Published as a SCOPE Workshop paper at ICLR 2025

GRAMS: GRADIENT DESCENT WITH ADAPTIVE MO-
MENTUM SCALING
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ABSTRACT

We introduce Gradient Descent with Adaptive Momentum Scaling (Grams), a
novel optimization algorithm that decouples the direction and magnitude of pa-
rameter updates in deep learning. Unlike traditional optimizers that directly in-
tegrate momentum into updates, Grams separates the update direction, derived
from current gradients, from momentum, which is used solely for adaptive mag-
nitude scaling. This approach enables Grams to achieve improved loss descent
compared to state-of-the-art cautious and momentum-based optimizers. We the-
oretically demonstrate that Grams descents faster than other state-of-the-art opti-
mizers and establish a global convergence guarantee for Grams. We also validate
its effectiveness through extensive empirical evaluations. The results demonstrate
Grams’ superior performance, including faster convergence and better generaliza-
tion, compared to widely-used optimizers such as Adam, Lion, and their cautious
variants. Our results highlight Grams’ potential as a transformative approach for
efficiently training and fine-tuning large language models. Code is available at
https://github.com/Gunale0926/Grams.

1 INTRODUCTION

Optimization plays a pivotal role in modern machine learning, serving as the cornerstone for train-
ing and fine-tuning models across diverse applications. Over the past decade, the introduction of
adaptive optimizers like Adam (Kingma & Ba}[2014)) and its variant AdamW (Loshchilov & Hutter,
2017) has significantly shaped the landscape of optimization. These algorithms have become the de
facto choices for a variety of tasks, ranging from pre-training Large Language Models (LLMs) (Tou-
vron et al.| 2023) to fine-tuning models for text-to-image diffusion (Rombach et al.| 2022). Despite
the advent of new methods, AdamW has maintained its dominance, particularly in large-scale train-
ing regimes, thanks to its robust convergence properties and general applicability.

Recent innovations, such as SHAMPOO (Gupta et al., [2018), Schedule Free (Defazio et al.,|[2024),
Lion (Chen et al.| 2024), SOAP (Vyas et al.l [2024), and ADOPT (Taniguchi et al., 2024), have
pushed the boundaries of optimization by introducing novel update rules, momentum mechanisms,
and regularization techniques. These methods promise substantial improvements in training effi-
ciency and model performance, particularly in specialized scenarios. The cautious (Liang et al.,
2024) mechanism addresses optimization challenges by adaptively masking the momentum term
to align with the gradient g, preventing conflicts that hinder training. This approach extends to
Adam and Lion, resulting in variants like Cautious Adam (C-Adam) and Cautious Lion (C-Lion).

In this paper, we propose Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to address the limitations of existing methods. Unlike traditional
optimizers that directly couple momentum with gradient updates, Grams decouples the direction
and magnitude of parameter updates. This approach allows the update direction to be derived solely
from current gradients while momentum is utilized to scale the update magnitude. Such decoupling
enhances stability and robustness, particularly in dynamic optimization landscapes.
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Figure 1: Convergence comparison on a simple convex function f(w) := (0.5w;)? + (0.1ws)>.

Learning rate = 0.01 for Grams, Adam, and C-Adam, and 7 = 0.001 for Lion and C-Lion. 3
and [, are default values for all optimizers. The graph on the left is the optimizing trajectories; the
graph in the middle graph is the distance between current weight and optimum weight; the graph on
the right is the training objectives.

By integrating insights from momentum-based methods, adaptive optimizers, and sign-based up-
dates, Grams bridges the gap between theoretical rigor and practical performance, offering a promis-
ing direction for scalable and efficient optimization in modern machine learning.

2 PRELIMINARIES

2.1 SIGN FUNCTION

We formally define the sign function, which will be used later in our optimizer Grams.
Definition 2.1 (Sign function). Given a vector a = (a1, as, . ..,a,) € R", the sign function of a,
denoted as sign(a), is defined component-wise as:
sign(a) = (sign(aq), sign(az),. .., sign(a,)),
where the scalar sign function sign(a;) is given by:

1, ifa; > 0,
Sign(ai) = 07 l..fai = 07
-1, ifa; <O.

