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Abstract001

The rapid development of large language and002
multimodal models has sparked significant in-003
terest in using proprietary models, such as GPT-004
4o, to develop autonomous agents capable of005
handling real-world scenarios like web naviga-006
tion. Although recent open-source efforts have007
tried to equip agents with the ability to explore008
environments and continuously improve over009
time, they are building text-only agents in syn-010
thetic environments where the reward signals011
are clearly defined. Such agents struggle to012
generalize to realistic settings that require mul-013
timodal perception abilities and lack ground-014
truth signals. In this paper, we introduce an015
open-source framework designed to facilitate016
the development of multimodal web agent that017
can autonomously conduct real-world explo-018
ration and improve itself. We first train the019
base model with imitation learning to gain the020
basic abilities. We then let the agent explore021
the open web and collect feedback on its trajec-022
tories. After that, it further improves its policy023
by learning from well-performing trajectories024
judged by another general-purpose model. This025
exploration-feedback-optimization cycle can026
continue for several iterations. Experimental027
results show that our web agent successfully im-028
proves itself after each iteration, demonstrating029
strong performance across multiple test sets.030

1 Introduction031

Developing autonomous agents that can complete032

complex tasks such as web navigation has been a033

significant challenge for the AI community (Zhou034

et al., 2023; Gur et al., 2023; Deng et al., 2024; Koh035

et al., 2024). Recent advancements of large lan-036

guage and multimodal models such as Claude (An-037

thropic, 2024) and GPT-4o (OpenAI, 2024) have038

made it possible to build such agents via prompt039

engineering (He et al., 2024; Zheng et al., 2024b;040

Ma et al., 2023). However, these agents struggle041

to improve further due to their reliance on closed-042

source models. Another line of work has explored043

alternative ways to build agents by starting off with 044

weaker open-source models and gradually improv- 045

ing model performance by iteratively exploring the 046

environment, collecting feedback signals, and up- 047

dating the policy model (Xi et al., 2024; Putta et al., 048

2024; Patel et al., 2024). However, existing studies 049

have only focused on building text-only agents in 050

synthetic environments (Song et al., 2024; Murty 051

et al., 2024). The synthetic environments provide 052

the benefit of well-defined reward signals, allowing 053

the agents to effectively differentiate the quality of 054

the trajectories and learn accordingly. However, 055

synthetic environments fail to capture the complex- 056

ity of real-world scenarios, leading to potential 057

generalization issues when applied to real-world 058

tasks. Moreover, real-world environments often 059

lack built-in reward signals, while web elements are 060

becoming increasingly diverse, and trajectory sam- 061

pling more time-consuming and prone to obsoles- 062

cence, all of which pose other challenges in agent’s 063

learning and improvement process (He et al., 2024; 064

Pan et al., 2024). Additionally, real-world web- 065

pages are designed based on human visual pref- 066

erence, ignoring the visual inputs can cause sig- 067

nificant information loss that impacts the agent’s 068

performance. 069

To address above limitations and explore open- 070

source models in real-world settings, we propose 071

WAVE, an open-source framework for building 072

multimodal web agents via iterative real-world ex- 073

ploration, feedback and optimization. We show 074

that WAVE can learn to perform real-world web 075

navigation tasks through an initial imitation learn- 076

ing (IL) phase followed by multiple exploration- 077

feedback-optimization cycles. To do so, we start 078

by compiling a diverse set of web task queries 079

and collecting corresponding agent trajectories us- 080

ing a state-of-the-art multimodal agent WebVoy- 081

ager (He et al., 2024) based on GPT-4o, which 082

we refer to as WebVoyager-4o. During the imita- 083

tion learning phase, we train WAVE on trajectories 084
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Figure 1: The overall process of WAVE, including the Imitation Learning phase and the exploration-feedback-
optimization cycles. The agent learns basic multimodal web navigation skills through Imitation Learning and
continues to explore real-world web environments. GPT-4o provides feedback on explored multimodal trajectories,
leaving successful trajectories for the agent to improve.

where WebVoyager-4o successfully completes the085

task to teach the agent basic skills to perform web086

navigation. Subsequently, within the exploration-087

feedback-optimization cycle, we continue to syn-088

thesize new web tasks, allowing our agent to ex-089

plore and gather more trajectories. During this090

stage, we follow He et al. (2024) and leverage GPT-091

4o to automatically evaluate the correctness of the092

trajectories produced by WAVE. After gathering093

feedbacks, we retain successful trajectories and094

merge them with the data from IL phase to conduct095

the next round of training to improve WAVE. The096

improved agent is then used to sample new trajec-097

tories in the next iteration. This streamlined and098

effective design frees us from the limitations and099

obsolescence of manually collected trajectories, re-100

lying more on GPT-4o’s supervision, thus bringing101

the feasibility of continuous optimization.102

In our experiments, we employ idefics2-8b-103

instruct (Laurençon et al., 2024) as our backbone104

model and select 48 common websites from the105

WebVoyager and Mind2Web datasets (Deng et al.,106

2024) to gather trajectories. The overall process107

includes one imitation learning phase and three108

exploration-feedback-optimization cycles. For109

each phase, we leverage self-instruct (Wang et al.,110

2022) to generate new web queries. We assess the111

agent’s performance using the Task Success Rate112

on the WebVoyager and Mind2Web test sets. Re-113

sults indicate a gradual increase in task success rate114

across the four phases on the WebVoyager test set115

from 19.9% to 25.8% and on the Mind2Web cross116

task set from 6.3% to 19.6%, demonstrating the117

potential for iterative optimization in multimodal118

web agents. Additionally, a slight improvement 119

is observed on the Mind2Web cross-web (unseen 120

web) set from 6.6% to 10.4%, suggesting that the 121

exploration-feedback-optimization cycle can, to 122

some extent, generalize to unseen websites. 123

2 Related Work 124

2.1 Multimodal Web Agents 125

Recently, there has been a growing interest in 126

building multimodal web agents, particularly those 127

that combine visual and textual understanding ca- 128

pabilities. Unlike traditional HTML-dependent 129

LLM-based agents (Lutz et al., 2024; Zhou et al., 130

2023; Gur et al., 2023; Nakano et al., 2021; Ma 131

et al., 2023), Large Multimodal Model (LMM)- 132

based agents can perform a wider variety of web 133

tasks and adapt to more complex web environ- 134

ments. The main difference lies in the observa- 135

tion space. To acquire multimodal input signals, 136

SeeAct (Zheng et al., 2024a) focuses on annotat- 137

ing images of web pages using bounding boxes 138

and index labels of candidate web elements. We- 139

bVoyager (He et al., 2024) and VisualWebArena 140

(Koh et al., 2024) both use a JavaScript tool to 141

extract web elements and annotate them on screen- 142

shots in a Set-of-Mark (Yang et al., 2023) for- 143

mat. DUAL-VCR (Kil et al., 2024) contextualizes 144

each web element with its neighbors in the screen- 145

shot. SCAFFOLD (Lei et al., 2024) introduces dot 146

matrices and coordinates on images to enhance 147

visual grounding. Most of the aforementioned 148

multimodal web agents rely on prompting closed- 149

source multimodal models such as GPT-4V (Ope- 150
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nAI, 2023), Claude (Anthropic, 2024), and Gemini151

