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ABSTRACT

Establishing semantic correspondences between images is a fundamental yet chal-
lenging task in computer vision. Traditional feature-metric methods enhance
visual features but may miss complex inter-image relationships, while recent
correlation-metric approaches attempt to model these relationships but are hin-
dered by high computational costs due to processing 4D correlation maps. We in-
troduce MambaMatcher, a novel method that overcomes these limitations by effi-
ciently modeling high-dimensional correlations using selective state-space models
(SSMs). By implementing a similarity-aware selective scan mechanism adapted
from Mamba’s linear-complexity algorithm, MambaMatcher refines the 4D cor-
relation tensor effectively without compromising feature map resolution or re-
ceptive field. Experiments on standard semantic correspondence benchmarks
demonstrate that MambaMatcher achieves state-of-the-art performance without
relying on large input images or computationally expensive diffusion-based fea-
ture extractors, effectively capturing rich inter-image correlations while maintain-
ing computational efficiency.

1 INTRODUCTION

Establishing semantic correspondences between images is a fundamental problem in computer vi-
sion, with wide-ranging applications in augmented and virtual reality (AR/VR), such as virtual
try-on (Kim et al., 2023), edit propagation (Endo et al., 2016; Peebles et al., 2022), and instance
swapping (Zhang et al., 2024). The task involves identifying semantically corresponding regions
between pairs of images depicting different instances of the same class (Cho et al., 2015; Min et al.,
2019; Truong et al., 2022). Despite significant advancements in deep learning, reliably establishing
semantic correspondences remains challenging due to substantial intra-class variations, including
differences in pose, scale, and appearance among instances.

Current state-of-the-art methods predominantly adopt a feature-metric approach, enhancing the
quality of features at each spatial position in the images. This enhancement is achieved by either (i)
employing more powerful feature extractors (Tang et al., 2023; Zhang et al., 2024) or (ii) improving
feature representations through aggregation with additional convolutional or attentional layers (Seo
et al., 2018; Lee et al., 2021b; Luo et al., 2024). While richer features can robustly identify semantic
similarities across local pixels, feature-metric methods may struggle to capture complex inter-image
relationships due to their focus on individual feature points.

An alternative is the correlation-metric approach, where methods aim to model inter-image rela-
tionships by processing the 4D correlation map between features from the two images (Rocco et al.,
2018; Min & Cho, 2021; Cho et al., 2021; Kim et al., 2022). Although this approach can alleviate
ambiguous or noisy correspondences by considering global correlation patterns, it suffers from sig-
nificant computational complexity. Processing the 4D correlation map incurs up to quartic complex-
ity with respect to the feature map dimensions, which severely limits the feature map resolution and
necessitates compromises on the receptive field or network expressivity—critical factors for accurate
and robust correspondences. Consequently, despite their potential, correlation-metric methods are
often outperformed by feature-metric methods that utilize stronger backbones and higher-resolution
images (Luo et al., 2024; Hedlin et al., 2024; Li et al., 2023; Tang et al., 2023; Zhang et al., 2024).

In this paper, we propose MambaMatcher, a novel approach that overcomes the limitations of both
feature-metric and correlation-metric methods by efficiently modeling high-dimensional correlation
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maps using selective state-space models (SSMs). To the best of our knowledge, MambaMatcher is
the first method to treat multi-level correlation scores at each position in the correlation map as a
state in a state-space model, enabling effective and efficient modeling of inter-image correlations. At
the core of MambaMatcher is a similarity-aware selective scan mechanism, which adapts Mamba’s
linear selective scanning algorithm to refine the 4D correlation tensor with linear complexity. This
mechanism allows us to robustly and scalably process the correlation map without compromising
on feature map resolution or receptive field, thereby capturing rich inter-image relationships while
maintaining computational efficiency.

The key contributions of our work are summarized as follows:

• We introduce MambaMatcher, the first method to model high-dimensional correlation maps
using selective state-space models, treating multi-level correlation scores as states to effec-
tively capture inter-image correlations.

• We propose a novel similarity-aware selective scan mechanism, enabling efficient and ac-
curate mining of inter-image correlations at high resolutions.

• MambaMatcher seamlessly integrates feature-metric and correlation-metric approaches
into a unified pipeline, leveraging the strengths of both methods without compromising
feature map resolution or receptive field.

• Extensive experiments demonstrate that MambaMatcher achieves state-of-the-art perfor-
mance on standard semantic correspondence benchmarks, outperforming methods that rely
on expensive Diffusion-based features, while incurring lower computational overhead.

2 RELATED WORK

Feature-metric approach for semantic correspondence. Semantic correspondence methods that
adopt the feature-metric approach prioritize producing high-quality features to establish robust cor-
respondences. Traditional feature-metric methods (Liu et al., 2010; Bristow et al., 2015; Cho et al.,
2015; Ham et al., 2017) typically use hand-crafted descriptors (Lowe, 2004; Dalal & Triggs, 2005;
Bay et al., 2006), which, despite their simplicity, show satisfactory performance. With the advent
of deep learning, recent methods demonstrate that using local features extracted from deep neu-
ral networks leads to significant performance improvements (Min et al., 2020; Tang et al., 2023;
Luo et al., 2024; Li et al., 2023). While ResNets (He et al., 2016) were the conventional choice
for the visual feature extractor, more recent works propose employing stronger feature extractors
such as DINOv2 (Oquab et al., 2023) or Stable Diffusion (Rombach et al., 2022). In the presence
of supervision, there are attempts to yield richer features by refining the extracted features, e.g.,
by using additional convolutional or attentional layers (Seo et al., 2018; Lee et al., 2021b; Huang
et al., 2022). In our method, we leverage DINOv2 for its strong feature extraction capabilities and
refine these features using 2D convolutional layers tailored to enhance correspondence accuracy.
However, MambaMatcher takes a step further by harmoniously integrating the correlation-metric
approach through our proposed similarity-aware selective scan, effectively modeling the correlation
space and outperforming methods that use Stable Diffusion (Rombach et al., 2022) features.

