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ABSTRACT

Modern machine learning algorithms, especially deep learning-based techniques,
typically involve careful hyperparameter tuning to achieve the best performance.
Despite the surge of intense interest in practical techniques like Bayesian opti-
mization and random search-based approaches to automating this laborious and
compute-intensive task, the fundamental learning-theoretic complexity of tuning
hyperparameters for deep neural networks is poorly understood. Inspired by this
glaring gap, we initiate the formal study of hyperparameter tuning complexity in
deep learning through a recently introduced data-driven setting. We assume that
we have a series of deep learning tasks, and we have to tune hyperparameters to do
well on average over the distribution of tasks. A major difficulty is that the utility
function as a function of the hyperparameter is very volatile and furthermore, it
is given implicitly by an optimization problem over the model parameters. This
is unlike previous work in data-driven design, where one can typically explicitly
model the algorithmic behavior as a function of the hyperparameters. To tackle
this challenge, we introduce a new technique to characterize the discontinuities
and oscillations of the utility function on any fixed problem instance as we vary the
hyperparameter; our analysis relies on subtle concepts including tools from differ-
ential/algebraic geometry and constrained optimization. This can be used to show
that the learning-theoretic complexity of the corresponding family of utility func-
tions is bounded. We instantiate our results and provide the sample complexity
bounds for concrete applications—tuning a hyperparameter that interpolates neu-
ral activation functions and setting the kernel parameter in graph neural networks.

1 INTRODUCTION

Developing deep neural networks that work best for a given application typically corresponds to a
tedious selection of hyperparameters and architectures over extremely large search spaces. This pro-
cess of adapting a deep learning algorithm or model to a new application domain takes up significant
engineering and research resources, and often involves unprincipled techniques with limited or no
theoretical guarantees on the effectiveness. While the success of pre-trained (foundation) models
have shown the usefulness of transferring effective parameters (weights) of learned deep models
across tasks (Devlin, 2018} |Achiam et al.| 2023), it is less clear how to leverage prior experience of
“good” hyperparameters to new tasks. In this work, we develop a principled framework for tuning
continuous hyperparameters in deep networks by leveraging similar problem instances and obtain
sample complexity guarantees for learning provably good hyperparameter values.

The vast majority of practitioners still use a naive “grid search” based approach which involves se-
lecting a finite grid of (often continuous-valued) hyperparameters and selecting the one that performs
the best. A lot of recent literature has been devoted to automating and improving this hyperparameter
tuning process, prominent techniques include Bayesian optimization (Hutter et al.| 2011; Bergstra
et al.,2011;Snoek et al.,2012;2015) and random search based methods (Bergstra & Bengio} 2012;
Li et al.l [2018). While these approaches work well in practice, they either lack a formal basis or
enjoy limited theoretical guarantees only under strong assumptions. For example, Bayesian opti-
mization assumes that the performance of the deep network as a function of the hyperparameter can
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be approximated as a noisy evaluation of an expensive function, typically making assumptions on
the form of this noise, and requires setting several hyperparameters and other design choices includ-
ing the amount of noise, the acquisition function which determines the hyperparameter search space,
the type of kernel and its bandwidth parameter. Other techniques, including random search methods
and spectral approaches (Hazan et al.l 2018) make fewer assumptions but only work for a discrete
and finite grid of hyperparameters.

We approach the problem of hyperparameter tuning in deep networks using the lens of data-driven
algorithm design, initially introduced in the context of theory of computing for algorithm configu-
ration (Gupta & Roughgarden, 2016 Balcan, 2020). A key idea is to treat a parameterized family
of algorithms as the hypothesis space and input instances to the algorithm as the data, reducing
hyperparameter tuning to a learning problem. While the approach has been successfully applied
to tune fundamental machine learning algorithms including clustering (Balcan et al., 2018b; |[2019),
semi-supervised learning (Balcan & Sharmal 2021)), low-rank approximation (Bartlett et al., [2022),
regularized linear regression (Balcan et al., 2022a; [20244a)), decision tree learning (Balcan & Sharma,
2024])), among others, our work is the only one to focus on analyzing deep network hyperparameter
tuning under this data-driven paradigm. A key technical challenge that we overcome is that varying
the hyperparameter even slightly can lead to a significantly different learned deep network (even for
the same training set) with completely different parameters (weights) which is hard to characterize
directly. This is very different from a typical data-driven method where one is able to show closed
forms or precise structural properties for the variation of the learning algorithm’s behavior as a func-
tion of the hyperparameter (Balcan et al.| 2021a). We elaborate further on our technical novelties in
Section [I.T] We note that our theoretical advances are potentially useful beyond deep networks, to
algorithms with a tunable hyperparameter and several learned parameters.

We instantiate our novel framework for hyperparameter tuning in deep networks in some funda-
mental deep learning techniques with active research interest. Our first application is to tuning an
interpolation hyperparameter for the activation function used at each node of the neural network.
Different activation functions perform well on different datasets (Ramachandran et al., [2017; |[Liu
et al.,|2019). We analyze the sample complexity of tuning the best combination from a pair of acti-
vation functions by learning a real-valued hyperparameter that interpolates between them. We tune
the hyperparameter across multiple problem instances, an important setting for multi-task learning.
Our contribution is related to neural architecture search (NAS). NAS (Zoph & Le, 2017;|Pham et al.}
2018; [Liu et al.l [2018)) automates the discovery and optimization of neural network architectures,
replacing human-led design with computational methods. Several techniques have been proposed
(Bergstra et al., 2013} |[Baker et al., [2017; [White et al.l 2021), but they lack principled theoretical
guarantees (see additional related work in Appendix [A)), and multi-task learning is a known open re-
search direction (Elsken et al.,2019). We also instantiate our framework for tuning the graph kernel
parameter in Graph Neural Networks (GNN5s) (Kipf & Welling, [2017) designed for more effectively
deep learning with structured data. Hyperparameter tuning for graph kernels has been studied in the
context of classical models (Balcan & Sharmal 2021} [Sharma & Jones| [2023)), in this work we pro-
vide the first provable guarantees for tuning the graph hyperparameter for the more effective modern
approach of graph neural networks.

Our contributions. In this work, we provide an analysis for the learnability of parameterized
algorithms involving both parameters and hyperparameters in the data-driven setting, which captures
model hyperparameter tuning in deep networks with piecewise polynomial dual functions. A key
ingredient of our approach is to show that the dual utility function v, («), measuring the performance
of the deep network on a fixed dataset & and when the parameters are trained to optimality using
hyperparameter v, admits a specific piecewise structure. We show that in many cases of interest, the
dual utility function u}, is piecewise polynomial, and we bound the number of discontinuities and
number of local maxima within each piece. Concretely,

* We introduce tools of independent interest, connecting the discontinuities and local maxima of a
piecewise continuous function with its learning-theoretic complexity (Lemma 3.1} Lemma 3.2).

* We demonstrate that when the function f(«, w) computed by a deep network is piecewise con-
stant over at most N connected components in the space A x W of hyperparameter « and param-
eters w, the function u, is also piecewise constant. This structure occurs in classification tasks
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with a 0-1 loss objective. Using our proposed tools, we then establish an upper-bound for the
pseudo-dimension of ¢/, which automatically translate to learning guarantee for I/ (Theorem[4.2).

» We further prove that when the function f. (c, w) exhibits a piecewise polynomial structure, under
mild regularity assumptions, we can establish an upper bound for the number of discontinuities
and local extrema of the dual utility function u},. The core technical component is to use ideas
from algebraic geometry to give an upper-bound for the number of local extrema of parameter
w for each value of the hyperparameter o and use tools from differential geometry to identify
the smooth 1-manifolds on which the local extrema («, w) lie. We then use our proposed result
(Lemma@) to translate the structure of u, to learning guarantee for ¢/ (Theorem @)

* We examine data-driven algorithm configuration for deep networks, focusing on hyperparameter
tuning in semi-supervised GCNs (Theorem|6.2) and activation function learning in NAS (Theorem
[6:1). Analysis of their dual utility functions reveals piecewise structures that, under our frame-
work, establish the learnability of hyperparameters for both classification and regression tasks.

1.1 TECHNICAL CHALLENGES AND INSIGHTS

To analyze the pseudo-dimension of the utility function class I/, by using our proposed results
[orem 31)), the key challenge is to establish the relevant piecewise structure of the dual utility function
class u},. Different from typical problems studied in data-driven algorithm design, u, in our case is
not an explicit function of the hyperparameter «, but defined implicitly via an optimization problem
over the network weights w, i.e. u} () = maxyey fz(a, w). In the case where f(a, w) is piece-
wise constant, we can partition the hyperparameter space A into multiple segments, over which the
set of connected components for any fixed value of the hyperparameter remains unchanged. Thus,
the behavior on a fixed instance as a function of the hyperparameter « is also piecewise constant and
pseudo-dimension bounds follow. It is worth noting that «}, cannot be viewed as a simple projection
of f onto the hyperparameter space A, making it challenging to determine the relevant structural
properties of u,.

For the case fz(a,w) is piecewise polynomial, the structure is significantly more complicated
and we do not obtain a clean functional form for the dual utility function class u,. We first
simplify the problem to focus on individual pieces, and analyze the behavior of uj ;(a) =
SUPuy:(0,w)€ R, Jo.i (@, w) in the region R; where fz(a,w) = fgi(c, w) is a polynomial. We
then employ ideas from algebraic geometry to give an upper-bound for the number of local extrema
w for each o and use tools from differential geometry to identify the smooth 1-manifolds on which
the local extrema («v, w) lie. We then decompose such manifolds into monotonic-curves, which have
the property that they intersect at most once with any fixed-hyperparameter hyperplane o = ag. Us-
ing these observations, we can finally partition A into intervals, over which uj, ; can be expressed as
a maximum of multiple continuous functions for each of which we have upper bounds on the num-
ber of local extrema. Putting together, we are able to leverage a result from [Balcan et al.|(2021a) to
bound the pseudo-dimension.

Paper positioning. Our setting requires technical novelty compared to prior work in statistical
data-driven algorithm hyperparameter tuning (Balcan et al., 2017} [2020a4b}; [2021blfa; [2022ak, [Bartlett
et al| 2022} [Balcan & Sharmal [2024). As far as we concern, in most prior research (Balcan et al.|
2017 [2020a}; [2021af, 2020b; [2021bf [Bartlett et al.l [2022), the hyperparameter tuning process does
not involve the parameter w meaning that given any fixed hyperparameter «, the behavior of the
algorithm is determined. In some other cases that involves parameter w, we can have a precise ana-
Iytical characterization of how the optimal parameter behaves for any fixed hyperparameter (Balcan|
letall[2022a), or at least a uniform approximate characterization (Balcan et al.|[2024a). However, our
setting does not belong to those cases, and requires a novel proof approach to handle the challenging
case of hyperparameter tuning of neural networks (see Appendix [B]for a detailed discussion).

2 PRELIMINARIES

Setup. We introduce a novel data-driven hyperparameter tuning framework for algorithms with
trainable parameters. Our objective is to optimize a hyperparameter & € A = [min, ®max] C R for
an algorithm that also involves model parameters w € [Wpin, Wimax]? C RY. For a given problem
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instance € X, we measure the model’s performance as f(x, w; ), where w represents the model
parameters and « the hyperparameter. We then define a utility function u,, () to quantify the algo-
rithm’s performance with hyperparameter « on problem instance x: u () = max,ew f(x, w; ).
This formulation can be interpreted as follows: for a given hyperparameter o and problem instance
x, we determine the optimal model parameters w that maximize performance.

In the data-driven framework, we assume an underlying, application-specific problem distribution D
over X. The best hyperparameter o* for D can be defined as a* € arg max,, Egp[uq(x)]. How-
ever, since the problem distribution D is unknown, we instead use a set S of N problem instances
athand, S = {x;,...,x N} drawn from D. The hyperparameter dgry is then chosen to maximize

the empirical utility: dgrm € arg max,, + Zivzl Ug ().

Main question. Our goal is to answer the learning-theoretic question: How good is the tuned
hyperparameter compared to the best hyperparameter, for algorithms with trainable parame-
ters? Specifically, we aim to provide a high-probability guarantee for the difference between
the performance of Agprm and «*, expressed as: |Ep~p|tapy ()] — Expluas(x)]|. Let
U ={us : R — [0,H] | @ € A} be the utility function class. Classical theory suggests that the
learning-theoretic question at hand is equivalent to analyzing the pseudo-dimension (Pollard, [2012)
or Rademacher complexity (Wainwright, 2019) (see Appendix [C| for further background) of the
function class &. However, this analysis poses significant challenges due to two primary factors:
(1) the intricate structure of the function class itself, where a small change in « can lead to large
changes in the utility function u,, and (2) u, is computed by solving an optimization problem
over the trainable parameters, and its explicit structure is unknown and hard to characterize. These
challenges make analyzing the learning-theoretic complexity of I/ particularly challenging.

In this work, we demonstrate that when the function f(x,w;«) exhibits a certain degree of
structure, we can establish an upper bound for the learning-theoretic complexity of the utility
function class Y. Specifically, we examine two scenarios: (1) where f(x,w;a) possesses a
piecewise constant structure (Section [, and (2) where it exhibits a piecewise polynomial (or
rational) structure (Section [5). These piecewise structures hold in hyperparameter tuning for
popular deep learning algorithms (Section [6).

Remark 1. Note that our bounds on the learning-theoretic complexity of the dual utility function
class implies bounded sample complexity for ERM, but the algorithmic question of actually imple-
menting this ERM efficiently is left open for future research.

Methodology. The general approach to analyzing the complexity of the utility function class U/ is
via analyzing its dual functions. Specifically, for each problem instance &, we define the dual utility
function u}, : A — [0, H] as follows:

*

up (@) := uqp(x) = 1E}rlg&y}\(}f(cc,'w;oz) = gleay)\c)fw(a,w).

Our key technical contribution is to demonstrate that when f;(a,w) := f(x,w;«) exhibits a
piecewise structure, u% () also admits favorable structural properties, which depend on the specific
structure of f(c, w). We present some useful results that allow us to derive the learning-theoretic
complexity of ¢ from the structural properties of u(a) (Section [3).

