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Abstract

We develop a new primitive for stochastic optimization: a low-bias, low-cost
estimator of the minimizer x? of any Lipschitz strongly-convex function. In
particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn
[8] to turn any optimal stochastic gradient method into an estimator of x? with bias
�, variance O(log(1/�)), and an expected sampling cost of O(log(1/�)) stochastic
gradient evaluations. As an immediate consequence, we obtain cheap and nearly
unbiased gradient estimators for the Moreau-Yoshida envelope of any Lipschitz
convex function, allowing us to perform dimension-free randomized smoothing.
We demonstrate the potential of our estimator through four applications. First, we
develop a method for minimizing the maximum of N functions, improving on
recent results and matching a lower bound up to logarithmic factors. Second and
third, we recover state-of-the-art rates for projection-efficient and gradient-efficient
optimization using simple algorithms with a transparent analysis. Finally, we
show that an improved version of our estimator would yield a nearly linear-time,
optimal-utility, differentially-private non-smooth stochastic optimization method.

1 Introduction

Consider the fundamental problem of minimizing a µ-strongly convex function F : X ! R given
access to a stochastic (sub-)gradient estimator r̂F satisfying E r̂F (x) 2 @F (x) and Ekr̂F (x)k2 

G
2 for every x 2 X . Is it possible to transform the unbiased estimator r̂F into a (nearly) unbiased

estimator of the minimizer x? := argminx2X F (x)? In particular, can we improve upon the
O(G/(µ

p
T )) bias achieved by T iterations of stochastic gradient descent (SGD)?

In this paper, we answer this question in the affirmative, proposing an optimum estimator x̂?, which
(for any fixed � > 0) has

bias kEx̂? � x?k = O(�) and variance Ekx̂? � Ex̂?k
2 = O

✓
G

2

µ2
log

✓
G

µ�

◆◆
,

and, in expectation, costs O(log( G
µ� )) evaluations of r̂F .3 Setting � = G/(µ

p
T ), we obtain the

same bias bound as T iterations of SGD, but with expected cost of only O(log T ) stochastic gradient
evaluations (the worst-case cost is T ). Further, the bias can be made arbitrarily small with only
logarithmic increase in the variance and the stochastic gradient evaluations of our estimator, and
therefore—paralleling the term “nearly linear-time” [27]—we call x̂? nearly unbiased.

Our estimator is an instance of the multilevel Monte Carlo technique for de-biasing estimator
sequences [25] and more specifically the method of Blanchet and Glynn [8]. Our key observation is
that this method is readily applicable to strongly-convex variants of SGD, or indeed any stochastic
optimization method with the same (optimal) rate of convergence.

⇤Stanford University, {asi,jmblpati,yujiajin,sidford}@stanford.edu
†Tel Aviv University, ycarmon@tauex.tau.ac.il
3When X = BR(x0) ⇢ Rd, F (x) = 1

n

P
i2[n] F̂ (x; i), and r̂F is the subgradient of a uniformly random

F̂ (x; i) we can also get an estimator with bias 0 and expected cost O(log(nd)). See Appendix A.1 for details.
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Objective Expensive operation O NO EN
r̂f

maxi2[N ] f(i)(x) (Sec. 4) f(1)(x), . . . , f(N)(x) eO(✏�2/3) eO(✏�2)
f(x) in domain X (Sec. 3) ProjX (x) O(✏�1) "
⇤(x) + f(x) for L-smooth ⇤ (Sec. 5) r⇤(x) O

�p
L/✏

�
"

Table 1. Summary of our applications of accelerated bias-reduced stochastic gradient methods. We use
NO and N

r̂f to denote the number of expensive operations and subgradient estimations, respectively.
The eO notation hides polylogarithmic factors. See Section 1.2 for additional description.

1.1 Estimating proximal points and Moreau-Yoshida envelope gradients
Given a convex function f and regularization level �, the proximal point of y is Pf,�(y) :=
argminx2Rd

�
f(x) + �

2 kx� yk
2
 

. Since computing Pf,� amounts to solving a �-strongly-convex
problem, our technique provides low-bias and cheap proximal point estimators. Proximal points are
ubiquitous in optimization [43, 19, 52, 38] and estimating them efficiently with low bias opens up new
algorithmic possibilities. One of these possibilities is estimating the gradient of the Moreau-Yoshida
envelope f�(y) := minx2Rd

�
f(x) + �

2 kx� yk
2
 

, which is a �-smooth, G2
/(2�)-accurate approxi-

mation of any G-Lipschitz f (see, e.g., [43, 29] and Appendix B.3). Since rf�(y) = �(y�Pf,�(y)),
our optimum estimator provides a low-bias estimator for rf�(y) with second moment and expected
cost greater than those of r̂f by only a logarithmic factor. Thus, for any non-smooth f we can turn
r̂f into a gradient estimator for the smooth surrogate f�, whose smoothness is independent of the
problem dimension, allowing us to perform dimension-free randomized smoothing [20].

1.2 Applications via accelerated bias-reduced methods
Our optimum estimator is a new primitive in stochastic convex optimization and we expect it to find
multiple applications. We now describe three such applications: the first improves on previously
known complexity bounds while the latter two recover existing bounds straightforwardly. For
simplicity of presentation we assume (in the introduction only) Ekr̂fk

2
 1 and unit domain size.