Correlation-metric approach for semantic correspondence. Methods that adopt the correlation-
metric approach aim to refine ambiguities and noise in the correlation map so that the refined map
can be used to establish more robust and accurate correspondences. In the context of semantic corre-
spondence, NCNet (Rocco et al., 2018) first established this idea via a 4D convolutional network to
consider neighborhood consensus, which motivated follow-up work to formulate neighborhood con-
sensus in more effective or efficient ways (Li et al., 2020; Min & Cho, 2021; Lee et al., 2021a; Kim
et al., 2024). However, high-dimensional convolutional kernels are constrained by their local recep-
tive field and static transformations. To address this, methods such as CATs (Cho et al., 2021; 2022)
and TransforMatcher (Kim et al., 2022) apply the self-attention mechanism to the correlation tensor
to consider inter-correlation relations in a dynamic global fashion. Despite their efficacy, applying
self-attention to the correlation map incurs up to quartic computational complexity with respect to
the feature map dimensions. This necessitates a compromise on either the feature map dimensions,
the receptive field of inter-correlation relationship mining, or the expressivity of the algorithm used,
leading to sub-optimal results compared to the recent success of feature-metric approaches.
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In our work, we introduce a novel approach that models the correlation space using selective state-
space models, applying a similarity-aware selective scan to the correlation tensor. Building upon the
efficiency and scalability of Mamba (Gu & Dao, 2023), this method effectively overcomes previous
limitations by avoiding compromises on feature map dimensions, receptive field, or network expres-
sivity. Our approach facilitates a harmonious integration of feature-metric and correlation-metric
techniques into a single pipeline, advancing the modeling of the correlation space.

State-space models for computer vision. State-space models use state variables to describe a sys-
tem via a set of first-order differential or difference equations and were introduced into deep learning
for sequence modeling (Gu et al., 2021b; Smith et al., 2022). The efficient leveraging of state-space
models in deep learning gained rapid interest with the advent of Mamba (Gu & Dao, 2023), which
showed promising results compared to transformer-based architectures for sequence modeling in
natural language processing. Notably, Mamba exhibits linear computational complexity at infer-
ence, in contrast to attention-based methods that typically have quadratic complexity. This has
inspired the application of the Mamba model to computer vision. VMamba (Liu et al., 2024b), Vi-
sion Mamba (Zhu et al., 2024), and PlainMamba (Yang et al., 2024) concurrently propose adopting
the selective scan algorithm to the 2D image domain by varying the scan directions to accommo-
date spatial dimensions. These endeavors show competitive or superior performance compared to
existing methods in the computer vision domain, motivating the application of Mamba to various
downstream vision tasks such as video understanding (Li et al., 2024; Chen et al., 2024), medical
imaging (Yue & Li, 2024; Ruan & Xiang, 2024), and point cloud understanding (Liu et al., 2024a).
In our work, we extend the selective scan algorithm from Mamba by introducing a similarity-aware
selective scan specifically designed to refine 4D correlation tensors. This adaptation enables us to
effectively model the correlation space using selective state-space models, allowing for seamless
handling of high-dimensional data in semantic correspondence tasks. By tailoring the selective scan
to be similarity-aware, our method differs from previous applications by directly addressing the
challenges of refining 4D correlation maps, which is critical for accurate semantic correspondence.

3 PRELIMINARY: SELECTIVE STATE SPACE MODELS (MAMBA)

State-space models (SSM) can be viewed as linear time-invariant (LTI) systems that maps a 1D
function or sequence x(t) ∈ R 7→ y(t) through a hidden state h(t) ∈ RN. These models are math-
ematically formulated as linear ordinary differential equations (ODEs), with weighting parameters
of A ∈ RN×N, B ∈ RN×1,C ∈ R1×N and D ∈ R:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t)
(1)

Recently, the key idea is to use the HiPPO matrix (Gu et al., 2020) for A, which produces a hidden
state that memorizes the sequence history. This is accomplished by tracking the coefficients of a
Legendre polynomial, allowing the HiPPO matrix to approximate all of the previous history.

The S4 and Mamba are based on discrete versions of Eq.1, which include a timescale parameter
∆ to transform the continuous parameters A,B to discrete parameters A,B. The commonly used
method for this transformation is the zero-order hold (ZOH), where the discretized result is:

A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) ·∆B
(2)

Consequently, the discretized version of Eq.1 using a step size of ∆ can be rewritten as:

ht = Aht−1 +Bxt

yt = Cht +Dxt

(3)

Structured State Space Model (S4) (Gu et al., 2021a) uses input-independent matrices A, B, and C,
allowing parallel computation via convolutional reformulation. However, this input-independence
limits S4’s efficacy compared to dynamic, input-dependent self-attention mechanisms. To over-
come this, Mamba (Gu & Dao, 2023) introduces input dependency by making B, C, and the step
size ∆ functions of the input, allowing the model to dynamically adapt and enhancing effective-
ness over static models. This content-awareness, termed selective state-space models, bridges the

3
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Figure 1: Overview of MambaMatcher. MambaMatcher extracts multi-level features for an image
pair, which are processed using convolutional feature aggregation layers to yield improved features
to compute the multi-level correlation map. The multi-level correlation map is processed using our
proposed similarity-aware selective scan mechanism to yield a refined correlation map Ĉ, which can
be used to establish semantic correspondences between the images.

gap between the efficiency of state-space models and the adaptability of self-attention. Although
this precludes convolution representations with fixed kernels, Mamba achieves parallelization via a
parallel scan algorithm based on associative scan algorithms (Martin & Cundy, 2017; Smith et al.,
2022). This leads to the selective scan algorithm, which dynamically and efficiently scales linearly
with sequence length, offering unbounded context and fast training and inference.

4 MAMBAMATCHER FOR SEMANTIC CORRESPONDENCE

We provide an overview of MambaMatcher in Fig. 1. Given a pair of images, we first extract
multi-level feature maps from both images using a visual feature extractor. We then enhance these
features using a simple yet effective convolutional feature aggregation module (Sec. 4.1). Next, we
construct a multi-level correlation map from these features. This correlation map is refined using our
correlation aggregation layers based on our novel similarity-aware selective scan (Sec. 4.2). Using
the ground-truth source keypoints, we transfer them through the refined correlation map to obtain
the predicted target keypoints (Sec. 4.3). Finally, we train the entire network by comparing these
predicted keypoints with the ground-truth target keypoints (Sec. 4.4).

4.1 MULTI-LEVEL FEATURE EXTRACTION AND AGGREGATION

Multi-level Feature Extraction. Given a pair of images (Is, It), we utilize the pretrained DINOv2
ViT-B/14 (Oquab et al., 2023) as our visual feature extractor. We extract multi-level features from
both the token and value representations across L intermediate layers of the feature extractor, yield-
ing 2L sets of features for each of the source and target images, i.e., {(F(l)

s ,F
(l)
t )}2Ll=1.

