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Abstract

The post-processing approaches are becoming prominent techniques to enhance machine
learning models’ fairness because of their intuitiveness, low computational cost, and excellent
scalability. However, most existing post-processing methods are designed for task-specific
fairness measures and are limited to single-output models. In this paper, we introduce a
post-processing method for multi-output models, such as the ones used for multi-task/multi-
class classification and representation learning, to enhance a model’s distributional parity,
a task-agnostic fairness measure. Existing techniques to achieve distributional parity are
based on the (inverse) cumulative density function of a model’s output, which is limited to
single-output models. Extending previous works, our method employs an optimal transport
mapping to move a model’s outputs across different groups towards their empirical Wasserstein
barycenter. An approximation technique is applied to reduce the complexity of computing
the exact barycenter and a kernel regression method is proposed for extending this process
to out-of-sample data. Our empirical studies, which compare our method to current existing
post-processing baselines on multi-task/multi-class classification and representation learning
tasks, demonstrate the effectiveness of the proposed approach.

1 Introduction

In machine learning, multi-output learning is a broadly defined domain (Xu et al., 2019; Liu et al., 2018),
where the goal is to simultaneously predict multiple outputs given an input, such as multi-label classification,
multi-class classification, multi-target regression, etc. In contrast to conventional single-output learning like
binary classification, multi-output learning is characterized by its multi-variate nature, whose outputs exhibit
rich information for further handling. Multi-output learning is important for real-world decision-making
where final decisions are made by considering and weighting multiple factors and criteria. For example, when
applied to college admission, the predicted multi-outputs can represent a prospective student’s likelihoods
of accepting the offer, needing financial aid, completing the degree, finding a job at graduation, etc. Those
outputs are weighted to guide admission decisions though the weights may vary with colleges, majors and
years (Jaschik, 2023).

However, multi-output learning for decision-making faces the challenge of bias and fairness. There is
plenty of evidence indicating the discriminatory impact of ML-based decision-making on individuals and
groups (O’neil, 2017; Datta et al., 2014; Bolukbasi et al., 2016; Barocas & Selbst, 2016; Raji & Buolamwini,
2019), such as racial bias in assessing the risk of recidivism (Flores et al., 2016) and gender bias in job
advertising (Simonite, 2015). To mitigate the bias in machine learning, numerous fairness criteria and
algorithms have been proposed (Corbett-Davies et al., 2017; Barocas et al., 2023). These methods introduce
statistical constraints during training or post-process the predictions to ensure fair treatment in accordance
with corresponding fairness notions such as Demographic Parity (Calders et al., 2009; Chuang & Mroueh,
2021), Equality of Odds or Equal Opportunity (Hardt et al., 2016; Awasthi et al., 2020), Strong Demographic
Parity (Agarwal et al., 2019; Jiang et al., 2020) and AUC fairness (Vogel et al., 2021; Yang et al., 2023; Yao
et al., 2023). Nevertheless, almost all existing methods focus on ensuring fairness for binary classification or
regression within the context of single-output models. Extending fairness to multi-output settings, such as
multi-label/multi-class classification and representation learning remains underexplored and non-trivial.
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Figure 1: Suppose the original model’s outputs (left) minimize prediction error and have a good performance,
one can balance performance and fairness by applying our method with setting α = 0.5 (middle) or achieve
exact fairness by setting α = 0 (right).

A naive approach for multi-output fairness is to apply an existing fairness-enhancing algorithm for single-
output models to each output individually. However, removing unfairness in each output may not help
reduce the unfairness in the joint distribution of the outputs. Consider a model with two outputs, with the
distributions for two groups shown in Figure 1 (left). The outputs have the same marginal distribution in
both groups, so each dimension of the outputs is considered to be fair under any notion of fairness. However,
the outputs have very different joint distributions for different groups, leading to potential unfairness. For
example, suppose Output1 and Output2 denote the likelihood of accepting the offer and completing the
degree in a college admission procedure, then when a college requires outputs are higher than 0.45 and 0.6
respectively (shown in dot lines in Figure 1), it leads to only students in group 1 being admitted. In this
paper, we propose a post-processing method to enhance fairness of multi-output models on multi-group
data by producing a similar distribution of the multi-dimensional outputs on each group with minimal
manipulation(i.e., minimal mean squared error compared with original outputs). Before discussing details,
we present a 2D example in Figure 1.

Measuring fairness based on the distribution of the multi-dimenstional outputs on each group leads to a
strong notion called Statistical Parity or Strong Demographic Parity, which has been studied recently for
single-output problems in literature (Agarwal et al., 2019; Jiang et al., 2020; Chzhen et al., 2020; Hu et al.,
2023). We apply the same notion to multi-output problems and call it Distributional Parity (Definition 1).
However, extending this kind of fairness from single-output problems to multi-output problems is non-trivial
due to some technical and practical issues: (1) what is the optimal fair predictor for multi-output problems,
which achieves Distributional Parity while preserving accuracy best; (2) empirically, how to compute the
theoretical optimal fair predictor with only a set of observed data; (3) practically, how to generalize the
post-processing method from training data to out-of-sample test data. Our approach addresses the mentioned
challenges and our main contributions are summarized below:

• Following Gouic et al. (2020); Chzhen et al. (2020); Chzhen & Schreuder (2022), we derive a post-processing
method by projecting a multi-output model to a constraint set defined by a fairness inequality that promotes
distributional parity among multiple groups up to a user-specified tolerance of unfairness. We generalize
the closed-form solution of the projection by Chzhen et al. (2020); Chzhen & Schreuder (2022) from
single-output case to multi-output case using the optimal transport mappings to the Wasserstein barycenter
of the model’s outputs on each group.

• The aforementioned closed form involves the density function of the model’s outputs, which is unknown in
practice. Although it can be approximated using training samples, the computation cost of the Wasserstein
barycenter is still prohibitively high. To address this issue, we propose to replace the barycenter in the
closed form by a low-cost approximate barycenter from Lindheim (2023) using training data. Additionally,
we propose a kernel regression approach to extrapolate the closed-form solution, so the post-processing
method can be applied to any out-of-sample data.

