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Figure 1: We control a simulated humanoid to grasp diverse objects and follow complex trajectories. (Top):
picking up and holding objects. (Bottom): green dots - reference trajectory; pink dots - object trajectory.

Abstract

We present a method for controlling a simulated humanoid to grasp an object and
move it to follow an object’s trajectory. Due to the challenges in controlling a
humanoid with dexterous hands, prior methods often use a disembodied hand and
only consider vertical lifts or short trajectories. This limited scope hampers their
applicability for object manipulation required for animation and simulation. To
close this gap, we learn a controller that can pick up a large number (>1200) of
objects and carry them to follow randomly generated trajectories. Our key insight
is to leverage a humanoid motion representation that provides human-like motor
skills and significantly speeds up training. Using only simplistic reward, state, and
object representations, our method shows favorable scalability on diverse objects
and trajectories. For training, we do not need a dataset of paired full-body motion
and object trajectories. At test time, we only require the object mesh and desired
trajectories for grasping and transporting. To demonstrate the capabilities of our
method, we show state-of-the-art success rates in following object trajectories and
generalizing to unseen objects. Code and models will be released.
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1 Introduction

Given an object mesh, we aim to control a simulated humanoid equipped with two dexterous hands
to pick up the object and follow plausible trajectories, as shown in Fig.1. This capability could
be broadly applied to creating human-object interactions for animation and AV/VR, with potential
extensions to humanoid robotics [27]. However, controlling a simulated humanoid with dexterous
hands for precise object manipulation poses significant challenges. The bipedal humanoid must
maintain balance to enable detailed movements of the arms and fingers. Moreover, interacting with
objects requires forming stable grasps that accommodate diverse object shapes. Combining these
demands with the inherent difficulties of controlling a humanoid with a high degree of freedom (e.g.
153 DoF) significantly complicates the learning process.

These challenges have led previous methods of simulated grasping to employ a disembodied hand
[16, 17, 61, 85] to grasp and transport. While this approach can generate physically plausible grasps,
employing a floating hand compromises physical realism: the hands’ root position and orientation are
controlled by invisible forces, allowing it to remain nearly perfectly stable during grasping. Moreover,
studying the hand in isolation does not accurately reflect its typical use, which is when it is attached to
a mobile and flexible body. A naive approach to supporting hands is to use existing full-body motion
imitators [42] to provide body control and train additional hand controllers for grasping. However,
the presence of a body introduces instability, limits hand movement, and requires synchronizing
the entire body to facilitate finger motion. State-of-the-art (SOTA) full-body imitators also have an
average 30mm tracking error for the hands, which can cause the humanoid to miss objects. Due to
the above challenges, previous work that studies full-body object manipulations often limits its scope
to only one sequence of object interaction [78] and encounters difficulties in trajectory following [6],
even when trained with highly specialized motion priors.

Another challenge of grasping is the diversity of the object shapes and trajectories. Each object
may require a unique type of grasping, and scaling to thousands of different objects often requires
training procedures such as generalist-specialist training [85] or curriculum [75, 101]. There is
also infinite variability in potential object trajectories, and each trajectory may necessitate precise
full-body coordination. Thus, prior work typically focuses on simple trajectories, such as vertical
lifting [16, 85], or on learning a single, fixed, and pre-recorded trajectory per policy [17]. The
flexibility with which humans manipulate objects to follow various trajectories while holding them
remains unobtainable for current humanoids, even in simulations.

In this work, we introduce a full-body and dexterous humanoid controller capable of picking up
and following diverse object trajectories using Reinforcement Learning (RL). Our proposed method,
Omnigrasp, presents a scalable approach that generalizes to unseen object shapes and trajectories.
Here, “Omni” refers to following any trajectory in all directions within a reasonable range and
grasping diverse objects. Our key insight lies in using a pretrained universal dexterous motion
representation as the action space. Directly training a policy on the joint actuation space using RL
results in unnatural motion and leads to a severe exploration problem. Exploration noise in the torso
can lead to a large deviation in the location of the arm and wrist as the noise propagates through the
kinematic chain. This can lead to the humanoid quickly knocking the object away, which hinders
training progress. Prior work has explored using a separate body and hand latent space trained using
adversarial learning [6]. However, as the adversarial latent space can only cover small-scale and
curated datasets, these methods do not achieve a high grasping success rate. The separation of hands
and body motion prior also adds complexity to the system. We propose using a unified universal and
dexterous humanoid motion latent space [41]. Learned from a large-scale human motion database
[45], our motion representation provides a compact and efficient action space for RL exploration. We
enhance the dexterity of this latent space by incorporating articulated hand motions into the existing
body-only human motion dataset.

