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Abstract

This paper addresses the challenge of enhancing the robust-
ness and efficiency of Visual Question Answering (VQA)
models by leveraging feature consistency. Inspired by semi-
supervised feature representation learning, we introduce a
contrastive loss framework to effectively capture representa-
tions from multi-modal inputs. However, existing contrastive
learning approaches, which use random intra-class and non-
target samples as positive and negative examples, often fail to
improve model performance on robust VQA benchmarks. To
overcome this limitation, we propose Adversarial Contrastive
Learning (ADVCL), a supervised framework that generates
challenging positive and negative samples via adversarial per-
turbations. ADVCL creates hard positives by applying sig-
nificant perturbations to input image-question pairs, thereby
maximizing conditional likelihood and enhancing robustness.
Experimental results demonstrate that ADVCL outperforms
or matches state-of-the-art models in robustness against lin-
guistic variations in questions, offering a significant advance-
ment in VQA robustness.
Keywords: VQA robustness, contrastive loss, adversarial per-
turbations

Introduction
Visual Question Answering (VQA) (Antol et al. 2015) is a
key application in multi-modal learning that aims to provide
accurate answers to textual questions based on image in-
put. Despite significant progress, many VQA models fail to
deliver consistent predictions for semantically similar ques-
tions posed in different ways (e.g., paraphrased questions).
For instance, a model might provide inconsistent answers to
“How many cats are in this picture?” and “What is the total
number of cats?” despite their semantic equivalence. This is-
sue arises from overreliance on biases in question types and
limited attention to holistic question-image semantics.

Recent efforts to address these challenges have introduced
robust models that mitigate language bias, often through
data augmentation techniques that generate question para-
phrases ( (Shah et al. 2019; Gokhale et al. 2020; Liang et al.
2020b; Kant et al. 2020; Ghosh and Lan 2021)). While ef-
fective to some extent, these methods often fail to fully ad-
dress linguistic variations, leaving room for improvement

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in robustness. Moreover, contrastive learning, which has
shown promise in single-modal tasks (van den Oord, Li, and
Vinyals 2018; Chen et al. 2020b), remains underexplored in
multi-modal contexts for VQA.

In this paper, we propose Adversarial Contrastive Learn-
ing (ADVCL), a framework designed to improve VQA ro-
bustness through a novel application of supervised con-
trastive loss (Khosla et al. 2020). ADVCL generates chal-
lenging positive and negative samples via adversarial per-
turbations, targeting both visual and textual modalities. By
leveraging these adversarial examples, our approach en-
hances the model’s sensitivity to input variations, ensuring
more consistent predictions across paraphrased questions.

We evaluate ADVCL on the VQA-Rephrasings bench-
mark, which tests robustness to linguistic variations, and the
widely-used VQA v2.0 dataset (Goyal et al. 2017). ADVCL
outperforms state-of-the-art models on VQA-Rephrasings,
achieving a 1.57% improvement in consensus score (CS4)
over the baseline, and improves overall VQA accuracy on
VQA v2.0 by 0.78%. The main contributions include the
following:

• We address the VQA robustness problem via adversar-
ial contrastive learning, enhancing representation learn-
ing for both vision and language inputs.

• We propose a novel method for generating adversarial
positive and negative samples to optimize contrastive
loss.

• We introduce distinct generator modules for visual and
textual modalities, ensuring robustness to manipulations
in both.

Related Works
Visual Question Answering
Visual Question Answering (VQA) was initially introduced
to gain a deep understanding of visual content by com-
bining advancements in natural language processing (NLP)
and computer vision (CV) (Malinowski and Fritz 2014)).
Early methods used pre-trained visual feature extractors like
VGG and ResNet, while modern approaches employ more
advanced architectures, including multi-modal transform-
ers (Lu et al. 2019, 2020). Notable advancements include
the application of bilinear attention (Kim et al. 2016) and



Figure 1: Overview of proposed adversarial contrastive learning (b) VS. contrastive learning proposed by (Kant et al.
2020) (a). Our model alleviates the biases from feature by ignoring non-sense intra-class but adding adversarial sample

methods such as BAN (Kim, Jun, and Zhang 2018), and
DCN (Nguyen and Okatani 2018).

Recent models like Flamingo (Alayrac et al. 2022) have
introduced cross-modal few-shot learning capabilities, en-
abling robust VQA with limited task-specific examples. An-
other recent addition is BLIP (Li et al. 2022), which inte-
grates vision-language pretraining for zero-shot VQA across
diverse datasets. Datasets like GQA (Hudson and Manning
2019) focus on improving visual grounding and composi-
tional reasoning in VQA. Despite advancements, robust pre-
diction against input variations remains challenging.