• The proposed method is task-agnostic and model-agnostic. Numerical experiments are conducted to
compare our method with existing post-processing techniques on multi-label/multi-class classification and
representation learning. The result demonstrates the effectiveness of our method.
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2 Related work

The existing methods to achieve algorithmic fairness include three primary categories: 1) pre-processing
methods that exclude sensitive features from data prior to training machine learning models (Dwork et al.,
2012; du Pin Calmon et al., 2018; Kamiran & Calders, 2012; d’Alessandro et al., 2017); 2) in-processing
methods, which attain fairness during the training phase of the learning model (Agarwal et al., 2018; Goh
et al., 2016; Zhang et al., 2018; Kim et al., 2019; Hong & Yang, 2021; Du et al., 2021; Mo et al., 2021; Yao
et al., 2023); and 3) post-processing methods designed to alleviate unfairness in the model inferences after
the learning process (Hardt et al., 2016; Lipton et al., 2018; Cui et al., 2023; Petersen et al., 2021; Lohia
et al., 2019; Xian et al., 2023). The pre-processing methods are inadequate if the sensitive information can
be inferred from the remaining variables. The in-processing methods have high computational cost since
they typically require re-training a model when the tolerance of unfairness changes. Our method belongs
to the last category, which can be directly applicable to any pre-trained model and thus avoids the high
computational cost from re-training a model.

This work is motivated by Gouic et al. (2020); Chzhen et al. (2020); Chzhen & Schreuder (2022) where
task-agnostic post-processing methods are developed on the empirical cumulative density function and the
quantile function of the output, which is limited to single-output models. We extend their approaches for
multi-output models using the optimal transport mappings to the barycenter of the model’s outputs on
different groups. Different from their methods, we approximate the barycenter to reduce the computational
cost and apply kernel regression to extend our post-processing method to any new data.

There also exist post-processing methods for specific machine learning tasks. For example, assuming a Bayes
optimal score function is available, the group thresholding methods by Gaucher et al. (2023); Chzhen et al.
(2019); Schreuder & Chzhen (2021); Zeng et al. (2022) are developed for single-task binary classification. A
similar thresholding method has been developed by Denis et al. (2021) for multi-class classification where
the thresholds are computed using the Lagrangian multipliers of the demographic parity constraints. The
method by Xian et al. (2023) is also for multi-class classification where the output of the score function is
mapped a class label by the optimal transport mapping to a Wasserstein barycenter with restricted supports.
Compared to these works, the method in this paper is task-agnostic and can be applied to multi-task learning
and (self-supervised) representation learning. Hu et al. (2023) developed an approach to enforce strong
demographic parity in multi-task learning including both regression and binary classification tasks. Their
method essentially applies the single-output method by Gouic et al. (2020); Chzhen et al. (2020) to each task
separately, which may not guarantee the distributional parity in this paper. See the example in Figure 1.
Though there is a large number of literature working on learning representations independent of sensitive
attributes, they achieve this by adversarial training (Zhang et al., 2018; Kim et al., 2019; Xie et al., 2017;
Madras et al., 2018; Beutel et al., 2017) or variational auto-encoders (Zhang et al., 2018; Amini et al., 2019;
Louizos et al., 2015; Sarhan et al., 2020; Quadrianto et al., 2019), which are mostly in-processing methods
and thus have higher computational cost than our method in general.

The multi-output fairness problem in this paper is closely related to compositional fairness introduced in
Dwork & Ilvento (2018), which highlights that individually fair classifiers may not compose into fair systems.
While Dwork & Ilvento (2018) focuses on categorical outputs, we examine continuous output distributions.
Since categorical outputs often result from thresholding or softmax on continuous outputs, compositional
fairness is a special case of multi-output fairness, and our method can directly address it.

3 Preliminaries

We consider a general multi-output machine learning problem, e.g., multi-output classification, multi-output
regression and representation learning. Let (X, S) be a random vector, where X ∈ Rd is the feature vector
and S ∈ S is a sensitive attribute. It is assumed that S = [m] := {1, ..., m}. A sample from the distribution of
(X, S) is denoted by (x, s). We denote by f∗ : Rd × S → Rk a machine learning model learned to generate a
k-dimensional output. For example, f∗ can be a multi-task regression model to predict a vector of continuous
values, a multi-class/multi-task classification model that returns the probability of each class/task, or a
feature extractor that outputs a high-dimensional vector of an input data such as an image.
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The focus of this work is not to train the model f∗. Assuming f∗ is already obtained, this paper studies
how to measure and improve its fairness using a post-processing method to modify the output f∗(X, S).
More specifically, given f∗, we consider a numerical approach for building a mapping f : Rd × S → Rk that
approximates f∗ but produces an output f(X, S) more fair than f∗(X, S). Here, the approximation error is
measured by

R(f) = E∥f∗(X, S) − f(X, S)∥2
2. (1)

If f∗ performs well for the task it was built for and the performance metric is continuous, a small R(f) also
ensures f has a reasonably good performance, too.

3.1 Distributional Parity

Many existing definitions and measures of fairness in literature are task-specific including, for example,
demographic parity, equalized odds and equal opportunity (Dwork et al., 2012; Hardt et al., 2016), which are
specific to classification problems. In order to be task-agnostic and model-agnostic, we are interested in the
fairness measure that is applied to the distribution of f(X, S) and f∗(X, S). A measure of this kind is the
strong demographic parity introduced by Agarwal et al. (2019); Jiang et al. (2020); Chzhen et al. (2020), which
essentially indicates that a model f(x, s) is fair only when f(X, s) has the same distribution for any s ∈ S.
Although they only consider a single-output model, their fairness measure also applies to the multi-output
case. Next we present their fairness measure formally with the name multi-output distributional parity. This
new name helps differentiate it from the traditional demographic parity for binary classification (Calders
et al., 2009).
Definition 1 (Multi-output Distributional Parity) A measurable mapping f : Rd × S → Rk satisfies distribu-
tional parity if, for every s, s′ ∈ S, f(X, s) and f(X, s′) have the same distribution.

