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Abstract

Pulmonary cancer is one of the most commonly diagnosed and deadly cancers and often
diagnosed by incidental findings with computed tomography. Automated pulmonary nod-
ule detection is an essential part of computer-aided diagnosis, which is still facing great
challenges and difficulties to quickly and accurately locate the exact nodules’ positions.
This paper proposes a novel deep learning model based on a Dual Path network in a U-
Net structure generating multiscale feature maps as well as taking advantage of having
2.5D input to provide better contextual information. An extended upsampling strategy is
proposed to minimize the ratio of false positives and maximize the sensitivity for lesion
detection of nodules. The results show that our new upsampling strategy improves the
performance by having 85.3% sensitivity at 4 FROC per image compared to 84.2% for the
regular upsampling strategy as well as 81.2% for VGG16 based Faster-R-CNN.

Keywords: Pulmonary nodule detection, Dual Path U-Net, Region Proposal Network.

1. Introduction

Pulmonary cancer is one of the most commonly diagnosed and deadly cancers among other
cancers in medical research (Ferlay et al., 2015). Other pulmonary diseases such as COVID-
19 (Lu Wang et al., 2020) or pulmonary infection may also cause serious damage to the lung.
The most common problem during diagnostic in radiology is solitary pulmonary nodules,
i.e. single, round or oval nodules generally smaller than 3 cm (Toghiani et al., 2015).

Computed tomography (CT) is one of the most common non-invasive screening ap-
proaches for diagnosing pulmonary diseases (Midthun, 2016). Pulmonary nodules that
appear on the images have a high variability in terms of size, shape and location in the
pulmonary regions (Rubin, 2015). Radiologists need to go through these series of images
and make annotations on suspicious lesions. This process requires radiologists to carefully
observe the images leading to a high workload, while annotating depends on individual
radiologists’ experiences and might lead to a high possibility of error, especially for small
nodules (approx. 5mm) (Al Mohammad et al., 2017).

The number of patients diagnosed with pulmonary nodules increased as more patients
with a high risk of lung cancer have low-dose CT scans acquired for the screening of cancer
(Yuan et al., 2017). Computer-aided diagnosis (CAD) systems support radiologists at both
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nodule detection and localization tasks. However, it is challenging to reduce the misdiag-
nosis and false positives (FPs) in early-stage lung cancer diagnosis (Dou et al., 2017). The
main issue which leads to a high ratio of FPs, particularly for pulmonary nodule detection,
comes from the variability of nodules in terms of size, shape and location (Rubin, 2015)
and, compared to regular RGB images, gray-scale medical images provide less information
in terms of edges and textures to distinguish different tissues (Escobar, 2008).

In recent researches, Convolutional Neural Networks (CNNs) have greatly improved per-
formance and efficiency in CAD systems (Zhao et al., 2019). Variations based on CNNs
(Xie et al., 2019), U-Net (Zhao et al., 2018) or Faster R-CNN (Ding et al., 2017) have been
reported. Other studies also show that the performance of nodule detection and classifica-
tion on medical images using 3D-CNN models, which can provide more information for the
model, is generally better than the 2D-CNN model, such as in (Gu et al., 2018; Nasrullah
et al., 2019; Setio et al., 2017; Huang et al., 2017). However, 3D-CNN or 3D-Dual Path
Network (Zhu et al., 2018; Jiang et al., 2020) models require more computational resources
and memory than 2D-CNN models due to a larger number of network parameters (Kam-
nitsas et al., 2017). In contrast, a compensation approach of 3D-CNN and 2D-CNN models
makes use of 2.5D-CNN models that can take advantage of inter-slice features compared to
2D-CNN models and have lower memory requirements than a 3D-CNN model.

In this paper, we adopt ideas from different algorithms based on deep learning and
propose a network using Faster R-CNN (Ren et al., 2017) with Dual Path Network (DPN)
(Chen et al., 2017) as the backbone in a U-Net (Ronneberger et al., 2015) structure while
having 2.5D medical images as input and multiscale feature maps. The main idea is to utilize
the volumetric and contextual information around the nodules as well as from multiple
views of CT scans in order to reduce the FP rate and increase the true positive (TP) rate
of detected pulmonary nodules while keeping the computational effort of the method low.