2.2 CAUTIOUS OPTIMIZERS

Cautious mechanism (Liang et al.|[2024) addresses a key challenge in optimization dynamics: when
the momentum term u; moves in a different direction from the current gradient g, it can potentially
impede training progress. To mitigate this issue, the Cautious mechanism introduces an adaptive
masking mechanism that modifies the momentum term based on its alignment with the gradient
direction. Cautious mechanism could apply to Adam and Lion, which form Cautious Adam (C-
Adam) and Cautious Lion (C-Lion).

Definition 2.2 (Cautious Mechanism Parameter Update). The general parameter update rule for the
Cautious mechanism is given by:

at = U © 1utogt20

Wy 1= W1 — Ny, (D

where wy is the weight at time step t, o denotes Hadamard product. For C-Adam, u; is from Defini-
tion[B.4} For C-Lion, u is from Definition[B.5] g, is the current gradient.

The Cautious mechanism in Definition [2.2] modifies the parameter updates to ensure they align with
the gradient direction, thereby reducing the risk of adverse updates that could impede convergence.
To analyze the impact of this mechanism, we introduce Definition [2.3] which quantifies the change
in the loss function after an update.
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Definition 2.3. For any loss function £ : RY — R, we define ALqy, | w, = L(wer1) — L(wy),
where w1 is updated from any update rule.

As shown in [Liang et al.[(2024)), the Cautious mechanism ensures that the updated parameters re-
sult in a non-negative inner product with the gradient, leading to a monotonic decrease in the loss
function when the step size is sufficiently small. Specifically, using a Taylor approximation, it can
be expressed as ALuy, , w, ~ —n(ur 0 g¢) T ¢(ue 0 g;) < 0, where ¢(-) represents the alignment
mask introduced by the Cautious mechanism. This guarantees that £(w;11) < L(w;), ensuring a
decrease in loss.

3 GRADIENT DESCENT WITH ADAPTIVE MOMENTUM SCALING

We propose Gradient Descent with Adaptive Momentum Scaling (Grams). Grams decouples the
direction and magnitude of the update by using the direction from gradients while scaling it with
the norm of momentum. This section formalizes the Grams update rule, introduces its key com-
ponents, and provides theoretical guarantees in both loss descent and Hamiltonian dynamics for its
performance.

3.1 DEFINITIONS

We define the parameter updating rule of Grams formally as below.
Definition 3.1 (Grams Parameter Update). The parameter update rule for Grams is:

2
my = Bime—1 + (1 = B1)ge, v i= Pove—1 + (1 — B2)g;,
~ my ~ Ut
mey = Vp = —m——
t 1 6% ) t 1 57
M N .
Ut = —F=—, g := sign(ge) o |ue,
VU + €
Wy 1= W1 — Nely, (2)
where wy is the weight at time step t, g = V., Li(wi—1) is the current gradient, | - | is element-wise

absolute value, o denotes Hadamard product, and sign(-) is defined in Deﬁnition

3.2 LoSS DESCENT

In this subsection, we analyze the loss descent properties of the Grams algorithm. Understanding
how the loss function decreases over optimization steps provides insights into the efficiency and
stability of the method. Below, we formalize the relationship between the step size, gradients,
and the resulting decrease in the loss value, leveraging the L-smoothness property of the objective
function.

Lemma 3.2 (Informal version of Lemma [D.2). Suppose that £ : R® — R is L-smooth. Let
A,Cw?ﬁms’wt be defined in Deﬁniti()n wt™s is updated from wy using Eq. [@). Then we have

the following:

L 2
=i (lgel [uel) + =3[l 13-

IN

* Part 1. It holds that Aﬁwgﬁms,wt

 Part 2. It holds that Aﬁw&r?ms,wt

Y

=6 {194 [wel)-

<0.

we —

e Part 3. If g, < mﬂgﬂ, |ut|), then we have Aﬁthﬁ?ms)

Then, we compare the loss descent between Grams and C-Adam.