Consider a joint distribution of (X, S, Y ) where Y ∈ Rp is a target vector. In the setting of a single-task
binary classification, we have k = 1, p = 1 and Y ∈ {1, −1} is the true class label. Then the model
f(X, S) ∈ R typically represents a score/probability of positivity, which is used to predict Y by comparing
f(X, S) with a threshold θ, namely, the predicted label Ŷ generated as Ŷ = 1 if f(X, S) ≥ θ and Ŷ = −1
if f(X, S) < θ. The traditional demographic parity (Calders et al., 2009; Dwork et al., 2012) holds if
P(Ŷ = 1|S = s) = P(Ŷ = 1|S = s′) ∀s, s′ ∈ S. Obviously, when f satisfies distributional parity, it satisfies
demographic parity for any threshold θ. In fact, this is still true for multi-task binary classification problems,
where p = k > 1 and Y ∈ {1, −1}k.
The notion of demographic parity has been extended for the multi-class classification problem, where k > 1,
p = 1 and Y ∈ [k] (Xian et al., 2023). In this case, each coordinate of f(X, S) represents the score of one
class in [k] and the predicted label is typically generated as Ŷ = arg maxl∈[k] fl(X, S). According to Xian
et al. (2023), a model satisfies demographic parity when

P(Ŷ = y|S = s) = P(Ŷ = y|S = s′) ∀s, s′ ∈ S, y ∈ [k], (2)

which is clearly implied by distributional parity.

3.2 Wasserstein Distance and Wasserstein Barycenters of Discrete Distributions

It is challenging and, sometimes, unnecessary to obtain a model f that exactly satisfies the distributional parity
in Definition 1. In practice, a model slightly violating Definition 1 can be acceptable for some applications.
To quantify the extent to which a model f satisfies the distributional parity, a statistical distance is often
introduced to measure the difference between the distributions of f(X, s) and f(X, s′) for any s and s′ in S.
Following the literature (Chzhen et al., 2020; Gouic et al., 2020), we utilize the Wasserstein distance that
conveys the distinction between probability measures by quantifying the expense associated with transforming
one probability measure into another.
Definition 2 (Wasserstein-2 distance). Let µ and ν be two probability measures on Rk with finite second
moments. The squared Wasserstein-2 distance between µ and ν is defined as

W2
2 (µ, ν) = inf

γ∈Γµ,ν

∫
Rk×Rk

∥x − y∥2
2dγ(x, y) (3)
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where Γµ,ν is the set of probability measures on Rk × Rk such that its marginal distributions are equal
to µ and ν, i.e., for all γ ∈ Γµ,ν and all measurable sets A, B ⊂ Rk it holds that γ(A × Rk) = µ(A) and
γ(Rk × B) = ν(B).

Suppose probability measures µ and ν both have density functions and the infimum in (3) is obtained at
γ∗. There exists a mapping Tµ,ν : Rk → Rk such that γ∗ = (Id, Tµ,ν)#µ, where # denotes the pushforward
operator on measures and Id denotes the identity mapping (Santambrogio, 2015). Here, Tµ,ν is known as
the optimal transport mapping from µ to ν. With the Wasserstein distance, we can characterize the
geometric average of finitely many probability distributions by the Wasserstein-2 barycenter, which will be
later used in the measure of unfairness considered in this paper.
Definition 3 For probability measures ν1, . . . , νm and p1, . . . , pm such that pi > 0,

∑m
i=1 pi = 1, the weighted

Wasserstein-2 barycenter is given by

ν∗ = arg min
ν

{
Ψ(ν) :=

m∑
i=1

piW2
2 (νi, ν)

}
(4)

3.3 Post-processing with Distributional Parity Constraint

Let ps = P(S = s) and νf |s be the probability distribution of f(X, S) conditioning on S = s for s ∈ S.
Following Chzhen & Schreuder (2022), we then measure the unfairness of model f by the sum of the weighted
distances between νf |s to their weighted Wasserstein-2 barycenters, namely,

U(f) = min
ν

∑
s∈S

psW2
2 (νf |s, ν). (5)

As Wasserstein-2 distance serves as a distance metric on the space of probability distributions,
W2

2 (νf |s, νf |s′) = 0 if and only if νf |s = νf |s′ (Kwegyir-Aggrey et al., 2023; Peyré et al., 2017). Hence,
U(f) = 0 if and only if for any s, s′ ∈ S, νf |s = νf |s′ , satisfying the distributional parity. However, when
some level of unfairness is allowed, we only need to ensure U(f) ≤ αU(f∗), where α ∈ [0, 1] represent the
tolerance of unfairness in terms of the fraction of the unfairness of f∗. Like Chzhen & Schreuder (2022);
Kwegyir-Aggrey et al. (2023), we consider the post-processing problem with distributional parity constraint
as follows:

min
f

R(f) s.t. U(f) ≤ αU(f∗), (6)

where R(f) is defined in (1).

4 Structure of Optimal Solution

Problem (6) has been thoroughly studied by Chzhen et al. (2020); Chzhen & Schreuder (2022) under the
setting that f is a single-output model. They provide an intuitive closed form of the optimal solution of (6)
for any α ∈ [0, 1] using the cumulative density function (CDF) of νf∗|s for each s. As they only focus on a
single-output model, we extend their results to the multi-output case with some modifications in their proofs.
We present the extension of their results in this section and highlight the main difference.