Multi-level Feature Aggregation. Prior to computing the correlation map, we enhance these multi-
level features through feature aggregation to improve their self-awareness and robustness. This is
achieved using a lightweight multi-layer 2D convolutional network specifically designed for this
task. Formally, for each level l, the feature aggregation process is defined as:

F′(l) = σ
(
W2 ∗

(
σ(W1 ∗ F(l))

))
(4)

where W1 and W2 are convolutional kernels, and σ(·) represents an activation function. As a result,
we obtain 2L sets of aggregated features, {(F′(l)

s ,F
′(l)
t )}2Ll=1. The feature aggregators share the same

weights across all levels to maintain efficiency.
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Figure 2: Correlation aggregation via similiarity-aware selective scan. The multi-level corre-
lation map C is flattened to form a sequence ∈ R

(H×W×H×W )×2L. This multi-level correlation
sequence is sorted in the descending order of similarity scores, such that the selective scan can be
performed in a similarity-aware manner. The refined correlation sequence is reordered to its original
order, and is subsequently projected and reshaped to a single-level refined correlation map.

4.2 MULTI-LEVEL CORRELATION COMPUTATION AND AGGREGATION

Multi-level Correlation Map Computation. Using the refined features from the previous stage,
we compute a correlation map C(l) ∈ RH×W×H×W for each level l:

C(l)(ps, pt) =
F

′(l)
s (ps) · F′(l)

t (pt)

∥F′(l)
s (ps)∥∥F′(l)

t (pt)∥
(5)

where ps and pt denote spatial positions in the source and target feature maps, respectively, and
∥ · ∥ represents the L2 norm. The resulting 2L correlation maps are stacked to form a multi-level
correlation map C ∈ R2L×H×W×H×W .

Correlation Aggregation via Similarity-aware Selective Scan. Given the multi-level correlation
map C, we flatten it to form a correlation sequence C ∈ R(H×W×H×W )×2L, enabling us to process
it using the Mamba selective state-space model, which is adept at handling sequential data. Here, the
2L channels correspond to the similarity scores from each level; we treat these multi-level similarity
scores as the ’state’ in the selective SSM.

To embed similarity-awareness into the selective scan mechanism of Mamba, we propose scanning
the correlation sequence in descending order of similarity scores. The rationale is that Mamba can
retain relevant information over long sequences. By processing high-similarity regions first, we:

1. Disambiguate High-Similarity Regions: Early processing of strong matches helps re-
solve ambiguities in these regions.

2. Refine Low-Similarity Regions: Later stages can reinforce or diminish ambiguous or
noisy correspondences by leveraging the context from earlier, more confident matches.

We sort the correlation sequence based on the similarity scores from the final correlation map (the
2L-th level). After processing the sorted sequence with our similarity-aware selective scan mech-
anism, we reorder the sequence back to its original order. We then apply a linear projection and
reshape to yield the refined correlation map Ĉ ∈ RH×W×H×W .

4.3 KEYPOINT TRANSFER

To transfer keypoints from the source image to the target image, we transform the refined corre-
lation tensor Ĉ into a dense flow field using the kernel soft-argmax technique (Lee et al., 2019).
Specifically, for each source keypoint position (i, j), we apply a 2D Gaussian kernel Gp

kl centered
at p = argmaxk,l Ĉijkl to promote a unimodal matching probability distribution, mitigating erro-
neous transfers due to ambiguous matches. We normalize the raw correlation outputs as follows:

Cnorm(i, j, k, l) =
exp

(
Gp

klĈ(i, j, k, l)
)∑

(k′,l′) exp
(
Gp

k′l′Ĉ(i, j, k′, l′)
) (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Results of MambaMatcher on PF-PASCAL and SPair-71k datasets. MambaMatcher
outperforms existing baselines on both datasets, with reasonable latency and memory usage. We
detail the backbone, supervision, and data augmentation usage of each method in Appendix B.

Method Image res.
PF-PASCAL SPair-71k time

(ms)
memory

(GB)@αimg @αbbox

0.05 0.10 0.15 0.05 0.10 0.15

DHPF (2020) 240×240 75.7 90.7 95.0 20.9 37.3 47.5 58 1.6
CHM (2021) 240×240 80.1 91.6 94.9 27.2 46.3 57.5 54 1.6
MMNet (2021) 224×320 77.6 89.1 94.3 - 40.9 - 86 -
PWarpC-NCNet (2022) 400×400 79.2 92.1 95.6 31.6 52.0 61.8 - -
TransforMatcher (2022) 240×240 80.8 91.8 - 32.4 53.7 - 54 1.6
NeMF (2022) 512×512 80.6 93.6 - 34.2 53.6 - 8500 6.3
SCorrSAN (2022) 256×256 81.5 93.3 - - 55.3 - 28 1.5
HCCNet (2024) 240×240 80.2 92.4 - 35.8 54.8 - 30 2.0
CATs++ (2022) 512×512 84.9 93.8 96.8 40.7 59.8 68.5 - -
UFC (2023) 512×512 88.0 94.8 97.9 48.5 64.4 72.1 - -
DIFT (2023) 768×768 69.4 84.6 88.1 39.7 52.9 - - -
DINO+SDzero-shot (2024) 8402 / 5122 73.0 86.1 91.1 - 64.0 - - -
DINO+SDsup (2024) 8402 / 5122 80.9 93.6 96.9 - 74.6 - - -
Diffusion Hyperfeatures (2024) 224×224 - 86.7 - - 64.6 - 6620 -
Hedlin et al. (2024) 0.93×ori. - - - 28.9 45.4 - 90k< -
SD4Match (2023) 768×768 84.4 95.2 97.5 59.5 75.5 - - -

MambaMatcher (Ours) 420×420 87.3 95.9 98.2 61.6 77.8 84.3 74 2.1

Using Cnorm, we transfer all coordinates on a dense grid P ∈ RH×W×2 corresponding to the source
image Is to obtain their transferred coordinates P̂ on the target image It:

P̂(i, j) =
∑
k,l

Cnorm(i, j, k, l) · (k, l) (7)

Here, (k, l) represents spatial coordinates in the target image. P and P̂ are used to construct a dense
flow field, which we employ to transfer source keypoints ks to predicted target keypoints k̂t.