Equipped with a universal motion representation, our humanoid controller does not require any
specialized interaction graph [78, 102] to learn human-object interactions. Our input to the policy
consists only of object and trajectory-following information and is devoid of any grasp or reference
body motion. For training, we use randomly generated trajectories and do not require paired full-body
human-object motion data. We also identify the importance of pre-grasps [17] (the hand pose right
before grasping) and utilize it in our reward design. The resulting policy can be directly applied to
transport new objects without additional processing and achieve a SOTA success rate on following
object trajectories captured by Motion Capture (MoCap).
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To summarize, our contributions are: (1) we design a dexterous and universal humanoid motion
representation that signi�cantly increases sample ef�ciency and enables learning to grasp with simple
yet effective state and reward designs; (2) we show that leveraging this motion representation, one can
learn grasping policies with synthetic grasp poses and trajectories, without using any paired full-body
and object motion data. (3) we demonstrate the feasibility of training a humanoid controller that can
achieve a high success rate in grasping objects, following complex trajectories, scaling up to diverse
training objects, and generalizing to unseen objects.

2 Related Works

Simulated Humanoid Control. Simulated humanoids can be used to create animations [26, 36, 54,
55, 56, 57, 80, 94, 102], estimate full-body pose from sensors [23, 30, 33, 40, 43, 79, 92, 93, 95], and
transfer to real humanoid robots [20, 27, 28, 59, 60]. Since there are no ground truth data for joint
actuation and physics simulators are often non-differentiable, model-based control [29], trajectory
optimization [36, 83], and deep RL [13, 54] are used instead of supervised learning. Due to its
�exibility and scalability, deep RL has been popular among efforts in simulated humanoids, where
a policy/controller is trained via trial and error. Most of the previous work on humanoids does not
consider articulated �ngers, except for a few [3, 6, 36, 49]. A dexterous humanoid controller is
essential for humanoids to perform meaningful tasks in simulation and in the real world.

Dexterous Manipulation. Dexterous manipulation is an essential topic in robotics [7, 8, 11, 12, 15,
16, 19, 37, 62, 75, 85, 96, 97, 98] and animation [2, 6, 34, 101]. This task usually involves pick-and-
place [7, 8], lifting [ 75, 85, 97], articulating objects [98], and following prede�ned object trajectories
[6, 9, 17]. Most of these efforts use a disembodied hand for grasping and employ non-physical virtual
forces to control the hand. Among them, D-Grasp [16] leverages the MANO [66] hand model for
physically plausible grasp synthesis and 6DoF target reaching. UniDexGrasp [85] and its followup
[75] use the Shadow Hand [1]. PGDM [17] trains a grasping policy for individual object trajectories
and identi�es pre-grasp initialization (initializing the hand in a pose right before grasping) as a
crucial factor for successful grasping. For the works that consider both hands and body, PMP [3] and
PhysHOI [78] train one policy for each task or object. Braunet al. [6] studies a similar setting to ours
but relies on MoCap human-object interaction data and only uses one hand. Compared to prior work,
Omnigrasptrains one policy to transport diverse objects, supports bimanual motion, and achieves a
high success rate in lifting and object trajectory following.