When α = 0 in (6), the optimal solution of (6) can be characterized by the following theorem.
Theorem 1 Suppose νf∗|s has density and finite second moments for each s ∈ S. Then

min
U(f)=0

R(f) = min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) = U(f∗). (7)

Moreover, if f0 and ν0 solve the first and second minimization in (7), respectively, then ν0 is the distribution
of f0 and

f0(x, s) = Tf∗|s,ν0 (f∗(x, s)) (8)

where Tf∗|s,ν0 : Rk → Rk is the optimal transport mapping from νf∗|s to ν0.
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By Definition 3, ν0 solving the second minimization in (7) is the barycenter of {νf∗|s}s∈S . This suggests a
post-processing method by transporting the output f∗(X, S) when S = s to that barycenter.
When k = 1, Theorem 1 is reduced to the structural results obtained by Chzhen et al. (2020); Gouic et al.
(2020) (see, e.g., Theorem 2.3 in Chzhen et al. (2020)). Indeed, when k = 1,

Tf∗|s,ν0 (f∗(x, s)) =
∑
s′∈S

ps′ Qf∗|s′ ◦ Ff∗|s(f∗(x, s)), (9)

where Ff∗|s is the CDF of νf∗|s and Qf∗|s is the quantile function of νf∗|s, i.e., Qf∗|s(t) = inf{y ∈ R :
Ff∗|s(y) ≥ t}.

In practice, when some level of unfairness is acceptable, one can select α > 0 in (6). When α = 1, f = f∗ is
the optimal solution. When α ∈ (0, 1), a closed form of the optimal solution for (6) is derived by Chzhen
& Schreuder (2022); Kwegyir-Aggrey et al. (2023). Although they are originally studied only under the
single-output case, the same result holds for a multi-output model by almost the same proof. This closed
form is presented in the following proposition, which motivates the way of trading off the error and fairness
in our post-processing method in the next section.
Proposition 1 (Proposition 4.1 in Chzhen & Schreuder (2022)) Suppose νf∗|s has density and finite second
moments for each s ∈ S. For any α ∈ [0, 1], the optimal solution to (6), denoted by fα, satisfies (up to a
zero-measure set)

fα(x, s) =
√

αf∗(x, s) + (1 −
√

α)f0(x, s), (10)
where f0 is defined in Eq. (8).

5 Fair Post-Processing with Finite Samples

Theorem 1 and Proposition 1 only characterize the optimal solution to (6) when νf∗|s has density. However,
in practice, we only have access to a finite set of outputs of f∗, denoted by {f∗(xi, si)}n

i=1, where {(xi, si)}n
i=1

is a dataset sampled from the distribution of (X, S). 1 As a result, we are not able to compute ν0 and Tf∗|s,ν0

exactly and apply (10). To address this issue when k = 1, a plug-in principle is applied by replacing ps,
Ff∗|s(t), and Qf∗|s(t) in (9) using their empirical approximation based on finite data sample (Chzhen et al.,
2020; Gouic et al., 2020). Because f∗ is a multi-output mapping in our case, (9) is not applicable. In the
following, we present how to employ the plug-in principle by approximating ν0 and Tf∗|s,ν0 in (8) by finite
data sample.

5.1 Optimal Transportation with Finite Samples

Consider approximating ν0 and Tf∗|s,ν0 by a collection of datasets Ds = {(xs
i , s)}ns

i=1 for s ∈ S. We denote the
empirical distribution of f∗ on Ds by νf∗(Ds), i.e., νf∗(Ds) = 1

ns

∑ns

i=1 δf∗(xs
i
,s) for s ∈ S, where δ is the Dirac

measure. Consider two discrete distributions in Rk: µ =
∑nµ

i=1 pµ
i δξµ

i
and ν =

∑nν

i=1 pν
i δξν

i
, where ξµ

i ∈ Rk,
ξν

i ∈ Rk, pµ
i > 0, pν

i > 0,
∑nµ

i=1 pµ
i = 1 and

∑nν

i=1 pν
i = 1. As a special case of (3), the squared Wasserstein-2

distance between µ and ν is

W2
2 (µ, ν) = min

γ∈Rnµ×nν
+

nµ∑
i=1

nν∑
j=1

cijγij s.t.
nν∑
i=1

γij = pµ
i , ∀j,

nµ∑
j=1

γij = pν
i , ∀i. (11)

where cij = ∥ξµ
i − ξν

j ∥2
2 and γij represents the mass located ξµ

i transported to ξν
j in order to move distribution

µ to ν. Also, γ can be viewed as a discrete distribution in Rk ×Rk supported on (ξµ
i , ξν

j ) for j = 1, ..., nµ and
i = 1, ..., nν . Suppose γ∗ ∈ Rnµ×nν

+ is the optimal solution of (11). The optimal transportation from µ to ν
and from ν to µ, denoted by Tµ,ν and Tν,µ respectively, are random mappings such that

P(Tµ,ν(ξµ
i ) = ξν

j ) =
γ∗

ij

pµ
i

, P(Tν,µ(ξν
j ) = ξµ

i ) =
γ∗

ij

pν
j

, (12)

1The technique we propose is model-agnostic and can be applied directly to the outputs {f∗(xi, si)}n
i=1, so it does not require

knowing {(xi, si)}n
i=1.

6



Under review as submission to TMLR

Algorithm 1 Approximate Barycenter
1: Input: A mapping f∗ : Rd × S → Rk and a dataset D = {(xi, si)}n

i=1 sampled from the distribution of
(X, S).

2: Partition D into subsets based on s and obtain Ds = {(xs
i , s)}ns

i=1 for s ∈ S.
3: Let ps = ns∑

s′∈S
ns′

for s ∈ S.
4: for 1 ≤ s < s′ ≤ |S| do
5: Solve (11) with µ = νf∗(Ds) and ν = νf∗(Ds′ ) to obtain Ts,s′ = Tνf∗(Ds),νf∗(D

s′ ) .
6: end for
7: Construct mapping M(f∗(xs

i , s)) =
∑

s′∈S ps′ETs,s′(f∗(xs
i , s))

8: Output: Discrete distribution ν̃0 =
∑

s∈S
∑ns

i=1
ps

ns
δM(f∗(xs

i
,s)).

for j = 1, ..., nµ and i = 1, ..., nν .