Oscillations and its connection with pseudo-dimension. When the function class U = {u, :
X — R | p € R} is parameterized by a real-valued index p, [Balcan et al.| (2021a) propose a conve-
nient way of bounding the pseudo-dimension of H, via bounding the oscillations of the dual function
u(p) = u,(x) corresponding to any problem instance x. We recall the notions of oscillation and
its connection with the pseudo-dimension of the dual function class.

Definition 1 (Oscillations, Balcan et al.|2021a). A function 2 : R — R has at most B oscillations
if for every z € R, the function p — I (,)>.} is piecewise constant with at most B discontinuities.

An illustration of the notion of oscillations can be found in|[Figure 1| Using the idea of oscillations,
one can analyze the pseudo-dimension of parameterized function classes by alternatively analyzing
the oscillations of their dual functions, formalized as follows.

Theorem 2.1 (Balcan et al[2021a). Let U = {u, : X — R | p € R}, of which each dual function
uk (p) has at most B oscillations. Then Pdim(U) = O(In B).



Under review as a conference paper at ICLR 2025

Figure 1: The oscillation of a function h : R — R is defined as the maximum number of discon-
tinuities in the function I (,)>.}, as the threshold 2 varies. When 2 = 21, the function Iy (,)> .}
exhibits the highest number of discontinuities, which is four. Therefore, h has 4 oscillations.

3  OSCILLATIONS OF PIECEWISE CONTINUOUS FUNCTIONS

We first establish connection between the number of oscillations in a piecewise continuous function
and its local extrema and discontinuities. It serves as a general tool to upper-bound the pseudo-
dimension of function classes via analyzing the piecewise continuous structure their dual functions.

Lemma 3.1. Let h : R — R be a piecewise continuous function which has at most By discontinuity
points, and has at most By local maxima. Then h has at most O(B;y + Bs) oscillations.

Proof Sketch. The proof can be found in[Appendix D] The idea is to bound the number of solutions
of h(p) = 0, which determines the number of oscillations for h. We show that in each interval
where h is continuous, we can bound the number of solutions of h(p) = 0 using the number of local
maxima of h. Aggregating the number of solutions across all continuous intervals of h yields the
desired result. O

From Lemma [3.1] and Theorem [2.1} we have the following result which allows us to bound the
pseudo-dimension of a function class # via bounding the number of discontinuity and local extrema
points of any function in its dual function class H*.

Corollary 3.2. Consider a real-valued function class U = {u, : X — R | p € R}, of which each
dual function u,(p) is piecewise continuous, with at most By discontinuities and Bs local maxima.
Then Pdim(H) = O(In(B; + Ba)).

We now consider piecewise constant functions with finite discontinuities. Despite infinite local ex-
trema making Lemma [3.T]inapplicable, the function’s special structure allows bounding oscillations
via its number of discontinuities.

Lemma 3.3. Consider a real-valued function classUd = {u, : X — R | p € R}, of which each dual
Sfunction ul,(p) is piecewise constant with at most B discontinuities. Then Pdim(U) = O(In B).

4 fo(a,w) IS PIECEWISE CONSTANT

We first examine the case where f;(a, w) exhibits a piecewise constant structure with N pieces.
Specifically, we assume there exists a partition P, = {Rz 1, ..., Rg v} of the domain A x W of
fz, where each R, ; in Py, is a connected set. Over the region 7, ;, the value of f, is f, ; which is
a constant value ¢; for any (o, w) € R, ;. Consequently, we can reformulate v, («v) as follows:

wi(a) = su o, w) = max su a,w) = max G-
w( ) weg\}fw( ’ ) Ry.i w:(aﬁw)PéRw,i f:c( ’ ) Ry, i: 3w, (0, w)ER i !

This leads to Lemma which asserts that v, («) is a piecewise constant function and provides an
upper bound for the number of discontinuities in u; ().

Lemma 4.1. Assume that the piece functions f;(c, w) is constant for all i € [N). Then u(«) has
O(N) discontinuity points, partitioning A into at most O(N) regions. In each region, u},(c) is a
constant function.

The proof idea is demonstrated in [Figure 2| and the detailed proof can be found in Appendix
By combining Lemmaf.T]and Lemma[3.3] we have the following result, which establishes learning
guarantees for the utility function class & when f,(«, w) admits piecewise constant structure.
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Figure 2: A demonstration of the proof idea for Lemma .T} We begin by partitioning the domain
A of the dual utility function u}; (<) into intervals. This partitioning is formed using two key points
for each connected component R in the partition P, of the domain A x W of fg(a, w): « R,inf =
info{a : 3w, (o, w) € R} and ap syp = sup,{a : Jw, (o, w) € R}. Given that P contains N
elements, the number of such points is O(N). We demonstrate that the dual utility functions u,
remain constant over each interval defined by these points.

Theorem 4.2. Consider the utility function class U = {uy : X — [0, H] | a € A}. Assume that
fa (o, w) admits piecewise constant structure with N pieces over A x W. Then for any distribution
D over X, and any 6 € (0,1), with probability at least 1 — & over the draw of S ~ D, we have

|E$ND[U&ERM(w)] - EmND[ua* (iL‘)H =0 ( bg(W) )

m

Remark 2. The partition of f;(c,w) into connected components is defined by .S boundary func-
tions h;(a, w), which are typically polynomials of degree A in d + 1 variables. For these cases, we
can bound the number of connected components in R? — U2, Z(h;) using only A and d, which is
key for applying Theorem 4.2} Further details are in Appendix [E.2]

5 fz(a,w) IS PIECEWISE POLYNOMIAL

In this section, we examine the case where f,(c, w) exhibits a piecewise polynomial structure. The
domain A x W of f, is divided into /N connected components by M polynomials hg 1, ..., ke a
in o, w, each of degree at most A,. The resulting partition Pr, = {Rg1,..., Re v} consists
of connected sets R ;, each formed by a connected component Cy, ; and its adjacent boundaries.
Within each R, ;, fs takes the form of a polynomial f5; in o and w of degree at most A,,. The
dual utility function u% () is defined as:

uy(a) = sup fo(a,w)=max sup fp;(a,w)= max u;ﬂ-(a),
wew i€[N] w:(a,w)ER; i€[N]

where uj, ; (@) = SUD4y.(a,w)e Ry ; J2.i(Q, w). We begin with the following regularity assumption
on the piece and boundary functions fz ; and A ;.

Assumption 1. Assume that for any function uX(«), its pieces functions f% and boundaries
hae,...,hg a: for any piece function fz,7 and S < d + 1 boundaries hq,...,hg chosen
from {hz1,..., e}, we have O is a regular value of k(a, w,A). Here k = (k1,...,kits),

k= (ki,... . kqrs, det(Jy, (w,x)))s Jk,(w,x) is the Jacobian of k w.r.t. w and A, and &y, ..., kays
defined as

]{Z‘(OQ’LU,A):hi(O[,'LU), ’L'Zl,...7s,
ks (o, w, A) = %me + NG, =1,

Intuitively, Assumption |I| states that the preimage E_l(O), consistently exhibits regular structure
(smooth manifolds). This assumption helps us in identifying potential locations of w* that maxi-
mize f ;(c) for each fixed «, ensuring these locations have a regular structure. We note that this
assumption is both common in constrained optimization theory and relatively mild. For a smooth
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Figure 3: A simplified illustration for the proof idea of Theorem [5.1| where w € R. Here, our goal
is to analyze the number of discontinuities and local maxima of uy, ;(c). The idea is to partition the
hyperparameter space A into intervals such that over each interval, the function uj, ;(«) is the point-
wise maximum of f, ;(c, w) along some fixed set of “monotonic curves” C (curves that intersect
a = «p at most once for any o). u;i(a) is continuous over such interval; this implies that
the interval end points contain all discontinuities of uy, ; (). In this example, over the interval
(@i, aiiy1), we have uy, () = maxc, {fz.i(o, w) : (o, w) € C;}. Then, we can show that over
such an interval, any local maximum of u®*(c) is a local extremum of f, ;(c, w) along a monotonic
curve C' € C. Finally, we bound the number of points used for partitioning and local extrema using
tools from algebraic and differential geometry.

mapping k, Sard’s theorem (Theorem [F.12)) asserts that the set of values that are not regular values
of k has Lebesgue measure zero. This theoretical basis further suggests that the Assumption |1fis
reasonable.

Under Assumption [T] we have the following result, which gives us learning-theoretic guarantees for
tuning the hyperparameter « for the utility function class /.

Theorem 5.1. Consider the utility function class U = {uq : X — [0, H] | a € A}. Assume that
fo(a, w) admits piecewise polynomial structure with the piece functions fy ; and boundaries hy, ;
satisfies Assumption|l} Then for any distribution D over X, for any § € (0, 1), with probability at
least 1 — § over the draw of S ~ D™, we have

m

B[ty ()] — B [the ()] = O ( \/ log N + dlog(AM) + log(1 /5)) |

Here, M and N are the number of boundaries and connected sets, A = max{d,,dq} is the maxi-
mum degree of piece fy ; and boundaries h ;.

Proof Sketch. We defer the detailed proof to Appendix[F.7] The proof is fairly involved and employs
many novel ideas, we break it down into the following steps:

1. We first demonstrate that if the piece functions f5 ; and boundaries h, ; satisfy a stronger as-
sumption (Assumption [2), we can bound the pseudo-dimension of ¢/ (Theorem [F19). The de-
tails of this step are presented in Appendix with a simplified illustration of the proof idea
in Figure 3] The proof follows these steps:

(a) Using Lemma[3.2] we show that it suffices to bound the number of discontinuities and local
maxima of ug, which is equivalent to bounding those of g, ;.

d+1
(b) We first demonstrate that the domain A can be partitioned into O ((QA)‘”1 (dETMl) )

intervals. For each interval I;, there exists a set of subsets of boundaries S;’t C Hy;

such that for any set of boundaries S € S;’t, the intersection of boundaries in S contains
a feasible point (v, w) for any « in that interval. The key idea of this step is using the «-
extreme points (Definition [5) of connected components of such intersection, which can be

upper-bounded using Lemma [F.10]
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d+1
(c) We refine the partition of A into O ((2A)2d+2 (STJWI) ) intervals. For each interval I,

there exists a set of subsets of boundaries Si’t C H_ ; such that for any set of boundaries
Se Si’t and any o in such intervals, there exist w and A satisfying Lagrangian stationarity:

{h‘s’j(avwa) = 0,] = 1,...,5

af(a,wa) S _ahs’j (og"wa) .
T+Zj=1AJT,Z—1,...,d.

This defines a smooth 1-manifold M® in R x R? x RS from Assumption 2} The key idea
of this step is using Theorem and a-extreme points of connected components of M,
which again can be upper-bounded using Lemma [F.10}

d+1
(d) We further refine the partition of A4 into O <M (2A)24+2 ( eM ) ) intervals. For each

d+1
interval [I;, there exists a set of subsets of boundaries Si}t C Hg; such that for any «
in that interval and any manifold M?®, there exists a feasible point (o, w, X) in M, i.e.,
(a,w) € Ry ;. The key idea of this step is upper-bounding the number of intersections
between MS with any other boundary 7’ ¢ S.
(e) We show that each manifold M* can be partitioned into monotonic curves (Definition .

d+1 d+1
We then partition .A one final time into O [ A%d+2 ((fTMl) + M(2A)2d+2 (STMl) )

intervals. Over each interval Iy, the function v, ; can be represented as the value of f ;
along a fixed set of monotonic curves (see Figure ). Hence, ug ; is continuous over Iy.
Therefore, the points partitioning .A contain the discontinuities of uj, ;. The key idea of this
step is using our proposed definition and properties of monotonic curves (Proposition [F.18),
and Bezout’s theorem.

(f) We further demonstrate that in each interval /;, any local maximum of uj, ,(c) is a local
maximum of fg ;(c, w) along a monotonic curve (Lemma ). Again, we can control
the number of such points using Bezout’s theorem.

(g) Finally, we put together all the potential discontinuities and local extrema of ug, ;.
Combining with Lemma 3.2 we have the upper-bound for Pdim({{) (Theorem [F.20).

2. We then demonstrate that for any function class ¢/ whose dual functions u}, have piece functions
and boundaries satisfying Assumption [I] we can construct a new function class V. The dual
functions v, of V have piece functions and boundaries that satisfy Assumption[2} Moreover, we
show that ||u}, — v%||o can be made arbitrarily small. The details of this construction and proof

are presented in Appendix

3. Finally, using the results from Step (1), we establish an upper bound on the pseudo-dimension
for the function class )V described in Step (2). Leveraging the approximation guarantee from
Step (2), we can then use the results for V to determine the learning-theoretic complexity of ¢/
by applying Lemma [C.3] and Lemma [C.4] Standard learning theory literature then allows us to
translate the learning-theoretic complexity of ¢/ into its learning guarantee. This final step is

detailed in Appendix O

6 APPLICATIONS

We demonstrate the application of our results to two specific hyperparameter tuning problems in
deep learning. We note that the problem might be presented as analyzing a loss function class
L={ly,: X —[0,H]| o€ A} instead of utility function class Y = {uy : X — [0, H] | o € A},
but our results still hold, just by defining u,(x) = H — ¢, (x). First, we establish bounds on
the complexity of tuning the linear interpolation hyperparameter for activation functions, which
is motivated by DARTS (Liu et al} 2019). Additionally, we explore the tuning of graph kernel
parameters in Graph Neural Networks (GNNs).

6.1 DATA-DRIVEN TUNING FOR INTERPOLATION OF NEURAL ACTIVATION FUNCTIONS

Problem settings. We consider a feed-forward neural network f with L layers. Let W; denote the
number of parameters in the i* layer, and W = Zle W; the total number of parameters. Besides,
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we denote k; the number of computational nodes in layer ¢, and let k = Zle k;. At each node, we
choose between two piecewise polynomial activation functions, o1 and o,. For an activation func-
tion o(z), we call zq a breakpoint where o changes its behavior. For example, 0 is a breakpoint of the
ReLU activation function. [Liu et al.|(2019) proposed a simple method for selecting activation func-
tions: during training, they define a general activation function ¢ as a weighted combination of o0y
and o,. While their framework is more general, allowing for multiple activation functions and layer-
specific activation, we analyze a simplified version. The combined activation function is given by:

o(z) = Co1(x) + (1 = (Joz(x),

where ¢ € [0, 1] is the interpolation hyperparameter. This framework can express functions like the
parametric ReLU, o(z) = max{0, z} + amin{0, z}, which empirically outperforms the regular
ReLU (i.e., « = 0) (He et al.l 2015).