In each application, we wish to minimize an objective function given access to a cheap subgradient
estimator r̂f as well as an expensive application-specific operation O (e.g., a projection to a
complicated set). Direct use of the standard stochastic gradient method finds an ✏-accurate solution
using O(✏�2) computations of both r̂f and O, and our goal is to improve the O complexity without
hurting the r̂f complexity.

To that end, we design stochastic accelerated methods consisting of T iterations, each one involving
only a constant number of O and proximal point computations, which we approximate by averaging
copies of our optimum estimator.4 Its low bias allows us to bound T ⌧ ✏

�2 as though our proximal
points were exact, while maintaining an eO(✏�2) bound on the total expected number of r̂f calls.5
Thus, we save expensive operations without substantially increasing the gradient estimation cost.
Table 1 summarizes each application, and we briefly describe them below.

Minimizing the maximal loss (Section 4). Given N convex, 1-Lipschitz functions f(1), . . . , f(N)

we would like to find an ✏-approximate minimizer of their maximum fmax(x) = maxi2[N ] f(i)(x).
This problem naturally arises when optimizing worst-case behavior, as in maximum margin classifi-
cation and robust optimization [53, 15, 45, 6]. We measure complexity by the number of individual
function and subgradient evaluations, so that the expensive operation of evaluating f(1), . . . , f(N)

at a single point has complexity O(N) and the subgradient method solves this problem with com-
plexity O(N✏�2). Carmon et al. [13] develop an algorithm for minimizing fmax with complexity
eO(N✏�2/3 + ✏

�8/3), improving on the subgradient method for sufficiently large N . Using our
bias-reduced Moreau gradient envelope estimator in a Monteiro-Svaiter-type accelerated proximal
point method [12, 11, 38], we obtain improved complexity eO(N✏�2/3 + ✏

�2). This matches (up to
logarithmic factors) a lower bound shown in [13], settling the complexity of minimizing the maximum

4While averaging is parallelizable, our optimum estimator itself is sequential. Consequently, our approach
does not yield improve parallelism; see Appendix A.2 for further discussion

5It is easy to turn expected complexity bounds into deterministic ones; see Appendix A.3.
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of N non-smooth functions. Our result reveals a surprising fact: for N ⌧ (GR/✏)�4/3, minimizing
the maximum of N functions is no harder than minimizing their average.

Projection-efficient optimization via dimension-free randomized smoothing (Section 3). Con-
sider the problem of minimizing a convex function f using an unbiased gradient estimator r̂f over
convex set X for which Euclidean projections are expensive to compute (for example, the cone
of PSD matrices). When f is L-smooth, a stochastic version of Nesterov’s accelerated gradient
descent (AGD) [16] performs only O(

p
L/✏) projections. For non-smooth f we instead apply AGD

to the Moreau envelope smoothing of f (with appropriate � = O(✏�1)) using our nearly-unbiased
stochastic estimator for rf�. This yields a solution in O(✏�1) projections and eO(✏�2) evaluations of
r̂f . Our algorithm provides a simple alternative to the recent work of Thekumparampil et al. [51]
whose performance guarantees are identical up to a logarithmic factor.

Gradient-efficient composite optimization (Section 5). We would like to minimize  (x) =
⇤(x) + f(x), where ⇤ is convex and L-smooth but we can access it only via computing (ex-
pensive) exact gradients, while f is a non-smooth convex functions for which we have a (cheap)
unbiased subgradient estimator r̂f . Problems of this type include inverse problems with sparsity
constraints and regularized loss minimization in machine learning [34]. To save r⇤ computa-
tions, it is possible to use composite AGD [41] which solves O(

p
L/✏) subproblems of the form

minimizex
�
hr⇤(y), xi+ f(x) + �

2 kx� x
0
k
2
 

. Lan [34] designed a specialized method, gradient
sliding, for which the total subproblem solution cost is O(✏�2) evaluations of r̂f . We show that a sim-
ple alternative—estimating the subproblem solutions via our low-bias optimum estimator—recovers
its guarantees up to logarithmic factors.

1.3 Non-smooth differentially private stochastic convex optimization
We now discuss a potential application of our technique that is conditional on the existence of
an improved optimum estimator. In it, we minimize the population objective function f(x) =
ES⇠P f̂(x;S) under the well-known constraint of differential privacy [22]. Given n i.i.d. samples
Si ⇠ P and assuming that each f̂ is 1-Lipschitz, convex and sufficiently smooth, Feldman et al. [23]
develop algorithms that obtain the optimal error and compute O(n) subgradients of f̂ . The non-
smooth case is more challenging and the best existing bound is O(n11/8) for the high-dimensional
setting d = n [32, 3]. In Section 6 we show that our optimum estimator, combined with recent
localization techniques [23], reduces the problem to private mean estimation. Unfortunately, our
estimator is heavy-tailed, leading to insufficient utility. Nevertheless, assuming a version of our
estimator that has bounded outputs, we give an algorithm that queries eO(n) subgradients for non-
smooth functions, solving a longstanding open problem in private optimization [14, 4]. This motivates
the study of improved versions of our estimators that have constant sensitivity.