Theorem 3.3 (Loss Descent Comparison, informal version of Theorem |D.3). Suppose that L :
R? — R is L-smooth. For any parameter vector w at optimization step t, let w&™™ and w¢ be

the update of Grams in Definition and Cautious optimizers in Definition respectively. If

the stepsize 1, satisfies 0y < 2z - min{(u; o gy, 100,500 (Ut © i, Lu,09,<0) ), then we have

Ljue |2
Aﬁwtc}i;xms’wt < Aﬁw&l,wt <0
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Remark 3.4. Theorem [3.3|shows that Grams achieves strictly better descent in the loss landscape
in the discrete analysis compared to Cautious optimizers. This theoretical guarantee suggests that
Grams may converge faster and achieve better minima in practice.

4 EMPIRICAL EXPERIMENTS

We conducted comprehensive experiments across both pre-training and fine-tuning stages to eval-
uate the performance of our proposed Grams optimizer. Comparisons were made against several
baseline optimizers, including Adam (Kingma & Bal 2014), Lion (Chen et al., [2024), C-Adam,
C-Lion (Liang et al.,|2024)), and, in some experiments, RMSprop (Hinton et al.,[2012; Ruder, [2016).

For Lion and C-Lion, we followed the recommendation from (Chen et al.,2024)), setting their learn-
ing rates to % x Adam learning rate. Additional details and hyperparameters of our experiments
can be found in Section|[Gl

4.1 PRE-TRAINING

We train the Llama 60M model (Dubey et al. 2024)) using the first 2, 048, 000 rows of data from
English subset of the C4 dataset (Raffel et al., [2020) to assess Grams’ optimization capability for
Transformer-based (Vaswani et al.,|2017) natural language generation (NLG) tasks. Due to the lim-
ited computing resources, we trained 1, 000 steps using constant with warm-up scheduler, in order
to simulate the beginning part of regular pre-training.We used the first 10, 000 rows of validation
data from the English section of the C4 dataset for evaluation. See Table [I|for evaluation results.

Table 1: Evaluation results of Llama 60M pre-training experiments.

OPTIMIZER \ PERPLEXITY.
ADAM 49.83
C-ADAM 43.21
LION 50.25
C-LION 53.21
GRAMS (OURS) 38.60

The evaluation results of the Llama 60M pre-training experiments, as presented in Table [I] reveal
that the Grams optimizer achieves the lowest perplexity (38.60) compared to other state-of-the-art
optimizers, including Adam (49.83), C-Adam (43.21), Lion (50.25), and C-Lion (53.21). This sub-
stantial reduction in perplexity highlights the effectiveness of Grams in optimizing language model
performance. While C-Adam and Lion exhibit improvements over their respective base optimizers,
Adam and C-Lion, Grams outperforms all variants, underscoring its ability to enhance convergence
and generalization. The result demonstrates Grams’ superiority in both training efficiency and model
quality for large-scale machine learning tasks.

For computer vision tasks, we trained and evaluated the WideResNet-50-2 model (Zagoruyko &
Komodakis, 2016) on the CIFAR-10 dataset (Krizhevskyl, 2009). Table@]provides the final accuracy
results.

Table 2: Evaluation results of WideResNet-50-2 pre-training experiments.

OPTIMIZER | FINAL ACCT
RMSPROP 84.47%
ADAM 87.56%
C-ADAM 88.78%
LioN 89.21%
C-LION 89.42%

GRAMS (OURS) 90.55%
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Table[2]highlight the performance of various optimizers—RMSprop, Adam, C-Adam, Lion, C-Lion,
and Grams—on the WideResNet-50-2 model trained on the CIFAR-10 dataset. The final accuracy
results are presented in Table [2] where Grams achieves the highest accuracy of 90.55%, surpassing
Lion (89.21%), C-Lion (89.42%), Adam (87.56%) and C-Adam (88.78%). These results emphasize
the effectiveness of Grams in accelerating optimization while achieving superior generalization,
making it a robust choice for computer vision tasks.

4.2 FINE-TUNING

We performed full fine-tuning (FT) experiments on the Llama 3.2 1B model (Dubey et al.l 2024)
using the MetaMathQA dataset (Yu et al., 2023). To evaluate the model, we measured accuracy on
the GSM-8K dataset (Cobbe et al.,[2021)). Results are reported in Table E}

Table 3: Evaluation results of Llama 3.2 1B FT experiments.

