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Abstract

Large Language Models (LLMs) have recently001
gained significant interest due to their impres-002
sive results in various natural language tasks.003
However, their application to sentence em-004
beddings is still under active research. In005
this work, we introduce PromptEOL, a sim-006
ple and efficient method designed to enhance007
LLM performance on sentence embeddings008
with a one-word limitation. We further inte-009
grate PromptEOL with in-context learning and010
alignment to leverage LLMs in two settings:011
without fine-tuning and with fine-tuning. Our012
extensive experiments show that PromptEOL013
enables LLMs to generate superior sentence014
embeddings without fine-tuning, outperform-015
ing contrastive learning methods. Addition-016
ally, with fine-tuning, a 2.7B parameter model017
using PromptEOL surpasses the performance018
of a 4.8B parameter model from previous019
methods. We also analyze how scaling model020
parameters, from 125 million to 66 billion, im-021
pacts sentence embedding performance.022

1 Introduction023

Sentence embeddings is a fundamental problem in024

natural language processing, requiring language025

models to project sentences into a vector space026

based on their semantics. Current methods based027

on contrastive learning, such as SimCSE (Gao028

et al., 2021), have successfully leveraged pre-029

trained language models to generate high-quality030

embeddings. A significant amount of research031

has been devoted to refining the contrastive learn-032

ing framework in order to further improve sen-033

tence embeddings (Chuang et al., 2022; Wu et al.,034

2022a,b; Cheng et al., 2023).035

Recently, LLMs, such as GPT-3 (Brown et al.,036

2020) and LLaMA (Touvron et al., 2023a), have037

demonstrated significant potential on various nat-038

ural language processing tasks such as translation,039

question answering, and text classification. Cur-040

rent research has also explored the application of041

LLMs for data augmentation in sentence embed- 042

dings. By generating better sentence pairs for 043

contrastive learning, LLMs can help alleviate the 044

scarcity of labeled data (Cheng et al., 2023; Zhang 045

et al., 2023). However, directly utilizing LLMs 046

to generate sentence embeddings presents two pri- 047

mary challenges. Firstly, LLMs, as autoregressive 048

models, produce text instead of vectors, which ne- 049

cessitates vectorizing the output. Secondly, it is 050

crucial to determine an effective approach for in- 051

corporating the capabilities of in-context learning 052

into sentence embeddings. 053

In this work, we aim to investigate the ca- 054

pabilities of current LLMs for sentence embed- 055

dings, facilitated by the availability of open-source 056

LLMs (Touvron et al., 2023a; Zhang et al., 2022). 057

We address the following research questions: 1) 058

How can LLMs be used to represent sentence 059

embeddings, and does prompt engineering (Jiang 060

et al., 2022) help? 2) Can in-context learning (Liu 061

et al., 2023) enhance the quality of sentence em- 062

beddings? 3) Does the scaling up the model pa- 063

rameters still work when the number of parameters 064

exceeds billions? 065

To address these questions, we conduct a sys- 066

tematic study by evaluating LLaMA (Touvron 067

et al., 2023a) and OPT (Zhang et al., 2022) on 068

both semantic textual similarity (STS) tasks and 069

transfer tasks. Following (Jiang et al., 2022), we 070

utilize a prompt such as This sentence: “ [text] 071

” means to enable LLMs to generate sentence em- 072

beddings, where [text] serves as the input slot. 073

This method outperforms traditional representa- 074

tion methods, such as averaging output tokens to 075

represent sentences. Considering the causal archi- 076

tecture and pretraining tasks of LLMs compared to 077

BERT, we propose a method callled PromptEOL 078

to refine the prompt to generate better representa- 079

tions by instructing LLMs to encapsulate as much 080

semantic information of the sentences as possible 081

within the target token. 082
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Inspired by (Tsukagoshi et al., 2021), which083