1.4 Related work
Multilevel Monte-Carlo (MLMC) techniques originate from the literature on parametric integration for
solving integral and differential equations [25]. Our approach is based on an MLMC variant put forth
by Blanchet and Glynn [8] for estimating functionals of expectations. Among several applications,
they propose [8, Section 5.2] an estimator for argminx ES⇠P f̂(x;S) where f̂(·; s) is convex for
all s and assuming access to minimizers of empirical objectives of the form

P
i2[N ] f̂(x; si). The

authors provide a preliminary analysis of the estimator’s variance (later elaborated in [9]) using an
asymptotic Taylor expansion around the population minimizer. In comparison, we study the more
general setting of stochastic gradient estimators and provide a complete algorithm based on SGD,
along with a non-asymptotic analysis and concrete settings where our estimator is beneficial.

A number of works have used the Blanchet-Glynn estimator in the context of optimization and
machine learning. These applications include estimating the ratio of expectations for semisupervised
learning [7], estimating gradients of distributionally robust optimization objectives [35], and estimat-
ing gradients in deep latent variable models [47]. Our estimator is similar to that of Levy et al. [35]
in that we also have to pick a “critical” doubling probability for the (random) computational budget,
which makes the expected cost and variance of our estimators depend logarithmically on the bias.
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1.5 Limitations
Our paper demonstrates that our proposed optimum estimator is a useful proof device: it allows us to
easily prove upper bounds on the complexity of structured optimization problems, and at least in one
case (minimizing the maximum loss) improve over previously known bounds. However, our work
does not investigate the practicality of our optimum estimator, as implementation and experiments
are outside its scope.

Nevertheless, let us briefly discuss the practical prospects of the algorithms we propose. On the one
hand, our optimum estimator itself is fairly easy to implement, adding only a few parameters on top
of a basic gradient method. On the other hand, in the settings of Sections 3 and 5, gradient-sliding
based methods [34, 51] are roughly as simple to implement and enjoy slightly stronger convergence
bounds (better by logarithmic factors) than our optimum estimator. Consequently, in these settings
we have no reason to assume that our algorithms are better in practice. In the setting of Section 4
(minimizing the maximum loss) our algorithm does enjoy a stronger guarantee than the previous best
bound [13]. However, both our algorithm and [13] are based on an accelerated proximal point method
that, in its current form, is not practical [13, Sec. 6.2]. Thus, evaluating the benefit of stochastic bias
reduction in the context of minimizing the maximum loss would require us to first develop a practical
accelerated proximal point algorithm, which is an open question under active research [see, e.g., 50].

Another limitation of our optimum estimator is that, while it has a bounded second moment, its
higher moments are unbounded. While this does not matter for most of our results, the lack of higher
moment bounds prevents us from setting the complexity of non-smooth private stochastic convex
optimization in Section 6. Finding an optimum estimator that is bounded with high probability—or
proving that one does not exist—remains an open question for future work.

Finally, our analyses are limited to convex objective functions. However, while outside the scope of
the paper, we believe our results are possibly relevant for non-convex settings as well. In particular,
for smooth non-convex functions (and weakly-convex functions [17] more broadly) the problem of
computing proximal points with sufficiently high regularization is strongly convex and our estimator
applies. Such non-convex proximal points play an important role in non-convex optimization [17]
with applications in deep learning [see, e.g., 49]. Applying the optimum-estimator technique in
non-convex optimization is therefore a viable direction for future work.

1.6 Notation

We let BR(x) = {y 2 Rd : ky � xk  R} denote the ball of radius R around x, where k·k is the
Euclidean norm throughout. We write ProjS for the Euclidean projection to S . We write {A} for the
indicator of event A, i.e., {A} = 1 when A holds and 0 otherwise. Throughout the paper, r̂f denotes
a (stochastic) subgradient estimator for the function f , and X ⇢ Rd denotes the optimization domain,
which we always assume is closed and convex. We use Pf,� to denote the proximal operator (2) and
f� to denote the Moreau envelope (3) associated with function f and regularization parameter �.
Finally, we use Nf and N

r̂f to denote function and subgradient estimator evaluation complexity,
respectively.

2 A multilevel Monte-Carlo optimum estimator

In this section, we construct a low-bias estimator for the minimizer of any strongly convex function
F : X ! R. This estimator is the key component of our algorithms in the subsequent sections, which
use it to approximate proximal points and Moreau envelope gradients. We assume that F is of the
form F = f +  , where the function  is “simple” and that f satisfies the following.
Assumption 1. The function f : X ! R is convex (with closed and convex domain X ) and is

accessible via an unbiased subgradient estimator r̂f which satisfies Ekr̂f(x)k2  G
2

for all x.

Our applications only use  of the form  (x) = �
2 kx� x

0
k
2 but our estimator applies more broadly

to cases where argminx
�
hv, xi+  (x) + 1

2⌘kx� yk
2
 

is easy to compute for all v and y.