4.4 TRAINING OBJECTIVE

Given an image pair (Is, It) with M ground-truth keypoints, we use the above keypoint transfer
scheme to obtain predicted target keypoints {k̂(m)

t }Mm=1. Our training objective is to minimize the
average Euclidean distance between the predicted and ground-truth target keypoints:

Lkp =
1

M

M∑
m=1

∥k̂(m)
t − k

(m)
t ∥22 (8)

Despite the simplicity of this loss function, our method achieves superior performance due to the
effectiveness of the refined correlation map and the keypoint transfer process.

5 EXPERIMENTS

Implementation details. We use DINOv2 (ViT-B/14) (Oquab et al., 2023) as our visual feature
extractor to obtain local features. We resize input images to 420× 420, resulting in feature maps of
size H = W = 30 and correlation maps of size 304. Considering that ViT-B/14 has 12 transformer
layers, we extract the token and value representations from layers 4 to 11, yielding a total of 8 layers
× 2 facets = 16 feature maps for each image. These feature maps serve as inputs to our subsequent
feature aggregation layer. Our feature aggregation layer consists of two layers of 2D convolution
with a kernel size of 5, having output channel dimensions of 64 and 14, respectively, with a ReLU
activation function in between. For the correlation aggregation layer, we build upon the open-source
implementation of Mamba (Gu & Dao, 2023), using an SSM expansion factor of 16, local convo-
lution width of 4, and block expansion factor of 3. We use the Adam optimizer (Kingma & Ba,
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Figure 3: Visualization of the effect of similarity-aware selective scan. For each keypoint pair
depicted in red on the left, we visualize the corresponding correlation map before and after the
similarity-aware selective scan, and the final refined correlation. It shows that the refined correlation
tensor can better localize (i.e., has higher similarity, shown in brighter yellow) the keypoint position.

2014) with a constant learning rate of 1e−3. We freeze the visual feature extractor during training
to focus on learning the aggregation layers. MambaMatcher is implemented using PyTorch (Ansel
et al., 2024) and PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019).

Evaluation metric. We use the Percentage of Correct Keypoints (PCK), which is the standard
evaluation metric for semantic correspondence. Given M predicted and ground-truth target keypoint
pairs K = {(k̂(m)

t ,k
(m)
t )}Mm=1, and a tolerance factor ατ , PCK is measured by:

PCK(K) =
1

M

M∑
m=1

1

[
∥k̂(m)

t − k
(m)
t ∥ ≤ ατ ·max(wτ , hτ )

]
, (9)

where wτ and hτ are the width and height of either the image or the object bounding box.

5.1 PERFORMANCE ON SEMANTIC MATCHING

We evaluate MambaMatcher on the standard benchmarks for semantic matching: the PF-
PASCAL (Ham et al., 2017) and SPair-71k (Min et al., 2019) datasets. The results are shown in
Table 1, where MambaMatcher outperforms existing methods on both datasets, without relying on
particularly large image sizes or computationally expensive backbones like Stable Diffusion. More-
over, our method incurs a reasonable computational overhead in terms of latency and memory usage.

Fig. 3 visualizes the effect of our proposed similarity-aware selective scan. We observe that our
final refined correlation map Ĉ better localizes keypoints, as indicated by higher similarity scores
(illustrated in brighter yellow). The initial correlation map prior to the similarity-aware selective
scan shows high similarities at ground-truth locations, validating our choice of using the scores from
the final correlation map to sort the multi-level correlation map. After aggregation via our similarity-
aware selective scan, each level of the multi-level correlation map exhibits varying characteristics,
which are condensed into our final refined correlation map Ĉ with enhanced keypoint localization.
We provide additional details of this behavior in Appendix L.

7
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GT Source GT Target Conv4Dk=3 FastFormer MambaMatcher

Figure 4: Qualitative comparison to other correlation aggregation schemes. Ground-truth cor-
respondence are visualized in the left. The predicted keypoints are visualized on the right, where red
depicts incorrect matches and green depicts correct matches. Our method shows to be more robust
under large scale or viewpoint variations. Best viewed on electronics.

5.2 ANALYSIS ON THE FACET USED

Table 2: Single facet comparison.

Facet
SPair-71k (s)

@αbbox

0.05 0.10 0.15

Token 25.2 43.1 55.7
Query 18.6 33.3 43.3
Key 15.6 30.0 41.4

Value 24.4 41.8 53.6

Table 3: Facet combination comparison.

Facet used
SPair-71k (s)

@αbbox

0.05 0.10 0.15

Token 30.8 48.6 59.0
+ Value 32.3 50.5 61.0

+ Value, Query 32.5 50.6 61.0
+ Value, Query, Key 33.2 50.7 61.3

When using DINOv2 as the feature extractor, we can utilize different facets: key, query, value, or
token. In Table 2, we evaluate the PCK on the ’small’ subset of SPair-71k when using each facet from
the final layer (layer 11) of the DINOv2 backbone to establish a single-layer correlation map. We
observe that the performance increases in the order of key, query, value, and token, demonstrating
that the output token features are most effective for establishing semantic correspondences.

When using multi-level features (layers 4-11), we further experiment with incorporating additional
features from other facets to improve performance. We default the multi-level correlation aggrega-
tion to a linear projection to a single-layer correlation map. The results in Table 3 show that using all
feature sources results in the best performance. However, the most significant performance increase
occurs when additionally using the value features; we observe a 1.9% increase at the 0.10 threshold
compared to only a 0.1% increase when adding other facets. To balance performance and computa-
tional overhead, we choose to use token and value features, resulting in 2L layers of features when
extracting features across L layers.
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Table 4: Comparison between different fea-
ture aggregation schemes.

Feature aggregation
SPair-71k (s)

@αbbox

0.05 0.10 0.15

None 32.3 50.5 61.0

2D Convk=1 54.5 72.3 79.8
2D Convk=3 58.9 77.9 84.6
2D Convk=5 59.2 78.4 85.3
Self-attn (2020) 48.5 68.2 76.9
+ Cross-attn. 35.2 57.0 68.6

Mamba2D (2023) 56.3 74.7 81.5
+ bidirectional 53.3 75.2 82.8
+ Z-order curve (1966) 56.0 75.2 82.8
PlainMamba (2024) 54.1 74.0 81.8

Table 5: Comparison between different cor-
relation aggregation schemes.