(Team et al., 2023). These models’ strong visual152

grounding and understanding capabilities enable153

them to correctly interpret webpage screenshots154

and engage in proper planning using paradigms155

like ReAct (Yao et al., 2022) or Chain-of-Thought156

(Wei et al., 2022). While some previous works at-157

tempted to leverage open-source vision-language158

models to build web agents (Zheng et al., 2024a;159

Koh et al., 2024), they found that models such as160

BLIP-2-T5 (Jian et al., 2024), LLaVA (Liu et al.,161

2024), and Idefics (Laurençon et al., 2023) can162

hardly achieve satisfactory performance. The main163

reason is that the pretraining of those open-source164

vision-language models mostly focuses on aligning165

image-text features and visual question answering166

instead of image-text interleaved agent trajectories.167

In this work, we propose an agent built upon an168

open-source model that can automatically collect169

trajectories to continuously improve itself, leading170

to salient gains in performance.171

2.2 Self-Improving Web Agents172

Researchers also have attempted to boost agents173

and adapt them to complex environments through174

self-improvement. AgentGYM (Xi et al., 2024)175

proposes a framework that unifies a wide range176

of environments for real-time exploration and177

evolution of LLM-based agents. AgentQ (Putta178

et al., 2024) integrates Monte Carlo Tree Search179

(MCTS) and Direct Preference Optimization (DPO;180

Rafailov et al., 2024) algorithms to iteratively up-181

date the policy of LLM-based web agents based182

on successful and failed web trajectories. Patel183

et al. (2024) suggests improvement by utilizing web184

agents to collect and filter in-domain trajectories,185

plus out-of-domain tasks along with hypothetical186

solution trajectories. However, there is still a lack187

of exploration on how to leverage multimodal web188

signals to achieve self-improvement. We aim to189

enable multimodal web agents to adapt to complex190

and dynamic online environments, enhancing their191

generality and ability to operate across numerous192

online websites.193

3 Method194

In this section, we introduce WAVE, an innovative195

web agent that outlines a path of iterative optimiza-196

tion for LMM-based Web Agents to handle intri-197

cate online web tasks. Firstly, we enable the agent198

to learn web navigation trajectories of WebVoyager-199

4o in the first stage to gain basic web knowledge 200

and navigation skills, namely Imitation Learning 201

(IL). Subsequently, the agent iteratively explores 202

and improves with the feedback from GPT-4o. 203

3.1 Task Formulation 204

In the web browsing environment E , consider the 205

web navigation process as a Partially Observable 206

Markov Decision Process (POMDP). The setup 207

is defined by the tuple (S,O,A, T , R), where S 208

denotes the state space, O represents the observa- 209

tion space, and A is the action space. T is the 210

deterministic transition function that performs web 211

operations in the browser to promote the process. 212

The reward R in this environment is typically a 213

sparse signal indicating success or failure, with 214

values of 1 or 0, respectively. 215

Given a task query q and its corresponding web- 216

site w, we can initialize the web environment E 217

by setting the state s1 to this web page, and obtain 218

the first step observation o1 ∈ O. In this work, 219

we adopt the vision-language setting that the ob- 220

servation in each step will include an accessibility 221

tree and a screenshot, i.e., o1 = (oa1, o
s
1). Let θ 222

represents the parameters of the Large Multimodal 223

Models (LMMs). Following the ReAct paradigm, 224

we derive thoughts and actions using LMMs: 225

(h1, a1) ∼ πθ(·|I, q, o1) = πθ(·|I, q, oa1, os1), 226

where I denotes the system prompt, including an- 227

swer formats, the introduction of web operations 228

and some guidelines. The transition function T is 229

then applied to parse the action and execute it on 230

the web page, obtaining the next state s2. There- 231

fore, at time step t, we have: 232

(ht, at) ∼ πθ(·|I, q, oa1, os1, h1, a1, ..., oat , ost ) (1) 233

234

st+1 = T (st, at; E). (2) 235

The full trajectory can be represented as τ = 236

(oa1, o
s
1, h1, a1, ..., o

a
T , o

s
T , hT , aT ), where T is the 237

number of iterations in web navigation, i.e., the 238

length of the trajectory. 239

3.2 WAVE Overview 240

Environment We adopt the Selenium-based on- 241

line web navigation environment provided by Web- 242

Voyager (He et al., 2024). In contrast to WebVoy- 243

ager, we do not employ the Set-of-Mark approach 244

to mark elements on screenshots because open- 245

source LMMs face significant visual grounding 246

issues in identifying numerical tags on screenshots. 247
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Figure 2: The model architecture of our multimodal web agent. We use the most recent 3 web screenshots to
demonstrate the page changes after performing web actions and label the web elements in the accessibility tree to
facilitate the agent in selection and response. Considering the limitation of sequence length and to avoid confusion,
we only retain the most recent accessibility tree.