2.1 ODC algorithms
Our estimator can use, in a black-box fashion, any method for minimizing F with sufficiently fast
convergence to x? = argminx2X F (x). We highlight the required convergence property as follows.
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Algorithm 1: OPTEST(r̂f, , µ, �,�
2
,X )

. �,�
2 are required bias and square error

. c is the ODC algorithm constant

Tmax =
l

4cG2

µ2 min{�2, 12�
2}

m

N =
l
32cG2 log(Tmax)

µ2�2

m

for i = 1, . . . , N do
x̂
(i)
? = a draw of the estimator (1)

return 1
N

P
i2[N ] x̂

(i)
?

Algorithm 2: MORGRADEST(r̂f, y,�, �,�
2
,X )

. �,�
2 are required bias and square error

. � is the regularization level

. y is the point at which to estimate rf�(y)

 �(x) =
�
2 kx� yk

2

x̂? = OPTEST
⇣
r̂f, �,�,

�
� ,

�2

�2 ,X

⌘

return �(y � x̂?)

Definition 1. An optimal-distance-convergence algorithm ODC takes as input r̂f satisfying As-

sumption 1, a simple function  and a budget T � 1. If F = f +  is µ-strongly convex with

minimizer x?, the algorithm’s output x = ODC(r̂f, , T ) requires at most T evaluations of r̂f to

compute and satisfies Ekx� x?k
2
 c

G2

µ2T for some constant c > 0.

Standard lower bound constructions imply that the O( G2

µ2T ) squared distance convergence rate is
indeed optimal; see Appendix A.4 for additional discussion. Conversely, ODC algorithms are readily
available in the literature [44, 28] since any point x satisfying EF (x) � F (x?) = O(G

2

µT ) (the
optimal rate of convergence in strongly convex, Lipschitz optimization) also satisfies Ekx� x?k

2


O( G2

µ2T ) by due to the strong convexity of F . We provide a concrete ODC algorithm consisting
of a generalization of epoch SGD [28], which allows us to optimize over the composite objective
F = f +  instead of only f as in the prior study of epoch SGD.
Lemma 1. EPOCHSGD (Algorithm 8 in Appendix B.1) is an ODC algorithm with constant c = 32.

2.2 Constructing an optimum estimator
To turn any ODC algorithm into a low-bias, low-cost and near-constant variance optimum estimator,
we use the multilevel Monte Carlo (MLMC) technique of Blanchet and Glynn [8]. Given a problem
instance r̂f, , an algorithm ODC and a cutoff parameter Tmax 2 N, our estimator x̂? is:

Draw J ⇠ Geom
�
1
2

�
2 N and, writing xj := ODC(r̂f, , 2j), compute

x̂? = x0 +

⇢
2J(xJ � xJ�1) 2J  Tmax

0 otherwise.
(1)

We note that for certain ODC algorithms it is possible to extract x0, xJ�1 from the intermediate steps
of computing xJ , so that we only need to invoke ODC once. This is particularly simple to do for
EPOCHSGD, as we explain in Appendix B.1. The key properties of our estimator are as follows.

Proposition 1. Let f and r̂f satisfy Assumption 1, F = f +  be µ-strongly convex with minimizer

x? and Tmax 2 N. For any ODC algorithm with constant c, the estimator (1) has bias kEx̂?�x?k 
p
2c G

µ
p
Tmax

and variance Ekx̂? � Ex̂?k
2
 16cG

2

µ2 log2(Tmax). Moreover, the expected number of

r̂f evaluations required to compute x̂? is O(log Tmax).

Proof. Let jmax = max{j 2 N | 2j  Tmax} = blog2 Tmax)c. The expectation of x̂? is

Ex̂? = Ex0 +
jmaxX

j=1

P(J = j)2j(Exj � Exj�1) = Exjmax ,

where the second equality follows from P(J = j) = 2�j and the sum telescoping. Noting that
xjmax = ODC(r̂f, , T ) for T = 2jmax � Tmax/2, we have that

kExjmax � x?k 

q
Ekxjmax � x?k

2 
p
c

G

µ
p
Tmax/2
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by Definition 1. To bound the variance we use ka+ bk
2
 2kak2 + 2kbk2 and note that

Ekx̂? � Ex̂?k
2
 Ekx̂? � x?k

2
 2Ekx̂? � x0k

2 + 2Ekx0 � x?k
2
.

The ODC property implies that Ekx0 � x?k
2
 cG

2
/µ

2. For the term Ekx̂? � x0k
2 we have

Ekx̂? � x0k
2 =

jmaxX

j=1

P(J = j)22jEkxj � xj�1k
2 =

jmaxX

j=1

2jEkxj � xj�1k
2
, and

Ekxj � xj�1k
2
 2Ekxj � x?k

2 + 2Ekxj�1 � x?k
2
 6c

G
2

µ2
2�j

.

Substituting, we get Ekx̂? � x0k
2
 6cG

2

µ2 jmax and Ekx̂? � Ex̂?k
2
 16cG

2

µ2 log2(Tmax). Finally,
the expected number of r̂f evaluations is 1 +

Pjmax

j=1 P(J = j)(2j + 2j�1) = O(jmax).