Correlation aggregation
SPair-71k (s)

@αbbox

0.05 0.10 0.15

4D Convk=1 59.2 78.4 85.3
4D Convk=3 59.2 78.2 85.2
4D Convk=5 39.2 67.9 79.0

FastFormer (2022; 2021) 59.5 78.9 85.7

PlainMamba (2024) 56.7 78.5 85.7
Mamba4D 59.3 78.8 85.6
+ bidirectional 59.0 78.6 85.5
+ Z-order curve (1966) 58.4 79.0 85.6
+ ascending order 58.4 78.2 85.2
+ descending order 59.9 79.3 86.2

5.3 ANALYSIS ON FEATURE AND CORRELATION AGGREGATION

Feature aggregation analysis. Table 4 presents the comparative performance when using different
feature aggregation schemes, evaluated on the small subset of SPair-71k. As we extract multi-level
features and compute multi-level correlation maps, we obtain a single-level refined correlation map
after feature aggregation using a single 1×1 convolution layer in these experiments. Using no feature
aggregation (’None’) defaults to using the extracted features directly. When applying Mamba2D, we
flatten the multi-level feature map F ∈ R2L×H×W to a sequence in R2L×(H×W ), which is then input
to a Mamba layer. We also experiment with bi-directional selective scans, considering that an image
does not have a fixed beginning or end, unlike a temporal sequence. The Z-order curve (Morton,
1966) is a representative space-filling curve that forms a path passing through every point in a high-
dimensional discrete space while preserving spatial proximity, which has been effective in prior
work (Wu et al., 2023; Liang et al., 2024) and is applicable to the scan order of Mamba. Among
convolution-based, attention-based, and Mamba-based feature aggregation schemes, we find that
using a series of 2D convolutional layers with a kernel size of 5 performs the best.

Correlation aggregation analysis. Table 5 illustrates the comparative performance when using dif-
ferent correlation aggregation schemes, evaluated on the small subset of SPair-71k. Based on the
results of the feature aggregation comparison (Table 4), we default the feature aggregation scheme
to 2D Convk=5 for these experiments. Applying a vanilla transformer (Dosovitskiy et al., 2020) to
the correlation tensor results in out-of-memory errors even on a single batch on an RTX 3090 GPU;
therefore, we opt for FastFormer (Wu et al., 2021) as the linear-complexity attention-based corre-
lation aggregation scheme (Kim et al., 2022). When applying Mamba4D, we flatten the multi-level
correlation map C ∈ RL×H×W×H×W to a sequence in RL×(H×W×H×W ), which is then input to
a Mamba layer. ’Ascending order’ and ’Descending order’ indicate that the flattened correlation
tensor is sorted in either ascending or descending order based on the similarity scores from the final
correlation map of the multi-level correlation map. Among different schemes, we find that process-
ing a descending-order sorted multi-level correlation map shows to be the best alternative to induce
similarity-awareness in the selective scan algorithm, verifying the design choices of MambaMatcher.
Fig. 4 compares different correlation aggregation schemes, showing that MambaMatcher establishes
more robust and accurate semantic correspondences under large viewpoint or scale variations. We
provide qualitative comparisons between different selective scanning schemes in Fig. 5. We include
further analyses and comparisons in Appendix C, D, E and J.

5.4 ANALYSIS ON EFFICIENCY OF MAMBAMATCHER

For an intuitive overview, we measure module-wise maximum GPU memory usage and latency in
Table 6. The values are cumulative in the order of DINOv2 (feature extraction), feature aggrega-
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Source Target Mamba4D Mamba4D - ascending Mamba4D - descending

Figure 5: Comparison of Mamba4D scanning schemes. It can be seen that our choice of scanning
the correlation sequence in a descending order shows better keypoint localization, evidencing im-
proved denoising and disambiguation of the correlation sequence.

tion, and correlation aggregation. This shows that our design incurs the lowest latency while using
less memory and fewer parameters than FastFormer, demonstrating a favorable balance between
computational overhead and performance1.

Table 6: Memory, Latency and # Params comparison across correlation schemes. Our scheme
strikes the most favorable balance between performance and efficiency.

Module GPU Memory (GB) Latency (ms) # Params

DINOv2 (Oquab et al., 2023) 0.97 10.3 86.6M
Feature aggregation 1.17 12.3 42.5M

Correlation aggregation
- Conv4Dk=3 1.17 41.0 1.3K
- FastFormers (Kim et al., 2022) (6 layers) 1.67 28.8 26.0K
- Mamba4D + Similarity-aware Selective Scan (Ours) 1.64 16.4 5.1K

6 CONCLUSION

In conclusion, we introduced MambaMatcher, a novel approach for semantic correspondence that
models the high-dimensional correlation space using selective state-space models (SSMs), treating
multi-level correlation scores as states within the correlation map. By leveraging the efficiency of
Mamba’s linear-complexity algorithm and implementing a similarity-aware selective scan mecha-
nism, MambaMatcher effectively refines 4D correlation tensors without compromising feature map
resolution or receptive field. Our evaluations on standard benchmarks demonstrate that Mamba-
Matcher significantly enhances keypoint localization by inducing high similarity values near true
keypoint positions, outperforming existing methods while maintaining computational efficiency.
This work not only advances the state of the art in semantic correspondence but also highlights
the potential of applying SSMs to high-dimensional data, encouraging further exploration into inte-
grating feature-metric and correlation-metric approaches in visual correspondence tasks.

1We report the FLOPs of MambaMatcher in Appendix E.
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with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.
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A ADDITIONAL IMPLEMENTATION DETAILS

During training of MambaMatcher in Tab. 1, we use an effective batch size of 80 by distributing
10 batches to 8 RTX 3090 GPUs. For other comparison and ablative experiments, we run the
experiments on a ’small’ subset of SPair-71k, which is around 20% the size of the original SPair-
71k dataset (Min et al., 2019), with varying effective sizes across 2 GPUs. The batch sizes vary
because different feature and correlation aggregation schemes required different amount of vRAM.
For example, when using FastFormer (Wu et al., 2021), only 3 batches could fit into a single GPU
when training.

Details of soft sampler (Sec. 4.3. Given a source keypoint ks = (xks , yks), we define a soft sampler
Wks ∈ RH×W :

Wks(i, j) =
max(0, τ −

√
(xks

− j)2 + (yks
− i)2)∑

i′j′ max(0, τ −
√
(xks

− j′)2 + (yks
− i′)2)

(10)

where τ is a distance threshold from the keypoint, and
∑

ij W
ks(i, j) = 1. The role of the soft

sampler is to sample each transferred keypoint P̂(i, j) by assigning weights which are inversely
proportional to the distance to the keypoint ks. We can obtain sub-pixel accurate keypoint matches
as follows:

k̂t =
∑

(i,j)∈H×W

P̂(i, j)Wks(i, j). (11)

We use τ = 0.1 for training, and τ = 0.05 for inference.