Parametric regression. In parametric regression, the final layer output is g(a, w, x) = § € RP,
where w € W C RW is the parameter vector and « is the architecture hyperparameter. The
validation loss for a single example (, %) is ||g(c, w, x) — y||?, and for T' examples, we define

1 9 .
Lo((X,Y)) = min = > lgla,w,2) —y|* = min f(X,Y),w;a).
(25 E(X.Y)

With X' as the space of T-example validation sets, we define the loss function class £LAF = {/,,
X — R | a € [0imin, Cmax) }. We aim to provide a learning-theoretic guarantee for LA,

Theorem 6.1. Let LAT denote loss function class defined above, with activation functions o1, 0o
having maximum degree /A and maximum breakpoints p. Given a problem instance x = (X,Y),
the dual loss function is defined as (% (a) := mingew f(x, w; @) = mingew fo(a, w). Then,
fe (e, w) admits piecewise polynomial structure with bounded pieces and boundaries. Further, if
the piecewise structure of fz(c, w) satisfies Assumption (I} then for any § € (0,1), wp. at least
1 — 6 over the draw of problem instances x ~ D™, where D is some distribution over X, we have

m

Eupllan (@)] — Eoopltu- (@)]] = O (\/L2W10gA + LW log(Tpk) + log(1/5)> '

A full proof is located in Appendix @ Given a problem instance (X, Y"), the key idea is to establish
the piecewise polynomial structure for the function f(x,y(a,w) as a function of both the param-
eters w and the architecture hyperparameter «, and then apply our main result Theorem [5.1] We
establish this structure by extending the inductive argument due to [Bartlett et al.| (1998) which gives
the piecewise polynomial structure of the neural network output as a function of the parameters
w (i.e. when there are no hyperparameters) on any fixed collection of input examples. We also
investigate the case where the network is used for classification task (see Appendix [G.1.2).

6.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

We now demonstrate the applicability of our proposed results in a simple scenario: tuning the hy-
perparameter of a graph kernel. Here, we consider the classification case and defer the regression
case to Appendix.

Partially labeled graph instance. Considera graph G = (V, £), where V and £ are sets of vertices
and edges, respectively. Let n = |V be the number of vertices. Each vertex in the graph is associated
with a d-dimensional feature vector, and let X € R™*? denote the matrix that contains all the
vertices (as feature vectors) in the graph. We also have a set of indices Yy, C [n] of labeled vertices,
where each vertex belongs to one of C' categories and L = || is the number of labeled vertices.
Let y € [F]L be the vector representing the true labels of labeled vertices, where the coordinate y;
of y corresponds to the label of vertex [ € Vr.

We want to build a model for classifying the remaining (unlabeled) vertices, which correspond to
Yu = [n] \ Y. A popular and effective approach for this is to train a graph convolutional network
(GCN) [Kipf & Welling (2017). Along with the vertex matrix X, we are also given the distance
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matrix & = [J; j](; j)e[n)> encoding the correlation between vertices in the graph. The adjacency
matrix A is given by a polynomial kernel of degree A and hyperparameter oz > 0

Aij = (8(i,4) + ).
Let A = A + I,, where I, is the identity matrix, and D = [Di,j][n]2 where Di,j =

0ifi # j, and B” = Z?Zl flm‘ for i € [n]. We then denote a problem instance x = (X, y, 9, Vr.)
and call & the set of all problem instances.

Network architecture. We consider a simple two-layer GCN f (Kipf & Welling| [2017), which
takes the adjacency matrix A and vertex matrix X as inputs and outputs Z = f(X, A) of the form

Z = AReLU(AXW©)yw (),

where A = D~ A is the row-normalized adjacency matrix, W(®) € R%*% is the weight matrix of
the first layer, and W1 € R%*F is the hidden-to-output weight matrix. Here, z; is the i*"-row
of Z representing the score prediction of the model. The prediction §; for vertex ¢ € Yy is then
computed from Z as §j; = max z; which is the maximum coordinate of vector z;.

Objective function and the loss function class. We consider the 0-1 loss function corresponding
to hyperparameter o and network parameters w = (w(®),w)) for given problem instance x,

fle,w;a) = ﬁ > iev; Lgi#y.)- The dual loss function corresponding to hyperparameter « for

instance x is given as {,(x) = max,, f(z, w;a), and the corresponding loss function class is
LON={],: X —[0,1] | a € A}.

To analyze the learning guarantee of £L9N, we first show that any dual loss function £%(a) :=
lo(x) = ming, fz(a,w), fo(o,w) has a piecewise constant structure, where: The pieces are
bounded by rational functions of v and w with bounded degree and positive denominators. We
bound the number of connected components created by these functions and apply Theorem to
derive our result. The full proof is in Appendix[G.2.1]

Theorem 6.2. Let LV denote the loss function class defined above. Given a problem instance =,

the dual loss function is defined as €%(a) := mingew f(2, w;a)) = mingew fz(a, w). Then
fa(a, w) admits piecewise constant structure. Furthermore, for any 6 € (0,1), w.p. at least 1 — 0
over the draw of problem instances x = (x1, ..., xy) ~ D™, where D is some problem distribution

over X, we have

[Egnp[lam (€)] — Eznpllar (®)]] = O (\/

do(d + F)lognFA +1log(1/4)
- .
Our results also bound the sample complexity for learning the GCN graph kernel hyperparameter o
when minimizing squared loss in regression (Theorem Appendix [G.2.2).

7 CONCLUSION AND FUTURE WORK

In this work, we establish the first principled approach to hyperparameter tuning in deep networks
with provable guarantees, by employing the lens of data-driven algorithm design. We integrate sub-
tle concepts from algebraic and differential geometry with our proposed ideas, and establish the
learning-theoretic complexity of hyperparameter tuning when the neural network loss is a piecewise
constant or piecewise polynomial function of the parameters and the hyperparameter. We demon-
strate applications of our results in multiple contexts, including tuning graph kernels for graph con-
volutional networks and neural architecture search.

This work opens up several directions for future research. While we resolve several technical hur-
dles to handle the piecewise polynomial case, it would be useful to also study cases where the piece-
wise functions or boundaries involve logarithmic, exponential, or more generally, Pfaffian functions
(Khovanskil [1991). We study the case of tuning a single hyperparameter, a natural next question is to
determine if our results can be extended to tuning multiple hyperparameters simultaneously. Finally,
while our work primarily focuses on providing learning-theoretic sample complexity guarantees,
developing computationally efficient methods for hyperparameter tuning in data-driven settings is
another avenue for future research.

10
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A ADDITIONAL RELATED WORK

Learning-theoretic complexity of deep nets. A related line of work studies the learning-theoretic
complexity of deep networks, corresponding to selection of network parameters (weights) over a
single problem instance. Bounds on the VC dimension of neural networks have been shown for
piecewise linear and polynomial activation functions (Maass, |1994; Bartlett et al [1998) as well
as the broader class of Pfaffian activation functions |Karpinski & Macintyre| (1997). Recent work
includes near-tight bounds for the piecewise linear activation functions (Bartlett et al., 2019) and
data-dependent margin bounds for neural networks (Bartlett et al., 2017)).

Data-driven algorithm design. Data-driven algorithm design, also known as self-improved algo-
rithms (Balcan, 2020; |Ailon et al., 2011; |Gupta & Roughgarden, [2020), is an emerging field that
adapts algorithms’ internal components to specific problem instances, particularly in parameterized
algorithms with multiple performance-dictating hyperparameters. Unlike traditional worst-case or
average-case analysis, this approach assumes problem instances come from an application-specific
distribution. By leveraging available input problem instances, this approach seeks to maximize em-
pirical utilities that measure algorithmic performance for those specific instances. This method has
demonstrated effectiveness across various domains, including low-rank approximation and dimen-
sionality reduction (Li et al.,[2023; Indyk et al., 2019} Ailon et al.||2021), accelerating linear system
solvers (Luz et al.| 2020; [Khodak et al.l 2024), mechanism design (Balcan et al., 2016} |2018c),
sketching algorithms (Bartlett et al., 2022), branch-and-cut algorithms for (mixed) integer linear
programming (Balcan et al., 2021b), among others.

Neural architecture search. Neural architecture search (NAS) captures a significant part of the
engineering challenge in deploying deep networks for a given application. While neural networks
successfully automate the tedious task of “feature engineering” associated with classical machine
learning techniques by automatically learning features from data, it requires a tedious search over
a large search space to come up with the best neural architecture for any new application domain.
Multiple different approaches with different search spaces have been proposed for effective NAS,
including searching over the discrete topology of connections between the neural network nodes, and
interpolation of activation functions. Due to intense recent interest in moving from hand-crafted to
automatically searched architectures, several practically successful approaches have been developed
including framing NAS as Bayesian optimization (Bergstra et al.| 2013} Mendoza et al.||2016; White
et al.| [2021)), reinforcement learning (Zoph & Lel |2017; Baker et al., 2017), tree search (Negrinho
& Gordonl 2017 [Elsken et al.| 2017), gradient-based optimization (Liu et al.|[2019), among others,
with progress measured over standard benchmarks (Dong & Yang,[2020; Mehta et al.,[2022). L1 et al.
(2021) introduce a geometry-aware mirror descent based approach to learn the network architecture
and weights simultaneously, within a single problem instance, yielding a practical algorithm but
without provable guarantees. Our formulation is closely related to tuning the interpolation parameter
for activation parameter in NAS approach of DARTS |Liu et al.| (2019), which can be viewed as a
multi-hyperparameter generalization of our setup. We establish the first learning guarantees for the
simpler case of single hyperparameter tuning. Note that we are considering a simplified version of
DARTS |L1u et al.|(2019)), where we consider a linear interpolation hyperparameter of activation in
each node, while DARTS uses a probabilistic interpolation instead.

Graph-based learning. While several classical (Blum & Chawlal 2001; Zhu et al., 2003; [Zhou
et al., 2003} [Zhu, 2005) as well as neural models (Kipf & Welling| 2017} |Velic kovic et al., 2018;
Wu et al., 2019} (Gilmer et al.l [2017) have been proposed for graph-based learning, the underlying
graph used to represent the data typically involves heuristically set graph parameters. The latter
approach is usually more effective in practice, but comes without formal learning guarantees. Our
work provides the first provable guarantees for tuning the graph kernel hyperparameter in graph
neural networks.

A detailed comparison to Hyperband (Li et al.;2018).  Hyperband is one of the most notable
work in hyperparameter tuning. Specially, the paper provides a theoretical guarantees for the hyper-
parameter tuning process, but under strong assumptions. Here, we provide a detailed comparison
between guarantees presented in Hyperband and our results, and explain how Hyperband and our
work are not competing but complementing each others.
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1. Hyperparameter configuration settings: Theoretical results (Theorem 1, Proposition 4)
in Hyperband assumes finitely many distinct arms and guarantees are with respect to the
best arm in that set. Even their infinite arm setting considers a distribution over the hyper-
parameter space from which n arms are sampled. It is assumed that n is large enough to
sample a good arm with high probability without actually showing that this holds for any
concrete hyperparameter loss landscape. It is not clear why this assumption will hold in
our cases. In sharp contrast, we seek optimality over the entire continuous hyperparame-
ter hyperparameter range for concrete loss functions which satisfy a piecewise polynomial
dual structure.

2. Guarantee settings: The notion of “sample complexity” in Hyperband is very different
from ours. Intuitively, their goal is to find the best hyperparameter from learning curves
over fewest training epochs, assuming the test loss converges to a fixed value for each hy-
perparameter after some epochs. By ruling out (successively halving) hyperparameters that
are unlikely to be optimal early, they speed up the search process (by avoiding full training
epochs for suboptimal hyperparameters). In contrast, we focus on model hyperparameters
and assume the network can be trained to optimality for any value of the hyperparameter.
We ignore the computational efficiency aspect and focus on the data (sample) efficiency
aspect which is not captured in Hyperband analysis.

3. Learning settings: Hyperband assumes the problem instance is fixed, and aims to acceler-
ate the random search of hyperparameter configuration for that problem instance with con-
strained budgets (formulated as a pure-exploration non-stochastic infinite-armed bandit).
In contrast, our results assume a problem distribution D (data-driven setting), and bounds
the sample complexity of learning a good hyperparameter for the problem distribution D.

Conclusion. The Hyperband paper and our work do not compete but complement each other, as
the two papers see the hyperparameter tuning problem from different perspectives and our results
cannot be compared to theirs.

B ON THE CHALLENGE AND NOVELTY OF TECHNIQUES INTRODUCED IN
THIS PAPER.

We note that the main and foremost contribution (Lemma .2} Theorem [5.I) in this paper is a new
technique for analyzing the model hyperparameter tuning in data-driven setting, where the dual util-
ity function of both parameter and hyperparameter f, («, w) admits a specific piecewise polynomial
structure. In this section, we will make an in-depth comparison between our setting and settings in
prior works in data-driven algorithm hyperparameter tuning, and discuss why our setting is more
challenging and requires novel techniques to analyze.

Novel challenges. We note that our setting requires significant technical novelty relative to prior
work in data-driven algorithm design. As far as we know, most prior works on statistical data-driven
algorithm design falls into two categories:

1. The hyperparameter tuning process does not involve the parameter w, meaning that given a
hyperparameter «, the behavior of the algorithm is fixed. Some concrete examples include
tuning hyperparameters of hierarchical clustering algorithms (Balcan et al}] 2017} [2020a)),
branch and bound (B&B) algorithms for (mixed) integer linear programming (Balcan et al.|
[2018af [2022D)), and graph-based semi-supervised learning (Balcan & Sharmal [2021). The
typical approach is to show that the utility function u},(«) admits specific piecewise struc-
ture of «, typically piecewise polynomial and rational.