uses definition sentences from a word dictionary084

to learn sentence embeddings, we find that per-085

formance can be further improved by adding def-086

inition sentences and corresponding words as ex-087

amples to perform in-context learning. To mit-088

igate the gap between examples and input sen-089

tences, we also use sentences from the STS-B (Cer090

et al., 2017) training set as examples by instruct-091

ing ChatGPT to generate a single word to rep-092

resent the meaning of sentences. By evaluating093

the demonstration examples based on the STS-094

B development set, LLMs can outperform previ-095

ous contrastive learning-based sentence models,096

which were fine-tuned on unsupervised data.097

We scale up the parameters of LLMs in two098

settings: without and with fine-tuning. For the099

settings without fine-tuning, we find that transi-100

tioning from millions to billions of parameters re-101

sults in improvements on STS tasks. However,102

continued scaling may not yield further improve-103

ments. One explanation corresponds to anisotropy104

in embeddings. We note that larger LLMs have105

greater anisotropy, which may limit their perfor-106

mance. For the settings with fine-tuning, since107

anisotropy can be alleviated by contrastive learn-108

ing (Gao et al., 2021), LLMs with tens of billions109

of parameters exhibit strong performance.110

Our main contributions are as follows:111

1. We propose a method called PromptEOL that112

leverages LLMs to enhance the representa-113

tion of sentences. Additionally, we further114

improve it by our in-context learning frame-115

work.116

2. We conduct an analysis of scaling up the pa-117

rameters of LLMs from millions to tens of bil-118

lions in sentence embeddings with and with-119

out fine-tuning.120

3. We propose a method to refine sentence rep-121

resentation with alignment. Based on these122

methods, we achieve 86.76 Spearman corre-123

lation on STS tasks, a 1.8 improvement over124

the previous method.125

2 Related Work126

Sentence Embeddings Sentence embeddings is127

to convert a sentence into a fixed-size vector,128

which captures the semantic meaning and con-129

text of the sentence. It allows for the efficient130

retrieval of similar sentences through the simi- 131

larity between vectors. Recently, SimCSE (Gao 132

et al., 2021) demonstrated that contrastive learn- 133

ing is an effective approach for learning sentence 134

embeddings using BERT. DiffCSE (Chuang et al., 135

2022) incorporates a replaced token detection loss 136

into the contrastive learning framework. Prompt- 137

BERT (Jiang et al., 2022) reveals that prompts 138

can enhance BERT’s ability to represent sentences. 139

Additionally, several studies (Cheng et al., 2023; 140

Zhang et al., 2023) have investigated data aug- 141

mentation for sentence embeddings using LLMs. 142

SentenceT5 (ST5) (Ni et al., 2021) leverages the 143

encoder-decoder structure of models for generat- 144

ing sentence embeddings and demonstrates im- 145

provements by scaling T5 from millions to billions 146

of parameters. However, directly using LLMs to 147

generate sentence embeddings remains an area of 148

ongoing research. 149

Large Language Models LLMs (Zhang et al., 150

2022; Scao et al., 2022; Chowdhery et al., 2022; 151

Touvron et al., 2023a) recently show impressive 152

performance on various natural language process, 153

benefiting from their large parameter sizes com- 154

pared to previous pretrained language models. 155

LLMs can efficiently learn a new task with in- 156

context learning by using training data as demon- 157

strations (Brown et al., 2020). Without any gra- 158

dient updates, LLMs with in-context learning can 159

solve challenging tasks like multitask language 160

understanding (Hendrycks et al., 2020), common- 161

sense reasoning (Lin et al., 2021), and math prob- 162

lems (Cobbe et al., 2021). This performance can 163

be further improved by scaling up language mod- 164

els (Hoffmann et al., 2022; Kaplan et al., 2020). 165

3 Methodology 166

In this section, we first discuss current sentence 167

embeddings methods with LLMs, and then intro- 168

duce a new Prompt-based method with Explicit 169

One word Limitation (PromptEOL) for LLMs in 170

Section 3.1. Based on this method, we describe 171

methods without fine-tuning in Section 3.2 and 172

with fine-tuning in Section 3.3, respectively. 173

3.1 PromptEOL 174

Previous works (Li et al., 2020; Su et al., 2021; 175

Jiang et al., 2022) have extensively studied on im- 176

proving sentence embeddings from encoder-based 177

pretrained models, like BERT without fine-tuning. 178
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Figure 1: Performances of OPT in STS-B development
set with three representation methods. Dash lines rep-
resent the results of BERT.