Kinematic Grasp Synthesis. Synthesizing hand grasp can be widely applied in robotics and
animation. A line of work [5, 10, 10, 18, 21, 38, 47, 51, 84, 89] focuses on reconstructing and
predicting grasp from images or videos, while others [52, 90] study hand grasp generation to help
image generation. Among them, Manipnet and CAMS [99] predict �nger poses given a hand
object trajectory. TOCH [103] and GeneOH [39] denoise dynamic hand pose predictions for object
interactions. More research in this area focuses on generating static or sequential hand poses with a
given object as the condition [31, 70, 88]. For synthesizing body and hand poses jointly, there are
limited MoCap data available [71] due to dif�culties in capturing synchronized full-body and object
trajectories. Some generative methods [22, 35, 69, 72, 73, 82, 91] can create paired human-object
interactions, but they require initialization from the ground truth [22, 69, 82], or only predict static
full-body grasps [73]. In this work, we use GrabNet [70] trained on object shapes from OakInk [86]
to generate hand poses as reward guidance for our policy training.

Humanoid Motion Representation. Due to the high DoF of a humanoid and the sample inef�ciency
of RL training, the search space within which the policy operates during trial and error is crucial.
A more structured action space such as motion primitives [24, 25, 48, 63] or motion latent space
[56, 74] can signi�cantly increase sample ef�ciency since the policy can sample coherent motion
instead of relying on random “jittering” noise. This is especially important for humanoids with
dexterous hands, where the torso motion can drastically affect the hand movement and lead to the
humanoid knocking the object away. Thus, prior work in this space utilizes part-based motion priors
[3, 6] trained on specialized datasets. While effective in the single task setting where the humanoid
only needs to perform actions close to the ones in the specialized datasets, these motion priors can
hardly scale to more free-formed motion, such as following randomly generated object trajectories.
We extend the recently proposed universal humanoid motion representation, PULSE [41], to the
dexterous humanoid setting and demonstrate that a 48-dimensional, full-body-and-hand motion latent
space can be used to pick up and follow randomly generated trajectories.
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Figure 2:Omnigraspis trained in two stages. (a) A universal and dexterous humanoid motion representation is
trained via distillation. (b) Pre-grasp guided grasping training using a pretrained motion representation.

3 Preliminaries

We de�ne the human pose asqt , (� t ; pt ), consisting of 3D joint rotation� t 2 RJ � 6 and position
pt 2 RJ � 3 of all J links on the humanoid (hands and body), using the 6 degree-of-freedom (DOF)
rotation representation [104]. To de�ne velocities_q1:T , we have_qt , (! t ; v t ) as angular! t 2 RJ � 3

and linear velocitiesv t 2 RJ � 3. For objects, we de�ne their 3D trajectoriesqobj
t using object position

pobj
t , orientation� obj

t , linear velocityvobj
t , and angular velocity! obj

t . As a notation convention, we
useb� to denote the kinematic quantities from Motion Capture (MoCap) or trajectory generator and
normal symbols without accents for values from the physics simulation.Ô refers to a dataset of
diverse object meshes.

Goal-conditioned Reinforcement Learning for Humanoid Control. We de�ne the object grasp-
ing and transporting task using the general framework of goal-conditioned RL. Namely, a goal-
conditioned policy� is trained to control a simulated humanoid to grasp an object and follow object
trajectoriesq̂obj

1:T using dexterous hands. The learning task is formulated as a Markov Decision
Process (MDP) de�ned by the tupleM = hS; A ; T ; R ;  i of states, actions, transition dynamics,
reward function, and discount factor. The simulation determines the statest 2 S and transition
dynamicsT , where a policy computes the actiona t . The statest contains the proprioceptionsp

t and
the goal statesg

t . Proprioception is de�ned assp
t , (qt ; _qt ; ct ), which contains the 3D body poseqt ,

velocity _qt , and contact forcesct on the hand. The goal statesg
t is de�ned based on the states of the

objects. When computing the statessg
t andsp

t , all values are normalized with respect to the humanoid
heading (yaw). Based on proprioceptionsp

t and the goal statesg
t , we de�ne a rewardr t = R (sp

t ; sg
t )

for training the policy. We use proximal policy optimization (PPO) [68] to maximize discounted

rewardE
hP T

t =1  t � 1r t

i
. Our humanoid follows the kinematic structure of SMPL-X [53] using the

mean shape. It has 52 joints, of which 51 are actuated. 21 joints are body joints, and the remaining
30 joints are for two hands. All joints have 3 DoF, resulting in an actuation space ofa t 2 R51� 3.
Each degree of freedom is actuated by a proportional derivative (PD) controller, and the actiona t
speci�es the PD target.