We modify the observation of the web page to in-248

clude the accessibility tree and its corresponding249

unmarked screenshot. Figure 4 in Appendix A250

shows a specific example of the observation space.251

Model and Learning We adopt Idefics2 (Lau-252

rençon et al., 2024) as the backbone LMM for253

building WAVE. Idefics2 is well-suited for our task254

as it incorporates interleaved image-text documents255

during training, boosting the model’s multi-image256

reasoning and long-context comprehension capabil-257

ities. Additionally, Idefics2 supports encoding high-258

resolution images up to 980x980 pixels, which is259

necessary for preserving the fine-grained visual de-260

tails on the webpage screenshots. In Figure 2, we261

elaborate on how we adapt the Idefics2 architecture262

to build WAVE. Similar to the messages fed into263

GPT-4o, we embed the <image> token at the cor-264

responding position in the context, aligning it with265

the accessibility tree. The Idefics2-based agent will266

make a decision based on the observation contain-267

ing multimodal information. Figure 1 illustrates268

the full process of IL and exploration-feedback-269

optimization cycle: collecting trajectories for Im-270

itation Learning via WebVoyager-4o, training the271

base agent, and then continuously exploring new272

trajectories. Based on feedback from GPT-4o, suc-273

cessful trajectories are leveraged for optimization.274

3.3 Web Task Queries Collection275

Queries for the Imitation Learning Phase The276

IL phase is crucial as it forms the foundation for277

subsequent improvements. We aim to gather a di-278

verse set of web tasks of varying difficulty, enabling279

GPT-4o to generate diverse trajectories. We choose280

48 popular websites, then select and synthesize the281

queries QIL from multiple perspectives before Imi- 282

tation Learning. The details of QIL collection are 283

shown in Appendix D. 284

Queries for Real-World Exploration We con- 285

tinue to use the self-instruct (Wang et al., 2022) 286

approach to generate new queries that are similar 287

but not duplicated based on existing queries. In 288

each exploration-feedback-optimization cycle, we 289

automatically generate 480 queries for 48 websites, 290

with 10 queries for each website. The agent then 291

conducts web exploration based on these tasks. 292

3.4 Imitation Learning 293

Trajectories Collection We utilize GPT-4o 294

along with the WebVoyager paradigm (He et al., 295

2024) to generate web navigation trajectories corre- 296

sponding to the above queries. The agent is named 297

WebVoyager-4o and configured to receive observa- 298

tions consisting of the latest k steps, including the 299

accessibility trees and screenshots. i.e., for each 300

qi ∈ QIL, τi ∼ πθg(τ |I, qi), we clip the long con- 301

text ct to avoid performance degeneration when 302

t > k: 303

c
clip
t = (h1, a1, h2, a2, ..., ht−k, at−k, 304

ot−k+1, ht−k+1, at−k+1, ..., ot), (3) 305

306
(ht, at) ∼ πθg(·|I, q, c

clip
t ). (4) 307

It is worth noting that we preserve the thought and 308

action of each step to maintain the full reasoning 309

process without occupying excessive context. The 310

collected trajectories fall into three pre-defined cat- 311

egories: unfinished (exceeding the maximum it- 312

eration of Navigation), finished & unsuccessful, 313
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and finished & successful. In this stage, to better314

distill knowledge from GPT-4o, we filter out un-315

finished trajectories, retaining only the other ones316

for training in Imitation Learning. Meanwhile, we317

resample the unfinished tasks once to improve the318

utilization of queries and reduce the problem of319

navigation failure due to sampling randomness.320

Learning We adopt Idefics2 (Laurençon et al.,321

2024) to learn trajectories collected through322

WebVoyager-4o. In Idefics2, screenshots are en-323

coded as 64 visual tokens. However, the length of324

each accessibility tree is typically way longer than325

64 tokens. Considering the sequence length issue,326

we have to further truncate the context and the num-327

ber of images, retaining the latest k images while328

keeping only one accessibility tree of the current329

page. That is, we remove k − 1 accessibility trees330

in Equation 3,331

c
clip′
t = (h1, a1, ..., ht−k, at−k,332

ost−k+1, ht−k+1, at−k+1, ..., o
s
t , o

a
t ). (5)333

Let DIL represents the collected trajectories, and θ334

denote the parameters of the Idefics2 model. We335

aim to maximize the following objective function:336

JIL(θ) = E(q,τ)∼DIL

T∑
t=1

[
log πθ(at|q, cclip′

t , ht)337

+ log πθ(ht|q, cclip′
t )

]
, (6)338

where the system prompt I is no longer provided339

because of its considerable length. Through Imi-340

tation Learning, the agent has already learned the341

basic operation logic and response format, so there342

is no need for the system prompt.343

3.5 Iterative Optimization344

After the Imitation Learning phase, the trained345

agent πθb will proceed to explore websites and346

undergo multiple cycles of exploration-feedback-347

optimization. We continue to generate more348

queries using self-instruct. Instead of relying on349

WebVoyager-4o to collect trajectories, the agent350

collects trajectories on its own. At each exploration-351

feedback-optimization cycle, we employ trajectory-352

level rejection sampling via GPT-4o to ensure qual-353

ity trajectories. We discuss more reasons for choos-354

ing GPT-4o to provide feedback in Appendix C.355

Let Qj
SI be the query set for j-th optimization, for356

every q ∈ Qj
SI, we sample several trajectories from357

the model πθj−1
, with GPT-4o acting as the Auto 358

Evaluator, accepting only trajectories that GPT-4o 359

deems as successfully navigated. We consider this 360

auto evaluation method reliable because assessing 361

the correctness of a trajectory is much easier than 362

obtaining a correct trajectory. He et al. (2024) also 363

demonstrates a high level of evaluation consistency 364

between GPT-4o and humans. 365

Let Dj
SI represent the set of trajectories collected 366

after rejection sampling in the j-th optimization. 367

We mix the collected trajectory sets with DIL and 368

continue fine-tuning πθj−1
by maximizing the fol- 369

lowing objective: 370

J j
SI(θ) = E(q,τ)∼DSI

T∑
t=1

[
log πθ( 371

at|q, cclip′
t , ht) + log πθ(ht|q, cclip′

t )
]
, (7) 372

where j = 1, ...,m denotes the times of optimiza- 373

tion, DSI = DIL∪Dj
ev denotes the mixed trajectory 374

set and πθ0 is set to πθb . The complete procedure 375

is shown in Algorithm 1 in Appendix B. 376

4 Experiment 377

4.1 Dataset and Metric 378

Training Dataset In §3.4, we have outlined the 379

composition of the query set QIL during the Imi- 380

tation Learning stage, which includes 48 websites 381

mentioned in Mind2Web (Deng et al., 2024) and 382

WebVoyager (He et al., 2024), along with 1516 rel- 383

evant task queries collected. We use WebVoyager- 384

4o to gather corresponding trajectories for them, 385

with each query having a maximum of 2 trajec- 386

tories. Then we retain 1165 finished (including 387

both successful and unsuccessful) trajectories, with 388

a total of 7253 interaction turns. During the j-th 389

exploration-feedback-optimization cycle, we ex- 390

pend 480 queries for 48 selected websites. The 391

trajectories are sampled via πθj−1
and the maxi- 392

mum resampling count is set to 5. 393

Evaluation Dataset To evaluate the performance 394

of our agent, we use the following datasets: 1) We- 395

bVoyager (He et al., 2024) test set, comprising 15 396

websites seen during training and 643 task queries; 397

2) Mind2Web (Deng et al., 2024) cross-task test set, 398

which included 33 websites seen during training 399

and a total of 112 queries. 3) Mind2Web cross- 400

website test set, we select 2 websites each from 401

the “Entertainment”, “Shopping”, and “Travel” do- 402

mains, the websites are unseen during training but 403
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Allrecipes Amazon Apple ArXiv GitHub Booking ESPN Coursera