Robustness of Visual Question Answering
The robustness of VQA models has been extensively studied
with respect to biases in multimodal datasets. (Agrawal et al.
2018) introduced VQA-CP to address question-oriented lan-
guage bias, while (Shah et al. 2019) highlighted linguistic
vulnerabilities using the VQA-Rephrasings dataset. Meth-
ods like LMH (cla 2019) and CSS (Chen et al. 2020a) em-
ploy debiasing strategies to reduce the impact of spurious
correlations in training data.

Recent works emphasize broader robustness across
modalities and reasoning. ViLT (Kim, Cho, and Bansal
2021) and BEiT-3 (Wang et al. 2023) extended pre-training
paradigms to better align visual and textual representations,
showing improvements in generalization.

In addition to tackle linguistic bias, recent benchmarks
like GQA-OOD (Kervadec et al. 2020) and CLEVR-
Ref+ (Liu et al. 2019) push models to address robustness in
compositional and relational reasoning. VL-BERT (Su et al.
2020) and UNITER (Chen et al. 2019) use shared embed-
dings to enhance robustness against noisy data and adver-
sarial inputs.

Contrastive Representation Learning
Contrastive learning has demonstrated strong performance
in learning high-level visual and textual representa-
tions (van den Oord, Li, and Vinyals 2018). Early works
focused on unsupervised methods, while supervised con-
trastive learning methods like SimCLR (Chen et al. 2020b)
and MoCo (He et al. 2020) improved robustness by aligning
semantically similar features.
Recent VQA applications of contrastive loss include using

Debiasing Contrastive Learning (DCL) (Jiang et al. 2022)
to mitigate dataset-induced biases. (Liang et al. 2020a) ex-
plored robust feature learning by replacing cross-entropy
with supervised contrastive loss, improving generalization.
DeVLBert (Parmar, Jaiswal, and Sharma 2023) extends this
idea by incorporating cross-modal contrastive objectives to
enhance multi-modal feature alignment. In this work, we fo-
cus on adversarially generated positive and negative samples
to improve model consistency against both linguistic and vi-
sual perturbations, a direction less explored in the existing
literature.

Approach
We introduce AdvCL (Adversarial Contrastive Learning),
an extension of contrastive learning designed to enhance
the robustness of Visual Question Answering (VQA) mod-
els against linguistic variations in questions. This approach
augments training data and optimizes multi-modal represen-
tations by leveraging adversarially generated examples and
supervised contrastive learning.

Dataset Augmentation with Question Paraphrases

To enrich the dataset D = {(vi, qi, ai)}Ni=1 comprising
triplets of images vi, question qi and ground-truth answer ai,
we augment D with paraphrased questions QPara(q). These
paraphrases are generated using two complementary meth-
ods: Visual Question Generation (VQG) (Shah et al. 2019)
and Back-Translation (BT) (Edunov et al. 2018). The aug-
mented dataset Daug = D ∪QPara(q).

Contrastive Learning Framework for VQA
Building on prior works (van den Oord, Li, and Vinyals
2018; Chen et al. 2020b), contrastive learning aims to align
semantically similar representations while pushing apart dis-
similar ones. For VQA, previous methods (Liang et al.
2020b; Kant et al. 2020; Ghosh and Lan 2021) utilize
this framework by maximizing mutual information between
original and paraphrased samples (positives) while distanc-
ing non-target samples (negatives). ADVCL refines this strat-
egy by introducing adversarial positives and negatives to ad-
dress the limitations of random sampling.



Adversarial Contrastive Learning (ADVCL)
Traditional contrastive learning methods rely on randomly
sampling positive and negative pairs, which may lead to
suboptimal performance due to the random nature of nega-
tive samples. To improve this, we propose Adversarial Con-
trastive Learning (ADVCL), which refines the sampling pro-
cess by strategically selecting hard positives and hard nega-
tives using adversarial perturbations.

In ADVCL, we use ground-truth answer labels to generate
challenging adversarial examples by perturbing the image
and question pairs. These perturbations maximize the loss
while maintaining semantic consistency with the original
pair, ensuring they are distinct in visual or textual attributes.
The perturbation is designed to refine the training by pro-
ducing more informative samples, enhancing model robust-
ness. For a given triplet (vi, qi, ai), where Vi, qi, and ai is
the ground-truth answer, we perturb the image and question
to create adversarial samples vadv and qadv . These perturba-
tions are designed to maximize the loss function, ensuring
the adversarial examples maintain their relationship with the
original ground-truth answer ai. The perturbations are com-
puted as follows:

qadv = q + δ∗q , where δ∗q = argmaxL(q + δq)

vadv = v + δ∗v , where δ∗v = argmaxL(v + δv) (1)

The adversarial contrastive loss is calculated using the ad-
versarial pairs created by perturbing the image and question.
Hard negatives are generated by altering either the visual
or textual components while maintaining semantic similar-
ity in the embedding space. These hard negatives, along with
the adversarial pairs, improve the model’s ability to distin-
guish between similar and dissimilar samples, enhancing its
robustness across varying inputs. By minimizing the con-
trastive loss for these pairs, the model learns to create se-
mantically rich representations that generalize better across
different question and image variations.