OPTIMIZER | GSM-8Kt
ADAM 48.90%
C-ADAM 49.81%

GRAMS (OURS) 51.02%

The results in Table |3| showcase the performance of different optimizers during the full FT exper-
iments on the Llama 3.2 1B model using the MetaMathQA dataset. The model’s accuracy was
evaluated on the GSM-8K dataset. Among the optimizers, Grams achieved the highest accuracy of
51.02%, outperforming both Adam (48.90%) and C-Adam (49.81%). These results highlight the
effectiveness of Grams in fine-tuning tasks, particularly in improving the model’s ability to handle
complex datasets like GSM-8K. The superior performance of Grams demonstrates its capacity to
achieve better generalization and optimization efficiency in fine-tuning scenarios.

We conducted parameter-efficient fine-tuning (PEFT) experiments on the Llama 3.2 3B model us-
ing the SORSA method (Caol [2024) and the first 100,000 rows of data from the MetaMathQA
dataset (Yu et al., 2023). The evaluation was performed on the MATH dataset (Hendrycks et al.,
2021)), with the results summarized in Table

Table 4: Evaluation results of Llama 3.2 3B PEFT experiments.

OPTIMIZER | MATH?
ADAM 17.80%
C-ADAM 16.62%

GRAMS (OURS) | 17.80%

Grams achieved an accuracy of 17.80%, matching the performance of Adam and outperforming
C-Adam (16.62%). These results indicate that Grams performs comparably to Adam in PEFT sce-
narios, maintaining its robust optimization capabilities while offering the additional benefits of pa-
rameter efficiency. This consistency further emphasizes Grams’ versatility in various fine-tuning
settings.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to decouple the direction and magnitude of parameter updates.
By leveraging this decoupling, Grams demonstrated superior performance in both theoretical con-
vergence guarantees and empirical evaluations, outperforming state-of-the-art optimizers such as
Adam Loshchilov & Hutter; (2017)), Lion |Chen et al.|(2024)), and their Cautious variants |Liang et al.
(2024). The results across various tasks highlight Grams’ potential as a efficient optimization frame-
work for large language model training and fine-tuning.
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Appendix

Roadmap. In Section [A] we present related work. In Section [B] we provide some background
knowledge in optimization. In Section [C} we provide some useful facts, which are utilized in the
results. Section [D] presents a formal analysis of loss descent for Grams optimizers. In Section [El
we illustrate the the property of Grams optimizer in the landscape of Hamiltonian dynamics. In
Section |, we show the formal proof for the global convergence guarantee of Grams optimizer.
Finally, we list the details of our experiments in Section [G]

A RELATED WORK

Adam Variants and Memory-Efficient Optimization Adam and its numerous variants have been
pivotal in addressing optimization challenges across diverse applications [Kingma & Bal(2014)); [Liu
et al.| (2019). Among these, AdamW [Liu et al.| (2019) introduced a crucial modification by de-
coupling weight decay from gradient updates, restoring the original intent of weight regularization.
NAdam Dozat| (2016)) integrated Nesterov momentum, and AdaBelief Zhuang et al.| (2020) refined
the second moment estimation for improved generalization. Adan Xie et al.| (2024) extended these
advancements with an additional momentum term, balancing performance with memory overhead.
Schedule-free optimizers |Defazio et al.|(2024) have further simplified the optimization process by
dynamically adjusting learning rates without pre-defined schedules, enhancing adaptability across
tasks. More recent efforts, such as ADOPT [Taniguchi et al.|(2024)), streamlined first-order momen-
tum updates through normalization.

Memory-efficient strategies have addressed the growing resource demands of large-scale models.
AdaFactor|Shazeer & Stern|(2018]) factorize second-order statistics, achieving sublinear memory us-
age. K-Fac|Martens & Grosse| (2015)) approximates the Fisher information matrix using Kronecker-
factored representations. Innovations such as fused gradient computation |Lv et al.|(2023) and Ga-
Lore|Zhao et al.|(2024)) leverage low-rank gradient structures to optimize memory efficiency.