WAVEIL 17.8% 12.2% 20.9% 14.0% 14.6% 9.1% 9.1% 31.0%
WAVEiter-1 35.2% 26.8% 11.6% 18.6% 24.4% 6.8% 2.3% 28.6%
WAVEiter-2 22.2% 36.6% 27.9% 20.9% 19.5% 6.8% 6.8% 33.3%
WAVEiter-3 24.4% 24.4% 20.9% 18.6% 31.7% 18.2% 11.4% 42.9%
WAVEiter-3-dgs 20.0% 31.7% 18.6% 23.3% 24.4% 13.6% 25.0% 42.9%
WAVEiter-3-dgs-g 22.2% 29.3% 32.6% 20.9% 26.8% 11.4% 11.4% 42.9%

Cambridge BBC Google Google Google
Huggingface

Wolfram
Overall

Dictionary News Flights Map Search Alpha

WAVEIL 37.2% 9.5% 9.5% 22.0% 44.2% 20.9% 26.1% 19.9%
WAVEiter-1 25.6% 9.5% 19.0% 26.8% 44.2% 25.6% 32.6% 22.6%
WAVEiter-2 23.3% 14.3% 19.0% 22.0% 41.9% 11.6% 34.8% 22.7%
WAVEiter-3 37.2% 11.9% 11.9% 26.8% 39.5% 30.2% 37.0% 25.8%
WAVEiter-3-dgs 30.2% 11.9% 21.4% 22.0% 39.5% 23.3% 34.8% 25.5%
WAVEiter-3-dgs-g 34.9% 14.3% 21.4% 29.3% 44.2% 32.6% 37.0% 27.4%

Table 1: Task success rate on WebVoyager test set (643 queries). All websites are seen during training. ‘IL’, ‘iter-1’,
‘iter-2’, and ‘iter-3’ represent agents after IL, 1st, 2nd, and 3rd optimization, respectively. ‘dgs’ and ‘dgs-g’ denote
difficulty-guided sampling, i.e., sample more trajectories for webs with low sampling accuracy, the former by adding
trajectories sampled by the agent itself and the latter by adding trajectories sampled by GPT-4o.

Agents
Mind2Web cross-task (unseen task) Mind2Web cross-web (unseen web)

Entertainment Shopping Travel Overall Entertainment Shopping Travel Overall

WAVEIL 8.2% 5.9% 4.3% 6.3% 3.0% 13.3% 4.7% 6.6%
WAVEiter-1 12.2% 0.0% 4.3% 7.1% 6.1% 6.7% 9.3% 7.5%
WAVEiter-2 24.5% 5.9% 6.5% 14.3% 15.2% 10.0% 7.0% 10.4%
WAVEiter-3 26.5% 23.5% 10.9% 19.6% 6.1% 20% 7.0% 10.4%
WAVEiter-3-dgs 18.4% 23.5% 10.9% 16.1% 9.1% 16.7% 25.6% 17.9%
WAVEiter-3-dgs-g 22.4% 29.4% 15.2% 20.5% 3.0% 20.0% 23.3% 16.0%

Table 2: Task success rate on Mind2Web cross-task and cross-web test set. In cross-task set, the queries from the
same websites are seen during training. In cross-website set, the websites are not seen during training but still
belong to the Entertainment, Shopping, and Travel Domain.

they have the same domains, amounting to a total404

of 106 queries.405

Metric Following WebVoyager, we adopt Task406

Success Rate automatically evaluated by GPT-4o407

as the primary metric. To view the exploration ef-408

ficiency in the exploration-feedback-optimization409

cycle, we define Success@K (S@K) as the ratio410

of tasks that get success within K samples. Addi-411

tionally, we pay attention to the finish rate (F@1),412

where a task is considered finished as long as the413

agent selects ‘ANSWER’ within the maximum nav-414

igation steps. Table 3 shows the details of the415

query set and collected trajectories in exploration-416

feedback-optimization cycles.417

4.2 Experimental Details418

To collect data for imitation learning phase, we419

adopt the state-of-the-art model GPT-4o with We-420

bVoyager framework (WebVoyager-4o) to sample421

web navigation trajectories. We set k = 3, i.e., 422

the context contains at most 3 screenshots and 423

corresponding accessibility trees but retains the 424

thoughts and actions generated by GPT-4o in each 425

step. Our agent builds upon Idefics2-8b-instruct 426

with outstanding vision-language capabilities to 427

complete the imitation learning and exploration- 428

feedback-optimization cycles. During fine-tuning, 429

the max sequence length is set to 8192. We no 430

longer use system prompts and further clip the con- 431

text to accept a maximum of 3 screenshots and 1 432

accessibility tree. The original resolution of the 433

screenshots is 1024*768 and the screenshots are 434

resized such that the longer length is no larger than 435

980, before feeding into Idefics2. We set the batch 436

size to 64 and train for 300 iterations in each phase, 437

approximately 2 - 3 epochs. In the exploration- 438

feedback-optimization phase, we iteratively train 439

our agent with a total of m = 3 iterations. When 440
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Figure 3: Performance growth of WAVE on WebVoy-
ager and Mind2Web test set from Imitation Learning
phase to 3rd exploration-feedback-optimization cycle.