2. Method

2.1. Dataset: DeepLesion

DeepLesion (Yan et al., 2018b) was released by the National Institutes of Health Clinical
Center. It consists of 32,120 axial CT slices from 10,594 CT scans (studies) from 4,427
unique patients. There are 1-3 lesions such as lung nodules, liver tumors or enlarged lymph
nodes in each image with accompanying bounding box coordinates and size measurements,
adding up to 32,735 lesions altogether. We have extracted CT images that are annotated
with pulmonary nodules, which resulted in 2,394 CT images for our dataset in our case.
1,916 CT images are used for training and 478 CT images for validation.

2.2. Data Preprocessing

The CT slices of DeepLesion are normalized by converting Hounsfield units to mass atten-
uation coefficients and dividing by the 99th percentile of the entire dataset. Each slice has
1mm to 5mm thickness in most cases while some of the images are 0.625 mm or 2mm.
For each lesion, there is one key slice with 30 mm of extra slices in front of and behind
the key slice. However, only the key slice has the annotation data including lesion types,
coordinates of 2D bounding-boxes and RECIST diameters for the lesions. The CT slices
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Figure 1: Our model generates five feature maps for RPN. ROI Align crops the feature
maps according to the sizes of the anchors on the corresponding feature map.

were resized to 512 px x 512 px. For training, we adapted data augmentation where images
are flipped horizontally and vertically and rotated with a probability of 50% respectively
to enrich the variability of the CT images. During augmentation, the corresponding coor-
dinates of the bounding boxes are updated as well. To enhance the spatial information, we
concatenate one more slice in front of and behind the key slice to get a 2.5D model. This
approach increases the information for the model while being a lot more lightweight than a
3D model.

2.3. Proposed Model

We adopt ideas from different algorithms to tackle the issue of variability of pulmonary
nodules. The two-stage object detection model Faster R-CNN is used, which is hoped to
reduce the ratio of FPs by providing more spatial and contextual information. Fig. 1 shows
the outline of the architecture of the proposed model.

The backbone architecture of the first stage is a combination of U-Net and DPN with skip
connections between the encoding and decoding path to provide more spatial information
and to improve the flow of gradients. Five feature maps of different resolutions are derived
during the decoding process that are fed into a Region Proposal Network (RPN) (Ren et al.,
2017) for the first part of classification and anchor box regression.

ROI Align from Mask R-CNN (He et al., 2017) crops and resizes the regions of interest
from RPN to a fixed resolution. Eventually, two sets of fully connected layers, which
classify nodule or non-nodule, are attached at the end of our network for the second part
of classification and anchor box regression, respectively.
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2.3.1. ENCODER

The encoder is a modified DPN architecture that performs DenseNet and ResNet in parallel.
The model starts with having 64 kernels with a 7x7 convolutional layer and a stride of 2
followed by a 3x3 max pooling layer with a stride of 2 subsequently as an initial block.
Afterwards, there are four more bottleneck blocks (Chen et al., 2017) having 1x1, 3x3 and
1x1 convolutional layers where each convolutional layer is followed by batch normalization
and ReLLU activation. Grouped convolutions on all channels are performed within the 3x3
convolutional layer like in ResNet (Xie et al., 2017).

2.3.2. DECODER

The decoder stages consist of scaling up the feature maps and concatenating or adding
the skip connections in the same encoder stage, where the upsampling starts after scaling
up the feature map, as shown in Fig. 2 (Part A, Type I). This approach is relatively
straightforward and easy to implement since ResNet-like, DenseNet-like or FCNs have only
a single type of operation to combine the different connections, yet, DPN has both of these
operations during encoding. Furthermore, there is no particular guideline indicating how
to connect every stage in a U-Net architecture having DPN as a backbone for decoding.
The implementation of starting the shortcut before the upsampling layer is shown in Fig. 2
(Part B, Type II). Hence, it provides us a discussion space to observe the performance if we
start the shortcut before upsampling and implement both addition and concatenation to
connect with the skip connection as a regular DPN block during decoding. Finally, an extra
3x3 convolutional layer is attached after concatenating or adding the skip connections.