Recently, PromptBERT (Jiang et al., 2022) lever-179

ages a prompt-based method to represent sentence.180

It uses manual templates like This sentence: “181

[text] ” means [MASK]., where [text] is the182

placeholder for a sentence. The output vector of183

[MASK] token is used as sentence embeddings. It184

demonstrates superior results compared to previ-185

ous sentence representation methods like averag-186

ing output hidden vectors or the output vector of187

[CLS] token.188

Considering to LLMs as autoregression mod-189

els, which do not have special tokens like [CLS]190

or [MASK], we modify the prompt-based method191

in (Jiang et al., 2022) to make it compatible with192

LLMs. We use This sentence: “ [text] ” means193

to prompt LLMs generate next token and ex-194

tract the hidden vectors of the final token as sen-195

tence embeddings. To validate the prompt-based196

method with LLMs, we compare it with two other197

methods, such as averaging or using the last to-198

ken as sentence embeddings. For LLMs, we use199

OPT (Zhang et al., 2022) from 125 million param-200

eters to 66 billions and evaluate it on STS-B de-201

velopment set in Figure 1. Following the results202

in (Jiang et al., 2022), we observe that prompt-203

based method can enhance sentence representation204

across all OPTs, ranging from millions to billions205

parameters. Despite that the previous prompt-206

based method also improved LLMs like OPT on207

sentence representations, OPT still fails to outper-208

form BERT.209

For the bidirectional attention in BERT, we hy-210

pothesize that BERT can implicitly condense the211

entire semantic information corresponding to a212

sentence into a single [MASK] token when using 213

templates like “This sentence: “ [text] ” means 214

[MASK].”. Since the [MASK] token follows a 215

period, this implicitly restricts BERT to explain 216

meaning into one word. However, this template 217

fails to add the similar “one word limitation” when 218

it is used in autoregression models like OPT with 219

unidirectional attention. To validate this, we sim- 220

ply remove the period in template to transfer it into 221

“This sentence: “ [text] ” means [MASK]”. De- 222

spite only one word difference, and no modifica- 223

tion to meaning of the template, the performance 224

of BERT on STS-B development set plummeted 225

from 73.44 to 33.89 Spearman correlation, which 226

means BERT without this implicit “one word lim- 227

itation” fails to represent sentence. 228

Inspired by this, our objective is to enhance 229

prompt-based method for LLMs by introducing 230

a “one word limitation”. We propose a new 231

Prompt-based method with Explicit One word 232

Limitation (PromptEOL) for LLMs. PromptEOL 233

is simple and straightforward by directly adding 234

some tokens in the template to instruct LLMs 235

in predicting the meaning of sentence in one 236

word. The template we used after modification is 237

following: 238

239

This sentence: “ [text] ” means in one word: “ 240

241

Note that the one-word limitation does not 242

mean representing the sentence with a single 243

word. Instead, it encourages the LLM to condense 244

the semantic meaning of the sentence into the 245

hidden state of the next token, which we use as 246

the sentence embedding. We find this template 247

improve all OPT models and allow them to match 248

or even outperform BERT with prompt-based 249

method in Figure 5. 250

3.2 In-context Learning Framework for 251

Sentence Embeddings 252

In-context learning is widely utilized as an effec- 253

tive method to help LLMs understand problems. 254

It improves their comprehension of inputs and out- 255

puts by directly adding a few examples in the 256

prompts. However, when considering the problem 257

of sentence embeddings, we need to project sen- 258

tences into vectors based on their semantic infor- 259

mation, separately. In other word, sentence em- 260

beddings lack textual outputs that could be used 261

as examples to perform in-context learning, such 262
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Figure 2: Distribution of Spearman correlations on the STS-B development set with different in-context learning
demonstrations. The red dash line represents the Spearman correlation of the corresponding model without any
demonstration. The blue area represents demonstrations that negatively impact the performance, and the percentage
refers to the proportion of these demonstrations to the total number of demonstrations.

Figure 3: An illustration of in-context learning based
sentence embeddings. The green sentences denote the
demonstration sentence, and the blue words denote the
demonstration words. The corresponding color blocks
refer to their slots in the template.

as answers for QA problems or labels for text clas-263

sification problems. Moreover, there are also no264

predetermined gold vectors for a given sentence.265

To leverage in-context learning in sentence em-266

beddings, we propose an framework to automati-267

cally build demonstration sets and search demon-268

stration to improve LLMs sentence embeddings in269

Figure 3. For the demonstration set, the goal is270

to create sentence and word pairs, where the word271

can represents the semantic information of the sen-272

tence. We propose two methods to generate pairs.273

The first method involves using ChatGPT to274

generate corresponding words according to the se-275

mantic information of given sentences from STS-276

B training set. By asking ChatGPT with same tem-277

plate in Figure 3, ChatGPT outputs one word sum-278

mary for the given sentence. We also find “one279

word limitation” in Section 3.1 is important for280

ChatGPT. Consider to our prompt-based represen-281

tation method, we employ the hidden state of the 282

next token as the sentence embeddings. By remov- 283

ing in one word from the template, it tends to ex- 284

plain the meaning of a sentence in a lengthy way, 285

and the first word often becomes an article such 286

as “The”, which lacks clear meaning. For exam- 287

ple, given the sentence “A jockey riding a horse.”, 288

the hidden state achieves the highest dot product 289

similarity for “Equestrain” among its word embed- 290

dings. However, without “one word limitation”, 291

it will achieve the highest dot product similarity 292

for word without specific meaning such as “The” 293

among its word embeddings, which can not repre- 294

sent sentence properly. Inspired by DefSent (Tsuk- 295

agoshi et al., 2021), which leverages definition sen- 296

tences with their words as labels to train unsuper- 297

vised sentence embedding, our second method is 298

also based on a word dictionary. We directly use 299

words and their definition sentences in the Oxford 300

dictionary as word-sentence pairs. 301

Based on these methods, we construct a demon- 302

stration set consisting of 400 pairs of sentences 303

and words. 200 pairs are from STS-B training 304

set, with words labeled by ChatGPT, while the 305

remaining are from the Oxford dictionary. To 306

find demonstration that help model to represent 307

sentences, we directly evaluate each demonstra- 308

tion on the STS-B development set and use the 309

demonstration with the best Spearman correlation 310

as the demonstration for corresponding models. 311

We also visualize the distribution of Spearman cor- 312

relations for OPT from 125M to 66B parameters 313
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in Figure 2. Following the previous study (Ka-314