With W2
2 (µ, ν) given in (11), the barycenter of discrete distributions νi for i = 1, . . . , m is also defined as

the solution of (4). Since νf∗(Ds) is the discrete approximation of νf∗|s, we propose to approximate ν0 in
Theorem 1 by the barycenter of {νf∗|s}s∈S with the weights ps = ns∑

s′∈S
ns′

. Unfortunately, Wasserstein
barycenters are NP-hard to compute (Altschuler & Boix-Adsera, 2022). Although (4) can be formulated
as a multi-marginal optimal transport problem (Agueh & Carlier, 2011) and solved as a linear program
(Anderes et al., 2016), its computational complexity scales exponentially in terms of m. To reduce the
exponential computing complexity, instead of computing the barycenter exactly, we adopt the approach by
Lindheim (2023) to construct its approximation. This approach achieves a good balance between runtime
and approximation error in practice. We present this approach in the next section.

5.2 Approximate Barycenter with Finite Samples

The approach by Lindheim (2023) first computes the optimal transport mapping between νf∗(Ds) to νf∗(D′
s)

for each pair of s and s′ in S, i.e., Tνf∗(Ds),νf∗(D
s′ ) satisfying (12). For simplicity of notation, we denote

Tνf∗(Ds),νf∗(D
s′ ) by Ts,s′ . Then, they define a mapping M(f∗(xs

i , s)) =
∑

s′∈S ps′ETs,s′(f∗(xs
i , s)), where

ps = ns/(
∑

s′∈S ns′) and the expectation is taken over the random output of Ts,s′ following distribution in
(12). Here, M(f∗(xs

i , s)) is the weight average of the expected outcomes after transporting f∗(xs
i , s) to each

of the |S| distributions. Finally, the approximate barycenter is constructed as a discrete distribution with∑
s∈S ns supports defined as follows ν̃0 =

∑
s∈S

∑ns

i=1
ps

ns
δM(f∗(xs

i
,s)). Compared to the exact barycenter, this

approximation requires solving |S|(|S| − 1)/2 optimal transport mapping between two discrete distributions
and thus has a polynomial time complexity. This procedure is formally stated in Algorithm 1.

Let m = |S| and νs = νf∗(Ds) in (4). Let ν̂0 be optimal solution of (4), i.e, the barycenter of {νf∗(Ds)}s∈S .
It is shown by Lindheim (2023) that Ψ(ν̃0)/Ψ(ν̂0) ≤ 2. This bound is significant because there is no
polynomial-time algorithm can achieve a ratio arbitrarily close to one with high probability (Altschuler &
Boix-Adsera, 2022).
Although Proposition 1 is derived for continuous distribution, it motivates a heuristic post-processing method
to update the output f∗(xs

i , s) to

f̃α(xs
i , s) :=

√
αf∗(xs

i , s) + (1 −
√

α)Tνf∗(Ds),ν̃0 (f∗(xs
i , s)) (13)

for i = 1, . . . , ns and s ∈ S, where α ∈ [0, 1]. Note that Tνf∗(Ds),ν̃0 is not obtained during Algorithm 1 and
needs to be solved separately. When α = 0 and (xs

i , s) is uniformly randomly sampled from Ds, f̃α(xs
i , s) has

the same distribution for any s, indicating the post-processed outputs satisfy distributional parity. However,
(13) is only defined for existing data in Ds for s ∈ S. In the next section, we propose a method to extend
this processing scheme to new samples from (X, S).

7
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Algorithm 2 Post-Processing Method by Transporting to Approximate Barycenter (TAB)
1: Input: A data point (x, s) ∈ Rd × S, a mapping f∗ : Rd × S → Rk and a dataset D = {(xi, si)}n

i=1
sampled from the distribution of (X, S).

2: Partition D into subsets based on s and obtain Ds = {(xs
i , s)}ns

i=1 for s ∈ S.
3: Compute ν̃0 by Algorithm 1.
4: for s = 1, . . . , |S| do
5: Solve (11) with µ = νf∗(Ds) and ν = ν̃0 to obtain Tνf∗(Ds),ν̃0 .
6: end for
7: if (x, s) ∈ Ds then compute f̃α(x, s) as in (13) else compute f̃α(x, s) as in (15).
8: Output: f̃α(x, s)

5.3 Post-Process Out-of-Sample Data

Note that f̃α(xs
i , s) is defined for (xs

i , s) ∈ Ds only because the optimal transport mapping Tνf∗(Ds),ν̃0 in (13) is
only defined on f∗(xs

i , s) with (xs
i , s) ∈ Ds. To extend the definition of f̃α(xs

i , s) from Ds to any (x, s) ∈ Rd×S,
we extrapolate Tνf∗(Ds),ν̃0 over Rk using the Nadaraya-Watson kernel regression method (Nadaraya, 1964).

Let K : Rk → R+ be a kernel function satisfying K(z) = K(−z)and
∫
Rk K(z)dz = 1. Let h > 0 be a

bandwidth. For any (x, s) ∈ Rd × S, the kernel regression estimator of Tνf∗(Ds),ν̃0(f∗(x, s)) is

T̃νf∗(Ds),ν̃0 (f∗(x, s)) :=
ns∑

i=1

K ((f∗(x, s) − f∗(xs
i , s))/h) Tνf∗(Ds),ν̃0 (f∗(xs

i , s))∑ns

i=j
K
(
(f∗(x, s) − f∗(xs

j , s))/h
) (14)

Recall that Tνf∗(Ds),ν̃0 is a randomly mapping (see (12)), so is T̃νf∗(Ds),ν̃0 . We show in the lemma below that,
if h approaches zero and the out-of-sample data comes from the distribution of (X, S), the violation of the
distributional parity after post-processing is bounded by the distance between empirical distribution and
ground-truth distribution.

Lemma 1 lim
h→0

U(f̄(X, S)) = O

(∑
s∈S

W2
2 (νf∗|s, νf∗(Ds))

)
, where f̄(x, s) := T̃νf∗(Ds),ν̃0(f∗(x, s)).

After extrapolating Tνf∗(Ds),ν̃0 to T̃νf∗(Ds),ν̃0 defined above, we can extend (13) for any out-of-sample data by
updating f∗(x, s) to

f̃α(x, s) :=
√

αf∗(x, s) + (1 −
√

α)T̃νf∗(Ds),ν̃0 (f∗(x, s)). (15)

We then formally present this post-processing method in Algorithm 2. Note that when (x, s) ∈ Ds, we still
apply the original mapping in (13) instead of its extrapolation (15).