2. The hyperparameter tuning process involves the parameter w, for example in tuning reg-
ularization hyperparameters in linear regression. However, here the optimal parameter
w*(a) can either have a close analytical form in terms of the hyperparameter o (Bal-
can et al| 2022al), or can be easily approximated in terms of @ with bounded error (Balcan

However, in our setting, the utility function v () is defined via an optimization problem w}; () =
max,, fz(c, w), where f (o, w) admits a piecewise polynomial structure. This involves the param-
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eter w so it does not belong to the first case, and also it is not clear how to use the second approach
either. This emphasizes that our problem and requires the development of novel techniques.

New techniques. Two general approaches are known from prior work to establish a generalization
guarantee for .

1. The first approach is to establish Pseudo-dimension bound for ¢/ via alternatively analyz-
ing the Pseudo/VC-dimension of the piece and boundary function classes, derived when
establishing the piecewise structure of u};(«) (following the Theorem 3.3
[202Ta))). We build on this ideas, however, in order to apply it we need significant innova-
tion to analyze the structure of the function u}, in our case.

2. The second approach is specialized to the case where the computation of u’(«) can be
described as the GJ algorithm (Bartlett et al} [2022), where we can do four basic operators
(4, —, X, +) and the conditional statements. However, it is obviously not applicable to our
case as well due to the use of a max operation in the definition.

As mentioned above, we follow the first approach though we have to develop new techniques to
analyze our setting. Here, we choose to analyze u(«) via indirectly analyzing fg(«, w), which
is some case shown to admit piecewise polynomial structure. To do that, we have to develop the
following things:

1. The connection between number of discontinuities and local maxima and generalization
guarantee of .

2. The approach to upper-bound the number of discontinuities and local extrema of u} ().
This is done via using ideas from differential/algebraic geometry, and constrained opti-
mization. We note that even the tools from differential geometry are not readily available,
but we have to identify and develop those tools (e.g. Monotonic curves and its properties,
see Definition 12 and Lemma 18).

That corresponds to the main contribution of our papers (Lemma 4.2, Theorem 5.2). We then demon-
strate the applicability of our results to two concrete problems in hyperparameter tuning in machine
learning (Section [6).

The need for the ERM oracle. In our work, we assume the ERM oracle when defining the func-
tion u} () = max,, fz(o,w). This is the important first step for a clean theoretical formulation,

allowing u% (<) to have deterministic behavior given a hyperparameter «, and independent of the
optimization technique.

C ADDITIONAL BACKGROUND ON LEARNING THEORY

Definition 2 (Shattering and pseudo-dimension, (2012)). Let U be a real-valued function

class, of which each function takes input in X. Given a set of inputs S = (x1,...,xy) C X, we
say that S is pseudo-shattered by H if there exists a set of real-valued thresholds 71, ...,7y € R
such that

{(sign(u(x1) — r1),...,sign(u(zy) —ry)) | u €U} =2".
The pseudo-dimension of #, denoted as Pdim({/), is the maximum size N of a input set that H can
shatter.

Theorem C.1 (Pollard (2012)). Given a real-valued function class U whose range is [0, H|, and
assume that Pdim(U) is finite. Then, given any § € (0,1), and any distribution D over the input
space X, with probability at least 1 — & over the drawn of S ~ D", we have

1i(m) E [u(@)]| <O H 1 Pdim(U/) + 1 1

— i) — Egn — n-||.

n 4= U x; x~D|U = N 5
Theorem C.2 (Pollard (2012)). Given a real-valued function class U whose range is [0, H|, and
assume that Pdim(U ) is finite. Then for any ¢ > 0 and § € (0, 1), for any distribution D and for any
set S of m= 0O (f—;(Pdim(L{) + log %)) samples drawn from D, w.p. at least 1 — 0, we have

ILS (f) = Lo(f)l <€ forall f € F.
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Definition 3 (Rademacher complexity, [Wainwright| (2019)). Let F be a real-valued function class
mapping form X to [0, 1]. For a set of inputs S = {@1, &, }, we define the empirical Rademacher

complexity #s(F) as

A 1
Hs(F) = EEel,...,emNi.i.d unif 1

sup eif(xi)| -
We then define the Rademacher complexity %pm , where D is a distribution over X, as
Rpm (F) = Egupm |[Zs(F)).

Furthermore, we define R

%m,(-/—'v) = Ssup %S(‘F)

Sexm

The following lemma provides an useful result that allows us to relate the empirical Rademacher
complexity of two function classes when the infinity norm between their corresponding dual utility
functions is upper-bounded.
Lemma C.3 (Balcan et al.| (2020b)). Let F = {f, | 7 € R} and G = {g» | ¥ € R} consist of
function mapping from X to [0, 1]. For any S C X, we have

G5(F) < 9s(G) + |—;| S8 = gl

xS

The following theorem establishes a connection between pseudo-dimension and Rademacher com-
plexity.
Lemma C.4 (Shalev-Shwartz & Ben-David (2014)). Let F is a bounded function class. Then

B (F) =0 (\/ Pdir::l(ﬂ). Here Xy, (F) = supgexm @5(}").

The following classical result demonstrates the connection between uniform convergence and learn-
ability with an ERM learner.

Theorem C.5 (Shalev-Shwartz & Ben-David| (2014))). If F has a uniform convergence guarantee
with s(e, §) samples then it is PAC learnable with ERM and s(e/2,0) samples.

Proof. For S = {z1,...,xn}, let Ls(f) = 237, f(z:), and Lp(f) = Egzp[f(zx)] for any
f € F. Since F is uniform convergence with s?e, 0) samples, w.p. at least 1 — § for all f € F, we
have |Lg(f) — Lp(f)| < e for any set S with the number of elements m > s(e,d). Let fpry €
argmin .z Ls(f) be the hypothesis outputted by the ERM learner, and f* € argmin g » Lp(f)
be the best hypothesis. We have

Lp(ferm) < Ls(ferm) + % < Ls(f*)+ % < Lp(h*) +e,

which concludes the proof. O

D OMITTED PROOFS FOR SECTION 3]

Lemma([3.T| (restated). Let h be a piecewise continuous function which has at most B, discontinuity
points, and has at most By local maxima. Then h has at most O(B; + Bs) oscillations.

Proof. For any z € R, consider the function g(p) = I¢p(,)>-}. By definition, any discontinuity
points of g(p) is a root of the equation h(p) = z. Therefore, it suffices to give an upper-bound for
the number of roots that the equation h(p) = z can have.

Letp; < p2 < --- < pny < pn+1 be the discontinuity points of h, where N < B; from assumption.
For convenience, let py = —oo and py11 = oo. For any ¢« = 1,..., N, consider an interval
I; = (ps, pi + 1) over which the function A is continuous. Assume that there are F; local maxima of
the function & in between the interval I;, meaning that there are at most 2F; + 1 local extrema, we
now claim that there are at most 2E; +2 roots of h(p) = z in between I;. We prove by contradiction:
assume that p7 < p3 < --- < p5p 5 are 2F; + 3 roots of the equation h(p) = z, and there is no
other root in between. We have the following claim:
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¢ Claim 1: there is at least 1 local extrema in between (p7, p7. ). Since h has finite number
of local extrema, meaning that i cannot be constant over [p, 7, ]. Therefore, there exists
some p’ € (p, pj,1) such that h(p’) # 2, and note that z = h(p}) = h(pj, ). Since h is
continuous over [p}, p7. ], from extreme value theorem (Theorem F.11), i (when restricted
to [0}, pj41]) reaches minima and maxima over [p}, pj, ,]. However, since there exists p’

such that i(p) # 2, then h has to achieve minima or maxima in the interior (p}, o5, ).
That is also a local extrema of h.

* Claim 2: there are at least 2 ;42 local extrema in between (p7, pj;, ;o). This claim follows
directly from Claim 1.

Claim 2 leads to a contradiction. Therefore, there are at most 2F; + 2 roots in between the interval
I;. which implies there are Zij\io 2FE; + 2N roots in the intervals I; for¢ = 1,..., N. Note that
ZZN:O FE; < By, N < B; by assumption, and each discontinuity points could also be a root of
h(p) = z, we conclude that there are at most O(B; + B3) roots of the equation h(p) = z, for any
z. O

Lemma Lemma(restated). Consider a real-valued function class i = {u, : ¥ = R | p € R},
of which each dual function u}(p) is piecewise constant with at most B discontinuities. Then
Pdim(i/) = O(In B).

Proof. Consider a dual function u,(p) which is a piecewise constant function with at most B
discontinuities. Iy,: (,)>.} is piecewise continuous with at most B continuities for any threshold
z € R. We will show that by contradiction, assume that there exists z € R such that I« )>23
has N discontinuities, where N > B + 1. Since u},(p) is piecewise constant, any discontinuities
of Tgyx (p)>-) is also a discontinuity of u,(p), meaning that uy(p) has at least N discontinuities,
which leads to a contradiction. Therefore, we conclude that u,(p) has at most B oscillations, and
then Pdim(#H) = O(log(B)) following Theorem|2.1 O

E ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION [4]

E.1 OMITTED PROOFS

In this section, we will present the detailed proof for[Theorem 4.1}

Lemma (restated). Assume that the piece functions f;(c, w) is constant for all ¢ € [N]. Then
uk (o) has O(N) discontinuity points, partitioning .4 into at most O(NN) regions. In each region,
uk () is a constant function.

Proof. For each connected set R, ; corresponding to a piece function fy ;(a, w) = ¢;, let

aR,inf = inf{o: Jw, (o, w) € R;}, ap, sup =sup{a: Jw, (o, w) € R;}.

There are N connected components, corresponding to O(N) such points. Reordering those points

and removing duplicate points as api, = g < @1 < @y < -+ < Qp = Qmax, Where t = O(N)
we claim that for any interval I; = (o, ;1) where i = 0,...,t — 1, the function g, («) remains
constant.

Consider the any interval I;. By the construction above of «;, for any o € I;, there exists a fixed set
of regions Ry, = {Ry,1,...,Ri;n} C Pe = {Rz,1,--.,Re n}, such that for any connected set
R € Ry, there exists w such that (o, w) € R. Besides, for any R ¢ Ry,, there does not exist w
such that (a, w) € R. This implies that for any o € I;, we can write u},(«) as

up(a) = sup fx(a, W)= sup sup  fx(a,w) = max ¢,
weW RER;, w:(o,W)ER ceCr,

where C1, = {cg | R € Ry, } contains the constant value that f,(a, W) takes over R. Since the
set C7, is fixed, u, (o) remains constant over I;.
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Hence, we conclude that over any interval I; = (o, ;41), fori =1,...,¢t — 1, the function u% ()
remains constant. Therefore, there are only the points «;, for = 0, ..., ¢ — 1, at which the function
w2 is not continuous. Since t = O(N), we have the conclusion. O

Proof of [Theorem 4.2] From Lemma .1} we know that any dual utility function w, is piecewise
constant and has at most O(NV) discontinuities. Combining with Lemma we conclude that

Pdim(U) = O(log(N)). Finally, standard learning theory result gives us the final guarantee. O

E.2 USEFUL TOOLS FOR BOUNDING THE NUMBER OF CONNECTED COMPONENTS

Here, we will recall some useful tools for bounding the number of connected components created
by a set of polynomial equations. It serves as an useful tool to apply our [Theorem 4.1]

Lemma E.1 (1968). Let py, ..., pm be real polynomials in n variables, each of degree at
most d. The number of connected components of the set R™ — U, Z(p;) is O ((%1)">

F ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION 3]

F.1 A SIMPLE CASE: HYPERPARAMETER TUNING WITH A SINGLE PARAMETER

We provide intuition for our novel proof techniques by first considering a simpler setting. We first
consider the case where there is a single parameter and only one piece function. That is, we assume
that N = 1 and M = 0. We first present a structural result for the dual function class /*, which
establishes that any function v}, in /* is piecewise continuous with at most O(Ag) pieces. Fur-
thermore, we show that there are at most O(Ag) oscillations in u}, which implies a bound on the
pseudo-dimension of /* using results in Section 3]

Our proof approach is summarized as follows. We note that the supreme over w € W in the
definition of u%, can only be achieved at a domain boundary or along the derivative h, (o, w) =
W = 0, which is an algebraic curve. We partition this algebraic curve into monotonic arcs,
which intersect o = « at most once for any ay. Intuitively, a point of discontinuity of u}, can only
occur when the set of monotonic arcs corresponding to a fixed value of « changes as « is varied,
which corresponds to a-extreme points of the monotonic arcs. We use Bezout’s theorem to upper
bound these extreme points of h,(«,w) = 0 to obtain an upper bound on the number of pieces
of u}. Next, we seek to upper bound the number of local extrema of u}, to bound its oscillating
behavior within the continuous pieces. To this end, we need to examine the behavior of v, along the
algebraic curve h; (o, w) = 0 and use the Lagrange’s multiplier theorem to express the locations of
the extrema as intersections of algebraic varieties (in o, w and the Lagrange multiplier \). Another
application of Bezout’s theorem gives us the deisred upper bound on the number of local extrema of
Uy,

Lemma F.1. Let dyy = dy = 1and N = 1, M = 0. Assume that (o, w) € R = [Qmin, ¥max] X
[Winin, Wmax]. Then for any function u’, € U*, we have

(a) The hyperparameter domain A = [umin, Gumax] can be partitioned into O(Ag) intervals
such that u}, is a continuous function over any interval in the partition.

(b) g, has O(A2) local maxima for any .

Proof. (a) Denote h,(a,w) = W From assumption, f,(c,w) is a polynomial of « and
w, therefore it is differentiable everywhere in the compact domain [amin, ¥max] X [Wmin, Wmax)-
Consider any oy € [min, ¥max), We have {(a, w) | & = ap} N [@min, Gmax) 1S an intersection of a
hyperplane and a compact set, hence it is also compact. Therefore, from Fermat’s interior extremum
theorem (Lemma, for any «vp, f (o, w) attains the local maxima w either in Wiy, Winax, or for
W € (Wmin, Wmax) such that h,(ag, w) = 0. Note that from assumption, f,.(a,w) is a polynomial
of degree at most A,, in o and w. This implies A, (¢, w) is a polynomial of degree at most A, — 1.