plan et al., 2020), we notice that in-context learn-315

ing achieves better performance, when increasing316

model parameter from 125M to 2.7B. For exam-317

ple, there are only one demonstration that helps318

the 125M OPT achieve better performance com-319

pared to without demonstration. However, around320

98% of demonstrations improve the performance321

of the 2.7B OPT. In-context learning significantly322

enhance the sentence embeddings, especially for323

OPT with more than 1B parameters. With only in-324

context learning, OPT with more than 1.3B param-325

eters even achieve better results on STS tasks com-326

pared to contrastive learning based method like327

SimCSE (Gao et al., 2021) in Table 1.328

3.3 Efficient Fine-tuning with Alignment329

While in-context learning enhancing the per-330

formance of sentence embeddings without fine-331

tuning, we exploit PromptEOL with fine-tuning,332

and notice it also improves performance with con-333

trastive learning in Figure 5.b, which also demon-334

strate the efficient of our representation method.335

To further refine the sentence embeddings, we336

propose a method to align the sentence embed-337

dings with preference sentence pairs, inspired by338

(Rafailov et al., 2023). Compared to contrastive339

learning, which teaches the model to distinguish340

positive and negative sentence pairs, our method341

considers that positive pairs can have different de-342

grees of similarity. For instance, datasets like NLI,343

used in sentence embeddings, treat sentence pairs344

with the entailment label as positive pairs (Gao345

et al., 2021). Some of these positive pairs might346

differ by only a few words, while others may have347

completely different meanings.348

The framework of our alignment method is349

shown in Figure 4. We use a sentence-pair re-350

gression model trained on STS-B as the scoring351

model to choose the preferred positive sentence352

pairs based on the similarity. Compared to sen-353

tence embedding models, this model inputs two354

sentences together and directly outputs the simi-355

larity score, resulting in more accurate similarity356

predictions for sentence pairs. The loss is defined357

as follows:358

LAlign =

log σ

(
β log

simπθ (x3, x4)

simπref (x3, x4)
− β log

simπθ (x1, x2)

simπref (x1, x2)

)
(1)

359

Where πref represents the reference model. πθ de-360

Figure 4: The framework of alignment method for sen-
tence embeddings.

notes the optimal model. We warmup them by us- 361

ing contrastive learning with 500 steps on training 362

data. The term sim refers to the function for com- 363

puting similarity between sentence pairs. x1, x2 364

and x3, x4 are aligned sentence pairs, where re- 365

gression model prefers first pair as indicated by 366

sim(x3, x4) ≻ sim(x1, x2). To choose the pre- 367

ferred positive pairs, we sort the sentence pairs 368

by the similarity score predicted by the regression 369

model and split them into two groups: the first 370

50% as preferred positive pairs and the remaining 371

as rejected positive pairs. 372

4 Experiment 373

4.1 Implementation Details 374

For the setting without fine-tuning, we use OPT 375

from 125M to 66B parameters, and LLaMA from 376

7B to 65B parameters. All models use the same 377

template in Section 3.1. We use 400 pairs of 378

sentences and words as demonstration set for in- 379

context learning. Among these, 200 pairs are 380

from the STS-B training set, and we use gpt- 381

3.5-turbo to label their words. The remaining 382

200 pairs are from the Oxford dictionary. For 383

each model, we choose only one demonstration 384

that has the highest Spearman correlation on the 385

STS-B development set as their demonstration for 386

evaluation. All results from models with 16-bit 387

weights. We also present results using quantiza- 388

tion methods in Appendix A. For the setting with 389

fine-tuning, we following the LoRA settings in 390

QLoRA (Dettmers et al., 2023) and train models 391

on NLI datasets following (Gao et al., 2021) with 392

one epoch for contrastive learning. We use the 393

same training data with roberta-large fine-tuned 394

on STS-B training set as preference model. More 395

training details can be found in Appendix B. For 396

the evaluation datasets, we use 7 STS tasks and 7 397

transfer tasks following (Gao et al., 2021). 398
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Without fine-tuning

BERT avg.† 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT prompt‡ 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ST5-Enc§ 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02

OPT avg. 6.7B 42.52 50.46 44.36 58.18 54.78 44.43 53.13 49.69
OPT last. 6.7B 32.02 45.60 31.08 53.97 66.58 44.21 50.08 46.22
OPT prompt 6.7B 45.56 71.22 52.53 62.96 70.67 54.83 56.21 59.14

PromptEOL
OPT

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

PromptEOL+ICL
OPT

125M 62.22 73.10 61.84 71.09 72.08 67.80 64.10 67.46
350M 63.87 73.85 63.41 72.45 73.13 70.84 65.61 69.02
1.3B 72.78 83.77 73.61 83.42 80.60 78.80 69.69 77.52
2.7B 68.49 84.72 75.15 83.62 81.34 80.94 72.97 78.18
6.7B 70.65 84.51 75.01 83.51 82.00 81.12 76.77 79.08
13B 71.99 85.22 76.04 82.23 81.38 81.42 75.00 79.04
30B 69.99 83.35 74.75 83.14 82.42 81.45 77.46 78.94
66B 69.93 83.29 74.88 80.10 81.11 81.76 76.26 78.19

Table 1: Performances of our method on STS tasks without fine-tuning. ICL denotes in-context learning with our
demonstration set. †: results from (Gao et al., 2021). ‡: results from (Jiang et al., 2022). §: results from (Ni et al.,
2021). More results on other LLMs can be found in Appendix E.