6 Experiments

In this section, we apply the proposed post-processing method to machine learning models with multiple
outputs, including multi-label/multi-class classification and representation learning.

Datasets. In our experiments, we include four datasets from various domains, including marketing do-
main(Customer dataset 2), medical diagnosis( Chexpert Dataset (Irvin et al., 2019)), face recognition (CelebA
dataset (Liu et al., 2015) and UTKFace datasetZhang & Qi (2017)). The details of these datasets are provided
in Appendix B.

Baselines and Settings. To verify the effectiveness, we compare our method with existing post-processing
techniques: Hu et al. (2023) (Hu et al., 2023), the only method in the literature for multi-label classification,
and Xian et al (2023) (Xian et al., 2023), the superior of the only two available approaches for multi-class
classification. Due to the limited post-processing methods in the literature for multi-output problems, we also
incorporate an in-processing method, Adversarial Debiasing(Adv Debiasing) (Zhang et al., 2018), which can

2https://www.kaggle.com/datasets/kaushiksuresh147/customer-segmentation
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Figure 2: Multi-label classification on CelebA dataset (a) and Chexpert dataset (b); (c) Multi-class classifica-
tion on Customer dataset.

be extended for postprocessing. Specifically, for Adv Debiasing, both Predictor Block and Adversary Block
are implemented by a two-layer neural network with 128 hidden units and tanh function, respectively. And
they are trained for 60 epochs with Adam optimizer, batch size as 64 and learning rate as {1e-3, 1e-4}. Since
we are going to show the trade-off between classification performance and distributional fairness, we vary
their weight parameter α in { 0.1, 1, 2, 4, 8, 10}. For our method, we experiment with a Gaussian kernel and
h is chosen from {0.02, 0.5, 1} based on input dimension, as smaller h theoretically and empirically leads to
better performance but too small h may lead to numerical issues. We vary α for our method in {0, 0.2, 0.4,
0.6, 0.8, 1.0}. All the experiments are run five times with different seeds.

6.1 Multi-label classification

For multi-label classification tasks, we experiment on CelebA dataset and Chexpert dataset. Firstly, one
ResNet50 (He et al., 2016) and one DenseNet121 (Huang et al., 2017) and are trained on the CelebA and
Chexpert data respectively, then post-processing methods are applied to the predicted probabilities of each
task. We compare our method with Adv Debiasing and the post-processing method Hu et al. (2023) (Hu
et al., 2023), which essentially independently applies the post-processing method for a single-output model in
Gouic et al. (2020); Chzhen et al. (2020); Chzhen & Schreuder (2022) to each coordinate of the output of a
multi-task classification model. As their method also balances fairness and classification performance, we
vary parameter α for their method in {0, 0.2, 0.4, 0.6, 0.8, 1.0}. The results are summarized in Fig. 2(a)
and 2(b). We can observe that, at the same level of accuracy, our method achieves much lower unfairness
than baselines. This can be seen more clearly on the left end of the curves where the unfairness is close to
zero. On CheXpert dataset, although Adv Debiasing may achieve smaller unfairness, it brings a significant
undesirable performance decrease.

6.2 Multi-class classification

To verify the effectiveness of our proposed method on multi-class classification tasks, we apply our method
to the customer dataset. A classic multi-class logistic regression model is built first on the training data
and then post-processing methods are applied to the predicted probabilities of each class. We compare our
method with Xian et al (2023) (Xian et al., 2023) and Adv Debiasing. Note that method Xian et al (2023)
directly produces the class labels instead of score function, so we can only perform the comparison on the
classification accuracy and the unfairness based on Equation 2, which is in favor of their method. Following
their paper, the parameter α for Xian et al. (2023) are in {1, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01,
0.008, 0.006, 0.004, 0.002, 0.001, 0.0.}. We present the result in Fig. 2(c). From that figure, we can see that
our method achieves a better balance between accuracy and unfairness than baselines, especially when a
higher level of fairness is desired. We also find that Adv Debiasing fails to achieve small fairness in this case
even when it dramatically decreases accuracy.
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Figure 3: t-SNE visualization of representations on CelebA dataset. (a) Raw representations from an SSL
model; (b) Representations after post-processing(α = 0) by Hu et al. (2023); (c) Representations after
post-processing(α = 0) with TAB(Ours); (d) Performance on downstream tasks.
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Figure 4: t-SNE visualization of representations on UTKface Dataset. (a) Raw representations from a CLIP
model; (b) Representations after post-processing(α = 0) with Hu et al. (2023); (c) Representations after
post-processing(α = 0) with TAB(Ours); (d) Performance on downstream tasks.

6.3 Representation learning

In this part, we explore the fair representation learning for self-supervised learning(SSL) models and large
pre-trained foundation models. We experiment on CelebA dataset and UTKFace dataset. Due to the scarcity
of the postprocessing methods for representation learning in existing literature, we still compare our method
with the post-processing method Hu et al. (2023) (Hu et al., 2023) and Adv Debiasing. For CelebA dataset,
we first train an SSL model to learn representations with a dimension of 128, by employing the algorithm
proposed in Yuan et al. (2022) on the whole training dataset. Then we apply post-processing methods to
eliminate the sensitive information in the raw representations. Specifically, for Adv Debiasing, we utilize the
raw representations as the labels for the Predictor as there is no task-specific labels in self-supervised learning.
In other words, we aim for the model to remove sensitive information while altering the raw representation as
minimally as possible. With processed representations, we also build a multi-label logistic regression model
to evaluate the performance on downstream tasks. For UTKFace dataset, raw representations are generated
by a released CLIP(ViT-B/16) model (Radford et al., 2021) which is pre-trained on 400M text-image pairs,
with a dimension of 512.