Denote C,, = V' (h;) the zero set of h, in R. For any «y, C,, intersects the line o = «p in at most
A, — 1 points by Bezout’s theorem. This implies that, for any c, there are at most A, + 1 candidate
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values of w which can possibly maximize f,(a,w), which can be either Wi, Wnax, Or ON some
point in C,. We then define the candidate arc set C : A — M (C,) as the function that maps
ag € A to the set of all maximal a-monotonic arcs of C, @ informally arcs that intersect any line
a = ap at most once) that intersect with &« = ayy. By the argument above, we have |C(a)| < A, +1
for any a.

T 3
E =
E 7
B 50
£ 5
£ ;? 1
B
w 2
4 5 a
(a) The piecewise structure of uj, (o) and piecewise (b) Removing the surface f(a, w) for better view
polynomial surface of f (o, w) in sheer view. of uy (a), the boundaries, and the derivative curves.

Figure 4: A demonstration of the proof idea for Theorem [5.1]in 2D (w € R). Here, the domain
of f(a, w) is partitioned into four regions by two boundaries: a circle (blue line) and a parabola
(green line). In each region i, the function fu (o, w) is a polynomial fz ;(cr,w), of which the
derivative curve 2/=i —  is demonstrated by the black dot in the plane of (@, w). The value
of u} () is demonstrated in the red line, and the red dots in the plane (v, w) corresponds to the
position where f (o, w) = u} (o). We can see that it occurs in either the derivative curves or in
the boundary. Our goal is to leverage this property to control the number of discontinuities and local
maxima of u(a), which can be converted to the generalization guarantee of the utility function
class U.

We now have the following claims: (1) C is a piecewise constant function, and (2) any point of
discontinuity of u}, must be a point of discontinuity of C. For (1), we will show that C is piecewise
constant, with the piece boundaries contained in the set of a-extreme pointsﬂ of C and the inter-
section points of C,, with boundary lines w = wyin, Wmax. Note that if C,, has any components
consisting of axis-parallel straight lines & = a1, we do not consider these components to have any
a-extreme points, and the corresponding discontinuities (if any) are counted in the intersections of
(', with the boundary lines. Indeed, for any interval [ = (1, as) C A, if there is no a-extreme
point of C,, in the interval, then the set of arcs C(«) is fixed over I by Deﬁnition Next, we will
prove (2) via an equivalent statement: assume that C is continuous over an interval [ C A, we want
to prove that «, is also continuous over I. Note that if C is continuous over I, then u, () involves a
maximum over a fixed set of a-monotonic arcs of C,,, and the straight lines w = wpi,, Wmax. Since
fx 1is continuous along these arcs, so is the maximum u},.

The above claim implies that the number of discontinuity points of C, upper-bounds the number

of discontinuity points of u},(«). Note that a-extreme points C,, satisfies the following equalities:
h; = 0and %”uj = 0. By Bezout’s theorem and from assumption on the degree of the polynomial f,
we conclude that there are at most (A, — 1)(A, —2) = O(A2) a-extreme points of C,.. Moreover,
there are O(A,) intersection points between C, and the boundary lines w = Wmin, Wmax. Thus,

the total discontinuities of C, and therefore u,, are O(A2).

(b) Consider any interval I over which the function u},(«) is continuous. By Corollary and
Proposition[F14] it suffices to bound the number of elements of the set of local maxima of f, along
the algebraic curve C,, and the straight lines w = wWmyin, Wmax-

' An a-extreme point of an algebraic curve C is a point p = («, W) such that there is an open neighborhood
N around p for which p has the smallest or largest a-coordinate among all points p’ € N on the curve.
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To bound the set of bound the number of elements of the set of local maxima of f, along the
algebraic curve C,, consider the Lagrangian

Lo, w, N) = fo(a,w) + Mg (o, w).

From Lagrange’s multiplier theorem, any local maxima of f, along the algebraic curve C,, is also a
critical point of £, which satisfies the following equations

2
oc _of. \oh, _0f | O,

e — =0,
Jda  Oa oo Ja dadw
oL  Of.  \Ohy Ofs ,  Ofu
— = A— = A =0,
ow  Ow N ow ow o Ow?
oL Ofx
— =h, = =0.
o\ ow
Plugging 88]; £ = 0 into the second equation above, we get that either A = 0 or %215; = 0. In the
former case, the first equation implies % = 0. Thus, we consider two cases for critical points of

L.
Case % =0, % = 0. By Bezout’s theorem these algebraic curves intersect in at most A%

points, unless the polynomials %{U 9= have a common factor. In this case, we can write

? O
% = g(o,w)g1 (o, w) and %{f = g(a,w)ga(ar, w) where g = ged (%, %) and g1, g2 have no
common factors. Now for any point on g(a, w) = 0, we have both %J;* =0, %{j = 0 and therefore

f= is constant along the curve (and therefore has no local maxima). By Bezout’s theorem, g1, g2
intersect in at most deg(gy)deg(g2) < A2 points. Thus, the number of local maxima of u}, that

correspond to this case is (’)(Af,).

- 2 .. . ]
Case % =0, gwf; = 0. This is essentially the a-extreme points computed above, and are at most
(’)(A%).

Similarly, the equations f; (&, wmin) = 0 and fy (o, wmax) = 0 also have at most A, solutions
each. Therefore, we conclude that the number of local maxima of «}, can be upper-bounded by
O(Af,). O

Theorem F.2. Pdim(U/*) = O(log A,).

Proof. From [Theorem F.1} we conclude that v}, has at most O(AZ2) oscillations for any uj, € U*.
[Theorem 3.3

Therefore, from|[Theorem 3.3] we conclude that Pdim(/*) = O(log A)). O

Challenges of generalizing the one-dimensional parameter, single region to high-dimensional
parameter, multiple regions. Recall that in the simple setting above, we assume that fg (o, w)
is a polynomial in the whole domain [min, max] X [Wmin, Wmax)- In this case, our approach is
to characterize the manifold on which the optimal solution of max,.(q,w)er fa (o, w) lies, as «
varies. We then use algebraic geometry tools to upper bound the number of discontinuity points and
local extrema of u},(a) = MaxXy,:(a,w)er fz(a, w), leading to a bound on the pseudo-dimension
of the utility function class U/ by using our proposed tools in Section [J] However, to generalize
this idea to high-dimensional parameters and multiple regions is a much more challenging due to
the following issues: (1) handling the analysis of multiple pieces by accounting for polynomial
boundary functions is tricky as the w* maximizing f,(«,w) can switch between pieces as « is
varied, (2) characterizing the optimal solution maxy,.(q,w)er fe (@, w) is not trivial and typically
requiring additional assumptions to ensure a general position property is achieved, and care needs
to be taken to ensure that the assumptions are not too strong and complicated, (3) generalizing the
monotonic curve notion to high-dimensions is not trivial and requires a much more complicated
analysis invoking tools from differential geometry, and (4) controlling the number of discontinuities
and local maxima of u}, over the high-dimensional monotonic curves requires more sophisticated
techniques.

We now present preliminaries background and our supporting results for Lemma 5]
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F.2 GENERAL SUPPORTING RESULTS

In this section, we recall some elementary results which are crucial in our analysis. The following
lemma says that the point-wise maximum of continuous functions is also a continuous function.

Lemma F.3. Let f; : X — R, where i € [N] be a continuous function over X, and let f(x) =
max;cn){fi(z)}. Then we have f(x) is a continuous function over X.

Proof. In the case N = 2, we can rewrite f(z) as

fi(@) + folz) 1
flay = DELRE L 25 0) — o)
which is sum of continuous function. Hence, f () is continous. Assume the claim holds for N = k,
we then claim that it also holds for N = k + 1 by rewriting f(z) as

(&) = ma{ma{f(x)}. S ()}

Therefore, the claim is proven by induction. O

The following results are helpful when we want to bound the number of local extrema of point-
wise maximum of differentiable functions. In particular, we show that the local extrema of f(z) =
max{ fi(z)}7, is the local extrema of one of the functions f;(x).

Lemma F.4 (Rockafellar & Wets| (2009)). Let X be a finite-dimensional real Euclidean space and
gi + X = Rfori € [N] be continuously differential functions on X. Define the function g(x) =
max;cnj{gi(x)}. Let T be a point in the interior of X, and let Tz = {i € [N] | g;(®) =
9(T)}. Then, for any d € X, the directional derivative of g along the direction d is ¢'(T;d) =
max;ez, (Vgi(T), d).

Corollary F5. Let X be a finite-dimensional real Euclidean space and g; : X — R fori € [N]
be differential functions on X with the local maxima on X is given by the set C;. Then the function
g(x) = max;eqny{gi(x)} has its local maxima contained in the union U;c(n)C;.

Proof. Let T be a point in the interior of X, and let Zz = {i € [N] | g;(®) = g(F)}. Now suppose
T ¢ Uien)Ci. If Iz consists of a single function g;, then 7 is a local maximum if and only if it is
local maximum of g;. By Lemma if the derivative is non-zero for all g; with i € Zz, then g(x)
has a positive derivative in some direction. This implies that  cannot be a local maximum in this
case. O

‘We then recall the wide-known Sauer-Shelah Lemma, which bounds the sum of finite combinatorial
series under some conditions.

Lemma F.6 (Sauer-Shelah Lemma, [Sauver| (1972)). Let 1 < k < n, where k and n are positive
integers. Then
k k
n en
> (3)= ()
i=o N

We recall the Lagrangian multipliers theorem, which allows us to give a necessary condition for the
extrema of a function over a constraint.

Theorem F.7 (Lagrangian multipliers, Rockafellar| (1993)). Let h : R? > R, I R — R™ be C*
functions, C € R%, and M = {f = C} C R%L Assume that for all xo € M, rank(J; ,(z0)) = n.
If h attains a constrained local extremum at a, subject to the constraint f = C, then there exists
A1, ...y A € Rsuch that

Vh(a) = Z)\ivfi(a)a and  f(a) =C,
i=1
where X is the Lagrangian multiplier, and a € M is where h attains its extremum.

We then recall
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Lemma F.8 (Fermat’s interior extremum theorem). Let f : D — R, where D C R™ is an open set,

be a function and suppose that xo € D is a point where f has a local extremum. If f is differentiable
at xo, then V f (zg) = 0.

Corollary F.9. The local extrema of a function f on a domain D occur only at boundaries, non-
differentiable points, and stationary points.

Definition 4 (Connected components, |Anthony & Bartlett| (1999)). A connected components of a
subset S C R? is the maximal nonempty subset A C S such that any two points of A are connected
by a continuous curve lying in A.

Definition 5. Let S € A x W where A C R and W C R%, and let A be a connected component
of S. We define a4 inr = inf{e | Jw, (o, w) € A}, and a4 gup = sup{e | Jw, (o, w) € A} the
a-extreme points of A.

Lemma F.10 (Warren| (1968))). Let p be a polynomial in n variables. If the degree of polynomial p
is d, the number of connected components of Z(p) is at most 2d"™.

Lemma F.11 (Extreme value theorem). Let f : D — R be a continuous function, where D is a
non-empty compact set, then f is bounded and there exists p, q € D such that f(p) = sup,cp f(x)

and f(q) = infzep f(2).

F.3 BACKGROUND ON DIFFERENTIAL GEOMETRY

In this section, we will introduce some basic terminology of differential geometry, as well as key
results that we use in our proofs.

Definition 6 (Topological manifold, Robbin & Salamon|(2022)). A topological manifold is a topo-
logical space M such that each point p € M has an open neighborhood U which is homeomorphic
to an open subset of a Euclidean space.

Definition 7 (Smooth map, [Robbin & Salamon|(2022)). Let U C R™ and V' C R™ be open sets. A
map f : U — V is called smooth iff it is infinitely differentiable, i.e. iff all its partial derivatives

aa1+“'+04nf

a a0
Oxi"...0xy

o f =

a=(ay,...,a,) € NJ.

exists and continuous. Here Ny is the set of non-negative integers.

Definition 8 (Regular value, Robbin & Salamon| (2022)). Let U C R! be an open set and let f :
U — R! be a smooth map. A value € € R’ is called a regular value of f iff for any zo € U,
J ¢,z (xo) has full rank. Here, J; 5(2()) is the Jacobian of f w.r.t  and evaluated at x¢.

The following theorem says that for any smooth map f, the set of regular value of f has Lebesgue
measure Zero.

Theorem F.12 (Sard’s theorem, [Robbin & Salamon| (2022)). Let f : R* — R! is a smooth map.

Then the set of non-regular value of f has Lebesgue measure zero in R'.

F.4 SUPPORTING LEMMAS

In this section, we will proof some useful tools that are crucial for our analysis.

Definition 9 (Open set). A subset .S of smooth n-manifold M is called open if for any point z € .S,
there exists a chart (U, ¢) € M such that p € U and ¢(U N S) is an open set in R™.

Definition 10 (Neighborhood). Let M be a smooth n-manifold, and let « be a point in M. Then U
is an (open) neighborhood of = in M if U is an open subset of M that contains x.

Proposition F.13. Let M be a smooth n-manifold, and let S be an open subset of M. Let x be a

point in S, and assume that V be a neighborhood of x in S. Then x is also a neighborhood of x in
M.
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Proof. First, note that V' is a neighbor of x in .S, then V is an open set in the subspace topology S.
Therefore, there exists an open set 7" in M such that V' = S N T. However, note that both S and T’

are open set in M, which implies V' is also an open set in //. And since V' contains x, meaning that
V is a neighborhood of = in M. O

Proposition F.14. LerC = {CY, ..., C,} be a set of a-monotonic curve (Deﬁnition in the space
A X W of « and W such that for any o € (a1, ) and any C' € C, there is a point W such that
(a, W) € C. Let u*(a) = maxcec{f(a, W) : (o, W) € C}, where f(a, W) is continuous
function and bounded in the domain A x W. Then u* () is continuous over (oq, ), and for any
local maxima o/ of u*(«v), there exist a point (o, W') that is local maxima of the function f(«, W)
restricted on a monotonic curve C' € C.