4.2 Main Results399

We compare our method with BERT-based meth-400

ods such as SBERT (Reimers and Gurevych,401

2019), SimCSE (Gao et al., 2021), and Prompt-402

BERT (Jiang et al., 2022). In addition, we in-403

clude other sentence methods based on LLMs404

as baselines, such as ST5 (Ni et al., 2021) and405

SGPT (Muennighoff, 2022). Among these base-406

lines, ST5 achieves state-of-the-art results on both407

STS and transfer learning tasks by further fine-408

tuning 4.8B parameters T5 encoder with con-409

trastive learning.410

STS tasks without fine-tuning Table 1 shows411

the results of PromptEOL with and without in-412

context learning on STS tasks. PromptEOL signif-413

icantly outperforms other sentence representation414

methods by better leveraging the capabilities of415

LLMs to express sentence semantics. Compared416

to the previous prompt-based method, PromptEOL417

achieves more than a 13-point improvement in418

average Spearman correlation in the 6.7B OPT.419

In-context learning further improves the quality420

of sentence embeddings based on PromptEOL. It421

helps 6.7B OPT achieve 79.08 spearman correla- 422

tion without fine-tuning, which significantly out- 423

perfoms the previous methods like ST5-Enc or 424

BERT prompt. Moreover, it demonstrates that 425

LLMs without any fine tuning have great poten- 426

tial to represent sentences based on their semantics 427

into embeddings for retrieval purposes. 428

STS tasks with fine-tuning Table 2 shows the re- 429

sults by fine-tuning with PromptEOL on the super- 430

vised dataset. Compared to ST5-Enc, which fine- 431

tuned all 4.8B parameters on Community QA and 432

NLI datasets, our method with 2.7B OPT achieves 433

superior results through parameter-efficient fine 434

tuning on the 4-bit model with only NLI datasets. 435

Keep scaling up the parameters size, 30B LLaMA 436

achieve the best performance on STS tasks, attain- 437

ing a Spearman correlation of 86.24 on STS tasks. 438

Moreover, we also report the results of LLaMA- 439

2 (Touvron et al., 2023b) on Appendix C and ob- 440

serve it performs better performance than LLaMA. 441

For the alignment method, we fine-tune the 442

7B, 13B, and 30B LLaMA models with the 443

same data. Our alignment method enhances 444
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Fine-tuning on supervised datasets

SimCSE-RoBERTa† 123M 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
PromptRoBERTa‡ 123M 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95
SGPT¶ 5.8B 74.28 85.35 79.21 85.52 82.54 85.50 79.53 81.70
ST5-Enc§ 4.8B 80.10 88.75 84.70 88.86 85.17 86.77 80.39 84.96

PromptEOL+CSE
OPT

1.3B 79.01 89.26 84.10 88.30 84.62 87.71 80.52 84.79
2.7B 79.49 89.64 84.80 89.51 85.91 88.33 81.64 85.62
6.7B 80.14 90.02 84.94 89.78 85.84 88.75 81.29 85.82
13B 80.20 90.24 85.34 89.52 85.90 88.56 82.06 85.97

PromptEOL+CSE
LLaMA

7B 79.16 90.22 85.40 88.99 86.25 88.37 81.51 85.70
13B 78.63 90.03 85.46 89.48 86.18 88.45 82.69 85.85
30B 79.72 90.25 85.85 90.04 86.27 89.14 82.38 86.24

PromptEOL+Align
LLaMA

7B 79.75 90.73 86.14 89.35 86.93 88.39 82.84 86.30
13B 79.49 90.34 86.00 89.71 86.86 88.38 83.46 86.32
30B 80.17 91.03 86.78 90.15 87.16 89.10 82.93 86.76

Table 2: Performances of our method on STS tasks with fine-tuning. CSE denotes contrastive learning for sentence
embeddings. †: results from (Gao et al., 2021). §: results from (Ni et al., 2021). ¶: results from evaluation the
public checkpoint (Muennighoff, 2022) on STS tasks.

Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

Fine-tuning on supervised datasets

SimCSE-RoBERTa† 123M 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
PromptRoBERTa‡ 123M 85.74 91.47 94.81 90.93 92.53 90.40 77.10 89.00
ST5-Enc§ 4.8B 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Without fine-tuning

BERT avg. 110M 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
ST5-Enc§ 4.8B 91.15 93.33 97.55 90.20 94.07 94.40 74.26 90.71

PromptEOL
OPT

1.3B 88.06 91.55 95.90 91.55 93.08 95.00 73.97 89.87
2.7B 88.83 92.29 95.93 91.76 94.62 96.00 75.94 90.77
6.7B 90.26 92.50 96.67 91.39 94.67 96.00 77.91 91.34
13B 90.73 92.90 96.69 91.48 94.01 96.80 75.59 91.17
30B 90.95 92.77 96.99 91.79 95.28 97.00 73.97 91.25
66B 90.96 93.40 97.01 91.93 95.22 96.40 75.25 91.45

PromptEOL
LLaMA

7B 90.40 92.90 96.88 91.57 95.11 95.40 75.13 91.06
13B 92.02 93.22 97.29 91.40 95.66 95.80 76.46 91.69
30B 91.64 93.27 97.10 91.86 95.99 95.80 78.43 92.01
65B 92.13 93.43 97.16 91.91 95.33 97.40 77.28 92.09

Table 3: Performances of our method on transfer learning tasks. †: results from (Gao et al., 2021). ‡: results
from (Jiang et al., 2022). §: results from (Ni et al., 2021).