Experimental environment. All experiments are run on a machine with an Intel(R) Xeon(R) Gold
6242 CPU, with up to 8 GeForce RTX 3090 GPUs.

B ADDITIONAL DETAILS OF BASELINE METHODS

We provide the details of each baseline approach (shown in Table 1 of the main manuscript) in
Table 7, which was omitted due to spatial constraints.

Table 7: Additional details of baseline methods.
Method Feature backbone Supervision Data augmentation

DHPF, CHM, MMNet, PWarpC-NCNet, NeMF, SCorrSAN ResNet101 kp-pair x
TransforMatcher, CATs++, HCCNet, UFC ResNet101 kp-pair o
DIFT SD2.1 None x
DINO + SDzero-shot DINOv2, SD1.5 None x
DINO + SDsupervised DINOv2, SD1.5 kp-pair x
Diffusion Hyperfeatures SD1.5 None x
Hedlin et al. (2024) SD1.4 None x
SD4Match SD2.1 kp-pair x
MambaMatcher DINOv2 kp-pair o

C FEATURE BACKBONE / DATA AUGMENTATION COMPARISON

Table 8: PCK of MambaMatcher on SPair-71k when using varying feature backbones and
data augmentation. We follow the data augmentation scheme used in CATs (Cho et al., 2021) and
TransforMatcher (Kim et al., 2022)

Backbone Data aug. PCK@0.05 PCK@0.10 PCK@0.15

ResNet101 x 38.2 53.3 61.3
ResNet101 o 41.0 58.5 67.4
DINOv2 x 57.9 74.6 81.8
DINOv2 o 61.6 77.8 84.3
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We provide the results of MambaMatcher when using varying backbones, with or without data
augmentation, on SPair-71k for a fairer comparison in Table 8. Noting that PCK@0.05/0.10 for
TransforMatcher (Kim et al., 2022) are 32.4/53.7 with data augmentation, these results show that
the similarity-aware selective scan shows enhanced efficacy over multiple layers of additive attention
(FastFormers (Wu et al., 2021)).

D STATISTICAL SIGNIFICANCE OF PERFORMANCE GAP IN COMPARISON TO
FASTFORMERS

We conduct 3 repeated experiments with varying seeds to report the mean and variance of PCK
results on the ’small’ subset of SPair-71k in Table 9. While the performance gain is not dramatic,
MambaMatcher offers advantages in terms of computational overhead (memory, latency) as previ-
ously shown in Table 6.

Table 9: PCK results on SPair-71K over multiple runs We report the results when using Fast-
Formers in comparison to our similarity-aware selective scan as the correlation aggregation. The
experiments were conducted 3 times - the mean and standard variation across the runs are reported.
It can be seen that our scheme consistently yields better performances across PCK thresholds.

Method PCK@0.05 PCK@0.10 PCK@0.15

FastFormers (Kim et al., 2022) (6 layers) 59.9± 0.74 76.9± 1.40 83.9± 1.27
Mamba + Similarity-aware Selective Scan (Ours) 60.6± 0.54 78.2± 0.76 85.0± 0.86

E FLOPS ANALYSIS OF MAMBAMATCHER

In the Table 10, we report the FLOPs of MambaMatcher using open-source libraries ptflops and
calflops.

Table 10: FLOPs of MambaMatcher measured using open-source libraries.
Module ptflops calflops

DINOv2 (Oquab et al., 2023) 359.32G 358.99G
Feat. agg 2.45T 2.45 T

Conv4Dk=3 (Min & Cho, 2021) 2.06G 2.06G
FastFormers (Kim et al., 2022) (6 layers) 43.54G 43.05G
Mamba + Similarity-aware Selective Scan (Ours) 27.54M 3.84G

While FLOPs serve as a standardized measure of computational complexity, we noticed that existing
libraries fail to accurately capture the FLOPs of various modules due to technical complexities, e.g.,
reliance on operations registered as nn.Modules. Additionally, certain libraries for measuring
FLOPs crash when encountered with hardware-optimized algorithms from xFormers (Lefaudeux
et al., 2022), which are used in the DINOv2 backbone of our method. Consequently, we believe that
this measurement may not be entirely fair or representative of the actual computational overhead
and efficiency.

To address this gap, we conduct a theoretical calculation of FLOPs for varying correlation aggrega-
tion schemes. We consider an input with dimensions N × C = 304 × 16, consistent with Mamba-
Matcher. We assume the same dimensions for the input and output i.e., C = Cin = Cout.

4D convolution, kernel size 3.
2×N × Cin × Cout × k4 = 33.6 GFLOPs

Vanilla dot-product attention. Assuming single head, QKV dim = 16.
QKV projection: 3× (2×N × Cin × Cout)
Dot-product: 2× (N2 × C)
Softmax: 3× (N2)
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Weighted sum of V: 2× (N2)× C
Total = 44.0 TFLOPs

FastFormers (Additive attention). Assuming single head, QKV dim = 16.
QKV projection: 3× (2×N × Cin × Cout)
Softmax and weighted sum: 2× (3×N + 2×N × C)
Global vector addition: 2× (N × C)
Projection: 2×N × C2 Total = 1.74 GFLOPs

Mamba: selective state-space machines. Hyperparameters following MambaMatcher.
Input projection: 2× 2×N × Cin × Cinner
1D convolution: 2× Cinner × k × Cinner
Projection to A, B, dt: 2×N × Cinnertimes(2× dmodel + 1)
Selective scan: 9×N × dmodel × dstate
Element-wise multiplication: N × Cinner
Output projection: 2×N × Cinner timesCin
Total FLOPs = 23.1 GFLOPs

Ours: Selective state-space machines with Similarity-aware Selective Scan. Same as above, but
additional sorting overhead. Assuming each comparison and swap operation involves approximately
4 FLOPs:
Sorting: 4× (NlogN) = 0.064GFLOPs
Total FLOPs = 23.2 GFLOPs

Note that the above values ignore many details, including activation, normalization, residual con-
nections, or actual number of aggregation layers used. The above theoretical calculation serve to
provide a vague estimate of FLOPs for each scheme. However, we suggest that the number of
FLOPs does not directly translate to computational overhead in learning-based methods, as many
variables such as parallelism, hardware optimization, and intermediate representations directly im-
pact GPU memory usage and latency.