The loss formulation uses a supervised contrastive loss
(LSCL (Khosla et al. 2020)) to pull together positive sam-
ples and push apart negative ones:

LSCL =
1

|P |
.

P∑
j=1

log
e(ϕ(zi.zj)/τ)∑K

k=1 Ik ̸=i.e(ϕ(zi.zk)/τ)
(2)

where P denotes the set of positives, zi and zj are the em-
beddings of similar samples, and ϕ(zi, zj) computes sim-
ilarity between them (e.g., cosine similarity). Temperature
τ ̸= 0 controls the smoothness of the similarity function.

In ADVCL, adversarial perturbations are applied to both
visual and textual inputs, generating adversarial examples
to improve model robustness. From the augmented data set
QPara, four positive samples are created for each input
question qi as qparap

4
p=1. ADVCL further generates visual

and textual adversarial examples on-the-fly, obtaining se-
mantically equivalent samples for both modalities. Specifi-
cally, for each triplet (vi, qi, ai), adversarial pairs are formed
as:

ADV (x) = (vadv, qi), (vi, qadv), (vadv, qadv) (3)

These pairs, as shown in Figure 1.b, maintain the same
ground-truth answer and are generated from the same triplet
in the embedding space. To create these adversarial exam-
ples, we apply the supervised contrastive loss (LSCL) as the
primary loss function, with additional regularization terms
that weight the contributions of adversarial samples. The
overall loss function is given by:

L = LSCL(θ; v; q; a) + β1LSCL(θ; v; qadv; a)

+ β2LSCL(θ; vadv; q; a) (4)

θ, β1, and β2 are hyper-parameters controlling the relative
weight of the adversarial samples, as discussed in (Tang
et al. 2020). The adversarial samples are generated using
the Iterative Fast Gradient Sign Method (IFGSM) (Kurakin,
Goodfellow, and Bengio 2017), an efficient gradient-based
attacker, which iteratively perturbs the question and image
input based on the gradients of the loss function:

qt+1
adv = qtadv + α · sign(∇qL(θ; v; qtadv; atrue)),

vt+1
adv = vtadv + α · sign(∇vL(θ; vtadv; q; atrue)). (5)

For first step (t = 1): q1adv = q + α.sign(▽qL(θ; v; q; a)),
and v1adv = v+α.sign(▽vL(θ; v; q; a)). To further enhance
model performance, ADVCL avoids the use of random non-
target samples as negatives, which is common in traditional
contrastive learning frameworks. Instead, it selects two types
of hard negatives: (i) samples with similar questions but dif-
ferent answer labels, and (ii) samples with similar visual
inputs but different questions and answers, forming pairs
x′ = {(v′, q, a′), (v, q′, a′) | a ̸= a′}. These hard negatives
refine the model’s ability to differentiate between samples,
improving robustness across varying inputs and helping the
model generalize better on challenging VQA benchmarks.

Learning ADVCL Overall Loss
The proposed VQA model combines contrastive and cross-
entropy training. In this case, the final softmax classifier is
learned by minimizing joint loss L with cross-entropy loss;
LCE and supervised contrastive loss LSCL, which is formu-
lated as L = LCE + LSCL.

Experiments
We evaluated the ability of the proposed method to learn
robust representations with consistency and discrimination.

Implementation Details
Hard positive and negative samples were generated to
enable contrastive learning, emphasizing meaningful in-
put variations. Models were trained using AdamX opti-
mizer (Kingma and Ba 2015), with learning rate of 1e-4
and β = 0.98. Experiments have been conducted on 3 GTX
1080TI GPU with 60 and 128 batch sizes for contrastive and
cross-entropy learning due to the limitations of memory. The
learning rate lr and β are both initialized with 0.1. ResNet
((He et al. 2016)) backbone is used for all models except for
the black-box experiments.