Proof. We recall the most important properties of monotonic curve C: for any o € (a1, aa), there
is exactly one point W such that (o, W) € C. Since f(«, W) is continuous in the domain A x W,
hence it is also continuous along the curve C for any C' € C. Therefore, u*(«) is also continuous.

Now, consider any monotonic curve C' € C and let u},(«) = f(o, W) where (o, W) € C. From
the property of C, consider the continuous invertible mapping Ic : (a1, @) — C, where Io(a) =
(a, W) for any o € (v, 2). Assume o is a local extrema of uf (v ) in (a1, @), then there exists
an open neighbor V of o’ such that for any a € V, v} (o) < u (). Now, I(V) is an open set
in C that contains (o, W), hence it is an open neighbor of (o, W'). For any (a, W) € Ic(V),
we have f(o, W) = ula < ui (o) = f(a/, W’). This means that (o, W) is a local extrema of
fla, W)inC.

Finally, it suffices to give a proof for the case of 2 functions. let u*(a) = max{ug, (@), ug, (@)}
We claim that any local maxima of u*(«) would be a local maxima of either ug, () and ug, ().
Assume that o/ is a local maxima of u*, and there exists an open neighbor V' of o’ in (a1, a2) such
that for any a € V, u*(a) < u*(a’). WLOG, assume that u*(a') = ug,, therefore uy (o) =
u*(a’) > u*(alpha) = max{ug, (a),ug, (@)} > ug, («) for any a € V. This means that o is a
local extrema of u (a) in (aq, ). O

F.5 MONOTONIC CURVES

Proposition F.15. Let S C R" be a bounded set in R™, and f : S — R be a bounded function,
where S is closure of S. Then supg [ exists and there is a point x* € S such that f(z*) = supg f.

Proof. Since f is bounded over S, then supg f ex1sts and let a = supg f. By definition, for any
i > 0, there exists x; € S such that | f(z;) — a] < +. Hence, we constructed a sequence {z;}2,
such that lim; o, f(z;) = a.

Now, since S C ]R" is a bounded subset in R™, by Bolzano- Weierstrass theorem, there exists a
subsequence {x ?, C {z;}$2, such that the subsequence {x i, converges. In other words,

there exists z* € R"™ such that hmlﬁOo x; = x*, and since {z};}?; C S, then by definition z* € S.
Hence, we conclude that there exists z* € S such that supg f = f(x*). O

Definition 11 (Adjacent boundaries). Consider the partition of R by N boundaries N (h;) for i =
1,..., N, where h; is polynomial of z. Let C' be any connected components of R™ — U N (h;).
Then we say that a boundary N (p) is adjacent to C if C' N N(p) # 0.

F.6 MONOTONIC CURVE AND ITS PROPERTY

We now present the definition of monotonic curve in high dimension, a key component in our anal-
ysis.
Definition 12 (x-Monotonic curve). Let
fRxRY — R?
(zy)  — (fil@y),. .. faz,y)

be a vector valued function, where each function f; is a polynomial of x and y fori = 1,...,d.
Assume that 0 € R? is a regular value of f, meaning that the set V; = {(x,y) | fz(x y) i =
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1,...,d} defines a smooth 1-manifold in R x R?. Let V' C V; be a connected components of Vy,
and let C C V' be an connected open set in V’ which is diffeomorphic to (0, 1). The curve C is
said to be z-monotonic if for any point (a,b) € C, we have det(J; 4 (a, b)) # 0, where J; 4 (a,b)
is a Jacobian of f with respect to y evaluated at (a, b), defined as

Irata.t) = | 52 )]

dxd

Informally, a key property of an z-monotonic curve C is that for any x, there exists exactly one y
such that (zo,y) € C. We will formalize this claim in Lemma [F.18] but first, we will review some
fundamental results necessary for the proof.

Theorem F.16 (Implicit function theorem, |[Buck! (2003)). Consider the multivariate vector-valued
function f
f R 5 R™
(:Ba y) — (fl(wa y)a L) fm(wa y))a
and assume that f is continuously differentiable. Let f(a,b) = 0 for some (a,b) € R"™™, and the

Jacobian o7
Jry= |2 a,b
Ty {8% ( )]

is invertible, then there exists a neighborhood U C R" containing a, there exists a neighborhood
V' C R™ containing b, such that there exists an unique function g : U — V such that g(a) = b
and f(x,g(x)) = 0 for all x € U. We can also say that for (x,y) € U x V, we have y = g(x).
Moreover, g is continuously differentiable and, if we denote

Jz(a,b) = [‘;J; (a,b)]

mxXm

mXxXn

then

{gij (w)]mm = — 1@ 9@ 0 - e (@, 9())mcn-

Theorem F.17 (Vector-valued mean value theorem). Let S C R™ be open and let f : S — R™ be
differentiable on all of S. Let x,y € S be such that the line segment connecting these two points
contained in S, i.e. L(x,y) C S, where L(z,y) = {txz + (1 —t)y | t € [0,1]}. Then for every
a € R™, there exists a point z € L(x,y) such that (a, f(y) — f(x)) = (a, J;,.(2) " (y — x)).
We now present a formal statement and proof for the key property of z-monotonic curves.
Lemma F.18. Let C be an curve defined as in Definition Then for any xq, the hyperplane
T = xg intersects with C at at most 1 points.
Proof. (of Proposition|F.18) Since C is diffeomorphic to (0, 1), there exists a continuously differen-
tiable function h, where
h:(0,1) = C
= (LC, y) = (h()(t)v hl(t)a EERE hd(t)) € Ca

with correspond inverse function h=! : C' — (0, 1) which is also continuously differentiable.
We will prove the statement by contradiction. Assume that there exists (zo, Y1), (zo, y2) € C where

1 . Then we have two corresponding values t; = h™!(xg,y1) # t2 = h™ (20, y2). Using
Theorem F.17|for the function h, for any a € R?, there exists z, € (0,1) such that

<a7 (07 Ay)> = (a, AtJh,t(Za)> )

where Ay = y2 —y1 # 0, At =t3 —t1 # 0, and Jp, 1(24) = (%(za), %(za), A %(za)).

Choose a = a1 = (1,0,...,0), then from above, there exists z4, € (0, 1) such that %
t:za1

0. Now, consider the point (2q4,,Ya,) = h(2q,). From the assumption, det(Jy y(Za,, Ya,)) 7#
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0. Therefore, from [Theorem F.16| there exists neighborhoods U C R containing z,,, V C R
containing yg, , such that there exists a continuously differentiable function g : U — R9, such that
forany (z,y) € U xV, wehave y = g(x). Again, at the point (24, , Ya, ) corresponding to t = z4, ,
we have

Jy; _ 0g; Ox —0
ot T Jx Ot ——
This means that at the point ¢ = z,,, we have g”t” = %yti =0.
t= Zaq ai

Note that since A is a diffeomorphism, we have t = (h=! o h)(t). From chain rule, we have 1 =
Jp=1 1, - Jn,e. However, if we let t = zq,, then Jj, ¢(a1) = 0, meaning that Jj,—1 j, - Jp1(2a,) = 0,
leading to a contradiction.

From Definition [T3]and Proposition for each z-monotonic curve C, we can define their 2-end
points, which are the maximum and minimum of x-coordinate that a point in C' can have.

Definition 13 (x-End points of monotonic curve in high dimension). Let V' is an monotonic curves
as defined in Definition[12] Then we call sup{z | 3y, (z,y) € V} and inf{z | Ty, (z,y) € V} the
z-end points of V.

F.7 MAIN PROOF FOR THEOREM[3.1]

Notation. We denote [n] = {1,...,n}. For a polynomial p(z), denote Z(p) = {z : p(z) = 0}
the zero set of p. Fora set C' C ]Rd denote C the closure of C, int(C') the interior of C, bd(C) =
C — int(C) the boundary of C.

F.7.1 A PROOF THAT REQUIRES STRONGER ASSUMPTION

We first give a proof for the case where the piece functions f, ; and boundaries h,, ; satisfies a bit
stronger assumption.

Assumption 2 (Regularity assumption). Assume that for any function v, («), we have the following

regularity condition: for any piece function fz; and S < d + 1 boundary functions hq,...,hg
chosen from {hy 1, ..., he ar ), We have
1. For any (a,w) € 5_1(0), we have rank(J; ., (a,w)) = S, where h =

(h1(a,w), ..., hg(a,w)).
2. Forany (o, w,X) € k~*(0), we have rank(Ji (1 x) (@, w, X)) = d + S. Here
Ew,A) = (ki(a,w, A), ... kars(a,w, X)),

and
{ki(a,w,)\):h(aw) i=1,...,5,

Ofw,i .
ks-i-j(a;w?)‘)* 8{,} +Z¢ 1)\133}7 ]:17"'ad'

3. For any (a,w, \,0,7) € E_l(O) we have rank(Jz. (, ., x.9.4)) (@ w, X, 0,7) = 2d +
2S5 + 1. Here

E(Oé, w, )‘7 07 ’7) = (El (O&, w, Av Oa 7)7 B 7E2d+25+1 (Oé, w, Aa 0’ 7))a

and
k. —hmz, :1,...,5
5
Fsi = Sim g7 =18

@, ah’iz
kosys = f"+2j 1A etz =1....d

L fa:7, +Z iz] +Zd 0° fa.i +ZS s 151] -1
28+d+z = 0w t=1"t | B, 0w, 3 dwtdwz 12 =

- _ Ofai 5 hai 8 fu.i 5 *hg i
kast2ar1 = Do +Zj:1 J " oa +Zt 17t |:8wt6a +Zj:1 J Ow,0a
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Remark 3. We note that Assumption [2]3 implies Assumption [2]2, and Assumption 2|2 implies
Assumption [2} 1. For convenience, we present Assumption [2| with a different sub-assumption is for
readability, and because each sub-assumption has its own geometric meaning in our analysis. In
particular:

* Assumption[2] 1 implies that the intersections of any S < d+ 1 boundaries are regular: they
are either empty, or are a smooth (d + 1 — S)-manifold in R4+,

* Assumption [2]2 refers to the regularity of the derivative curves.

* Assumption [2]3 implies that the number of local extrema of the piece function along any
derivative curve is finite.

Theorem F.19. Assume that Assumption 2| holds, then for any problem instance x € X, the dual

utility function u, satisfies the followings:

(a) The hyperparameter domain A can be partitioned into at most

M\ eM \ 4
NA4d+2 67 NM 2A 2d+2 el
O( <d+ ) HNMERAT TS

intervals such that u%, () is a continuous function over any interval in the partition, where
N and M are the upper-bound for the number of pieces and boundary functions, and
A = max{Ap, Ay} is the maximum degree of piece f ; and boundary hg ; polynomials.

) d+1
(b) uk(a) has O (NAM+d (;TMl) ) local maxima for any problem instance x overall all

such intervals.

Proof. (a) First, note that we can rewrite u, ;(«) as
up (@) = max_ fgi(o,w).
w: (o, w)ERg,;

Since Rm,i is connected, let
g iinf = Inf{a | Jw : (o, w) € Ry i}, Qg i sup = sup{a | Jw : (o, w) € Ry}

be the a-extreme points of ﬁmﬂv (Definition . Then, for any o € (O[mﬂ"inf, am7i7sup), there exists w
such that (o, w) € Ry ;.

Let H,, ; be the set of adjacent boundaries of R, ;. By assumption, we have |H ;| < M. For any
subset S = {hs1,...,hs g} C Hy;, where |S| = S, consider the set of (o, w) defined by
hsi(a,w)=0, i=1,...,5. (1)

IfS > d+1, from Assumption the set of (a, w) above is empty. Consider S < d + 1, from
Assumption the above defines a smooth d + 1 — S manifolds in R4, Note that, the set of above
is exactly the set of (a, w) defined by

S
> hsila,w)? =0.
=1

Therefore, from Lemma @], the number of connected components of such manifolds is at most
2(2A)%*1, Each connected components correspond to 2 a-extreme points, meaning that there are at
most 4(2A)4*! a-extreme points for all the connected components of the smooth manifolds defined
by Taking all possible subset of boundaries of at most d + 1 elements, we have total of
at most A/ a-extreme points, where

d+1 d+1
d+1 M a1 [ eM
N < (20) ;(s)sm) (737) -
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Here, the final inequality is from Lemma [F.6]

Now, let A; be the set of such a-extreme points after reordering. For each interval I; = (o, oy1)
of consecutive points A;, the set S% C 2H=.i of sets of boundaries is fixed. here, the set S; consists
of all set of boundary & = {hs 1,...,hs s} such that for any o € (v, a41), there exists w such
that hs ;(o,w) = 0 forany i = 1,..., S. Here, note that (a, w) is not necessarily in Ry ;, i.e. it
might be infeasible. Now, for any fixed o € I;;, assume that w,, is a maxima of fz ; in ﬁmﬂ- (which
exists due to the compactness of Rw-), meaning that («, w,,) is also a local extrema in ﬁm. This

implies there exists a set of boundaries S € S; and X such that («, w,,) satisfies the following due
to Theorem [E7]

df( > a) S oh ,"( s a) —
Offaswa) | 58 )\ Ohsylow) Gy g,

a’wi

{hs,j(aawa) =0,7=1,...,8

which defines a smooth 1-dimensional manifold M® in R¥5+! by Assumption [2| Again, from
Lemma [F.10} the number of connected components of M_s is at most 2(2A)4+5+1 "corresponding
to at most 4(2A)9+5+! q-extreme points. Taking all possible subsets S of at most d + 1 elements

d+1
of Hy ;, we have at most O ((2A)2d+2 (STMJ ) such a-extreme points.

