoothIB loss function:

LSmooth-IB =
∑
i

L̃i + µ log

(∑
i

exp

(
L̃i −minj L̃j

µ

))
+min

j
L̃j

Proof. We prove this proposition by constructing a counterexample.

1. Consider a non-convex Pareto front F∗
nc, which contains a non-convex point s∗ = (x∗, y∗).

2. Define the objective function of the Minimum Norm Element (MNE) method:

LMNE(w, x, y) = w1x+ w2y, where w1 + w2 = 1, w1, w2 ≥ 0 (30)

3. For any weights w = (w1, w2), the solution found by the MNE method is always located
on the convex hull of the Pareto front. Thus,

s∗ /∈ SMNE (31)

4. Now consider the MIB method. First, apply a nonlinear weight transformation:

w̃i = (w∗
i )

1+
√

sqrted, i ∈ {1, 2} (32)

5. The MIB method uses the SmoothIB loss function:

LSmooth-IB =
∑
i

L̃i + µ log

(∑
i

exp

(
L̃i −minj L̃j

µ

))
+min

j
L̃j (33)

where L̃i = w̃iLi, L1 = x, and L2 = y.
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6. There exists a set of weights w∗ = (w∗
1 , w

∗
2) such that at the point s∗, LSmooth-IB reaches a

local minimum. This is because the nonlinearity of the SmoothIB loss function allows it to
find a locally optimal solution at a non-convex point.

7. Therefore, there exists a non-convex point s∗ such that:

s∗ ∈ SMIB (34)

8. In conclusion, we have found a point s∗ ∈ F∗
nc that satisfies:

s∗ ∈ SMIB ∧ s∗ /∈ SMNE (35)

Thus, the proposition is proven.

This proof demonstrates the advantage of the MIB method over the MNE method in handling non-
convex Pareto fronts. By using nonlinear weight transformations and the SmoothIB loss function,
the MIB method can find Pareto optimal solutions located in non-convex regions, which the MNE
method is unable to obtain.

B RELATED WORK FOR INFORMATION BOTTLENECK

Recent efforts in Information Bottleneck (IB) theory have addressed optimization challenges, with
notable developments including variational approximations Tishby & Zaslavsky (2015), matrix-
based entropy functionals Saxe et al. (2019), and invariant input transformations Achille & Soatto
(2018). These methods seek to balance compression and prediction accuracy by determining an
optimal representation Z.

A significant milestone was the Deep Variational Information Bottleneck (VIB) Alemi et al. (2017),
which simplifies mutual information estimation using variational techniques and Lagrangian multi-
pliers. This innovation has broadened IB applications in disentangling multi-view data features Bao
(2021), fine-tuning language models in low-resource settings Mahabadi et al. (2021), and improving
graph neural networks Wu et al. (2020).

Attention has also turned towards the algorithmic determination of parameter β to modulate the
compression-prediction trade-off. The Elastic Information Bottleneck (EIB) Ni et al. (2022) and De-
terministic Information Bottleneck (DIB) Strouse & Schwab (2017) utilize assumptions about data
distribution and structure, which can restrict their applicability. Despite the plethora of IB-related
research, most studies aim to enhance performance in new domains or through precise information
loss functions and mutual information estimation methods. This paper pioneers a multi-objective
approach to deeply explore and understand the quintessential trade-off characteristic of IB, marking
a novel direction in IB research.

C IMPLEMENTATION DETAILS

The experiments were conducted on a server equipped with an NVIDIA Tesla V100S-16GB GPU.
The programming language used was Python 3.8, and the primary libraries for deep learning were
PyTorch 1.13 with CUDA 11.7 support, and torchattacks 3.5 for implementing adversarial attacks.
We utilized a ResNet-18 architecture as the backbone of our models, with a three-layer Multilayer
Perceptron (MLP) for the prediction layer. To ensure the robustness and representativeness of the
results, the training dataset was evenly split into five distinct subsets, each used both for training and
testing the model.