the agent performs exploration, we set the tem-441

perature to 1.2 to improve the randomness. The442

agent samples up to 5 trajectories for each given443

task query. We still select GPT-4o as the feedback444

model and trajectories with positive feedback are445

gathered for further optimizations.446

4.3 Main Results447

Throughout the entire process of Imitation Learn-448

ing and exploration-feedback-optimization cycles,449

we trained four models: WAVEIL, WAVEiter-1,450

WAVEiter-2, and WAVEiter-3. Table 1 shows the451

performance of these models on the WebVoyager452

test set. Table 2 presents the results of these models453

on the Mind2Web cross-task and cross-website test454

set. We show the performance changes of our agent455

on these datasets from imitation learning phase to456

the third optimization cycle in Figure 3.457

From the results in Table 1 and Table 2, we ob-458

serve a general improvement in task success rates459

in both WebVoyager and Mind2Web cross-task test460

set as optimization progressed. This indicates the461

effectiveness of our method when the webs in the462

test set have been trained on or explored during463

the training phase. In the Mind2Web cross-web464

test set, the optimization cycle also provides some465

enhancement in agent’s performance, although not466

as prominently as in the cross-task set. Also, the467

improvement is unstable on these unexplored web-468

sites, agent suffers from sampling randomness and469

is more likely to get stuck during web navigation.470

Table 3 shows the results of GPT-4o’s feed-471

back on the trajectories sampled by the agent dur-472

ing the exploration phase. We find that despite473

having 5 chances for resampling, The agent still474

performs poorly on many websites. Therefore,475

we consider increasing the number of trajectories476

specifically for these “difficult” websites during 477

exploration-feedback-optimization phase. To in- 478

vestigate the effectiveness of this difficulty-guided 479

sampling (DGS) strategy, we train WAVEiter-3-dgs-g 480

and WAVEiter-3-dgs. The former involves adding 481

some trajectories sampled by WebVoyager-4o for 482

webs with S@5 below 40% during the third itera- 483

tion, while the latter adds some trajectories sampled 484

by the agent itself. Compared to WAVEiter-3, adding 485

exploration trajectories to the “difficult” websites 486

can improve performance for certain websites like 487

Google Flights. However, influenced by the sam- 488

pling randomness, the optimization is not stable, as 489

seen in Booking, GitHub, and others. Additionally, 490

incorporating WebVoyager-4o sampled trajectories 491

during the exploration phase has resulted in some 492

overall performance enhancements. 493

4.4 Discussion 494

The average length of trajectories. During in- 495

ference, we record the length of trajectories when 496

they are finished (the agent provides answers) and 497

successful. The variation of the average length of 498

web navigation trajectories is shown in Table 4. 499

In our experiments, we observe that as iterative 500

optimization progresses, agents tend to complete 501

tasks in fewer interaction steps and navigate more 502

quickly on familiar websites. This phenomenon 503

creates a cycle where trajectories obtained dur- 504

ing the exploration-feedback phase become shorter, 505

leading the model to increase its focus on learning 506

from shorter trajectories during optimization. 507

Hallucination limits agent’s performance. We 508

find that agents often directly hallucinate answers 509

that do not appear during the navigation process. 510

The decrease in trajectory length might have in- 511

creased the frequency of this issue. The agent tends 512

to terminate navigation directly instead of continu- 513

ing the search after a certain length of the trajectory. 514

As shown in Table 3, we can also observe that the 515

results for F@1 are high, but S@1 are relatively 516

low. This indicates that the agent believes it has fin- 517

ished the task but is actually unsuccessful. While 518

the finish rate and success rate in GPT-4o-sampled 519

trajectories are close. This insight suggests that 520

in future exploration, we can increase the diver- 521

sity of sampling by varying the task difficulty and 522

trajectory length. 523

Restart to the search engine and solve tasks. In 524

WebVoyager’s paradigm, an important web action 525

is to restart navigation from the search engine when 526
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Improvement
Iteration

Query
Traj.
From

Success
Traj.

Turns F@1 S@1 S@2 S@3 S@4 S@5

iter-1 480 πθb 152 943 74.6% 10.4% 19.6% 24.4% 27.5% 31.7%
iter-2 480 πθ1 205 1324 87.1% 16.0% 24.0% 30.2% 36.9% 42.7%
iter-3 480 πθ2 207 1333 91.5% 18.8% 27.9% 35.2% 41.0% 43.1%

Table 3: Details of query set and trajectory set during the exploration-feedback-optimization cycle. The feedback on
task success or not is provided by GPT-4o. F@1 indicates the finish rate of the first exploration. S@K represents the
task success rate within K explorations. Each task will sample the trajectory up to 5 times until it succeeds or fails
all 5 times, successful trajectories will be retained to improve our agent.

Agent
WebVoyager

Mind2Web
cross-task

Mind2Web
cross-website

Finish Success Finish Success Finish Success

WAVEIL 6.47 5.26 8.77 7.00 9.28 9.29
WAVEiter-1 6.17 5.02 7.58 5.00 7.98 9.63
WAVEiter-2 5.89 5.04 7.33 6.31 7.13 7.45
WAVEiter-3 5.47 5.07 7.67 7.59 6.16 6.91

Table 4: The average length of trajectories across differ-
ent optimization cycles on various test sets. ‘Finish’ and
‘Success’ indicates that we calculate the average length
for finished or successful trajectories, respectively.

Agent
WebVoyager (643 tasks)

R RS S RS / R RS / S

WAVEIL 61 8 128 13.1% 6.3%
WAVEiter-1 75 16 145 21.3% 11.0%
WAVEiter-2 88 22 146 25.0% 15.1%
WAVEiter-3 142 40 166 28.2% 24.1%

Table 5: The frequency of the agent using the restart
action: Let R denote the number of trajectories with
restart, RS the number of successful trajectories with
restart, and S the total number of successful trajectories.

encountering difficulties. In this paper, the ‘Restart’527

action is also provided in the data for training dur-528

ing the Imitation Learning phase. We observe the529

frequency of our agent using restart action, calcu-530

late their success rates, and the ratio of successful531

tasks using restart to the total successful tasks, as532

shown in Table 5. We can infer from the results533

in the WebVoyager test set that as agents undergo534

iterative optimization, they increasingly prefer to535

use the search engine. The proportion of successful536

trajectories achieved by using the search engine is537

rising among all successful trajectories, addressing538

some of the navigation failure issues.539

Other settings and parameters. Trajectory col-540

lection is time-consuming, especially in the explo-541

ration phase where each query requires up to 5542

resampled trajectories to tackle relatively difficult543

navigation tasks. So we primarily adjust hyper-544

parameters such as learning rate and global batch545

Training
Trajectories

Result

DIL ∪Diter-1 ∪Diter-2 20.8%
DIL ∪Diter-2 23.3%

Table 6: Study on whether to use a mixture of data from
previous phases in exploration-feedback-optimization
cycle (WAVEiter-1 → WAVEiter-2).

size during the IL phase. However, we ultimately 546

find that this has little significance, as the error is 547

much smaller compared to the challenges posed by 548

webpage navigation and the sampling randomness. 549

In exploration-feedback-optimization cycles, we 550

also attempt to mix all trajectories that considered 551

success through GPT-4o’s feedback, for example, 552

using DIL ∪Diter-1 ∪Diter-2 to improve WAVEiter-1. 553

We select 120 WebVoyager queries and compare 554

task success rate in Table 6. 555

Other discussions are shown in Appendix C. 556

5 Conclusion 557

In this paper, we explore how to construct a multi- 558

modal web agent via iterative exploration, feedback 559

and optimization. We adopt idefics2-8b-instruct as 560

the backbone LMM model and collect web task 561

queries from numerous websites. Initially, our 562

agent learns the web operation logic of GPT-4o 563

through Imitation Learning. Then it enters the 564

exploration-feedback-optimization cycles, explor- 565

ing and collecting trajectories based on new web 566

tasks, retaining the trajectories that GPT-4o con- 567

siders correct for further learning, updating, and 568

optimization. We focus on building an LMM-based 569

iterative optimization web agent with multi-image 570

understanding capabilities, enabling it to adapt to 571

complex and dynamic online web environments. 572

The entire process primarily involves the agent’s 573

self-exploration and GPT-4o’s supervision, reduc- 574

ing human intervention and allowing continuous 575

expansion to ensure the agent’s generality. 576
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Limitations577