We have implemented two different types of upsampling with DPN blocks as the back-
bone to observe the performance on pulmonary nodule detection. Type I is a regular
upsampling approach and starts the DPN block after upsampling as shown in Fig. 2 (A)
on the left. For Type II, we extract a part of the data stream before upsampling, where
the main data stream is upscaled in resolution by a DPN block. This is done by the 3x3
convolutional layer within the bottleneck in a DPN block with a stride of 2. The detailed
visualization of our proposed upsampling strategy is depicted in Fig. 2 (B), which shows how
the two operations of concatenation and addition interact during encoding and decoding.

Appx. A explains in more detail how our DPN architecture differs from the original to
be less computationally expensive.

2.4. Generating Ground Truth Labels

For training, generating ground truth labels for a single scale feature map in an FPN
architecture is relatively easier than in a multiscale architecture because the mechanisms in
these architectures are fundamentally different. For a single scale architecture, all labels for
classification or regression can be concatenated. However, this approach is impossible for a
multiscale architecture owing to the fact that each scale of an anchor with three different
ratios is performed on one single level of the feature map. The concatenation for training
labels is not applicable because the height and width are different on each level.

For this reason, we vectorized all labels and performed the concatenation on the only
dimension. However, this approach requires a lot more attention to making sure the order
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Figure 2: (A) Upsampling approaches: scaling up the feature map and short-cutting af-
terwards (Type I, left), short-cutting before upsampling with both addition and
concatenation (Type II, right). (B) Encoding (left) and decoding process (right)
on the same network level.

of the labels is valid in the order of how convolution filters are doing windowing on feature
maps from different levels.

For RPN, we mark an anchor as positive if the IoU is more than 0.7 with the ground
truth bounding box and as negative if the IoU is lower than 0.3. Those anchors having
TIoU between these maximum and minimum threshold are considered as neutral, and are
not involved for training. In addition, the regression parameters are only calculated for the
positive anchors because, by nature, there are a lot more negative samples than positive ones,
and we did not want our model to learn too much about the negative samples. Determining
the optimal sizes and ratios of the anchors is discussed in Appx. B.

The sub-network Classifier relies on the prediction of RPN to provide information on
the location of the target. We considered locations as background if the IoU was between
0.3 and 0.5 and foreground if the IoU was greater than 0.5. Only positive samples calculate
the regression parameters in this stage as well.

2.5. Loss Function

Our loss function follows the definition of the multi-task loss function of Faster R-CNN
(Ren et al., 2017):

L(pi, ti) = Zchs (pi, pi) + Ay

Ncls N reg

sz reg(tis t])
3
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It consists of the two parts Ly (for RPN and Classifier) and L;¢, (for RPN), where i is
the index of an anchor in a mini-batch and p; is the predicted probability of anchor . The
ground truth label p} is 1 if the anchor is a positive sample and 0 if negative. ¢; is the four
coordinates of the predicted bounding box and ¢; is that of the ground truth box associated
with a positive anchor.

The classification loss L is a log loss over two classes (object vs. not object) for RPN
and multiple classes for Classifier. For the regression loss L;.4, we used the smooth L1 loss
(Girshick, 2015). The term p!L,¢q calculates the regression loss only for positive anchors
(pf =1). Xis set to 1 since it was proven insensitive in (Ren et al., 2017).

For bounding box regression, we adopted the regression parameters of the 4 coordinates
following (Girshick et al., 2014), where x, y, w, and h denote the box’s center coordinates
and its width and height. The variables z, x,, and z* denote the predicted box, anchor box
and ground truth box respectively (same for y). The parameters are calculated as:

te = (* —2a)/wa  ty=(Y—Ya)/ha tw=log(w/w,) tn=1log(h/ha)
ty = (2" — 24)/wa t; =Y —Ya)/ha ty, =log(w*/w,) tj =log(h*/ha)

2.6. Metric

The free-response receiver operating characteristic (FROC) is one of the standard metrics
in lesion detection (Setio et al., 2017). Its evaluation is performed by measuring the sensi-
tivities (%) with respect to their corresponding average FP rate per scan. TPs and FPs are
determined by thresholding a confidence measure of the predictions. For our evaluations, we
calculate the IoU of the predicted bounding boxes with the ground truth bounding boxes.
If it is larger than 0.5, it represents a TP and an FP otherwise.