During model training, we employed the Adam optimizer with a learning rate of 1 × 10−3, and a
batch size of 128. In the Information Bottleneck (IB) method, the bottleneck size K was set to 128,
and the β parameter was fixed at 0.0001. For the fashion and CIFAR-10 datasets, the number of
training epochs was set to 40 and 150, respectively.

Adversarial attacks were parameterized with an intensity parameter ϵ, a step size α, and a number of
steps; specifically, for the fashion dataset, ϵ = 1

255 , α = 2
255 , and steps = 10, while for CIFAR-10,

ϵ = 8
255 , α = 10

255 , and steps = 10.
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D DETAILS OF THE BASELINE

VIB Alemi et al. (2017). Variational Information Bottleneck is a method that applies variational
inference to optimize the IB Lagrangian that balances the compression and prediction terms. The
loss function of VIB is given by:

LV IB =
1

N

N∑
n=1

Ez∼p(z|xn)[− log q(yn|z)]

+ βKL[p(Z|xn), r(Z)]

(36)

where N is the batch size, xn and yn are the input and output variables, z is the latent representation,
p(z|xn) is the encoder distribution, q(yn|z) is the decoder distribution, r(Z) is a prior distribution
(usually a standard Gaussian), β is a Lagrange multiplier that controls the trade-off, and KL is the
Kullback-Leibler divergence.

NIB Kolchinsky et al. (2019). Natural Information Bottleneck is a method that uses a natural gradi-
ent to optimize the IB Lagrangian with a linear entropy function². The loss function of NIB is given
by:

LNIB =
1

N

N∑
n=1

Ez∼p(z|xn)[− log q(yn|z)]

+ βH(Z|xn)

(37)

where H(Z|xn) is the conditional entropy of Z given xn, and the other symbols are the same as in
VIB.

VIB-squared Rodríguez Gálvez et al. (2020). Squared Variational Information is a variant of VIB
that uses a quadratic entropy function instead of a linear one³. The loss function of squared-VIB is
given by:

LVIB-squared =
1

N

N∑
n=1

Ez∼p(z|xn)[− log q(yn|z)]

+ βH2(Z|xn)

(38)

where H2(Z|xn) is the squared conditional entropy of Z given xn, and the other symbols are the
same as in VIB.

NIB-squared Rodríguez Gálvez et al. (2020). Squared Natural Information Bottleneck is a variant
of NIB that uses a quadratic entropy function instead of a linear one. The loss function of squared-
NIB is given by:

LNIB-squared =
1

N

N∑
n=1

Ez∼p(z|xn)[− log q(yn|z)]

+ βH2(Z|xn)

(39)

where H2(Z|xn) is the squared conditional entropy of Z given xn, and the other symbols are the
same as in NIB.

E OTHER EXPERIMENTAL RESULTS

Parameter Sensitivity of Conventional IBs. We provide additional experimental details, as shown
in Tables 3 and 4, presenting the results of experiments with other Information Bottleneck (IB)
methods under a fixed β value. This is to illustrate the sensitivity of traditional IB methods to
hyperparameters.

Further Evidence of the Superiority of MIB. We show in Figures 6 and 7 a comparison of the
adversarial attack and generalization performance of different methods during the training process,
to demonstrate the superiority of our approach.
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Table 3: Comparison of the performance of different information bottleneck methods on Fashion-
MINST with fixed β = 0.01.

Attack VIB NIB VIB-squared NIB-squared
FGSM Goodfellow et al. (2014) 46.16±4.37 53.36±5.00 50.36±0.59 59.47±1.00
PGD Mądry et al. (2017) 38.85±5.20 39.00±2.30 42.95±1.86 45.16±0.00
NIFGSM Lin et al. (2019) 58.05±2.98 60.98±4.14 61.83±0.49 66.76±1.26
EOTPGD Liu et al. (2018) 38.26±5.16 38.86±2.43 42.25±1.71 44.73±0.25
MIFGSM Dong et al. (2018) 28.34±6.84 33.56±6.62 35.02±3.50 44.52±2.91
UPGD Mądry et al. (2017) 26.47±6.88 28.19±5.13 33.35±3.64 38.97±3.41
Jitter Schwinn et al. (2023) 41.98±3.84 44.60±2.48 46.33±1.42 50.38±0.69

Table 4: Comparison of the performance of different information bottleneck methods on CIFAR-10
with fixed β = 0.01.