We evaluate the unfairness of the representations as well as the accuracy performance of the downstream
tasks. The results are summarized in Fig. 3 and 4. By examining the representations of Fig. 3(a) and 4(a),
it’s evident that both the SSL model and CLIP model disclose sensitive attributes prominently. Even after
applying post-processing techniques proposed in Hu et al. (2023) (Hu et al., 2023), this exposure persists,
as depicted in Fig. 3(b) and Fig. 4(b). However, through our proposed methods illustrated in Fig. 3(c)
and Fig. 4(c), we are able to achieve fairer representations with respect to sensitive groups. Notably, from
Fig. 3(d) and 4(d), we can observe that our method achieves a tradeoff between downstream performance
and distributional parity, whereas Hu et al. (2023) (Hu et al., 2023) fails to improve the distributional
parity because, as discussed in Fig. 1, the elimination of unfairness in individual outputs may not necessarily
mitigate unfairness in the joint distribution of outputs.
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7 Conclusion and Discussion

In this paper, we have proposed a post-processing method to enhance fairness for multi-output machine
learning models, which is underexplored in the literature. Our approach employs an optimal transport to
move a model’s outputs across different groups towards their empirical Wasserstein barycenter to achieve the
model’s distributional parity. We have developed an approximation technique to reduce the complexity of
computing the exact barycenter and a kernel regression method for extending this process to out-of-sample
data. Extensive experimental results on multi-label/multi-class classification and representation learning
demonstrate the effectiveness of our method.

One limitation of this work is that the notion of fairness in Definition 1 we pursue is strong while a weak
notion such as (2) might be sufficient for some specific applications. To achieve a stronger sense of fairness
may lead to more decreases in the predictive performance than targeting a weak sense. Therefore, applicability
of the proposed method may vary depending on the specific use case. Additionally, the lack of theoretical
convergence analysis of the proposed method as the training sample size increases is another limitation, which
is an important future work.
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A Proofs

Before providing the proof of Theorem 1, let’s review some additional results about Optimal Transport theory.

The next result shows that as long as two measures admit a density with finite second moments, there exists
a unique deterministic optimal transport map between them.
Lemma 2 (Theorem 1.22 in Santambrogio (2015)) Let µ, ν be two measures on Rk with finite second moments
such that µ has a density and let X ∼ µ. Then there exists a unique deterministic mapping T : Rk → Rk

such that
W2

2 (µ, ν) = E∥X − T (X)∥2
2,

that is (X, T (X)) ∼ γ̄ ∈ Γµ,ν where γ̄ is an optimal coupling.

A.1 Proof of Theorem 1

This proof is originally from the proof of Theorem 2.3 in Chzhen et al. (2020). We extend their results from
single output case to the multi-output case with some modifications in their proofs.
Theorem 1 Suppose νf∗|s has density and finite second moments for each s ∈ S. Then

min
U(f)=0

R(f) = U(f∗) = min
ν

∑
s∈S

psW2
2 (νf∗|s, ν).

Moreover, if f0 and ν0 solve the first and second minimization in (7), respectively, then ν0 is the density of
f0 and

f0(x, s) = Tf∗|s,ν0 (f∗(x, s))

where Tf∗|s,ν0 : Rk → Rk is the optimal transport mapping from νf∗|s to ν0.
Proof First, we’d like to show that

min
U(f)=0

E∥f∗(X, S) − f(X, S)∥2 ≥ min
ν

∑
s∈S

psW2
2 (νf∗|s, ν).

Let ḡ : Rd × S → Rk be the minimizer of the l.h.s of the above equation and denoted by νḡ the distribution of
ḡ. Since νf∗|s admits density, with Lemma 2, for each s ∈ S there exists Tf∗|s,ḡ such that∑

s∈S

psW2
2 (νf∗|s, νḡ) =

∑
s∈S

ps

∫
∥z − Tf∗|s,ḡ(z)∥2dνf∗|s(z)

=
∑
s∈S

ps

∫
Rd

∥f∗(x, s) − Tf∗|s,ḡ(f∗(x, s))∥2dPX|S=s(x)

=
∑
s∈S

psE
[
∥f∗(X, s) − Tf∗|s,ḡ(f∗(X, s))∥2|S = s

]
= E∥f∗(X, S) − g̃(X, S)∥2

where we define g̃(x, s) = Tf∗|s,ḡ(f∗(x, s)) for all (x, s) ∈ Rd × S. With optimal transportation, g̃(X, s)|S = s
follow the distribution νḡ for any s ∈ S. Then we have

U(g̃) = min
ν

∑
s∈S

psW2
2 (νg̃|s, ν) = 0

which indicates g̃ is fair. By optimality of ḡ we have

E∥f∗(X, S) − g̃(X, S)∥2 ≥ E∥f∗(X, S) − ḡ(X, S)∥2

Due to definition of W2
2 , for each s ∈ S we have

W2
2 (νf∗|s, νḡ) ≤ E[∥f∗(X, S) − ḡ(X, S)∥2|S = s]
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Then we can conclude ∑
s∈S

psW2
2 (νf∗|s, νḡ) = min

U(f)=0
E∥f∗(X, S) − f(X, S)∥2

This implies that

min
U(f)=0

E∥f∗(X, S) − f(X, S)∥2 ≥ min
ν

∑
s∈S

psW2
2 (νf∗|s, ν). (16)

Second, we are going to show that the opposite inequality also holds. To this end, we define ν0 as

ν0 ∈ arg min
ν

∑
s∈S

psW2
2 (νf∗|s, ν)

Since we assume νf∗|s admits density, with Lemma 2, there exists Tνf∗|s,ν0 as a optimal transport map from
νf∗|s to ν0. And we define f0 for all (x, s) ∈ Rd × S as

f0(x, s) = Tνf∗|s,ν0 ◦ f0(x, s)

By the definition of f0 and the Lemma 2, we have

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) = E∥f∗(X, S) − f0(X, S)∥2 (17)

Moreover since ν0 is independent from S, using similar argument as above we can show that f0 is fair, and it
yields

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) ≥ min

U(f)=0
E∥f∗(X, S) − f(X, S)∥2. (18)

Therefore, combining Eq. 16 and Eq. 18, we showed that

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) = min

U(f)=0
E∥f∗(X, S) − f(X, S)∥2.