the performance of all models on STS tasks.445

Even though PromptEOL+CSE already outper-446

forms other methods, our alignment method still447

provides additional improvements.448

Transfer tasks We report the results of our449

method on the transfer learning tasks in Table 3.450

We observe that LLMs achieve better performance451

as the model size increases. Specifically, the 66B452

OPT and 65B LLaMA models outperform their453

smaller counterparts with PromptEOL. 454

5 Analysis 455

5.1 Sentence Representation Methods 456

We present the results obtained using three sen- 457

tence representation methods, across models rang- 458

ing in size from 125M to 66B parameters, as 459

shown in Figure 5. Different representation 460

7



Figure 5: Influence of different sentence representation methods on three settings. “avg.” refers to use averag-
ing output tokens as sentence embeddings. “prompt” refers to extract sentence embeddings using the template
from (Jiang et al., 2022) . Dash lines represent the results from the base-size BERT.

methods can yield significantly different results.461

Prompt-based methods outperform direct averag-462

ing in three settings. Among these methods,463

PromptEOL exhibits the best performance, as it in-464

troduces an explicit “one-word limitation”. More465

detail results can be found in Appendix D.466

5.2 Scaling on Sentence Embeddings467

Scaling up the model size can significantly im-468

prove the performance of sentence embeddings, as469

shown in Table 2 and 3. But we also notice that the470

STS performance without fine-tuning is not scal-471

ing with the model size, as shown in Table 1.472

Consider the STS tasks, which require sen-473

tence embeddings to satisfy two criteria: first,474

they must contain the semantic information of the475

sentence; second, semantically similar sentences476

should have small distances in the embedding477

space. For the first criterion, we observe that larger478

models achieve better performance on transfer479

tasks, indicating that the embeddings from larger480

models can capture more information about the481

sentence. However, for the second criterion, scal-482

ing up can be counterproductive. To validate this483

point, we calculate the anisotropy of the sentence484

embeddings from different models, as shown in485

Figure 6. We find that the anisotropy of the sen-486

tence embeddings increases as the model size in-487

creases. This demonstrates that larger models488

exhibit more anisotropy in the embedding space,489

causing the embeddings to have smaller distances490

even with random sentences. For the setting with491

fine-tuning, we can use techniques such as con-492

trastive learning to mitigate the anisotropy of the493

embeddings (Gao et al., 2021) and achieve bet-494

ter performance on STS tasks by scaling up. For495

the setting without fine-tuning, since we do not496

Figure 6: Anisotropy of sentence embeddings in dif-
ferent model sizes of OPT. The anisotropy is the aver-
age similarity of 100k random sentence pairs from the
Wikipedia corpus.

directly address anisotropy, the performance of 497

larger models can sometimes be limited by the 498

anisotropy of the embeddings. 499

6 Conclusion 500

In this paper, we focus on exploiting LLMs to 501

improve sentence embeddings. To achieve this, 502

we propose a new sentence embeddings method 503

called PromptEOL, which adapts previous prompt- 504

based methods to autoregression models. Further- 505

more, we leverage in-context learning to generate 506

superior sentence embeddings by utilizing Chat- 507

GPT and the Oxford dictionary to create sentence 508

embeddings demonstrations. It demonstrates in- 509

context learning allows LLMs to achieve perfor- 510

mance comparable to current contrastive learning 511

methods. With our prompt-based method, we 512

also discover that further fine-tuning of LLMs 513

can achieve the state-of-the-art performance using 514

only efficient fine-tuning methods. 515

8



7 Limitation516

Despite LLMs with PromptEOL exhibiting ro-517

bust performance, it typically demands more com-518

putational resources than smaller language mod-519

els. Nevertheless, PromptEOL remains an effi-520

cient sentence embeddings method, which outper-521

forms previous methods such as ST5 with signifi-522

cantly fewer model parameters and fine-tuning re-523

sources. Limited by the hardware, we only scale524

the LLMs to 30B parameters with QLoRA for the525

setting of fine-tuning. We expect that performance526

could be further enhanced with full fine-tuning or527

larger models.528
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A Influence of Quantization 698

We analyze the influence of quantization in Table 4 between the 16bit models and 4bit models, which are 699

quantized by bitsandbytes 1 with 4-bit normalfloat and double quantization. We find large models tend 700

to show better results on STS tasks after 4-bit quantization. For example, PromptEOL+ICL with 6.7B 701

OPT improve Spearman correlation from 79.08 to 79.38. 702

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL
OPT(16-bit)

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

PromptEOL
OPT(4-bit)

125M 60.53 70.03 59.02 69.77 72.38 66.47 65.17 66.20
350M 58.03 72.61 61.34 66.14 72.99 67.27 65.10 66.21
1.3B 63.72 79.32 68.13 77.92 78.56 72.03 68.80 72.64
2.7B 57.80 72.45 61.09 73.33 76.22 64.71 64.07 67.10
6.7B 63.81 81.45 69.90 77.68 80.92 75.51 69.28 74.08
13B 60.91 80.97 70.22 76.93 79.46 72.84 66.34 72.52
30B 59.33 79.65 69.25 73.87 77.79 71.72 69.07 71.53
66B 59.35 77.33 68.33 74.45 77.25 73.93 69.27 71.42

PromptEOL+ICL
OPT(16-bit)

