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Abstract

Results We present the R package tensorBF, which is the first R package providing1

Bayesian factorization of a tensor. Our package implements a generative model that2

automatically identifies the number of factors needed to explain the tensor, over-3

coming a key limitation of traditional tensor factorizations. We also recommend4

best practices when using tensor factorizations for both, explorative and predictive5

analysis with an example application on drug response dataset. The package also6

implements tools related to the normalization of data, informative noise priors and7

visualization. Conclusions The tensorBF package allows Bayesian factorization8

of tensor datasets in the R statistical environment and is made freely available at9

https://cran.r-project.org/package=tensorBF.10

1 Introduction11

A key question that tensor factorization can answer is, which parts of the drug-responses are specific12

to a particular cancer and which are common across various cancers. Elucidating such effects can13

generate hypothesis on personalised therapies, as well as increase understanding on drug action14

mechanisms.
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Figure 1: Illustration of tensor factorisation. The tensor Y can be factorized into a low-dimensional
component space X,W and U which represents relationships across the drugs, genes and cancers.
tensorBF automatically prunes out excessive components (shaded white in component matrices).
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Fig 1 presents the well-known trilinear CP factorization of a tensor. The CP (Canonical Decomposition16

/ Parafac) factorizes a tensor into a sum of rank-one tensors, each of which can be represented as17

latent variables (factors or components) in all modes [Carroll and Chang, 1970, Harshman, 1970]. For18

the tensor Y ∈ RN×D×L, CP identifies the latent variables X ∈ RN×K , W ∈ RD×K , and U ∈ RL×K19

as20

Y ≈
K
∑

k=1

Xk ◦Wk ◦Uk . (1)
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While several factorization methods exist for tensors, like the Tucker model [Tucker, 1966], CP21

factorization is easier to interpret making it a promising choice for many biological applications.22

Recently, Bayesian tensor factorizations have been demonstrated to overcome some of the limitations23

including automatic determination of the number of components [Khan and Kaski, 2014, Hore et al.,24

2016], however, R package for Bayesian factorization of a tensor do not exist.25

We present tensorBF, an R package to analyze natural tensor structures in the data. The package26

implements the Bayesian CP factorization of a tensor to infer latent factors (components) that are27

not obvious from the data itself. Additionally, it provides tools for analyzing the components and28

relationships between the variables.
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Figure 2: Illustrating component selection with tensorBF on CMAP data set. The plot shows on
the y-axis, the Pearson Correlation, Root Mean Squared Error (RMSE), and the no. of components
pruned (in red) on the missing values prediction task, as a function of the number of components K
used to initialize the model (the x-axis).
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Implementation30

Our package tensorBF implements the Bayesian formulation of the tensor factorization problem of31

Eqn (1), by assuming normal distribution with conjugate priors. A sparsity parameter is introduced32

that shuts down excessive components by setting them to zero (white in Fig 1), making it possible for33

the model to learn the true number of components automatically. Besides, the package implements34

feature-level sparsity for the latent variable matrices. Supplementary File 1 provides the details of the35

modeling assumptions and inference using Gibbs sampling.36

Given tensor Y ∈ RN×D×L, the package tensorBF implements a Bayesian formulation of the37

tensor factorization problem. Our package implements the method assuming CP factorisation38

(CANDECOMP/ PARAFAC, by Carroll and Chang [1970], and Harshman [1970]) for a three-mode39

tensor into corresponding latent variables X ∈ RN×K , W ∈ RD×K and U ∈ RL×K . The CP40

factorisation is represented as:41

Y =
K
∑

k=1

Xk ◦Wk ◦Uk + ε.

where ε ∈ RN×D×L is a noise tensor.42

The model tensorBF assumes the following distributional assumptions:43

yn,d, ∼ N (zk .xTn .(wd ∗ ), τ−1)

n,k ∼ N (0, (λ
n,k
)−1)

,k ∼ N (0, (λ
,k
)−1)

d,k ∼ N (0, (λ
d,k
)−1)

zk ∼ Berno(πk),
πk ∼ Bet(π, bπ)
τ ∼ Gmm(τ, bτ)
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λ
n,k
∼
�

1, dense,
Gmm(α, bα), sparse.

λ
d,k
∼
�

1, dense,
Gmm(α, bα), sparse.

λ
,k
∼
�

1, dense,
Gmm(α, bα), sparse.

where ∗ is an element-wise vector product, τ is the noise precision, and Gmm(, b) is the44

Gamma distribution with a shape  and a rate b.45

The zk variables encode the automatic component selection and control the total number of non-zero46

components in the model. The binary values in zk switch the component k on or off. If zk = 0,47

all values in wk become zero effectively pruning the component; when zk = 1, values in wk are48

sampled from a normal distribution yielding non-zero values that capture meaningful variation in the49

data. This is achieved through the Beta-Bernoulli construct.50

The package provides several practically useful choices for the modeling assumptions, especially51

when the data modes are imbalanced, i.e. “small n and large p”, or data contains heavily noised52

measurements, both of which occur commonly in many bioinformatics datasets.53

As one key characteristic, the package makes it possible to choose dense or sparse priors for each of54

the loading matrices, based on application scenario. It is recommended to use sparse settings on the55

mode with large dimensions or when there is a prior belief in the sparseness of the structure. These56

parameters can be selected using ARDX ARDW, and ARDU logical parameters in the getDefaultOpts()57

function.58

The inference of the model is performed via Gibbs sampling. The package provides options for59

varying the burnin, sampling and thinning iterations with default recommended values based on60

application on real data sets. The computational complexity of the model is linear in the number of61

dimensions and cubic only in the number of components K , where K is generally much smaller than62

the data dimensionality, making it feasible for K to the tune of a few hundreds.63