F GENERALIZABILITY OF MAMBAMATCHER

Trained on PF-PASCAL, evaluated on PF-WILLOW. We present the results of MambaMatcher
on the PF-WILLOW (Ham et al., 2017) dataset. The PF-WILLOW dataset contains 900 image pairs
for testing only and is evaluated using the model trained on the PF-PASCAL dataset. The results
are illustrated in Table 11, where it can be seen that while MambaMatcher performs competitively,
it does not outperform existing methods. This is unlike our results on the PF-PASCAL and SPair-
71k datasets (Table 1), where MambaMatcher outperforms all existing benchmarks. This may be
attributed to supervised training, which causes the feature and correlation aggregation layers to
be trained specifically for the training domain. Another possibility is that the Mamba layer lacks
generalizability to unseen domains compared to other methods built on convolutional or attention-
based layers.

Trained on SPair-71k, evaluated on PF-PASCAL. While we provide the generalization perfor-
mance of MambaMatcher on the PF-WILLOW dataset in Table 11, we report additional generaliza-
tion results in Table 12. Results on PF-PASCAL were trained on SPair-71k, and vice versa. The
results indicate that while the generalizability of MambaMatcher is not state-of-the-art, it gener-
alizes competitively with other state-of-the-art methods in certain cases, such as being trained on
PF-PASCAL and tested on SPair-71k. While domain generalization is advantageous, we suggest
that a lack of cross-dataset generalization does not diminish the overall significance of our method.
If large-scale datasets for semantic correspondence become available, this problem is likely to be
alleviated significantly for all semantic matching methods.

G COMPARISON ON THE DINOV2 LAYERS USED

We show the comparative experiments on the layers if DINOv2 used in this work to validate our
use of layers 4-11. The experiments were carried out on the ’small’ set of SPair-71k. The results
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Table 11: Results of MambaMatcher on the PF-WILLOW dataset. We perform competitively
with existing methods, but do not outperform all existing methods unlike on PF-PASCAL or SPair-
71k.

Method
PF-WILLOW

@αbbox @αbbox-kp

0.05 0.10 0.05 0.10

DHPF (2020) 49.5 77.6 - 71.0
CHM (2021) 52.7 79.4 - 69.6
CATs++ (2022) 56.7 81.2 47.0 72.6
PWarpC-NCNet (2022) - - 48.0 76.2
TransforMatcher (2022) - 76.0 - 65.3
NeMF (2022) - - 60.8 75.0
SCorrSAN (2022) 54.1 80.0 - -
HCCNet (2024) - 74.5 - 65.5
UFC (2023) 58.6 81.2 50.4 74.2
DIFT (2023) 58.1 81.2 44.8 68.0
DINO+SDzero-shot (2024) - - - -
DINO+SDsup (2024) - - - -
Diffusion Hyperfeatures (2024) - 78.0 - -
Hedlin et al. (2024) 53.0 84.3 - -
SD4Match (2023) - - 52.1 80.4
Ours 56.2 81.1 47.4 72.1

Table 12: PCK on SPair-71k after being trained on PF-PASCAL.
Model PCK@0.05 PCK@0.10 PCK@0.15

CATs (Cho et al., 2021) 13.6 27.0 -
TransforMatcher (Kim et al., 2022) - 30.1 -
SD4Match (Li et al., 2023) 27.2 40.9 -
MambaMatcher (Ours) 26.5 40.9 49.1

in Tab. 13 shows that better features can be obtained across the depths of the DINOv2 backbone,
with the 11th layer token features exhibiting the best performance. Tab. 14 aims to choose the
best combination of layers to extract the feature maps from. While the PCK performance improves
gracefully as more layers are used, we choose to use layers 4-11 as the performance improvement
beyond that becomes diminishing, and using layers 4-11 provides us with a favorable compromise
between memory usage (around 70% memory usage compared to using all 0-11 layers) and PCK
performance.

H PCK PER IMAGE V.S. PCK PER POINT

While it is conventional to calculate the mean PCK per image (sum of image-wise PCK averaged
over the number of images) when reporting the PCK results, some methods confuse this concept
with PCK per point (sum of pair-wise PCK averaged over the number of point pairs). Tab. 15 shows
the results, where it can be seen that PCK-per-point yields higher values in comparison.

I PCK PER CATEGORY

We present the category-wise PCK in Tab. 16, where it can be seen that MambaMatcher yields the
best results overall.

J POTENTIAL WHEN USING LARGER RESOLUTIONS

In Table 17, we report the GPU memory / latency usage when using different correlation aggrega-
tion module at varying image resolutions (thus, varying feature and correlation map resolutions).
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Table 13: Comparison between different lay-
ers of the DINOv2 backbone.

Layers used
SPair-71k (s)

@αimg

0.05 0.10 0.15

0 0.9 3.8 8.2
1 1.5 5.3 11.2
2 1.7 6.1 12.2
3 4.2 11.1 18.8
4 7.3 16.1 24.6
5 10.2 20.6 29.8
6 13.1 23.6 31.8
7 17.5 29.8 39.0
8 20.7 35.2 45.7
9 23.9 40.3 51.5
10 25.2 42.5 54.1
11 25.2 43.1 55.7

Table 14: Comparison between different lay-
ers combinations of the DINOv2 backbone.

Layers used
SPair-71k (s)

@αimg

0.05 0.10 0.15

11 25.2 43.1 55.7
10-11 29.2 46.4 56.8
9-11 28.9 46.7 58.0
8-11 29.6 47.4 58.3
7-11 30.4 48.5 58.8
6-11 30.8 48.4 58.7
5-11 30.9 48.4 58.6
4-11 30.8 48.6 59.0
3-11 31.0 48.7 59.0
2-11 31.2 48.9 58.7
1-11 31.4 48.9 58.8
0-11 31.4 48.9 58.7

Table 15: Results of MambaMatcher on PF-PASCAL and SPair-71k datasets. MambaMatcher
outperforms existing baselines on both datasets. MambaMatcher * outperforms MambaMatcher,
showing that PCK-per-point yields higher results in comparison to PCK-per-image.