The function OPTEST in Algorithm 1 computes an estimate of x? with and desired bias � and square
error �2 by averaging independent draws of the MLMC estimator (1). The following guarantees are
immediate from Proposition 1; see Appendix B.2 for a short proof.

Theorem 1. Let f and r̂f satisfy Assumption 1, F = f +  be µ-strongly convex with minimizer

x? 2 X , and �,� > 0. The function OPTEST(r̂f, , µ, �,�
2
,X ) outputs x̂? satisfying

kEx̂? � x?k  � and Ekx̂? � x?k
2
 �

2

using N
r̂f stochastic gradient computations, where

EN
r̂f = O

✓
G

2

µ2�2
log2

✓
G

µmin{�,�}

◆
+ log

✓
G

µmin{�,�}

◆◆
.

2.3 Estimating proximal points and Moreau envelope gradients
The proximal point of function f : X ! R with regularization level � at point y is

Pf,�(y) := argmin
x2X

�
f(x) + �

2 kx� yk
2
 
. (2)

When f satisfies Assumption 1, we may use OPTEST (with  (x) = �
2 kx� yk

2 and µ = �) to obtain
a reduced-bias proximal point estimator. The proximal point Pf,�(y) is closely related to the Moreau
envelope

f�(y) := min
x2X

�
f(x) + �

2 kx� yk
2
 

(3)

via the relationship rf�(y) = �(y � Pf,�(y)) (see Appendix B.3). Therefore, we can use our
optimum estimator to turn eO(1) calls to r̂f into a nearly unbiased estimator for rf�. We formulate
this as:
Corollary 2. Let f and r̂f satisfy Assumption 1, let y 2 X and let �,�, � >

0. The function MORGRADEST(r̂f,�, y, �,�
2
,X ) outputs r̂f�(y) satisfying kEr̂f�(y) �

rf�(y)k  � and Ekr̂f�(y) � rf�(y)k2  �
2

and has complexity EN
r̂f =

O

⇣
G2

�2 log2
⇣

G
min{�,�}

⌘
+ log

⇣
G

min{�,�}

⌘⌘
.

3 Projection-efficient convex optimization
In this section, we combine the bias-reduced Moreau envelope gradient estimator with a standard
accelerated gradient method to recover the result of Thekumparampil et al. [51]. We consider the
problem of minimizing a function f satisfying Assumption 1 over the domain BR(0) subject to
the constraint x 2 X , where X ⇢ BR(0) is a complicated convex set that we can only access via
(expensive) projections of the form ProjX (x) := argminy2X ky � xk. We further assume that an
initial point x0 2 X satisfies kx0 � x?k  D.

Algorithm 3 applies a variant of Nesterov’s accelerated gradient descent method (related to [2, 1])
on the (�-smooth) Moreau envelope f� defined in eq. (3). Since computing the Moreau envelope
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Algorithm 3: Stochastic accelerated gradient descent on the Moreau envelope

Input: A gradient estimator r̂f satisfying Assumption 1 in BR(0), projection oracle ProjX , and
initial point x0 = v0 with kx0 � x?k  D.

Parameters :Iteration budget T , Moreau regularization �, approximation parameters �k,�2
k

1 for k = 1, · · · , T do
2 yk�1 = k�1

k+1xk + 2
k+1vk�1

3 gk = MORGRADEST(r̂f, yk�1,�, �k,�
2
k,BR(0))

4 xk = ProjX
�
yk�1 �

1
3�gk

�

5 vk = ProjBR(0)

�
vk�1 �

k
6�gk

�

6 return xT

does not involve projection to X , for sufficiently accurate approximation of rf� we require only
T = O(

p
�D2/✏) projections to X for finding an O(✏)-suboptimal point of f� constrained to X .

For that point to be also ✏-suboptimal for f itself, we must choose � of the order of G2
/✏, so that the

number of projections is O(GD/✏).

As noted in [51] computing rf� to accuracy O(✏/R) is sufficient for the above guarantee to hold, but
doing so using a stochastic gradient method requires O((GD/✏)2) evaluations of r̂f per iteration,
and O((GD/✏)3) evaluations in total. To improve this, we employ Algorithm 2 to compute nearly-
unbiased estimates for rf� and bound the error incurred by their variance. Our result matches the
gradient sliding-based technique of Thekumparampil et al. [51] up to polylogarithmic factors while
retaining the conceptual simplicity of directly applying AGD on the Moreau envelope. We formally
state the guarantees of our method below, and provide a self-contained proof in Appendix C.

Theorem 3. Let f : BR(0) ! R and r̂f satisfy Assumption 1. Let X ✓ BR(0) be a convex set

admitting a projection oracle ProjX . Let x0 2 X be an initial point with kx� x?k  D for some

x? 2 X . With � = 2G2

✏ , �k = ✏
8R , �

2
k = 2✏�

k+1 , and T = 7GD
✏ Algorithm 3 computes x 2 X with

E [f(x)]  f(x?)+ ✏ with complexity EN
r̂f = O

⇣
G2D2

✏2 log2
�
GR
✏

�⌘
and O

�
GD
✏

�
calls to ProjX .

4 Accelerated proximal methods and minimizing the maximal loss

In this section we apply our estimator in an accelerated proximal point method and use it to obtain an
optimal rate for minimizing the maximum of N convex functions (up to logarithmic factors).