Results and Discussion64

Model Inference and Initialization65

The factorization of a 3-mode tensor Y can be inferred using model <- tensorBF(Y), with the66

default options. Depending on the modeling assumptions and application setting, the function can67

take a variety of parameter choices as inputs. For instance, the number of components to initialize68

the model, how to normalize the data and an informative noise prior, that is, a user’s belief on69

how much of the data variance should be explained with the components. A full description of70

the possible options is given in the functions getDefaultOpts() and tensorBF() documentation.71

The tensor can be normalized over different modes and ways, using norm.fibercentering() and72

norm.slabscaling(). If the features in a particular mode are deemed equally important, they73

should be scaled. However, if the variance is a proxy for the feature’s importance, scaling should74

not be done. The package manual contains simplified examples and demo(), demonstrating the75

usage of the functions on simulated data. The methods computational complexity is linear in the data76

dimensions and cubic only in K . The package took ∼1 hour for a single chain on the CMap data.77

Missing Values Prediction78

The package can handle missing values by simply including them as NAs. The model parameters are79

sampled based on the observed data only, and predictTensorBF() predicts the missing values.80

Component Selection81

The tensorBF package infers the number of components automatically. In practice, this is achieved by82

initializing the model with a high number of components K (default choice: 20% of the sum of lower83
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two modes) and the method prunes any excessive components. The noiseProp in tensorBF()84

defines the proportion of variance that is expected to be explained with the components. In case, the85

data is expected to be heavily noisy, as with many real datasets, experimenting different choices of86

noiseProp will aid in component selection.87

We explain component selection practice with a real tensor dataset of Fig 1. Fig 2 plots the methods88

behaviour as a function of an increasing number of initial K . The key observation here is that the89

performance improves until K ≤ 30, after which it stabilizes to the best result. Around the same90

mark, the model starts to prune all the excessive components indicating that it has already explained91

the data sufficiently. Therefore, in practice, we suggest to initialize K to a higher enough value and92

let the model choose the component number automatically. An appropriate K can be identified as one93

that prunes at least several excessive components.94

Analysis and Visualizations95

1.1 Connectivity Map dataset96

The Connectivity Map (a.k.a CMap) dataset [Lamb et al., 2006] contains post-treatment gene97

expression responses of a large set of drugs on three cancer cell lines, namely HL60 (Blood), MCF798

(Breast) and PC3 (Prostate). We used post-treatment differential gene expression responses of99

N = 78 drugs over D = 1106 genes as measured over the L = 3 cancer lines as a data tensor.100

We chose only a subset of drugs and genes from the Connectivity Map dataset for demonstration101

purposes. We processed the data such that the gene expression values represent up (positive) or down102

(negative) regulation from the untreated (base) level.103

1.2 Experimental Setup104

We adopted a robust setting for the demonstration of the component selection procedure. Specifically,105

we repeated each setting ten times, computing the average prediction performance. In each iteration,106

5% random missing values were introduced in the tensor and prediction performance was computed107

over them.108
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Figure 3: A component showing the relationship between the latent variables X,W and U plotted
using the function plotTensorBF().

The factorization explains relationships between the variables through K components. The compo-109

nents can be visualized using plotTensorBF(). An example of such visualization is shown in Fig 3.110

The values of the latent variable X indicate that the response is primarily driven by the top 3 drugs in111

several HSP genes W. High latent scores in U show that this response is common across all three112

cancers, and can, therefore, be interpreted as a Heat Shock Protein response of HSP90 inhibitors in113

all three cancers.114
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Conclusions115

The tensorBF package factorizes a tensor into low-dimensional latent factors, inferring meaningful116

relationships. The package provides essential tools ranging from normalization to automatic compo-117

nent selection, and from setting informative noise prior to interpreting the factorization. The package118

is a new contribution in the data analysis domain focusing on tensors with a fully Bayesian treatment119

of the latent factors.120

Availability and Requirements121

The tensorBF package is available at CRAN - a global repository of R packages https://cran.122

r-project.org/package=tensorBF. The R package tensor is required for installation of ten-123

sorBF.124

References125

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling126

via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35(3):283–319,127

1970.128

Richard A Harshman. Foundations of the parafac procedure: models and conditions for an explanatory129

multimodal factor analysis. UCLA Working Papers in Phonetics, 16:1–84, 1970.130

Victoria Hore, Ana Viñuela, Alfonso Buil, Julian Knight, Mark I McCarthy, Kerrin Small, and131

Jonathan Marchini. Tensor decomposition for multiple-tissue gene expression experiments. Nature132

Genetics, 48(9):1094–1100, 2016.133

Suleiman A Khan and Samuel Kaski. Bayesian multi-view tensor factorization. In Toon Calders134

et al., editors, Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014,135

pages 656–671. Springer Berlin Heidelberg, 2014.136

Justin Lamb et al. The connectivity map: Using gene-expression signatures to connect small137

molecules, genes, and disease. Science, 313(5795):1929–1935, 2006. doi: 10.1126/science.138

1132939.139

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):140

279–311, 1966.141

5

https://cran.r-project.org/package=tensorBF
https://cran.r-project.org/package=tensorBF
https://cran.r-project.org/package=tensorBF

	Introduction
	Connectivity Map dataset
	Experimental Setup