Method Image res.
PF-PASCAL SPair-71k time

(ms)
memory

(GB)@αimg @αbbox

0.05 0.10 0.15 0.05 0.10 0.15

DHPF (2020) 240×240 75.7 90.7 95.0 20.9 37.3 47.5 58 1.6
CHM (2021) 240×240 80.1 91.6 94.9 27.2 46.3 57.5 54 1.6
MMNet (2021) 224×320 77.6 89.1 94.3 - 40.9 - 86 -
PWarpC-NCNet (2022) 400×400 79.2 92.1 95.6 31.6 52.0 61.8 - -
TransforMatcher (2022) 240×240 80.8 91.8 - 32.4 53.7 - 54 1.6
NeMF (2022) 512×512 80.6 93.6 - 34.2 53.6 - 8500 6.3
SCorrSAN (2022) 256×256 81.5 93.3 - - 55.3 - 28 1.5
HCCNet (2024) 240×240 80.2 92.4 - 35.8 54.8 - 30 2.0
CATs++ (2022) 512×512 84.9 93.8 96.8 40.7 59.8 68.5 - -
UFC (2023) 512×512 88.0 94.8 97.9 48.5 64.4 72.1 - -
DIFT (2023) 768×768 69.4 84.6 88.1 39.7 52.9 - - -
DINO+SDzero-shot (2024) 8402 / 5122 73.0 86.1 91.1 - 64.0 - - -
DINO+SDsup (2024) 8402 / 5122 80.9 93.6 96.9 - 74.6 - - -
Diffusion Hyperfeatures (2024) 224×224 - 86.7 - - 64.6 - 6620 -
Hedlin et al. (2024) 0.93×ori. - - - 28.9 45.4 - 90k< -
SD4Match (2023) 768×768 84.4 95.2 97.5 59.5 75.5 - - -

MambaMatcher (Ours) 420×420 87.3 95.9 98.2 61.6 77.8 84.3 74 2.1
MambaMatcher * (Ours) 420×420 87.6 96.0 98.2 63.3 79.2 85.6 74 2.1

We do not report the PCK results, because the images were simply resized and the networks were
not trained on those image sizes. Note that the memory usage is cumulative i.e., maximum GPU
memory usage during the forward run. It can be seen that our similarity-aware selective scan incurs

Table 16: Category-wise PCK on the SPair-71k dataset.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
DINOv2 (2023) 69.9 58.9 86.8 36.9 43.4 42.6 39.3 70.2 37.5 69.0 63.7 68.9 55.1 65.0 33.3 57.8 51.2 31.2 53.9
DIFT (2023) 61.2 53.2 79.5 31.2 45.3 39.8 33.3 77.8 34.7 70.1 51.5 57.2 50.6 41.4 51.9 46.0 67.6 59.5 52.9
SD+DINO (2024) 71.4 59.1 87.3 38.1 51.3 43.3 40.2 77.2 42.3 75.4 63.2 68.8 56.0 66.1 52.8 59.4 63.0 55.1 59.3
NCNet (2018) 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
PMNC (2021a) 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
TransforMatcher (2022) 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7
SCorrSAN (2022) 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3
SD4Match (2023) 75.3 67.4 85.7 64.7 62.9 86.6 76.5 82.6 64.8 86.7 73.0 78.9 70.9 78.3 66.8 64.8 91.5 86.6 75.5

MambaMatcher (Ours) 82.9 61.0 91.9 61.0 62.7 89.9 83.8 89.9 60.6 86.7 81.2 81.6 73.7 79.5 70.0 71.5 93.0 86.4 77.8
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Large viewpoint variation + symmetry ambiguity Multiple instances + semantic ambiguity

Figure 6: Failure case of MambaMatcher. We analyze the common failure cases of our method.
Firstly, MambaMatcher shows to fail more often in the dual presence of large viewpoint variation and
symmetry ambiguity, where our model fails to accurately distinguish the position given a symmetric
instance. Secondly, MambaMatcher often fails to follow the ground-truth in the dual presence of
multiple instances and semantic ambiguity. For example, in the upper-right image, an eye and the
nose of the sheep is predicted to correspond to an eye and the nose of a neighbouring dog.

consistently lower GPU memory usage and latency compared to FastFormers. Most notably, the dif-
ference in latency is dramatic; the hardware optimizations of Mamba enables the similarity-aware
selective scan to be performed with only a small increase in latency even when the image sizes be-
come significantly larger. This further justifies our usage of Mamba, given larger image inputs i.e.,
consequently, longer correlation sequences.

Table 17: Efficiency comparison when using larger image resolutions.
Image res. Feature res. Correlation agg. GPU memory (GB) latency (ms)

420 30 Ours 1.64 16.4
420 30 FastFormer 1.67 28.8
560 40 Ours 3.25 16.6
560 40 FastFormer 3.16 28.9
700 50 Ours 6.47 17.7
700 50 FastFormer 6.27 55.6

J.1 FAILURE CASE ANALYSIS

We include qualitative examples of failure cases of our method in Figure 6. Firstly, MambaMatcher
tends to fail in scenarios involving large viewpoint variations combined with symmetry ambiguity,
where our model struggles to accurately distinguish positions in symmetric instances. Secondly,
MambaMatcher may not follow the ground truth in the presence of multiple instances and semantic
ambiguity. We suggest that incorrect correspondence predictions due to semantic ambiguity could
still be considered as semantic correspondences in a broader sense. This opens up interesting future
directions, such as exploring many-to-many semantic correspondences instead of just one-to-one
correspondences in existing datasets.

K ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in Fig. 7.

L ADDITIONAL VISUALIZATIONS OF REFINED CORRELATION MAP

We provide additional visualizations of refined correlations in Fig. 8. While Fig. 3 demonstrates
that our refined correlation map can better localize keypoints, it also shows that the C11, post-
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Source Target Predictions

Figure 7: Additional qualitative results of MambaMatcher.

aggregation, exhibits low similarity at the GT position. Fig. 8 aims to provide a deeper insight
into this phenomenon. In Fig. 8, the top-left images represent an image pair with a ground truth
correspondence. The top-right image visualizes the output correlation map from MambaMatcher.
Below these are {Ci}150 , after the similarity-aware selective scan. As observed, some maps are
completely noisy, while others accurately reflect the keypoint positions. This visualization helps

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Additional visualization of similarity-aware selective scan of MambaMatcher. The
top-left images represent an image pair with a ground truth correspondence. The top-right image
visualizes the refined correlation map Ĉ from MambaMatcher. Below these are {Ci}150 , after the
similarity-aware selective scan. As observed, some maps are completely noisy, while others accu-
rately reflect the keypoint positions. This visualization helps illustrate that during the final prediction
of Ĉ, the noisy maps are effectively disregarded, and the accurate maps are primarily weighted for
aggregation, resulting in our final accurate correlation map.

illustrate that during the final prediction of Ĉ, the noisy maps are effectively disregarded, and the
accurate maps are primarily weighted for aggregation, resulting in our final accurate correlation
map.
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