First, we only consider the most common exe-578

cutable web actions in the simulated environment,579

including clicking, typing, and scrolling, without580

more advanced actions such as dragging and zoom-581

ing. Additionally, our approach is based on a rel-582

atively small LMM Idefics2 with 8B parameters,583

which may limit the agent’s ability to effectively584

navigate websites of unseen domains and respond585

to complex user queries. The low performance on586

complex websites might further affect exploration587

efficiency, leading to minimal improvement and588

time-consuming during the exploration-feedback-589

optimization process. Last, our model still primar-590

ily relies on accessibility trees, we hope to improve591

the visual grounding and multi-image reasoning ca-592

pabilities so that it can directly use web screenshots593

for planning like GPT-4o.594

Ethics Statement595

In light of the potential risks associated with online596

web navigation, all our experiments adhere strictly597

to ethical guidelines. Our approach includes hu-598

man supervision as well as GPT-4’s monitoring599

for content violations. Throughout the sampling600

of all web task trajectories, no violations by the601

agent are detected. A small portion of tasks are602

filtered due to the sensitivity of advertisements or603

content on news websites. None of the tasks in-604

volve private information such as personal names,605

account passwords, etc. The tasks typically include606

information-seeking activities and do not include607

actual bookings or payment transactions. In our608

work, the web agent’s sampled trajectories are in-609

tended solely for research purposes. The agent610

operates in a simulated human-like manner, with a611

slow sampling frequency, ensuring no pressure is612

placed on the explored websites.613
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A Environment and Prompts763

We adopt the framework of WebVoyager for online764

real-world web navigation. The web actions used765

are the most basic clicks, inputs, and scroll oper-766

ations as shown in Table 7. Unlike WebVoyager,767

we do not use the Set-of-Mark approach to label768

screenshots. Instead, we combine screenshots and769

the accessibility tree as observations for the agent770

to make decisions. Figure 4 illustrates an example771

of observation.772

Based on the changes in observations, we773

slightly modify the system prompt of WebVoy-774

ager (He et al., 2024) during the Imitation Learning775

phase to accommodate the paradigm of accessibil-776

ity tree + screenshot. In terms of web operation777

implementation, each element in the accessibil-778

ity tree has pre-saved attribute information, where779

‘union_bound’ labels the position information of780

the element.We use Selenium to locate the element781

that appears in this position and then access it.782

In the WebVoyager framework, in addition to783

the system prompt, the author has designed error784

reflection to ensure effectiveness. When a certain785

action fails, there will be a prompt saying: "The786

action you have chosen cannot be executed.787

Please double-check if you have selected788

the correct element or used the correct789

action format. Then provide the revised790

Thought and Action." This prompt serves to791

remind the agent to correct errors. While training792

our own Agent, although we no longer use the793

system prompt, we still retain the error reflection794

mechanism.795

B Algorithm796

In Algorithm 1, we present the complete algorithm797

of WAVE. It mainly consists of an Imitation Learn-798

ing (IL) phase and multiple exploration-feedback-799

optimization cycles. In the IL phase, GPT-4o (πθg )800

serves as an expert to sample trajectories via Web-801

Voyager framework, requiring a significant number802

of OpenAI API calls. In the exploration-feedback-803

optimization cycle, GPT-4o acts as an expert to804

evaluate trajectories, with only one API call needed805

for each trajectory. Hence, during the execution of806

the algorithm, there is a trade-off. On one hand,807

we aim to increase the sampling in the IL phase808

to enhance the model’s capabilities and obtain a809

strong base model (πθb), which can improve explo-810

ration efficiency. However, if the improvement in811

the IL phase is not obvious, using additional GPT-812

Algorithm 1 WAVE
Input: LMM-based Agent πθ , GPT-4o Agent πθg , GPT-
4o Evaluator Rθg , query set QIL for Imitation Learning,
Q1

SI,..., Q
m
SI for exploration-feedback-optimization stages.

Output: The fine-tuned Agent πθm

procedure IMITATION LEARNING:
DIL =

{
(qi, τi)|qi ∈ QIL, τi ∼ πθg (τ |I, qi)

}|DIL|
i=1

;
Maximize JIL(θ) shown in Equation 6 to get πθb ;

end procedure
procedure EXPLORATION-FEEDBACK-OPTIMIZATION:

πθ0 ← πθb ;
for iteration j = 1, ...,m do

Collect trajectories Dj
SI with rejection sampling:

Dj
SI ← {};

for q ∈ Qj
SI do

while l < max resampling count do
τl ∼ πθj−1(τ |q);
ifRθg (τ

l
i ) = 1 then

Dj
SI ← Dj

SI ∪ {τl};
break;

end if
end while

end for
DSI ← DIL ∪Dj

SI;
Maximize J j

SI(θ) shown in Equation 7 to get πθj ;
end for

end procedure

4o calls for the IL phase might not be cost-effective. 813

In such cases, letting the agent explore on its own 814

with GPT-4o serving as auxiliary supervision might 815

be more beneficial. 816

C Additional Discussion 817

Resource and Time Requirements Navigating 818

real-world websites can be time-consuming due to 819

the following reasons: (1) Poor network conditions 820

or slow server responses from the websites. (2) 821

Websites with a large number of elements often 822

require Selenium to wait for elements to load in the 823

simulation environment. (3) The agent may fail to 824

find the optimal navigation trajectory. 825

In practice, each task query takes approximately 826

3 minutes for web interaction (and up to 5 runs or 827

15 minutes per task query during the exploration 828

phase). To perform large-scale exploration and 829

evaluation as presented in this paper, we recom- 830

mend using 2–3 Selenium processes per computer 831

to make more efficient use of network resources. 832

Complex web pages often contain a large num- 833

ber of web elements, leading to lengthy accessibil- 834

ity trees. Despite only capturing the accessibility 835

tree of the current window and applying certain 836

simplifications, the model still requires a sequence 837

length of 8192. For training the idefics2-8b model, 838

we recommend using 8 or more A100 80G GPUs. 839

11



(a) Screenshot of a page from Apple website  (b) Corresponding Accessibility Tree  

[1] RootWebArea 'Apple Events - Apple' focused: True
    [2] navigation 'Global'
        [3] link 'Apple'
        [4] link 'Store'
        [5] button 'Store menu' expanded: False
        [6] link 'Mac'
        [7] button 'Mac menu' expanded: False
        [8] link 'iPad'
        [9] button 'iPad menu' expanded: False
        ...
        [14] link 'Vision'
        [15] button 'Vision menu' expanded: False
        [16] link 'AirPods'
        [17] button 'AirPods menu' expanded: False
        [18] link 'TV and Home'
                [19] StaticText 'TV & Home'
        [20] button 'TV and Home menu' expanded: False
        [21] link 'Entertainment'
        [22] button 'Entertainment menu' expanded: False
        ...
        [27] button 'Search apple.com'
        [28] button 'Shopping Bag'
    [29] navigation 'Local'
        [30] link 'Apple Events'
    [31] image 'The Apple logo, defined by an outline of ...