2.7. Experimental Setup

For training, we use a weight decay of 1 x 10~%. The initial learning rate 1 x 1073 is reduced
to 1 x 1074 after 5 epochs. Due to time limitations, all models were trained with 15 epochs
on the training dataset. We use Adam as optimizer as well as data augmentation, dropout
and normalization to prevent overfitting. All trainings and tests were performed on Google
Colab Pro (NVIDIA Tesla K80) utilizing Keras 2.3.1 with tensorflow as backend.

3. Results

We implemented three different models as well as state-of-the-art 3D models to compare
the performance. Our baseline model is based on Faster R-CNN with VGG16 as backbone
where the prediction was only performed on the last feature map. The other two models
are our proposed models with the regular upsampling strategy (Type I) and the proposed
upsampling approach (Type II).

Tab. 1 shows the the sensitivities at 1/2, 1, 2, 4, 8 and 16 average FPs per scan to
compare our models and state-of-the-art 3D models. Note that DeepLesion is a universal
lesion dataset. The results from other researches are based on multiple types of lesions,
while Tab. 2 shows the comparison only for pulmonary nodules at 4 average FPs per scan.

The first row of Fig. 3 visualizes the detection results in the official test dataset of
DeepLesion for the baseline model while the second row of Fig. 3 shows the results of the
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Figure 3: Exemplary predictions on the CT slices using VGG16 based Faster-RCNN and
DPN U-Net (Type II).

Table 1: Sensitivities at different FPs per image (multiple lesions).
Sensitivity (%) at FPs

Model 0.5 1 2 4 8 16
Original R-FCN (Yan et al., 2018a) 55.7 67.2 753 822 86.2 89.1
3DCE (Yan et al., 2018a) 624 733 80.7 85.6 89.0 91.0
3DCE_CS_Att (Tao et al., 2019) 714 785 84.0 87.6 90.2 914
VGG16 (baseline) 55.8 66.3 74.7 81.2 84.8 87.5
DPN U-Net, Type I 60.9 713 777 842 87.6 889
DPN U-Net, Type II 64.6 74.1 80.7 853 883 898

proposed model DPN U-Net Type II. Blue, green and red boxes represent the ground truth,
TP and FP boxes respectively, and the number on the top-left corner of the boxes represents
the confidence. We also show some intermediate feature maps in Appx. C for DPN U-Net
Type II.

4. Discussion

From Tab. 1, we see that the average FROC of DPN U-Net Type II yields 80.5%, surpassing
the DPN U-Net Type I with 78.4%, and the baseline model with 75.1%. The baseline model
is a single scale model where the RPN only looks for targets on the same resolution of the
feature map. By looking at Fig. 3, we can see that the baseline model generates more FP
predictions than DPN U-Net Type II on the same CT images in general. Our results show
that multiscale feature maps can help to improve the performance.

Our best result of the proposed model is not surpassing the best result of the 3D model.
3DCE_CS_Att with 21 slices for pulmonary nodule detection achieves a sensitivity of 92%
at 4 FPs while having average FROC of 83.9% for all lesions from DeepLesion. Yet, the
sensitivity of DPN U-Net Type IT at 4 FPs is at 85.3%, which is already quite close to 3SDCE
with 89%. By theory, 3D input provides more contextual information for a deep learning
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Table 2: Sensitivities at 4 FPs per image (pulmonary nodules only).

Model Sensitivity (%) at 4 FPs
3DCE (Yan et al., 2018a) 89.0
3DCE_CS_Att (Tao et al., 2019) 92.0
DPN U-Net Type II (Ours) 85.3

model, yet, it also requires more computational resources. We assume that our model might
approach the performance of the 3D network closer if we make it deeper or wider.

The traditional upsampling approach in Type I might lose some information when up-
sampling, although it has the skip-connection in the same stage. DPN U-Net Type II
intends further to provide more contextual information upon the original structure. The
results show that Type II is an efficient approach to reuse the DPN block and can provide
more contextual information by adding a shortcut connection before upsampling. Further-
more, during the experiment, DPN U-Net Type I and II require a similar computational
time per batch, while the baseline model requires only 50% of the time for computation.
This behavior is expected since DPN consists of more complex operations and structure.