4 Omnigrasp: Grasping Diverse Objects and Follow Object Trajectories

To tackle the challenging problem of picking up objects and following diverse trajectories, we
�rst acquire a universal dexterous humanoid motion representation in Sec.4.1. Using this motion
representation, we design a hierarchical RL framework (Sec. 4.2) for grasping objects using simple‡

state and reward designs guided by pre-grasps. Our architecture is visualized in Figure 2.

‡ Here, the “simple reward” refers to not needing paired full-body-and-hand MoCap data when computing the
reward, which increases complexity.
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4.1 PULSE-X: Physics-based Universal Dexterous Humanoid Motion Representation

We introducePULSE-Xthat extends PULSE [41] to the dexterous humanoid by adding articulated
�ngers. We �rst train a humanoid motion imitator [42] that can scale to a large-scale human motion
dataset with �nger motion. Then, we distill the motion imitator into a motion representation using a
variational information bottleneck (similar to a VAE [32]).

Data Augmentation. Since full-body motion datasets that contain �nger motion are rare (e.g., 91%
of the AMASS sequences do not have �nger motion), we �rst augment existing sequences with
articulated �nger motion and construct a dexterous full-body motion dataset. Similarly to the process
in BEDLAM [ 4], we randomly pair full-body motion from AMASS [45] with hand motion sampled
from GRAB [71] and Re:InterHand [50] to create a dexterous AMASS dataset. Intuitively, training
on this dataset increases the dexterity of the imitator and the subsequent motion representation.

PHC-X: Humanoid Motion Imitation with Articulated Fingers . Inspired by PHC [42], we design
PHC-X � PHC-X for humanoid motion imitation with articulated �ngers. For the �nger joints,we
treat them similarly as the rest of the body (e.g. toe or wrist)and �nd this formulation suf�cient to
acquire the dexterity needed for grasping. Formally, the goal state for training� PHC-X with RL is
sg-mimic

t , (�̂ t +1 	 � t ; p̂t +1 � pt ; v̂ t +1 � v t ; !̂ t +1 � ! t ; �̂ t +1 ; p̂t +1 ), which contains the difference
between proprioception and one frame reference poseq̂t +1 .

Learning Motion Representation via Online Distillation. In PULSE [44], an encoderEPULSE-X,
decoderD PULSE-X, and priorP PULSE-X are learned to compress motor skills into a latent representation.
For downstream tasks, the frozen decoder and prior will translate the latent code to joint actuation.
Formally, the encoderEPULSE-X(z t js

p
t ; sg-mimic

t ) computes the latent code distribution based on current
input states. The decoderD PULSE-X(a t js

p
t ; z t ) produces action (joint actuation) based on the latent

codez t . The priorP PULSE-X(z t js
p
t ) de�nes a Gaussian distribution based on proprioception and

replaces the unit Gaussian distribution used in VAEs [32]. The prior increases the expressiveness of
the latent space and guides downstream task learning by forming a residual action space (see Sec.4.2).
We model the encoder and prior distribution as diagonal Gaussian:

EPULSE-X(z t js
p
t ; sg-mimic

t ) = N (z t j� e
t ; � e

t ); P PULSE-X(z t js
p
t ) = N (z t j�

p
t ; � p

t ): (1)

To train the models, we use online distillation similar to DAgger [67] by rolling out the encoder-
decoder in simulation and querying� PHC-X for action labelsaPHC-X

t . For more information and
evaluation of PHC-X and PULSE-X, please refer to the Appendix B.

4.2 Pre-grasp Guided Object Manipulation

Using hierarchical RL andPULSE-X's trained decoderD PULSE-X and priorP PULSE-X, the action
space for our object manipulation policy becomes the latent motion representationz t . Since the
action space serves as a strong human-like motion prior, we can use simple state and reward design
and do not require any paired object and human motion to learn grasping policies. We use only hand
pose before grasping (pregraps), either from a generative method or MoCap, to train our policy.