4.1 Accelerated proximal point method via Moreau gradient estimation
Algorithm 4 is an Monteiro-Svaiter-type [38, 12] accelerated proximal point method [36, 24] that
leverages our reduced-bias Moreau envelope gradient estimator. To explain the method, we contrast
it with stochastic AGD on the Moreau envelope (Algorithm 3). First and foremost, Algorithm 3
provides a suboptimality bound on the Moreau envelope f� (which for small � is far from f ) while
Algorithm 4 minimizes f itself.

Second, while Algorithm 3 uses a fixed regularization parameter �, Algorithm 4 handles an arbitrary
sequence {�k} given by a black-box function NEXTLAMBDA. To facilitate our application of
the method to minimizing the maximal loss—where gradient estimation is only tractable in small
Euclidean balls around a reference point—we include an optional parameter r such that the proximal
point movement bound kPf,�k+1(yk)� ykk  r holds for all k. However, most of our analysis of
Algorithm 4 does not require this parameter (i.e., holding for r = 1), making it potentially applicable
to other settings that use accelerated proximal point methods [11, 38, 50].

The third and final notable difference between Algorithms 3 and 4 is the method of updating the xk

iteration sequence. While a projected stochastic gradient descent step suffices for Algorithm 3, here
we require a more direct approximation of function value decrease attained by the exact proximal
mapping Pf,� (see eq. (2)). For a given accuracy ', we define the '-approximate proximal mapping

eP'
f,�(y) := any x 2 X such that EF (x)  F (Pf,�(y)) + ' for F (z) := f(z) +

�

2
kz � yk

2
. (4)
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Algorithm 4: Stochastic accelerated proximal point method

Input: Gradient estimator r̂f , function NEXTLAMBDA, initialization x0 = v0 and A0 � 0.
Parameters :Approximation parameters {'k, �k,�k}, stopping parameters Amax and Kmax,

optional movement bound r > 0.
1 for k = 0, 1, . . . do
2 �k+1 = NEXTLAMBDA(xk, vk, Ak) . guaranteeing that kPf,�k+1(yk)� ykk  r

3 ak+1 = 1
2�k+1

p
1 + 4�k+1Ak and Ak+1 = Ak + ak+1 and Xk = X \ Br(yk)

4 yk = Ak
Ak+1

xk + ak+1

Ak+1
vk and xk+1 = eP'k+1

f,�k+1
(yk) . defined in eq. (4)

5 gk+1 = MORGRADEST(r̂f, yk,�k+1, �k,�
2
k,Xk) and vk+1 = ProjX

�
vk �

1
2ak+1gk+1

�

6 if Ak+1 � Amax or k + 1 = Kmax then return xk+1

Note that eP0
f,� = Pf,� and that for ' > 0 we can compute eP'

f,� with an appropriate SGD variant
(such as EPOCHSGD) using O(G2

/(�')) evaluations of r̂f .

With the differences between the algorithms explained, we emphasize their key similarity: both
algorithms update the vk sequence using our bias reduction method MORGRADEST (Algorithm 2),
which holds the key to their efficiency. The following proposition shows that Algorithm 4 has the
same bound on Kmax as an exact accelerated proximal point method [12], while requiring at most
eO(G2

R
2
✏
�2) stochastic gradient evaluations; see proof in Appendix D.1.

Proposition 2. Let f : X ! R and r̂f satisfy Assumption 1, and let X ✓ BR(x0). For a

target accuracy ✏  GR let 'k+1 = ✏
60�k+1ak+1

, �k+1 = ✏
120R , �

2
k+1 = ✏

60ak+1
, A0 = R

G , and

Amax = 9R2

✏ . If �k � �min �
1

Amax
= ⌦( ✏

R2 ) for all k  Kmax, then lines 4 and 5 of Algorithm 4

have total complexity EN
r̂f = O

⇣
Kmax log

GR
✏ + G2R2

✏2 log2 GR
✏

⌘
. If in addition kPf,�k(yk�1)�

yk�1k � 3r/4 whenever �k � 2�min then for Kmax = O

⇣�
R
r

�2/3
log
�
GR
✏

�
+
q

�minR2

✏

⌘
, the

algorithm’s output xK satisfies f(xK)� f(x?)  ✏ with probability at least
2
3 .

4.2 Minimizing the maximal loss
We now consider objectives of the form fmax(x) := maxi2[N ] f(i)(x) where each function f(i) :
X ! R is convex and G-Lipschitz. Our approach to minimizing fmax largely follows Carmon et al.
[13]; the main difference is that we approximate proximal steps via Algorithm 4 and our reduced-bias
bias estimator. The first step of the approach is to replace fmax with the “softmax” function, defined
for a given target accuracy ✏ as

fsmax(x) := ✏
0 log

 
X

iN

exp
�
f(i)(x)/✏

0
�
!
, where ✏0 :=

✏

2 logN
.

Since fsmax(x)� fmax(x) 2 [0, ✏
2 ], any ✏

2 -accurate solution of fsmax is ✏-accurate for fmax.