Attack VIB NIB VIB-squared NIB-squared
FGSM Goodfellow et al. (2014) 26.90±2.15 42.79±1.90 33.55±5.71 44.81±0.85
PGD Mądry et al. (2017) 27.14±1.67 41.18±2.55 32.81±5.19 42.83±1.13
NIFGSM Lin et al. (2019) 30.96±1.90 53.07±0.81 39.28±8.63 54.71±1.26
EOTPGD Liu et al. (2018) 27.03±1.87 41.29±2.21 33.07±4.77 42.68±1.20
MIFGSM Dong et al. (2018) 26.00±2.02 39.17±2.82 31.41±4.08 41.10±1.28
UPGD Mądry et al. (2017) 25.76±2.29 39.56±2.97 31.51±4.32 41.24±1.42
Jitter Schwinn et al. (2023) 25.65±2.19 43.04±1.71 32.85±5.62 45.24±1.16

F RELATED WORK FOR MULTI-OBJECTIVE OPTIMIZATION

F.1 MULTI-OBJECTIVE OPTIMIZATION

In the context of multi-objective optimization (MOP), the goal is to optimize multiple conflicting
objectives simultaneously. Formally, a MOP can be defined as follows:

min
x∈X
{f1(x), . . . , fm(x)} (40)

where X ⊆ Rn represents the decision space, and fi : X → R for i = 1, . . . ,m are m objective
functions, each to be minimized. In such problems, it is typically impossible to find a single solution
that optimizes all objectives simultaneously because the objectives often conflict with one another.
Instead, the concept of Pareto optimality is used to describe solutions that strike a balance between
the different objectives Miettinen (1999).

Definition 1 (Pareto Optimality). A solution x∗ ∈ X is called Pareto optimal if there does not exist
another x ∈ X such that fi(x) ≤ fi(x

∗) for all i = 1, . . . ,m, and fj(x) < fj(x
∗) for at least one

j.

In other words, a solution is Pareto optimal if no other solution can improve one objective without
worsening at least one other objective. The set of all Pareto optimal solutions is called the Pareto
set, and its corresponding image in the objective space is referred to as the Pareto front. The goal in
MOPs is often to approximate the Pareto front as well as possible.

F.2 EXISTING APPROACHES FOR MULTI-OBJECTIVE OPTIMIZATION

Numerous methods have been proposed to solve MOPs, each offering different strategies for ap-
proximating the Pareto front and handling the trade-offs between competing objectives. Below, we
review some of the key approaches and contrast them with the method adopted in this paper.
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Figure 6: Comparison of the dynamic adversarial performance of different information bottleneck
methods.

1. Scalarization Methods Scalarization methods, such as the weighted sum method and the ϵ-
constraint method, transform the multi-objective problem into a series of single-objective optimiza-
tion problems. In the weighted sum method, a set of scalar weights αi is assigned to each objective,
and the scalarized objective function is formulated as:

min
x∈X

m∑
i=1

αifi(x) (41)

While this method is simple and effective for convex problems, it has several limitations. For in-
stance, it can struggle to approximate non-convex Pareto fronts Miettinen (1999). Moreover, the
choice of weights αi requires careful tuning, as it directly affects the trade-offs between objec-
tives. This is a key limitation compared to the method proposed in this paper, which automatically
determines the optimal weight combination using the min-norm solution to balance the objectives
dynamically, without requiring manual weight selection.

2. Pareto-based Evolutionary Algorithms Evolutionary algorithms such as NSGA-II (Non-
dominated Sorting Genetic Algorithm II) Deb et al. (2002) and MOEA/D (Multi-Objective Evo-
lutionary Algorithm based on Decomposition) Zhang & Li (2007) have been widely used to solve
MOPs. NSGA-II employs a non-dominated sorting mechanism to identify Pareto optimal solutions
and uses a crowding distance metric to maintain diversity along the Pareto front. MOEA/D decom-
poses the MOP into scalar subproblems and solves them in parallel, which helps in approximating
the entire Pareto front.