5. Conclusion

This paper proposed a DPN U-Net which takes advantage of multiscale feature maps to
locate pulmonary nodules in various shapes and sizes. Our work shows that the proposed
model DPN U-Net Type II surpasses the results performed by the single-scale feature map
model. Our new approach for upsampling improves the performance of the traditional
upsampling strategy. The proposed model DPN U-Net Type II reuses the DPN block
throughout the whole network, which is an efficient way to explore new potential features
and prevent vanishing gradients by having both operations from ResNet and DenseNet. 2.5D
input is an adequate compensation in terms of contextual information and computational
resources. Although our proposed model DPN U-Net Type II, which yields the best result
at 80.5% in our work, is not surpassing the performance of state-of-the-art 3D-models, our
results show that it still has the potential to be developed further. The sensitivity at 4
FPs of DPN U-Net Type II is at 85.3%, which is already quite close to 3DCE with 89%.
Overall, we assume that the performance of our proposed model might still be improved if
we make the model deeper or wider and train it in more epochs.
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Figure 4: Comparison of losses for two different implementations
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Figure 5: Architecture of our DPN blocks

evaluated how depth and width influence the performance and modified our architecture to
be either deep or wide.

For a wider network, we set the repetitions of the bottleneck in the stages to [4, 4, 4,
4] and base filter numbers and filter increments to [32(48), 64(+8), 128(+8), 256(+8)].
For a deeper network, the repetitions were [8, 8, 8, 8] with base filter numbers and filter
increments of [16(+48), 32(48), 64(48), 128(+8)].

The models were trained on a small subset of 200 CT slices for training and 20 CT
slices for testing. We used the same loss function as in Faster R-CNN. Fig. 4 shows the
comparison of losses for the two different strategies.

The wider model achieves an accuracy 60.3%, opposed to 55.8% for the deeper model
on the test dataset. For this reason, we focused on the width of our network and set the
architecture of our DPN blocks to be like in Fig. 5.
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Figure 6: Distribution of the bounding box metric for ground truth boxes.

Appendix B. Anchor Set Generation

Deciding on the sizes of anchors plays a crucial role in an object detection architecture,
especially in an FPN architecture since there is only one anchor scale with three different
ratios performed on a single resolution of feature maps from different levels. Furthermore,
the entire network relies on the first sub-network RPN using anchors to locate the target.
It provides information about the location of the target for the bounding box regression as
well as for the second part of bounding box regression in the later sub-network Classifier.

A set of poorly designed anchors can lead to very long trainings and affect classification
performance as well. In addition, the anchor sizes are highly dependent on the target sizes
in the training dataset. In other words, anchors which are used in other object detection
models might not be suitable for our data.

In the DeepLesion dataset, ground truth bounding box coordinates are provided as
sequences of (1, y1, T2, y2) in pixel scale according to the original size of CT slices (512x512)
for all pulmonary nodules. A simple bounding box metric (BBM) was calculated as:

BBM = \/(azz —x1) - (y2 — y1)

The distribution of this metric is shown in Fig. 6, where most of the BBMs are between
10 px and 40 px. A grid search was performed on different sets of anchor scales to find an
optimal set. We define positive anchors as those having an IoU above an upper threshold
(> 0.7) and negative anchors as those below a lower threshold (< 0.3). We also compare
with the anchor set [32, 64, 128, 256, 512] that is used in the original paper of Mask R-CNN.
Tab. 3 shows some results this experiment. The set [50, 65, 100, 150, 190] yields the best
result for average positive anchors. Therefore, it is our choice for anchor generation. Like
in (Ding et al., 2017), we use anchor ratios of [0.5, 1, 2] for each anchor scale.

Fig. 7 (a) shows an example of a CT slice, where the red rectangle indicates the ground
truth bounding box. Fig. 7 (b) shows the generated anchor boxes on the CT slice and
Fig 7 (c) shows the anchor box regression during training getting closer to the ground truth
bounding box. Dotted lines indicate the learning process with the yellow box in the center
being the ground truth bounding box.
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Table 3: Average anchors in different scales

Anchor scale Avg. positive anchors ~ Avg. negative anchors
(50, 65, 100, 150, 190] 98.7 157.2
32,64, 128, 256, 512] 31.3 224.6
[10, 20, 50, 60, 70] 2.36 253.5

Figure 7: Visualization of bounding boxes and anchors: (a) ground truth bounding box (b)
generated anchors (c) anchor regression during training.

Appendix C. Visualization of Feature Maps
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Figure 8: P2, P3, P4, P5 and P6 feature maps from DPN U-Net Type II in different stages.
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