The second step is to develop an efficient gradient estimator for fsmax; this is non-trivial because
fsmax is not a finite sum or expectation. In [13] this is addressed via an “exponentiated softmax” trick;
we develop an alternative, rejection sampling-based approach that fits Algorithm 4 more directly (see
Algorithm 9). To produce an unbiased estimate for rfsmax(x) for x in a ball of radius r✏ = ✏

0
/G

we require a single rf(i)(x) evaluation (for some i), O(1) evaluations of f(i)(x) in expectation, and
evaluation of the N functions f(1)(y), . . . , f(N)(y) for pre-processing. Plugging this estimator into
Algorithm 4 with r = r✏, the total pre-processing overhead of lines 4 and 5 is O(KmaxN).

The final step is to find a function NEXTLAMBDA such that kPfsmax,�t+1(yk)� ykk  r✏ for all k
(enabling gradient estimation), and kPfsmax,�t+1(yk) � ykk �

3
4r✏ when �k+1 > 2�min (allowing

us to bound Kmax with Proposition 2). Here we use the bisection subroutine from [13] as is (see
Algorithm 10). By judiciously choosing �min—an improvement over the analysis in [13]—we obtain
the following complexity guarantee on Nf(i) and N@f(i) , the total numbers of individual function and
subgradient evaluations, respectively. (See proof Appendix D.2).
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Theorem 4. Let f(1), . . . , f(N) : X ! R be convex and G-Lipschitz and let X ✓ BR(x0). For

any ✏ <
1
2GR/ logN , Algorithm 4 (with eP'

fsmax,�
implemented in Algorithm 8, r̂fsmax given by

Algorithm 9 and NEXTLAMBDA given by Algorithm 10 with �min = eO(✏/(r4/3✏ R
2/3)) outputs x 2

X that with probability at least
1
2 is ✏-suboptimal for fmax(x) = maxi2[N ] f(i)(x) and has complexity

ENf(i) = O

✓
N

⇣
GR logN

✏

⌘2/3
+
�
GR
✏

�2
�
log2 GR

✏

◆
and EN@f(i) = O

⇣�
GR
✏

�2
log2 GR

✏

⌘
.

The rate given by Theorem 4 matches (up to logarithmic factors) the lower bound ⌦(N(GR/✏)2 +
(GR/✏)2) shown in [13] and is therefore near-optimal.

5 Gradient-efficient composite optimization
Consider the problem of finding a minimizer of the following convex composite optimization problem

minimize
x2X

 (x) := ⇤(x) + f(x) where ⇤ is L-smooth and f satisfies Assumption 1, (5)

given x0 such that kx0 � x?k  R for some x? 2 argminx2X  (x). Lan [34] developed a method
called “gradient sliding” that finds an ✏-accurate solution to (5) with complexity Nr⇤ = O(

p
LR2/✏)

evaluations of r⇤(x) and N
r̂f = O((GR/✏)2) evaluations of r̂f(x), which are optimal even for

each component separately.6

In this section, we provide an alternative algorithm that matches the complexity of gradient up to
logarithmic factors and is conceptually simple. Our approach, Algorithm 5, is essentially composite
AGD [41], where at the kth iteration we compute a proximal point (2) with respect to a partial
linearization of around yk. In particular, letting ⇤̄k(v) := ⇤(yk)+ hr⇤(yk), v�yki and �k = 2L

k ,
we approximate P⇤̄+f,�k

(vk�1). Similar to Algorithm 4, Algorithm 5 computes two types of
approximations: one is an ✏k-approximate proximal point eP✏k

⇤̄+f,�k
(vk�1) as per its definition (4),

while the other is our bias-reduced optimum estimator from Algorithm 1. We note, however, that
unlike Algorithm 4 which approximates the xk update, here we approximate vk, the “mirror descent”
update.

Below we state the formal guarantees for Algorithm 5; we defer its proof to Appendix E.

Algorithm 5: Stochastic composite accelerated gradient descent

Input: A problem of the form (5) with ⇤, f , r⇤, r̂f .
Parameters :Step size parameters �k = 2L

k and �k = 2
k+1 , iteration number N , approximation

parameters {✏k, �k,�2
k} and x0 = v0 satisfying kx0 � x?k  R.

1 for k = 1, 2, · · · , N do
2 yk = (1� �k)xk�1 + �kProjX (vk�1)

3 v̄k = eP✏k
⇤̄k+f,�k

(vk�1) for ⇤̄k(v) := ⇤(yk) + hr⇤(yk), v � yki

4 vk = OPTEST(r̂f, k,�k, �k,�
2
k,BR(v0) \ X ) for  k(z) =

�k

2 kz � vk�1k
2 + ⇤̄k(z)

5 xk = (1� �k)xk�1 + �kv̄k

6 return xN

Theorem 5. Given problem (5) with solution x?, a point x0 such that kx0 � x?k  R and target

accuracy ✏ > 0, Algorithm 5 with ✏k = LR/2kN , �k = R/16N , �
2
k = R

2
/4N , and N =

⇥(
p
LR2/✏) finds an approximate solution x satisfying E (x)   (x?) + ✏ and has complexity

Nr⇤ = O

✓q
LR2

✏

◆
and EN

r̂f = O

✓�
GR
✏

�2
log2 GR

✏ +
q

LR2

✏ log
�
GR
✏

�◆
.