These evolutionary methods are particularly effective in exploring large, complex search spaces and
approximating diverse Pareto fronts. However, they can be computationally expensive and slow to
converge, especially for problems with high-dimensional decision spaces. In contrast, the min-norm
solution approach presented in this paper is more computationally efficient, as it focuses on finding
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Figure 7: Comparison of generalization gap during the training process of different information
bottleneck methods.

a single optimal solution by minimizing the norm of the gradient combination rather than evolving
a population of solutions over multiple generations.

3. Gradient-Based Multi-Objective Optimization Gradient-based techniques, such as the Multi-
Gradient Descent Algorithm (MGDA) Desideri (2012), optimize multiple objectives by combining
their gradients through linear scalarization or other methods. MGDA aims to find a direction that
simultaneously improves all objectives, and the update is performed in that direction. The method
proposed in this paper builds on this idea but introduces a more sophisticated approach by finding
the min-norm combination of gradients. Unlike MGDA, our method is specifically tailored for the
information bottleneck (IB) problem, and thanks to the non-linear weight allocation and smoothing
mechanisms, it demonstrates superior capability in finding solutions on the non-linear frontiers.

G ALGORITHM DESCRIPTION

In this section, we present the pseudocode description of the core algorithm of this paper.
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Algorithm 1 MIB Training Process
Require: Model parameters θ, batch data B, learning rate η, temperature parameter µ, nonlinear

weight parameter sqrted
Ensure: Updated model parameters θ

1: Get input x and label y from batch data B
2: Forward propagation: z = fθ(x) ▷ fθ is the neural network model
3: Calculate prediction loss: Lpred = CrossEntropy(z, y)
4: Calculate information loss: Linfo = MutualInformation(z, x)
5: Calculate gradients:
6: gpred = ∇θLpred
7: ginfo = ∇θLinfo
8: Apply Frank-Wolfe algorithm to solve for optimal weights:
9: w∗ = FrankWolfe(gpred,ginfo)

10: Apply nonlinear weight transformation:
11: for i ∈ pred, info do
12: w̃i = (w∗

i )
1+
√

sqrted

13: end for
14: Calculate minimum loss: Lmin = min(w̃predLpred, w̃infoLinfo)
15: Construct Smooth-IB loss function:
16: Lbase = w̃predLpred + w̃infoLinfo
17: δpred = (w̃predLpred− Lmin)/µ
18: δinfo = (w̃infoLinfo− Lmin)/µ
19: Lsmooth = µ log(exp(δpred) + exp(δinfo))
20: LSmooth-IB = Lbase + Lsmooth + Lmin
21: Calculate gradient of Smooth-IB loss:
22: for i ∈ pred, info do
23: αi =

exp((w̃iLi−Lmin)/µ)∑
k∈pred,info exp((w̃kLk−Lmin)/µ)

24: end for
25: ∇θLSmooth-IB = w̃pred∇θLpred + w̃info∇θLinfo
26: ∇θLSmooth-IB+ = αpredw̃pred∇θLpred + αinfow̃info∇θLinfo
27: Update model parameters: θ ← θ − η∇θLSmooth-IB

return Updated model parameters θ

22


	Introduction
	Rethinking Lagrange Multipliers in Information Bottleneck: Is Manual Trade-off Truly Optimal?
	Problem Reformulation
	Pareto-Optimal Frontier
	Limitations of the Traditional Approach

	MIB for Finding the Pareto Optimal Solution
	Experiments
	Experiment Settings
	Benchmark Results
	Further Analysis

	Challenges and Future
	Detailed Proof
	Related Work for Information Bottleneck
	Implementation Details
	Details of the baseline
	Other experimental results
	Related Work for Multi-Objective Optimization
	Multi-Objective Optimization
	Existing Approaches for Multi-Objective Optimization


	Algorithm Description