State. To provide the task policy� Omnigraspwith information about the object and the desired object
trajectory, we de�ne the goal state as

sg
t , (p̂obj

t +1: t + � � pobj
t ; �̂

obj
t +1: t + � 	 � obj

t ; v̂ obj
t +1: t + � � v obj

t ; !̂ obj
t +1: t + � � ! obj

t ; pobj
t ; � obj

t ; � obj; pobj
t � phand

t ); (2)

which contains the reference object pose and the difference between the reference object trajectory for
the next� frames and the current object state.� obj 2 R 512 is the object shape latent code computed
using the canonical object pose and Basis Point Set (BPS) [58]. pobj

t � phand
t is the difference between

the current object position and each hand joint position. All values are normalized with respect to the
humanoid heading. Notice that the statesg

t does not contain body pose, grasp, or phase variables [6],
which makes our method applicable to unseen objects and reference trajectories at test time.

Action. Similar to downstream task policies in PULSE, we form the action space of� Omnigraspas the
residual action with respect to prior's mean� p

t and compute the PD targeta t :

a t = D PULSE-X(� Omnigrasp(z
omnigrasp
t jsp

t ; sg
t ) + � p

t ); (3)
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Algo 1: Learn Omnigrasp

1 Function TrainOmnigrasp( D PULSE-X; P PULSE-X; � Omnigrasp; Ô ; T 3D) :
2 Input: Pretrained PULSE-X's decoderD PULSE-X and priorP PULSE-X, Object mesh dataset̂O , 3D trajectory GeneratorT 3D ;
3 while not convergeddo
4 M  ; initialize sampling memory ;
5 while M not full do
6 qobj

0 ; p̂ pre-grasp; sp
t � randomly sample initial object state, pre-grasp, and humanoid state ;

7 q̂obj
1: T � sample reference object trajectory usingT 3D ;

8 for t  1:::T do
9 z omnigrasp

t � � Omnigrasp(z omnigrasp
t j sp

t ; sg
t ) // use pretrained latent space as action space ;

10 � p
t ; � p

t  P PULSE-X(z t j sp
t ) // compute prior latent code ;

11 a t  D PULSE-X(a t j sp
t ; z omnigrasp

t + � p
t ) // decode action using pretrained decoder ;

12 s t +1  T (s t +1 j s t ; a t ) // simulation ;
13 r t  R (sp

t ; sg
t ) // compute reward ;

14 store(s t ; z omnigrasp
t ; r t ; s t +1 ) into memoryM ;

15 � Omnigrasp PPO update using experiences collected inM ;
16 Ô hard  Eval and pick hard object subset to train on.

17 return � Omnigrasp;

where� p
t is computed by the priorP PULSE-X(z t js

p
t ). The policy� Omnigraspcomputeszomnigrasp

t 2 R 48

instead of the targeta t 2 R 51� 3 directly, and leverages the latent motion representation ofPULSE-X
to produce human-like motion.

Reward. While our policy does not take any grasp guidance or reference body trajectoryas input, we
utilize pre-grasp guidance in thereward. We refer to pre-grasp̂qpre-grasp, (p̂pre-grasp; �̂

pre-grasp
) as a

single frame of hand pose consisting of hand translationp̂pre-graspand rotation̂�
pre-grasp

. PGDM [17]
shows that initializing a �oating hand to pre-grasps can help the policy better reach objects and
initiate manipulation. As we do not initialize the humanoid with the pre-grasp pose as in PGDM, we
design a stepwise pre-grasp reward:

r omnigrasp
t =

8
><

>:

r approach
t ; kp̂pre-grasp� phand

t k2 > 0:2 andt < �
r pre-grasp

t ; kp̂pre-grasp� phand
t k2 � 0:2 andt < �

r obj
t ; t � �;