6 Efficient non-smooth private convex optimization
We conclude the paper with a potential application of our optimum estimator for differentially
private stochastic convex optimization (DP-SCO). In this problem we are given n i.i.d. sample

6The gradient sliding result holds under a relaxed Lipschitz assumption [see 34, eq. (1.2)]. It is straightforward
to extend EPOCHSGD, and hence all of our results, to that assumption as well.
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si ⇠ P taking values in a set S, and out objective is to privately minimize the population average
f(x) = ES⇠P [f̂(x;S)], where f̂ : X ⇥ S ! R, is convex in the first argument and X ⇢ Rd is a
convex set, and S is a population of data points. That is, We wish to find x̂ 2 X with small excess
loss f(x̂)�minx2X f(x) while preserving differential privacy.
Definition 2 ([22]). A randomized algorithm A is (↵,�)-differentially private ((↵,�)-DP) if, for all

datasets S,S
0
2 Sn that differ in a single data element and for every event O in the output space of

A, we have P [A(S) 2 O]  e
↵
P [A(S 0) 2 O] + �.

DP-SCO has received increased attention over the past few years. Bassily et al. [5] developed
(inefficient) algorithms that attain the optimal excess loss 1/

p
n +

p
d log(1/�)/n↵. When each

function is O(
p
n) smooth, Feldman et al. [23] gave algorithms with optimal excess loss and O(n)

gradient query complexity. In the non-smooth setting, however, their algorithms require O(n2)
subgradients. Subsequently, Asi et al. [3] and Kulkarni et al. [32] developed more efficient algorithms
for non-smooth functions which need O(min(n2

/
p
d, n

5/4
d
1/8

, n
3/2

/d
1/8)) subgradients which is

O(n11/8) for the high-dimensional setting d = n. Whether a linear gradient complexity is achievable
for DP-SCO in the non-smooth setting is still open.

In this section, we develop an efficient algorithm for non-smooth DP-SCO that queries eO(n) subgra-
dients conditional on the existence of an optimum estimator with the following properties.
Definition 3. Let F = f +  be µ-strongly convex with minimizer x? and f is G-Lipschitz. For

� > 0, we say that O� is efficient bounded low-bias estimator if it returns x̂? = O�(F ) such that

kE[x̂? � x?]k2  �
2
, kx̂? � x?k

2
 C1G

2 log(G/µ�)/µ2
, and the expected number of gradient

queries is C2 log(G/µ�).

Comparing to our MLMC estimator (1) and Proposition 1, we note that the only place our current
estimator falls short of satisfying Definition 3 is the probability 1 bound on kx̂? � x?k

2, which
for (1) holds only in expectation. Indeed, for our estimator, kx̂? � x?k can be as large as O(G/(µ�)),
meaning that it is heavy-tailed.

It is not clear whether an EBBOE as defined above exists. Nevertheless, assuming access to such esti-
mator, Algorithm 6 solves the DP-SCO problem with a near-linear amount of gradient computations.
The algorithm builds on the recent localization-based optimization methods in [23] which iteratively
solve regularized minimization problems.

Algorithm 6: Differentially-private stochastic convex optimization via optimum estimation
Input: (s1, . . . , sn) 2 Sn, domain X ⇢ BR(x0), EBBOE O (satisfying Definition 3).

1 Set k = dlog ne, B = 20(log( 1� ) + C2 log
2
n), n̄ = n

k , ⌘ = R
G min

(
1

p
n
,

↵

B log(n)
q

d log( 1
� )

)

2 for i = 1, 2, · · · , k do
3 Let ⌘i = 2�4i

⌘ , fi(x) = 1
n̄

Pkn̄
j=1+(k�1)n̄ f̂(x; sj),  i(x) = kx� xi�1k

2
/(⌘in̄)

4 Let x̃i =
1
n̄

Pn̄
j=1 O�i(Fi) with Fi = fi +  i , �2i = G

2
⌘
2
i n̄

5 Set xi = x̃i + ⇣i where ⇣i ⇠ N(0,�2
i Id) with �i = 8B(

p
C1 log n+ 2)⌘i

p
log(2/�)/↵i

6 return xk

We average multiple draws of the (hypothetical) bounded optimum estimator to solve the regularized
problems, and apply private mean estimation procedures to preserve privacy. We defer the proof of
the following results Appendix F.
Theorem 6 (conditional). Given an efficient bounded low-bias estimator O� satisfying Definition 3

for any � > 0, then for ↵  log(1/�), X 2 BR(x0), convex and G-Lipschitz f̂(x; s), Algorithm 6

is (↵,�)-DP, queries eO(n) subgradients and has (hiding logarithmic factors in n) E[f(xk) �

minx2X f(x)]  GR · eO
✓

1
p
n
+

p
d log3(1/�)

n↵

◆
.

Theorem 6 provides a strong motivation for constructing bounded optimum estimators that satisfy Def-
inition 3 . In Appendix F.3, we discuss the challenges in making our MLMC estimator bounded, as
well as some directions to overcome them.
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