Thanks to Eq. 17, we can also have

E∥f∗(X, S) − f0(X, S)∥2 = E∥f∗(X, S) − ḡ(X, S)∥2

and since f0 is fair we can put ḡ = f0. This proof is concluded.

A.2 Proof of Lemma 1

Lemma 1 Let f̄(x, s) := T̃νf∗(Ds),ν̃0(f∗(x, s))

lim
h→0

U(f̄(X, S)) = O

(∑
s∈S

W2
2 (νf∗|s, νf∗(Ds))

)

Proof Recall that (X, S) is the ground-truth distribution. Let f̄(x, s) := T̃νf∗(Ds),ν̃0(f∗(x, s)), νf̄ be the
distribution of f̄(X, S), andνf̄ |s be distribution of f̄(X, S) conditioning on S = x for s ∈ S.

Furthermore, we denote the discrete distribution of f̄(x, s) when (x, s) is uniformally sampled from Ds as

νf̄(Ds) = 1
ns

ns∑
i=1

δf̄(xs
i
,s) for s ∈ S.
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Note that, as h goes to zero, the kernel regression becomes the nearest neighbor regression. In particular,

lim
h→0

T̃νf∗(Ds),ν̃0(f∗(xs
i , s)) = Tνf∗(Ds),ν̃0(f∗(xs

i , s)).

This further implies

lim
h→0

νf̄(Ds) = 1
ns

ns∑
i=1

δf̄(xs
i
,s) = 1

ns

ns∑
i=1

lim
h→0

δf̄(xs
i
,s) = ν̃0. (19)

By (5), we have

U(f̄) = min
ν

∑
s∈S

psW2
2 (νf̄ |s, ν) ≤

∑
s∈S

psW2
2 (νf̄ |s, ν̃0)

≤
∑
s∈S

psW2
2 (νf̄ |s, νf̄(Ds)) +

∑
s∈S

psW2
2 (νf̄(Ds), ν̃0),

(20)

where the second inequality is the triangle inequality.

Let’s fix s ∈ S in the following discussion. Suppose ν̃0 has n0 supports, denoted by {ξi}n0
i=1, and the mass in

support i is qi. Also, The optimal transport mapping Tνf∗(Ds),ν̃0(f∗(xs
i , s)) is a discrete distribution supported

on ν̃0 (see (12)). We denote the change of mapping f∗(xs
i , s) to ξj by P s

ij. Similarly, νf̄ |s and νf̄(Ds) are
both discrete distributions supported on {ξi}n0

i=1. Suppose the mass of ξi in νf̄ |s and νf̄(Ds) are qker
i and qemp

i ,
respectively.

By Kantorovich-Rubinstein duality (Edwards, 2011) (or linear program duality), there exists a constant C1
such that

W2
2 (νf̄ |s, νf̄(Ds)) ≤ C1∥qker − qemp∥2 (21)

Note that

qker
j = E(X,S)|S=s

∑ns

i=1 K
(

f∗(x,s)−f∗(xs
i ,s)

h

)
P s

ij∑ns

i=1 K
(

f∗(x,s)−f∗(xs
i
,s)

h

)
while

qemp
j = 1

ns

ns∑
l=1

∑ns

i=1 K
(

f∗(xs
l ,s)−f∗(xs

i ,s)
h

)
P s

ij∑ns

i=1 K
(

f∗(xs
l
,s)−f∗(xs

i
,s)

h

) .

They can be viewed as the expectation of

∑ns

i=1 K
(

ξ−f∗(xs
i ,s)

h

)
P s

ij∑ns

i=1 K
(

ξ−f∗(xs
i
,s)

h

)
on when ξ follows νf∗|s and νf∗(Ds), respectively. Since K is Lipschitz continuous, by Kantorovich-Rubinstein
inequality (Edwards, 2011), there exists a constant C2 such that

∥qker − qemp∥2 ≤ C2W2
2 (νf∗|s, νf∗(Ds)). (22)

Applying (21) and (22) to (20) gives

U(f̄) ≤
∑
s∈S

C1C2W2
2 (νf∗|s, νf∗(Ds)) +

∑
s∈S

psW2
2 (νf̄(Ds), ν̃0). (23)

By (19), letting h go to zero gives the desired results.
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B Details of Datasets

In this section, we provide more details on the datasets we used in the numerical experiments. We include
four datasets from various domains, including marketing domain(Customer dataset 3), medical diagnosis(
Chexpert Dataset (Irvin et al., 2019)), face recognition (CelebA dataset (Liu et al., 2015) and UTKFace
dataset (Zhang & Qi, 2017)).

The Customer dataset has 8068 training samples and 2627 testing samples and the task is to classify customers
into anonymous customer categories for target marketing. We partition the data into four sensitive groups
based on the gender and the marital status of customers: married female, unmarried female, married male,
and unmarried male.

The Chexpert dataset contains 224,316 training instances and the task is to detect five chest and lung diseases
based on X-ray images. Due to the high computational complexity of solving optimal transportation between
large datasets, we sample 5% instances from the original training data as the training set and sample another
5% as the testing set. The CelebA dataset contains 162,770 training instances and 39,829 testing instances
and the task is to detect ten attributes (chosen based on Ramaswamy et al. (2021)) of the person in an image,
which are being attractive, having bags under eye, having black hair, having bangs, wearing glasses, having
high cheek bones, being smiling, wearing hat, having a slightly open mouth, and have a pointy nose. For the
same computational reason, we sample 5% instances from the original training data as the training set and
sample 20% from the original testing data as the testing set. For both Chexpert and CelebA datasets, we
partition the data into four sensitive groups based on gender and age: young female, old female, young male,
and old male. UTKFace dataset consists of 23705 face images with five groups in terms of race(i.e., White,
Black, Asian, Indian, and Others) and we randomly split it into training and testing (8:2) sets. And the
task is to classify gender and age (25 ≤ age ≤ 60, customized by us) based on face images. All the data in
UTKFace dataset are utilized.

3https://www.kaggle.com/datasets/kaushiksuresh147/customer-segmentation
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