(4)

based on time and the distance between the object and hands. Here,� = 1 :5s indicates the frame in which
grasping should occur, andphand

t indicates the hand position. When the object is far away from the hands
(kp̂pre-grasp� phand

t k2 > 0:2), we use an approach rewardr approach
t similar to a point-goal [42, 81] reward

r approach
t = kp̂pre-grasp� phand

t k2 � k p̂pre-grasp� phand
t � 1k2 ;, where the policy is encouraged to get close to the

pre-grasp. After the hands are close enough (� 0.2m), we use a more precise hand imitation reward:r pre-grasp
t =

whpe� 100 k p̂ pre-grasp� p hand
t k 2 � 1 fk p̂ pre-grasp� p̂ obj

t k 2 � 0:2g + whre� 100 k �̂ pre-grasp� � hand
t k 2 ; to encourage the hands to be close

to pre-grasps. For grasps that involve only one hand, we use an indicator variable1fk p̂pre-grasp� p̂obj
t k2 � 0:2g

to �lter out hands that are too far away from the object. After timestep� , we use only the object trajectory
following reward:

r obj
t = ( wope� 100 k p̂ obj

t � p obj
t k 2 + wore

� 100 k �̂ obj
t � � obj

t k 2 + wove
� 5k v̂ obj

t � v obj
t k 2 + woave

� 5k !̂ obj
t � ! obj

t k 2 ) � 1 f Cg+ 1f Cg� wc: (5)

r obj
t computes the difference between the current and reference object pose, which is �ltered by an indicator

variable1f Cg that is set to true if the object is in contact with the humanoid hands. The reward1f Cg � wc

encourages the humanoid's hand to have contact with the object. Hyperparameters can be found in Appendix C.

Object 3D Trajectory Generator. As there is a limited number of ground-truth object trajectories [17], either
collected from MoCap or animators, we design a 3D object trajectory generator that can create trajectories with
varying speed and direction. Using the trajectory generator, our policy can be trained without any ground-truth
object trajectories. This strategy provides better coverage of potential object trajectories, and the resulting policy
achieves higher success in following unseen trajectories (see Table 1). Speci�cally, we extend the 2D trajectory
generator used in PACER [65, 76] to 3D, and create our trajectory generatorT 3D(qobj

0 ) = q̂obj
1:T . Given initial

object poseqobj
0 , T 3D can generate a sequence of plausible reference object motionq̂obj

1:T . We limit the z-direction
trajectory to between 0.03m and 1.8m and leave the xy direction unbounded. For more information and sampled
trajectories, please refer to Appendix C.
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Table 1:Quantitative results on object grasp and trajectory following on the GRAB dataset.

GRAB-Goal-Test (Cross-Object, 140 sequences, 5 unseen objects) GRAB-IMoS-Test (Cross-Subject, 92 sequences, 44 objects)

Method Traj Succgrasp" Succtraj " TTR " Epos # E rot # Eacc # Evel # Succgrasp" Succtraj " TTR " Epos # E rot # Eacc # Evel #

PPO-10B Gen 98.4% 55.9% 97.5% 36.4 0.4 21.0 14.5 96.8% 53.2% 97.9% 35.6 0.5 19.6 13.9
PHC [42] MoCap 3.6% 11.4% 81.1% 66.3 0.8 1.5 3.8 0% 3.3% 97.4% 56.5 0.3 1.4 2.9
AMP [57] Gen 90.4% 46.6% 94.0 % 40.7 0.6 5.3 5.3 95.8 % 49.2% 96.5% 34.9 0.5 6.2 6.0
Braunet al. [6] MoCap 79% - 85% - - - - 64% - 65% - - - -

Omnigrasp MoCap 94.6% 84.8% 98.7% 28.0 0.5 4.2 4.3 95.8% 85.4% 99.8% 27.5 0.6 5.0 5.0
Omnigrasp Gen 100% 94.1% 99.6% 30.2 0.93 5.4 4.7 98.9% 90.5% 99.8% 27.9 0.97 6.3 5.4

Training . Our training process is depicted in Algo 1. One of the main sources of performance improvement
for motion imitation is hard-negative mining [42, 43], where the policy is evaluated regularly to �nd the failure
sequences to train on. Thus, instead of using object curriculum [75, 85, 101], we use a simple hard-negative
mining process to pick hard objectŝO hard to train on. Speci�cally, letsj be the number of failed lifts for objectj
over all previous runs. The probability of choosing objectj among all objects isP (j ) = s jP J

i s i
.