125M 62.22 73.10 61.84 71.09 72.08 67.80 64.10 67.46
350M 63.87 73.85 63.41 72.45 73.13 70.84 65.61 69.02
1.3B 72.78 83.77 73.61 83.42 80.60 78.80 69.69 77.52
2.7B 68.49 84.72 75.15 83.62 81.34 80.94 72.97 78.18
6.7B 70.65 84.51 75.01 83.51 82.00 81.12 76.77 79.08
13B 71.99 85.22 76.04 82.23 81.38 81.42 75.00 79.04
30B 69.99 83.35 74.75 83.14 82.42 81.45 77.46 78.94
66B 69.93 83.29 74.88 80.10 81.11 81.76 76.26 78.19

PromptEOL+ICL
OPT(4-bit)

125M 61.02 71.00 59.75 69.67 70.52 65.14 63.45 65.79
350M 64.14 72.45 62.58 71.05 70.18 67.67 65.52 67.66
1.3B 73.45 82.55 73.11 83.63 80.60 78.72 69.06 77.30
2.7B 68.50 84.73 74.62 82.23 80.87 80.81 72.30 77.72
6.7B 70.23 84.64 76.08 83.73 82.06 81.66 77.29 79.38
13B 71.79 84.23 75.57 81.75 80.71 80.89 74.46 78.49
30B 70.61 84.05 75.27 83.23 82.77 81.45 77.31 79.24
66B 71.67 83.95 75.67 81.33 81.86 82.58 76.54 79.09

Table 4: Influence of quantization on STS tasks. ICL denotes in-context learning with our demonstration set.

1https://github.com/TimDettmers/bitsandbytes
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B Training Details703

We use QLoRA to fine-tune OPT and LLaMA with contrastive learning. Following QLoRA, we use704

LoRA r = 64, α = 16, dropout = 0.05, and add LoRA modules on all linear layers of the 4-bit quantized705

model. We fine-tune models on the NLI datasets (Gao et al., 2021) with one epoch, temperature τ = 0.05706

and learning rate 5e-4. We report the training time and inferencee time in Table 5.707

Model size Train (minutes) Inference (ms/sample)

SimCSE (110M) 8 0.57

350M 11 1.09
1.3B 22 1.31
2.7B 40 2.55
6.7B 75 8.07
13B 150 14.53

Table 5: Training time and inference time of different model sizes. Inference time is measured on a single GPU
with 8 batch size.

C Results of PromptEOL+CSE on LLaMA2708

We report the results on LLaMA-2(Touvron et al., 2023b) on Table 6.709

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL+CSE
LLaMA

7B 79.16 90.22 85.40 88.99 86.25 88.37 81.51 85.70
13B 78.63 90.03 85.46 89.48 86.18 88.45 82.69 85.85

PromptEOL+CSE
LLaMA-2

7B 78.48 90.07 84.86 89.43 86.16 88.44 83.20 85.81
13B 78.84 90.35 85.88 89.72 86.68 88.91 82.64 86.15

Table 6: Influence of quantization on STS tasks. ICL denotes in-context learning with our demonstration set.
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D Sentence Representation Methods 710

We supplemented detail results in Table 7 and 8 for different sentence representation methods. 711

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Without fine-tuning

OPT avg.

125M 44.27 50.38 44.95 62.39 55.52 45.39 53.24 50.88
350M 40.61 47.25 40.45 55.12 55.57 40.53 47.66 46.74
1.3B 45.12 54.01 46.52 62.94 55.96 46.31 54.32 52.17
2.7B 44.11 54.35 47.89 63.91 57.02 47.85 54.44 52.80
6.7B 43.61 51.69 45.86 60.11 55.41 45.42 54.93 51.00
13B 46.95 54.92 48.74 60.13 54.96 48.07 53.93 52.53
30B 43.93 52.44 46.04 58.80 55.15 47.13 53.46 50.99
66B 40.81 47.98 44.21 59.37 56.37 43.80 53.19 49.39

OPT prompt

125M 56.25 71.61 58.62 63.47 70.29 59.77 63.23 63.32
350M 56.56 69.27 55.81 60.05 68.73 61.75 64.15 62.33
1.3B 60.26 75.64 62.93 70.63 76.52 67.31 65.95 68.46
2.7B 59.34 75.47 62.64 69.76 75.65 68.35 67.48 68.38
6.7B 55.20 76.91 62.53 69.41 76.39 67.33 65.86 67.66
13B 49.60 75.43 61.58 67.33 75.53 65.98 63.79 65.61
30B 46.69 72.42 58.00 67.52 72.98 64.77 65.66 64.01
66B 50.21 69.65 56.78 70.20 73.37 64.31 66.93 64.49

PromptEOL
OPT

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

Fine-tuning on unsupervised datasets

OPT avg.