Figure 4: An example of observations fed into the agent, where the screenshot is rendered by the browser, and the
accessibility tree is extracted from the HTML and numbered starting from ‘[1]’.

Why using GPT-4o for Feedback during Explo-840

ration The way GPT-4o is used in the exploration841

phase differs from its use in the imitation learning842

phase. During imitation learning, the agent distills843

GPT-4o’s web navigation capabilities. However, in844

the exploration phase, the agent samples its own tra-845

jectories, and GPT-4o only provides a reward signal846

to ensure trajectory quality. The number of GPT-847

4o calls is significantly lower than in the imitation848

learning phase. Therefore, from a cost-efficient849

perspective, it is undesirable to extend the imita-850

tion learning phase for too long. After the agent851

has learned a certain level of web navigation skills,852

transitioning to exploration-feedback-optimization853

becomes a better choice.854

In addition, we select GPT-4o for the follow-855

ing reasons: (1) Currently, there is no available856

open-source reward model capable of providing857

feedback to LMM-based web agents, especially858

for trajectories that include multiple consecutive859

screenshots. (2) For judging the success of multi-860

modal web navigation trajectories, GPT-4o exhibits861

high consistency with human judgments (kappa =862

0.72). This ensures the accuracy of feedback and863

the quality of explored trajectories. (3) Automa-864

tion of the entire process is necessary. Therefore, a865

tool that can provide feedback for explored trajec-866

tories is essential. GPT-4o naturally fits this role,867

and other models with high agreement with human868

evaluations could also be utilized.869

Sampling Quality and Efficiency During the870

exploration phase, the agent samples its own tra-871

jectories, and the sampling efficiency is influenced872

by its current web navigation capability. We aim 873

to maintain the diversity of trajectories during the 874

exploration phase to avoid worsening the agent’s 875

hallucination. Therefore, the task queries used in 876

each exploration phase should not be too similar to 877

those used previously. At the same time, we should 878

prioritize selecting longer trajectories to prevent 879

the trajectory length from continuously decreas- 880

ing. In this paper, we also explore: (1) Conducting 881

more exploration on difficult websites to balance 882

capability improvement across different websites. 883

(2) Incorporating a small portion of trajectories 884

sampled by close-sourced models to correct some 885

biases that may arise during the optimization phase. 886

D Details of Datasets 887

Selected Websites In the Imitation Learning 888

phase and exploration-feedback-optimization cy- 889

cles, we collect task queries from 48 websites for 890

exploration. We utilize all 15 webs from Web- 891

Voyager and 37 webs from Mind2Web, totaling 892

48 webs (with 4 duplicates). Table 8 displays 893

the specific website names used during the train- 894

ing phase. During inference, we employ all task 895

queries from the WebVoyager test set and select 896

some task queries from the Mind2Web cross-task 897

and cross-website test setincluding both learned 898

and unlearned websites. To facilitate testing, we 899

update the time information of some tasks but do 900

not change their task expressions. Table 9 presents 901

detailed statistics about the test set. 902

Queries preparation for Imitation Learning 903

The learning effectiveness during the Imitation 904
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Web Actions Format Notes

Click Click [Label]
Perform a single Click operation
on an web element.

Input Type [Label]; [Content]
Type something in the text box
and press enter.

Scroll Scroll [WINDOW or Label]; [up or down]

In some web pages where only a
partial area can be scrolled, agent
need to lock an element in that
area first, otherwise scrolls are
performed on the whole page.

Go back GoBack Go back to previous page

Restart Restart
Restart from Google Search
and solve tasks.

Wait Wait Sleep 5 seconds

Answer ANSWER; [content] Provide final answer.

Table 7: Web Actions used in this paper.

Learning phase is not only related to the exper-905

tise of GPT-4o but also to the richness of the task906

queries used. To diversify trajectories as much as907

possible during the Imitation Learning phase, we908

collect task queries from the following perspec-909

tives:910

• Queries from Mind2Web Training Data. We911

have chosen 37 available websites along with912

their corresponding queries, updating the date913

information for travel-related tasks, totaling914

516 queries.915

• Synthesised queries via self-instruct. Employ-916

ing the self-instruct (Wang et al., 2022) based917

method mentioned in WebVoyager (15 web-918

sites), we have generated 20 queries for each919

website, resulting in a total of 300 queries.920

The sentence-embedding model all-mpnet-921

base-v21 is used to calculate the query similar-922

ity and filter out the queries with high similar-923

ity to ensure task diversity. There are 4 web-924

sites overlapping between WebVoyager and925

Mind2Web, making a total of 48 websites.926

• Human-written queries. Recognizing the ran-927

domness and complexity of the above tasks,928

we borrow the idea of Curriculum Learning929

(Soviany et al., 2022) and manually designed930

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5 easier task queries for each website, which 931

can be completed by humans between 2 - 6 932

steps, amounting to a total of 240 tasks. 933

• General queries from users. To enhance gen- 934

eralization, we gather 460 queries provided 935

by Zhang et al. (2024), and standardize them 936

to begin navigation from search engines. This 937

approach allows the agent to explore a wider 938

range of websites and helps it recognize that 939

in case of navigation failures, using a search 940

engine could be attempted. 941

E Example Trajectories 942

In Figures 5 and 6, we present two examples of 943

successful webpage navigations by WAVEiter-3. As 944

shown in Figure 5, agent navigates directly on the 945

Google Flights webpage and succeeds. The agent 946

makes decisions based on the screenshots and the 947

specific text information of web elements in the 948

accessibility trees. In Figure 6, the agent mistak- 949

enly thinks that logging in is required to search 950

on GitHub, then it chooses to restart from Google 951

Search and finds the answer. 952

We also present an example where an agent hallu- 953

cinates an answer when it cannot find one. As Illus- 954

trated in Figure 7, while navigating the Allrecipes 955

website, the agent fails to locate a chocolate chip 956

cookie recipe that meet the task requirements. How- 957

ever, it provides an answer titled "Classic Choco- 958
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From Domain Subdomain Website Name