Let As be the set contains all the points « in A; and the a-extreme points above and reordering
them. Then in any interval I; = (o, ay41) of consecutive points Ao, the set Sf is fixed. Here, the
set S; consists of all sets of boundary S such that for any « € (o, as41), there exists w,, and A
such that (o, wq, A) satisfies

hg,j(oz,'wa) =0,7=1,...,8
Afpawe) 4 37 g heagleme) . d

a’wi

Note that the points (o, w,, A) might not be in the feasible region E%i. For each S, the points
(o, w, ) in which M can enter or exit the feasible region R, ; satisfies equation

hsi(a,w)=0,i=1,...,8,
(o, w) =0,forsome h’ € Hy,; — S

of(a,w) S dhs j(awa) :
Offaw) 579 |z 2heglama) o1 d.

of which the number of solution is finite due to Assumption 2] The number of such points is
2(2A)4+5+L for each S € Hyy, |S| < d + 1 and each b’ € Hy,; — S, meaning that there
are at most 2M (2A)4T5+1 such points for each S. Taking all possible sets S, we have at most

0 (M(QA)2d+2 (;Ml)dﬂ)

Let A3 be the set contains all the points in A5 and the « points above and reordering them. Then
for any interval I; = (o, ayy1), the set S? is fixed. Here, the set Sf’ consists of all sets of boundary
S such that for any « € (o, a41) fixed, there exists w,, and A such that (o, w,, A) satisfies

h(o,we) =0,h €S
Of(a,wq Oh(a,wy) -
J‘(Ti)iZheS)‘h(aTi),Z =1,...,d,
(a,w) € Ry ;.

Finally, we further break the smooth 1-manifold M defined as above into monotonic curves (Def-
inition[T2), which we show to have attract property (Proposition[F.18): for each monotonic curve C'
and an «, there is at most 1 point in C' such that the coordinate o = «vy. For the smooth 1-manifold
M, from Definition 12} the points that break M into monotonic curves satisfies

ki(a,'w,)\) = h57i(a,wa) = 0,?, = 1, . .,S

ksj(a,w, A) = 2lawa) | 575\ Ohsalowwa) 4 g g,
det(Jk’(w,)\)) =0.
Here, k = (k1,...,ks+a) : ROTSTL — RITSHL and J (4 a) is the Jacobian of function k with re-

spect to w, A. Note that Jy, (4, ) i @ polynomial in a, w, A of degree at most AYS From Assump-
tion [2 and Bezout’s theorem, for each possible choice of S, there are at most A24+25 guch points
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d+1
(o, w, A) satisfies the above. Taking all possible sets S, we have at most O <A4d+2 (gTMJ )

such points.

In  summary, there are a set of « points Ay of at  most
d+1 d+1

o <A4d+2 (;TMJ + M(2A)24+2 (%) ) points such such that for any interval

I, = (o4,au41) of consecutive points (g, apr1) in Ay, there exists a set C; of monotonic

curves such that for any « € (ay, az41), we have
g (@) = max{ fo.q(er,w) | 3, (@,w,A) € C}.

@,

In other words, the value of uj, ;(a) for a € I; is the point-wise maximum of value of func-

tions fz; along the set of monotonic curves C. From [Theorem F.14] we have uj, ;(«) is con-

tinuous over I;. Therefore, we conclude that the number of discontinuities of uy, ;(a) is at most

O <A4d+2 (ﬂ)dﬂ M (24)2+2 (aM)dH)

d+1 d+1

Finally, recall that

Uy (@) = max ug (),

i1€[N]
and combining with [Theorem F.3] we conclude that the number of discontinuity points of u;(«) is
d+1 d+1
at most O (NA4d+2 (£4) + NMEay () ) -

Combining Theorem [F.19]and [3.2] we have the following result.

Theorem F.20. Let U = {u, : X — [0,1] | « € A}, where A = [oumin, Omax] C R. Assume
that any dual utility function u}, admits piecewise polynomial structures that satisfies Assumption|2]
Then we have Pdim(U) = O(log N + dlog(AM)). Here, M and N are the number of boundaries
and functions, and A is the maximum degree of boundaries and piece functions.

F.7.2 RELAXING ASSUMPTION[2] TO ASSUMPTION[I]

In this section, we show how we can give a relaxation from Assumption [2]to our main Assumption
In particular, we show that for any dual utility function w, that satisfies Assumption [I} we can
construct a function v}, such that: (1) The piecewise structure of v}, satisfies Assumption and (2)
||k — vk can be arbitrarily small. This means that, for a utility function class I/, we can construct
anew function class V of which each dual function v}, satisfies Assumption[2] We then can establish
pseudo-dimension upper-bound for V using Theorem [F. 19} and then recover learning guarantee for
U using Lemma[C.4]

First, we recall a useful result regarding sets of regular polynomials. This result states that given a set
of regular polynomials and a new polynomial, we can modify the new polynomial by an arbitrarily
small amount such that adding it to the set preserves the regularity of the entire set.

Lemma F.21 (Warren| (1968)). Let p(x), q1(x), ..., qgm(x) be polynomials. Assume that 0 is a
regular value of q = (q1, . . ., m), then for all but finitely many number of real numbers «, we have
0 is also a regular value forq = (q1, . .., Gm,D — Q).

We now present the main claim in this section, which says that for any function v, () that satisfies
Assumption|[I] we can construct a function v}, (c) that satisfies Assumption[2]and that ||u}, — v}
can be arbitrarily small.

Lemma F.22. Let u}, be a dual utility function of a utility function class U. Assume that the piece-
wise polynomial structures of u, satisfies Assumption|l| then we can construct the function v}, such
that v}, has piece-wise polynomial structures that satisfies Assumption[2] and ||} — v} | s can be
arbitrarily small.

Proof. Consider the functions k&

E(O‘7 w, Aa 07 7) = (El (O{, w, )‘a 07 7)? s 7E2d+28+1(a7 w, Aa 07 7))a
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and

Ez(a,w,)\,ﬁgy)—hfu(a w) z=1,...,8

Fora(ayw, A, 0,7) = N 5 Lasz(0m), w —1,....8

EQS+Z(OK,W,A,97’}’) 3fml(aw) +Z] 1 %ﬁw),zzl,d

7. o @,i h‘i i, 5

k2$+d+z(avw7Aa977) = %(jw) +Z #

d 0 fa.i (,w) \ Phziglaw) | o
+Zt:1’yt 6wt6(juw +Z] 1 J é)wtéwz =0,z=1,....d

= Ofeuilc hg i (w) 0% fo.i *hii g (0w)

kasiodari(a,w, A, 0,7v) = Bfelanw) + Z = ge— + Zt 1M ];wtaaam + Zg 1 W
Since wu, satisfies Assumption 2, then O is a regular value of (ki,...,kos). From Lemma
[E21] there exists finitely number of real-valued 7 such that O is not a regular value of
(k1,... kas,kast1 — 7). Let 7% # 0 be the such 7 such that |7*| is the smallest. Then for
any 0 < 7 < |7*|, we have O is a regular value of (k1,...,kas, kas+1 — 7). Keep doing so for the
all (finite number) polynomials kogy1, .. ., k2512441, We claim that there exists a 7* # 0, such that
forany 0 < 7 < |7*|, we have O is a regular value of (K1, ..., kas, kas+1 — 7, .., kast2d+1 — T)-
We then construct the function v}, as follow.

* The set of boundary functions is the same as v, : {hg1,..., Pz rm}-

* In each region Ry ;, the piece function f ; (v, w) of v}, is defined as:
d

foilo,w) = foi(o,w) +ra+7Y_ w.,
z=1
for some 0 < 7 < |7*|. Then
* v} satisfies Assumption 2]
* In any region R ;, we have
d
If:cﬂ'(aaw) - f;,i(aa w)| = |Ta+ TZ’LUZ < TC:
z=1

where C' = (d + 1) max{|®min, ¥max, Wmin; Wmax|}. This implies
sup fai(a,w) —27C < sup f;yi(a, w) < sup failo,w) +27C,
w: (e, w) € Ry ; wi(,w)€ Ry, ; w:(a,w) € Ra,;
or
Uy i(@) = 27C < g (@) g (@) +27C = flug, ; — vz i(@)[lee < 27C.
Then we conclude that ||u}, — v} (a)||s < 27C, and since 7 can be arbitrarily small, we have the

conclusion. O

F.7.3 RECOVER THE GUARANTEE UNDER ASSUMPTION ]

We now give the formal proof for the Theorem [5.1]

Theorem [5.1| (restated). Consider the utility function class Y = {uq : X — [0,H] | o € A}.
Assume that the dual utility function u}, () = sup,,eyy fo(o, w), and fz (o, w) admits piecewise
constant polynomial structure with the piece functions f, ; and boundaries h, ; satisfies Assumption
I Then for any distribution D over X, for any § € (0, 1) with probability at least 1 — § over the
draw of S ~ D™, we have

Bl ()] — Egnp[ua- (2)]] < O (\/

log N + dlog(AM) + log(l/é))
— .

Here, M and N are the number of boundaries and connected sets, A = max{d,, d4 } is the maximum
degree of piece f ; and boundaries h ;.
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Proof. LetU = {uq : X — [0,H] | a € A} be a function class of which each dual utility

u, satisfies Assumption [I] From Lemma there exists a function class V = {v, : X —

[0,H] | o € A} such that for any problem instance x, we have |lu, — v} || can be arbitrarily

small, and any v satisfies Assumption[2} From Theorem we have Pdim(V) = O(log N +
Pdim(

dlog(AM)). From Lemma we have Z,,(V) = O 7‘))) From Lemma we have

m

Zs(U) = O ( Wlog(m), where S € X™. Finally, standard learning theory result give

us the final claim. O

G ADDITIONAL DETAILS FOR SECTION[6]

G.1 TUNING THE INTERPOLATION PARAMETER FOR ACTIVATION FUNCTIONS
G.1.1 REGRESSION CASE

We now provide a formal proof for Theorem which analyzes the generalization guarantee for
selecting the interpolation hyperparameter of activation functions in neural architecture search.

Theorem (restated).  Let LAF denote loss function class defined above, with activation
functions 01, 09 having maximum degree /A and maximum breakpoints p. Given a problem in-

stance (X,Y'), the dual loss function is defined as ((y y\ (o) := minwew f((X,Y) w;a) =
mingew fix,v) (o, w), and fix y)y(a,w) admits piecewise polynomial structure with bounded
pieces and boundaries. Assume that the piecewise structure of f(x yy(a, w) satisfies Assumption

then for any § € (0, 1), w.p. at least 1 — § over the draw of problem instances S ~ D™, where D is
some distribution over X, we have

B yynlfa((X, V)] — Exyypllar (X, Y))]| = O (\/L2W10gA + LW log(Tpk) +log(1/6)) .

m

Proof. Let x1,...,x7 denote the fixed (unlabeled) validation examples from the fixed validation
dataset (X,Y"). We will show a bound N on a partition of the combined parameter-hyperparameter
space W x R, such that within each piece the function f(x y)(c, w) is given by a fixed bounded-
degree polynomial function in o, w on the given fixed dataset (X,Y"), where the boundaries of the
partition are induced by at most M distinct polynomial threshold functions. This structure allows us
to use our result Theorem [5.1]to establish learning guarantee for the function class £AF.

The proof proceeds by an induction on the number of network layers L. For a single layer L = 1,
the neural network prediction at node j € [k1] is given by
Qij = 01 (’LUJZL'Z) + (1 — O[)Og(’lUjiCi),

fori € [T]. W x R can be partitioned by 27 k1 p affine boundary functions of the form w;z; — ty,
where ¢}, is a breakpoint of 0, or 0z, such that g;; is a fixed polynomial of degree at most [ 4 1
in o, w in any piece of the partition P; induced by the boundary functions. By Warren’s theorem

w
(Lemma|F.10), we have |P;| < 2 (%)

Now suppose the neural network function computed at any node in layer L < r for some r > 1 is

4eTkqp(A+1)7? ) Wq
W‘I

pieces, and at most 27'p Z;Zl kq polynomial boundary functions with degree at most (A + 1)".

Let j' € [k,41] be a node in layer  + 1. The node prediction is given by ¢;;; = ao1(w; 9;) +

(1 — a)oa(wj y;), where ; denotes the incoming prediction to node j’ for input z;. By inductive

hypothesis, there are at most 27k, 1 p polynomials of degree at most (A -+ 1)” 4 1 such that in each

piece of the refinement of P, induced by these polynomial boundaries, ;;- is a fixed polynomial

with degree at most (A + 1)"*1. By Warren’s theorem, the number of pieces in this refinement is at

14%
most [P, 1| < H;: 2 (%ﬂ) !

q

given by a piecewise polynomial function of c, w with at most [P,.| < [[;_, 2 (
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Thus f(x,y)(c, w) is piecewise polynomial with at most 27'p Z;‘:l kq = 2mpk polynomial
boundary functions with degree at most (A + 1)2F, and number of pieces at most |Pr| <

L 4eTkqp(A+1)? Wy
1 — W, . Assume that the piecewise polynomial structure of f(x y(c, w) satis-

ﬁes Assumptlon I 1] then applying Theorem 5.1] and standard learning learning theory result gives us
the final claim. O

G.1.2 BINARY CLASSIFICATION CASE

In the binary classification setting, the output of the final layer corresponds to the prediction
g(a,w,r) = § € R, where w € W C RW is the vector of parameters (network weights), and « is
the architecture hyperparameter. The 0-1 validation loss on a single validation example = (X,Y)
is given by Iy g(q,w,2)2y}» and on a set of T' validation examples as

. o1 .
e =it X T = i w0
(z,y)e(X,Y)

For a fixed validation dataset x = (X,Y), the dual class loss function is given by £AF = {¢¢ :
X —10,1] | a € A}

Theorem G.1. Let LAT denote loss function class defined above, with activation functions 01,02
having maximum degree A and maximum breakpoints p. Given a problem instance x = (X,Y),
the dual loss function is defined as (%,(a) = mingey f(x, w; @) = mingeyw fz(a, w). Then,
fo(c, w) admits piecewise constant structure. For any § € (0, 1), w.p. at least 1 — § over the draw
of problem instances S ~ D™, where D is some distribution over X, we have

m

B vy fal(6 )] — Eveyyffar (K] = O <\/L2W1og A+ LW log Tpk + 1og(1/5)> .