125M 74.08 82.70 77.76 83.65 79.74 82.43 78.55 79.84
350M 74.07 83.78 78.06 84.62 80.70 83.93 78.61 80.54
1.3B 75.38 84.99 80.34 86.10 81.49 84.35 79.98 81.80
2.7B 75.31 85.66 80.73 86.71 81.84 84.92 79.66 82.12
6.7B 76.02 86.22 81.30 87.07 82.54 85.28 80.53 82.71
13B 75.86 86.32 80.73 86.25 82.13 85.55 79.62 82.35

OPT prompt

125M 76.05 85.24 79.82 85.27 81.30 84.56 79.09 81.62
350M 76.28 86.01 80.96 86.13 81.87 85.33 79.73 82.33
1.3B 78.56 89.21 84.21 88.71 84.17 87.39 81.16 84.77
2.7B 78.89 89.21 84.43 89.43 85.75 88.07 81.40 85.31
6.7B 78.66 89.81 84.45 89.70 85.71 88.63 81.79 85.54
13B 79.66 89.84 84.88 89.54 85.59 88.65 81.93 85.73

PromptEOL
OPT

125M 76.53 85.56 79.75 85.43 81.17 84.32 79.04 81.69
350M 75.96 85.51 81.32 86.50 81.42 85.24 80.35 82.33
1.3B 79.01 89.26 84.10 88.30 84.62 87.71 80.52 84.79
2.7B 79.49 89.64 84.80 89.51 85.91 88.33 81.64 85.62
6.7B 80.14 90.02 84.94 89.78 85.84 88.75 81.29 85.82
13B 80.20 90.24 85.34 89.52 85.90 88.56 82.06 85.97

Table 7: Comparison of three sentence representation methods on STS tasks.
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Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

OPT avg.

125M 80.63 86.41 93.91 87.85 86.22 92.60 71.83 85.64
350M 80.73 85.16 93.42 87.26 86.11 87.80 69.57 84.29
1.3B 85.89 90.04 95.71 90.10 91.38 94.20 72.99 88.62
2.7B 87.55 90.76 95.78 90.26 91.71 94.40 68.00 88.35
6.7B 87.93 91.07 96.58 90.65 92.70 96.20 72.17 89.61
13B 88.33 91.76 96.74 90.78 93.25 95.20 70.90 89.57
30B 88.54 92.11 96.85 90.61 93.74 94.40 70.72 89.57
66B 89.17 92.00 96.86 90.80 94.67 96.40 71.07 90.14

OPT prompt

125M 83.54 87.60 94.28 89.36 88.74 91.60 67.01 86.02
350M 80.99 84.08 93.30 89.38 86.88 88.80 60.99 83.49
1.3B 87.31 90.68 95.73 91.30 93.47 94.40 72.99 89.41
2.7B 88.58 91.60 96.22 91.36 93.90 95.80 70.96 89.77
6.7B 90.55 92.21 97.09 91.31 95.06 96.60 74.90 91.10
13B 90.45 92.66 96.85 91.57 95.44 96.00 74.55 91.07
30B 90.56 92.79 97.28 91.93 94.78 96.00 72.93 90.90
66B 90.95 92.48 97.27 91.72 95.55 95.80 75.30 91.30

PromptEOL
OPT

125M 80.86 87.66 93.19 89.77 87.31 92.20 72.64 86.23
350M 84.14 88.08 93.17 89.77 89.73 91.20 71.36 86.78
1.3B 88.06 91.55 95.90 91.55 93.08 95.00 73.97 89.87
2.7B 88.83 92.29 95.93 91.76 94.62 96.00 75.94 90.77
6.7B 90.26 92.50 96.67 91.39 94.67 96.00 77.91 91.34
13B 90.73 92.90 96.69 91.48 94.01 96.80 75.59 91.17
30B 90.95 92.77 96.99 91.79 95.28 97.00 73.97 91.25
66B 90.96 93.40 97.01 91.93 95.22 96.40 75.25 91.45

Table 8: Comparison of three sentence representation methods on STS tasks.
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E Resulst of PromptEOL and PromptEOL+ICL on Current Popular LLMs 712

We supplemented results of STS tasks with PromptEOL and PromptEOL+ICL in Table 9 on current 713

popular LLMs include open-LLaMA (Geng and Liu, 2023), LLaMA (Touvron et al., 2023a), LLaMA- 714

2 (Touvron et al., 2023b), MPT (MosaicML, 2023), Mistral (Jiang et al., 2023). 715

Params Avg. Prompt PromptEOL PromptEOL+ICL

Open-LLaMA

3B 51.75 66.45 68.22 78.85
7B 52.03 63.40 76.35 79.17
13B 49.58 64.11 70.03 78.04

LLaMA

7B 46.94 42.18 68.76 77.63
13B 47.53 48.73 65.62 73.40
30B 50.70 47.10 70.60 77.61
65B 44.80 51.69 69.39 75.73

LLaMA-2

7B 46.34 45.87 69.30 75.99
13B 49.07 58.80 68.87 78.31
70B 44.34 45.14 70.90 74.97

MPT

7B 49.39 57.25 71.06 79.08
30B 42.31 54.45 71.08 75.74

Mistral

7B 49.32 66.23 73.32 78.35

Table 9: Results of PromptEOL and PromptEOL+ICL on current popular LLMs. We report averaging Spear-
man correlation over seven STS tasks with four sentence representation methods: avg., prompt, PromptEOL and
PromptEOL+ICL. “Avg.” refers to use averaging output tokens as sentence embeddings. “Prompt” refers to extract
sentencne embeddings using the template from (Jiang et al., 2022). For simplicity, we do not search demonstra-
tion for PromptEOL+ICL but use the best demonstration from the PromptEOL+ICL OPT directly. We expect that
PromptEOL+ICL can achieve better results by searching for demonstrations according to the model.
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