WebVoyager - -

Allrecipes; Amazon; Apple; ArXiv;
BBC News; Booking; Cambridge Dictionary;

Coursera; ESPN;GitHub; Google Flights;
Google Map; Google Search; Huggingface; Wolfram Alpha

Mind2Web

Entertainment

Event eventbrite; nyc; ticketcenter
Game boardgamegeek; store.steampowered
Movie imdb; rottentomatoes; tvguide
Music discogs; last.fm; soundcloud;
Sports espn; foxsports; sports.yahoo;

Shopping

Digital apple
Fashion uniqlo
General amazon; ebay; target

Speciality cvs; ikea

Travel

Airlines ryanair
Car rental enterprise
General agoda; booking
Ground amtrak; mbta; thetrainline; us.megabus
Hotel airbnb; koa; marriott

Restaurant resy; yelp
Others flightaware; nps.gov; spothero

Table 8: In the Imitation Learning and exploration-feedback-optimization cycles, a total of 48 websites are selected,
including 15 from WebVoyager and 37 from Mind2Web (4 duplicates).

late Chip Cookies." This discrepancy may be at-959

tributed to the agent interpreting the word "Classic"960

in the accessibility trees as a recipe and even hallu-961

cinating a cook time, despite the lack of relevance.962
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Test set
Num of
queries

Web seen
in training?

Domain Subdomain
Websites and

num of queries

WebVoyager 643 Yes - -

Allrecipes: 45; Amazon: 41; Apple: 43;
ArXiv: 43; BBC News: 42; Booking: 44;
Cambridge Dictionary: 43; Coursera: 42;

ESPN: 44; GitHub: 41; Google Flights: 42;
Google Map: 41; Google Search: 43;
Huggingface: 43; Wolfram Alpha: 46

Mind2Web
cross-task

112 Yes

Entertainment

Event eventbrite: 6; nyc: 3; ticketcenter: 4
Game boardgamegeek: 1; store.steampowered: 1
Movie imdb: 5; rottentomatoes: 1; tvguide: 3
Music discogs: 6; last.fm: 5; soundcloud: 4
Sports espn: 4; foxsports: 5; sports.yahoo: 1

Shopping

Digital apple: 4
Fashion uniqlo: 3
General amazon: 2; target: 5

Speciality cvs: 1; ikea: 2

Travel

Airlines ryanair: 6
General agoda: 3; booking: 2
Ground amtrak: 6; mbta: 4; us.megabus: 1
Hotel airbnb: 3; koa: 3; marriott: 5

Restaurant resy: 2; yelp: 4
Other flightaware: 4; spothero: 3

Mind2Web
cross-website

106 No

Entertainment
Event stubhub: 16
Sports nba: 17

Shopping
Auto cars: 13

General shopping.google: 17

Travel
Restaurant tripadvisor: 23

Other recreation.gov: 20

Table 9: Detailed statistics of the test dataset. Websites from WebVoyager and Mind2Web cross-task have been seen
during training, while websites from Mind2Web cross-websites have not been encountered.
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                  Step 1: Type [19]; Chicago
([19]  combobox 'Where from? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

                  Step 2: Type [22]; London
([22]  combobox 'Where to? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

    Step 3: Type [24]; October 20, 2024
([24] textbox 'Departure' required: False)

 Step 4: Type [25]; October 23, 2024
([25] textbox 'Return' required: False)

                                Step 5: Click [70]
([70] button 'Done. Search for round trip flights, departing 
on October 20, 2024 and returning on October 23, 2024')

  Step 6: Click [28]
([28] button 'Search')

  Step 7: ANSWER

Figure 5: Agent (WAVEiter-3) navigates on the Google Flights and completes the task successfully. TASK: "Find
flights from Chicago to London on 20 October and return on 23 October." REPLY: "Thought: The search results for
flights from Chicago to London on October 20 and October 23, 2024, are displayed. The prices start from $706 and
go up to $834. The average price for the round trip is approximately $750. Action: ANSWER; The average price
for a round trip flight from Chicago to London on October 20 and returning on October 23 is approximately $750."
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        Step 1: Click [16]
([16] button 'Search or jump 
to…' hasPopup: dialog)

                    Step 4: Click [27]
([27] heading 'Web Result with Site Links')

Step 2: Restart      Step 3: Type [8]; electron/electron GitHub releases
([8] combobox 'Search' focused: True autocomplete: 
both hasPopup: listbox required: False expanded: False)

           Step 5: Click [45]
([45] link 'Tag v33.0.0-beta.4')

                   Step 6: ANSWER
([55] generic 'Sep 25, 2024, 2:48 PM PDT'
       [56] StaticText '3 days ago' )

Figure 6: Agent (WAVEiter-3) Restart navigation from Google Search with success after failing to navigate on
GitHub pages. TASK: "Retrieve the latest release from the ’electron/electron’ repository on GitHub and note down
the release version number and date." REPLY: "Thought: I have navigated to the latest tag for the ’electron/electron’
repository. The version number shows 33.0.0-beta.4, and the release date is Sep 25, 2024, as displayed on the right
column. Action: ANSWER; Latest release of the ’electron/electron’ repository is 33.0.0-beta.4 on Sep 25, 2024."

Step 1: Type [5]; five star rated chocolate 
chip cookie recipe
([5] textbox 'Search the site' required: True )

                               Step 2: Click [14]
([14] link 'Five chocolate chip cookies on a marble 
background IN THE KITCHEN I Tested 5 Reader Favorite 
Chocolate Chip Cookie Recipes in Search of the Best' )

Step 3: Scroll [WINDOW]; down

Step 4: Scroll [WINDOW]; down Step 5: ANSWER

Figure 7: Agent (WAVEiter-3) hallucinates an incorrect answer while navigating on Allrecipes. TASK: "Find a
five-star rated chocolate chip cookie recipe that takes less than 1 hour to make on Allrecipes." REPLY: "Thought: I
have found the section listing the main ingredients and the bake time for the "Classic Chocolate Chip Cookies." The
cookies take 15 minutes to make and additional 45 minutes to bake, totaling 1 hour and 10 minutes. I now have all
the necessary information to answer the task. Action: ANSWER; The C̈lassic Chocolate Chip Cookiesr̈ecipe on
Allrecipes has a rating of 4.5 stars with 4,580 reviews. The main ingredients include butter, heavy cream, eggs, all
purpose flour, and unsweetened cocoa powder. The cookies take 15 minutes to make and additional 45 minutes to
bake, totaling 1 hour and 10 minutes."
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