Proof. As in the proof of the loss function £, can be shown to be piecewise con-

. . q Wq .
stant as a function of «, w, with at most |Pr,| < HqL:12 (%) pieces. We can apply

Theorem 4.2]to obtain the desired learning guarantee for LAF. O

G.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

G.2.1 THE CLASSIFICATION CASE

We use the following result due to Warren|(1968)) to establish the piecewise constant structure of the
dual loss function for GCNs.

Theorem G.2 (Warren|1968). Suppose N > n. Consider N polynomials pl, ..., PN inn variables
of degree at most A. Then the number of connected components of R™\ UY_; {z € R" | p;(z) = 0}

zs(’)( . ) .

To prove[Theorem 6.2] we first show that given any problem instance , the function f(x, w; o) =
f=(c,w) is a piecewise constant function, where the boundaries are rational threshold functions of
« and w. We then proceed to bound the number of rational functions and their maximum degrees,
which can be used to give an upper-bound for the number of connected components, using
After giving an upper-bound for the number of connected components, we then use Theorem 4.2]to
recover learning guarantee for I/

Lemma G.3. Given a problem instance x = (X,y, 9, Yy,) that contains the vertices representation
X, the label of labeled vertices, the indices of labeled vertices Yy, and the distance matrix 6,
consider the function

folow) = f(@.wi0) = 5 30 T

1€YL
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which measures the 0-1 loss corresponding to the GCN parameter w, polynomial kernel parameter
a, and labeled vertices on problem instance x. Then we can partition the space of w and « into

o [ (BF)EA+6)) T (A 4 1)
1+ ddy + doF

connected components, in each of which the function f(x,w;«) is a constant function.
Proof. First, recall that Z = GCN(X, A) = AReLU(AXW @)W, where A = D~'A is the

row-normalized adjacent matrix, and the matrices A = [A;;] = A+ I,, and D = [D; ;] are
calculated as

i

Here, recall that § = [6; ;] is the distance matrix. We first proceed to analyze the output Z step by
step as follow:

* Consider the matrix 7)) = XW(® of size n x dj. It is clear that each element of T'(%) is
a polynomial of (%) of degree at most 1.

o Consider the matrix 7 = AT® of size n x dp. We can see that each element of matrix A
is a rational function of « of degree at most A. Moreover, by definition, the the denominator
of each rational functions are strictly positive. Therefore, each element of matrix 7 is a
rational function of W (%) and « of degree at most A + 1.

» Consider the matrix 7®) = ReLU(T?)) of size n x dy. By definition, we have

AN 2,9 7
2,3

@ _ 1%, 1 >0
0, otherwise.

This implies that there are n x dy boundary functions of the form ]IT@ = where Ti(? isa
i 2

rational function of () and o of degree at most A+ 1 with strictly positive denominators.
From|Theorem G.2| the number of connected components given by those n x dy boundaries
are O ((A + 1)”d0). In each connected components, the form of 7’ (3) is fixed, in the sense
that each element of 7'®) is a rational functions in W(°) and « of degree at most A + 1.

e Consider the matrix 7™ = TG W™ In connected components defined above, it is clear
that each element of 7'*) is either 0 or a rational function in W (9, W) and « of degree
at most A + 2.

* Finally, consider Z = AT® . In each connected components defined above, we can see
that each element of Z is either 0 or a rational function in W W) and « of degree at
most A + 3.

In summary, we proved above that the space of w, « can be partitioned into O((A+1)"%) connected
components, over each of which the output Z = GCN(X, A) is a matrix with each element is
rational function in W©, W) and « of degree at most A + 3. Now in each connected component
C, each corresponding to a fixed form of Z, we will analyze the behavior of f(x,w;a), where

1
f(:l"vw;a) = m Z Hﬁﬁé%

i€YL

Here y; = argmax,c; g Zi j, assuming that we break tie arbitrarily but consistently. For any F' >
J >k > 1, consider the boundary function Iz, ;>z, ,, where Z; ; and Z; ;. are rational functions
in o and w of degree at most A + 3, and have strictly positive denominators. This means that the
boundary function Iz, ;> z, , can also equivalently rewritten as I 2,200 where Z; ; is a polynomial
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in o and w of degree at most 2A + 6. There are O(nF?) such boundary functions, partitioning

2

the connected component C' into at most O (( % ) 1ddotdo Iy connected components. In
each connected components, g; is fixed forall i € {1,...,n}, meaning that f(x, w; «) is a constant
function.
In  conclusion, we can  partition  the space of w and a into

2
O (( % )iFddotdoF 5 (A 4 1)) connected components, in each of which the
function f(x, w; «) is a constant function. O

We now ready to give a proof for[Theorem 6.2]

Theorem (restated). Let £ON denote the loss function class defined above. Given a problem in-
stance x, the dual loss function is defined as £}, (<) := mingeyw f(x, w; ) = mingew fo(a, w).
Then f, (o, w) admits piecewise constant structure. Furthermore, for any § € (0, 1), w.p. at least
1 — 0 over the draw of problem instances S = (&1, ..., &,,) ~ D™, we have

m

IEsp[lapey (S)] — Esp[la-(S)] = O ( \/ do(d + F)lognFA +log(1 /5)) .

Proof. Given a problem instance x, from Lemma we can partition the space of w and « into

2
O (( %71%;}6) )Fddotdo (A 4 1)ndo) connected components, over each of which the function

f (@, w; @) remains constant. Combining with Theorem we have the final claim O

G.2.2 THE REGRESSION CASE

The case is a bit more tricky, since our piece function now is not a polynomial, but instead a rational
function of o and w. Therefore, we need stronger assumption (Assumption 2) to have Theorem|[G.5]

Graph instance and associated representations. Consider a graph G = (V, ), where V and £
are sets of vertices and edges, respectively. Let n = |V| be the number of vertices. Each vertex
in the graph is associated with a feature vector of d-dimension, and let X € R"*9 is the matrix
that contains all the vertices representation in the graph. We also have a set of indices J, C [n]
of labeled vertices, where each vertex belongs to one of C' categories and L = || is the number
of labeled vertices. Let y € [—R, R]” be the vector representing the true labels of labeled vertices,
where the coordinate y; of Y corresponds to the label vector of vertice [ € V..

Label prediction. We want to build a model for classifying the other unlabelled vertices, which
belongs to the index set Yy = [n] \ V1. To do that, we train a graph convolutional network (GCN)
Kipf & Welling| (2017) using semi-supervised learning. Along with the vertices representation ma-
trix X, we are also given the distance matrix 6 = [d; j](; j)c[n)> encoding the correlation between

vertices in the graph. Using the distance matrix D, we then calculate the following matrices A, A, D
which serve as the inputs for the GCN. The matrix A = [A; ;](; j)e[n)? is the adjacent matrix which
is calculated using distance matrix § and the polynomial kernel of degree A and hyperparameter
a>0

Ai,j = ((5(1,]) + Q)A.

We then let A = A + I,,, where I,, ia the identity matrix, and D= [f)i,j] ()2 of which each element
is calculated as

D;;=0ifi# j,and D; ; = ZAM fori € [n].
j=1

Network architecture. We consider a simple two-layer graph convolutional network (GCN) f
Kipf & Welling| (2017), which takes the adjacent matrix A and vertices representation matrix X as
inputs and output Z = f(X, A) of the form

Z = GCN(X, A) = AReLUAXWOyw D),
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where A = D1A, W(©) ¢ R4*do jg the weight matrix of the first layer, and W (1) € Rdo*1 js the
hidden-to-output weight matrix. Here, z; is the i*" element of Z representing the prediction of the
model for vertice .

Objective function and the loss function class. We consider mean squared loss function cor-
responding to hyperparameter o and networks parameter w = (w(®,w™)) when operating the
problem instance x as follow

1
[l wya) = il > (zi— i)
L 1€YL
We then define the loss function corresponding to hyperparameter o when operating on the problem
instance x as
lo(x) = min f(xz, w;a).
w

We then define the loss function class for this problem as follow
LIN=10,: X =[0,RY]|ac A},

and our goal is to analyze the pseudo-dimension of the function class LN,

Lemma G.4. Given a problem instance x = (X,y,d,Yr,) that contains the graph G, its vertices
representation X, the indices of labeled vertices V1, and the distance matrix 8, consider the function

folonw) i= fl@wia) = —— 3 (5 — ).

‘}i|ieyL

which measures the mean squared loss corresponding to the GCN parameter w, polynomial kernel
parameter o, and labeled vertices on problem instance x. Then we can partition the space of w and
a into O((A +1)"40) connected components, in each of which the function f(x,w; «) is a rational
Sunction in o and w of degree at most 2(A + 3).

Proof. First, recall that Z = GCN(X, A) = AReLU(AXW )W) where A = D~1/2AD~1/2
is the row-normalized adjacent matrix, and the matrices A = [A; ;] = A+ I,, and D = [D; ;] are
calculated as

A= (0 + ),

Di,j :Olfl#], and i =

i

Here, recall that § = [; ;] is the distance matrix. We first proceed to analyze the output Z step by
step as follow:

o Consider the matrix 71 = XW(©) of size n x dy. It is clear that each element of T() is
a polynomial of W (©) of degree at most 1.

« Consider the matrix T7(? = AT of size n x dg. We can see that each element of matrix A
is a rational function of « of degree at most A. Moreover, by definition, the the denominator
of each rational functions are strictly positive. Therefore, each element of matrix 7 is a
rational function of W (%) and « of degree at most A + 1.

» Consider the matrix 73 = ReLU(T?) of size n x dy. By definition, we have

b 0, otherwise.

This implies that there are n x do boundary functions of the form L., where Ti(i) isa
i, = >

rational function of W (%) and o of degree at most A+ 1 with strictly positive denominators.
From|Theorem G.2| the number of connected components given by those n x dy boundaries
are O ((A + 1)"d0). In each connected components, the form of T3) is fixed, in the sense
that each element of 7(%) is a rational functions in W (%) and « of degree at most A + 1.

36



Under review as a conference paper at ICLR 2025

* Consider the matrix 7(*) = TG W) In connected components defined above, it is clear
that each element of 7'*) is either 0 or a rational function in W (9, W) and « of degree
at most A + 2.

* Finally, consider Z = AT®  In each connected components defined above, we can see
that each element of Z is either 0 or a rational function in W) W), and a of degree at
most A + 3.

In summary, we proved that the space of w, « can be partitioned into O((A + 1)") connected
components, over each of which the output Z = GCN(X, A) is a matrix with each element is a
rational function in W(®), W (1) and o of degree at most A + 3. It means that in each piece, the loss
function would be a rational function of degree at most 2(A + 3), as claimed. O

Theorem G.5. Consider the loss function class LSV defined above. For a problem instance x,
the dual loss function (} (o) = mingew fz(a, w), where fo(o, w) admits piecewise polynomial
structure (Lemma [G.4). If we assume the piecewise polynomial structure satisfies Assumption [2]
then for any 6 € (0, 1), w.p. at least 1 — 6 over the draw of m problem instances S ~ D™, where D
is some problem distribution over X, we have

m

Espllap(5)] = Eswpllar (S)]| = O ( \/ ndolog A + dlog(AF) + log(1 /5)) |

H A DISCUSSION ON HOW TO CAPTURE THE LOCAL FLATNESS PROPERTIES
OF BLA BLA

Our definition of dual utility function u}, () = maxyew fz(a, w) implicitly assumes an ERM
oracle. As discussed in Appendix [B] this ERM oracle assumption makes the function u,(a) well-
defined and simplifies the analysis. However, one may argue that assuming the ERM oracle will
make the behavior of tuned hyperparameters much different, compared to when using common
optimization in deep learning. The difference potentially stems from the fact that the global optimum
found by ERM oracle might have a sharp curvature, compared to the local optima found by other
optimization algorithms, which tend to have flat local curvature due to their implicit biases.

In this section, we consider the following simplified scenario where the ERM oracle also finds the
near-optimum that is locally flat, and explain how our framework could potentially be useful in this
case. Instead of defining u} () = maxypew fz(a, w), we define uj () = maxyew fo(a, w),
where the surrogate function f., (c, w) is defined as follows.

Definition 14 (Surrogate function construction). Assume that f(«, w) admits piecewise polyno-
mial structure, meaning that:

1. The domain A x W of f, is divided into N connected components by M polynomi-
als hg 1,...,he ar in o, w, each of degree at most Ay. The resulting partition P, =
{Re 1., Re N} consists of connected sets R, ;, each formed by a connected compo-
nent Cy ; and its adjacent boundaries.

2. Within each R ;, f takes the form of a polynomial fz ; in & and w of degree at most A,.
Defining the function surrogate f.,(«, w) as follow:

1. The domain A x W of f.(a,w) is partitioned into N connected components by M
polynomials hg 1,..., e ar in a,w similar to f,. This results in a similar partition
P:n - {Rm,lv ey RmN}

2. In each region Ry ;, fL is defined as

folonw) = fr (0, w) = foi(a,w) = 0|V, o folo, w)|[FE,
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for some fixed 7 > 0. We can see that ||V}, ,, fz(a, w)]||3 is a polynomial of a,w of
degree at most 2A,. Therefore, f, (o, w) is also a polynomial of degree at most 24, in
the region Ry, ;.

From the above construction, we can see that f,, (o, w) also admits piecewise polynomial structure,
where the input domain partition P,, is the same as fg (o, w). In each region R, ;, the function
fr(a, w) is also a polynomial in o, w of degree at most 2A,,. Therefore, our framework is still
applicable in this case. Moreover, construction above naturally introduces an extra hyperparameter
71, which is the magnitude of curvature regularization. This makes the analysis more challenging,
but for simplicity, we here assume that 7 is fixed and good enough for balancing the effect of regu-
larization.

We can see that by defining v (o) = maxqeny fh (o, w), we can somehow capture the generaliza-
tion behavior of tuned hyperparameter v, when the solution w* of max.,ew fi (o, w) is: (1) near
optimal w.r.t max,ew fo (e, w), and (2) locally flat.

However, the example above is an oversimplified scenario. To truly understand the behavior of data-
driven hyperparameter tuning without ERM oracle, we need a better analysis to capture the behavior
of u% () in such a scenario. This analysis should consider the joint interaction between the model,
data, and the optimization algorithm, and remains an interesting direction for future work.
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