CS VQA Scores
Model k = 1 k = 2 k = 3 k = 4 Orig Rep

MUTAN (Gokhale et al. 2020) 56.7 43.6 38.9 32.7 59.1 46.8
BUTD (Anderson et al. 2018) 60.5 46.9 40.4 34.5 61.5 51.2
BUTD+CC (Shah et al. 2019) 61.7 50.8 44.7 42.5 62.4 52.6
Pythia (Jiang et al. 2018) 63.4 52.0 45.9 39.5 64.1 54.2
Pythia+CC (Shah et al. 2019) 64.4 55.4 50.9 44.3 64.5 55.6
BAN (Kim, Jun, and Zhang 2018) 64.8 53.1 47.4 39.9 65.0 55.8
BAN+CC (Shah et al. 2019) 65.7 56.9 51.7 48.2 65.8 56.6
ConClaT (Kant et al. 2020) - - 55.3 52.3 - 64.7
Ours-ADV 66.8 59.5 55.1 51.9 - 66.0
Ours-ADVCL 67.1 59.7 55.3 52.2 67.3 70.1

Table 1: Consensus performance on VQA-Rephrasings
dataset using VQG Baseline results are copied from (Shah
et al. 2019)

Comparison with State-of-the-Art
We compared ADVCL with classic: PYTHIA (Jiang
et al. 2018), Bottom-Up-Attention and Top-Down
(BUTD) (Anderson et al. 2018) and state-of-the-art
settings: VQA+CC (Shah et al. 2019) and Contrast and
Classify Training (CONCLAT) (Kant et al. 2020). Besides,
we used two baselines: first, the Multi-Modal Transformer-
based model (MMT) using CE loss (LCE), that is denoted
as BASELINE. The second, denoted as Ours-ADV is MMT
with adversarial attack training that uses LCE for both
clean and noisy status. Ours-ADV is very close to the
model proposed by VILLA ((Gan et al. 2020)). For fair
comparison, we have searched for methods using the same
Faster-RCNN features ((Ren et al. 2017)) similar to ours.
We use the evaluation code from official VQA challenge
((Antol et al. 2015)).

Table 1 reports the comparison of our model performance
with various state-of-the-art methods on the consensus score
(CS(k)) for k = 1, 2, 3, 4 on VQA-Rephrasings (Shah
et al. 2019) and VQA Accuracy on VQA v2.0 ((Goyal et al.
2017)) datasets. For fair comparison, we provide CS(k) per-
formances on augmented data by VQG. Our method out-
performs Conclat gains of 1.2%, on validation (CS(k)) for
k = 3 and k = 4 respectively. Table 1 is also provides fur-
ther comparison between our proposed model and state-of-
the-arts due to original dataset and augmented dataset us-
ing positive question rephrasing (Rep). In summary, OURS-
ADVCL achieves state-of-the-art robust performance on the
VQA-Rephrasings dataset (Shah et al. 2019) by using ro-
bust metrics that show the robustness of the proposed model
across language variations.

Qualitative Analysis
Table 2 provides the performance based on different ques-
tion types of some other state-of-the-art methods ((Ander-
son et al. 2018; Chen et al. 2020a; Cadene et al. 2019; Shah
et al. 2019)) to further evaluate the discriminative power of
the representations for answer prediction. The results show
the promising improvements on both VQA v2.0 and out-of-
distribution dataset like VQA-CP v2.0(Agrawal et al. 2018).

Qualitative Analysis
We present qualitative results in Figure 2, comparing the per-
formance of the baseline and ADVCL on various aspects of
VQA robustness, including the handling of complex ques-
tions (upper row) and biased samples (lower row). For in-

Figure 2: Qualitative Examples. Visualization of examples
collected from ADVCL predictor for complicated questions
and unbiased samples in compare with Ours-ADV.

stance, the ground-truth answer to the question “what color
is the hydrant?” is frequently “red” due to dataset imbal-
ances. However, for the question “What color is the top of
the hydrant?” the correct answer is “white”, as shown in Fig-
ure 2. This demonstrates the model’s ability to distinguish
between “top of hydrant” and “hydrant” despite language
bias, showcasing the importance of high-level representa-
tions to mitigate such biases in visual question answering.

Additionally, Figure 3 illustrates the ability of ADVCL to
learn more consistent representations compared to the base-
line. The qualitative results demonstrate improved consis-
tency in predictions across different rephrasings of the orig-
inal question (Q1, Q2, Q3). These results were generated
using data augmented via back-translation (BT).

Conclusion
This paper highlights the significance of learning stable fea-
tures to enhance the robustness of VQA models against
linguistic variations in questions. Specifically, ADVCL im-
proves both model consistency (robustness) and correctness
(discrimination) by combining contrastive and cross-entropy
loss frameworks. Our method achieves notable improve-
ments on benchmarks. On the VQA-Rephrasings dataset,
ADVCL boosts the consensus score (CS@K) by 1.57% over
the baseline and surpasses the state-of-the-art score, improv-
ing from 48.2 to 53.3. Additionally, on the standard VQA
v2.0 benchmark, ADVCL achieves an overall accuracy gain
of 0.78%. These results demonstrate the effectiveness of
ADVCL in promoting both consistency and robustness in
VQA tasks.
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