Object and Humanoid Initial State Randomization. Since objects can have diverse initial positions and
orientations with respect to the humanoid, it is crucial to have the policy exposed to diverse initial object states.
Given the object dataset̂O and the provided initial states (either from MoCap or by dropping the object in
simulation)qobj

0 , we perturbqobj
0 by adding randomly sampled yaw-direction rotation and adjusting the position

componentqobj
0 . We do not change the pitch and yaw of the object's initial pose as some poses are invalid in

simulation. For the humanoid, we use the initial state from the dataset if provided (e.g. GRAB dataset [71]), and
a standing T-pose if there is no paired data.

Inference. During inference, the object latent codepobj
t , a random object starting poseqobj

0 , and desired object
trajectoryq̂obj

1:T is all that is required, without any dependency on pre-grasps or paired kinematic human pose.

5 Experiments

Datasets. We use the GRAB [71], OakInk [86], and OMOMO [34] to study grasping small and large objects.
The GRAB dataset contains 1.3k paired full-body motion and object trajectories of 50 objects (we remove the
doorknob as it is not movable). Since the GRAB dataset provides reference body and object motion, we use
them to extract initial humanoid positions and pre-grasps. We follow prior art [6] in constructing cross-object
(45 for training and 5 for testing) and cross-subject (9 subjects for training and 1 for testing) train-test sets. On
GRAB, we evaluate on following MoCap object trajectories using the mean body shape humanoid. The OakInk
dataset contains 1700 diverse objects of 32 categories with real-world scanned and generated object meshes. We
split them into 1330 objects for training, 185 for validation, and 185 for testing. Train-test splits are conducted
within categories, with train and test splits containing objects from all categories. Since no paired MoCap human
motion or grasps exists for the OakInk dataset, we use an off-the-shelf grasp generator [86] to create pre-grasps.
The OMOMO dataset contains 15 large objects (table lamps, monitors,etc.) with reconstructed mesh, and we
pick 7 of them that have cleaner meshes. Due to the limited number of objects from OMOMO, we only test
lifting on the objects used for training to verify that our pipeline can learn to move larger objects. On OMOMO
and OakInk, we study vertical lifting (30cm) and holding (3s) as the trajectory for quantitative results.

Implementation Details. Simulation is conducted in Isaac Gym [46], where the policy is run at 30 Hz and
the simulation at 60 Hz. ForPULSE-XandPHC-X, each policy is a 6-layer MLP. For the grasping task, we
employ a GRU [14] based recurrent policy and use a GRU with a latent dimension of 512, followed by a 3-layer
MLP. We trainOmnigraspfor three days collecting around109 samples on a Nvidia A100 GPU.PHC-Xand
PULSE-Xare trained once and frozen, which takes around 1.5 weeks and 3 days. Object density is 1000 kg/m3 .
The static and dynamic friction coef�cients of the object and humanoid �ngers are set to 1. For reference object
trajectory, we use� = 20 future frames sampled at 15Hz. For more details, please refer to Appendix C.

Metrics. For the object trajectory following, we report the position errorEpos (mm), rotation errorE rot (radian),
and physics-based metrics such as acceleration errorEacc (mm/frame2) and velocity errorEvel (mm/frame).
Following prior art in full-body simulated humanoid grasping [6], we report the grasp success rateSuccgraspand
Trajectory Targets Reached (TTR). The grasp success rateSuccgraspdeems a grasp successful when the object is
held for at least 0.5s in the physics simulation without dropping. TTR measures the ratio of the target position
(< 12cm away from the target position) reached over all the time steps in the trajectory and is only measured
on successful trajectories. To measure the complete trajectory success rate, we also reportSucctraj, where a
trajectory following is unsuccessful if, at any point in time, the object is > 25cm away from the reference.
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