Regularization Techniques Regularization plays a critical role in improving generalization and
robustness in optimization. Lion |Chen et al.| (2024) introduced sign-based updates with uniform
magnitudes, offering inherent noise regularization Neelakantan et al.| (2017); |[Foret et al.| (2021));
Chen et al.| (2022). Earlier methods, such as signSGD Bernstein et al.| (2018), explored similar
ideas but focused on reducing communication costs in distributed optimization. Despite its effi-
ciency, signSGD often underperformed in deep learning tasks, such as ConvNet training, where
Lion demonstrated superior performance through advanced momentum mechanisms.

Building on these ideas, the Cautious mechanism |Liang et al.[(2024)) adaptively masks momentum
terms to ensure alignment with gradient directions, mitigating conflicts. This approach has led to
new variants, including Cautious Adam (C-Adam) and Cautious Lion (C-Lion), which combine
regularization benefits with robust convergence guarantees.

Hamiltonian Dynamics in Optimization Hamiltonian dynamics provides a robust theoretical
framework for understanding momentum-based optimization Nesterov| (1983); Sutskever et al.
(2013); Nguyen et al.| (2024); |Anonymous| (2024). The seminal work of [Sutskever et al.| (2013)
provided a physical interpretation of momentum methods, linking the oscillatory behavior of algo-
rithms like Nesterov’s and Polyak’s methods |[Nesterov| (1983) to principles of dynamical systems.
While traditional gradient descent guarantees a monotonic decrease in objective function values,
momentum-based methods exhibit non-monotonic dynamics that require more advanced analyti-
cal tools [Jin et al.| (2018). This has motivated the development of Lyapunov-based approaches for
convergence analysis in convex optimization [Krichene et al.| (2015); Wilson et al.| (2016).

Recent studies have further formalized these connections by modeling optimization processes as
continuous-time ODEs, uncovering inherent Hamiltonian structures Maddison et al.| (2018)); Nguyen
et al.| (2024). These insights have significantly enhanced the theoretical understanding of classi-
cal momentum-based algorithms and provided a foundation for exploring new optimization frame-
works |[Anonymous| (2024). Moreover, Hamiltonian principles have been extended to analyze con-
vergence rates for accelerated methods Jin et al.| (2018)) and have inspired broader applications in
optimization. In parallel, Mirror Descent, while distinct from Hamiltonian dynamics, leverages vari-
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ational principles and maintains efficiency with a mild dependence on the dimensionality of decision
variables, making it well-suited for large-scale problems Krichene et al.|(2015); Tzen et al.|(2023).

Algorithm 1 Gradient Descent with Adaptive Momentum Scaling (Grams)

Require: parameter w, step sizes {n;}, dampening factors (1, 52 € [0,1), € > 0, weight decay
v=>0
1: Initialize t =0, mgo = vy =0
2: while w; not converged do
3: t—t+1
4: gt — VLe(wi—1)
5: my <= Brme—1 + (1 — B1)ge
6: v = Bovi_1 + (1 — B2)g7
7: mt%mt/(l—ﬂ{)
8: i)\t<—vt/(1—,6§)
9: Ut€ﬁlf/(\/ﬁ+€)

10 Uy < sign(ge) o |uy|
11: Wy < We—1 — mﬂt
12: Wy — Wy — N YWt > Add weight decay Loshchilov & Hutter|(2017)

13: end while

B BACKGROUNDS ON OPTIMIZATION

B.1 NOTATIONS

For two vectors u,v € R%, we use (u,v) to denote the standard inner product in the Euclidean
space. We use |lu||2 to denote the ¢o-norm of u and use ||u||~ to denote the £.-norm of u. For
a matrix A, we use ||A||r to denote the Frobenius norm of A. For a twice differentiable function
f:RY — R, we use Vf(z) and V2f(x) to denote the gradient and Hessian of f, respectively.
Given a vector z € R%, we use 1,50 € R? to denote the vector where each entry indicates whether
the corresponding entry of x is non-negative, i.e., for each ¢ € [d], (1,>0); = 1 if z; > 0, and
(1z>0)i = 0 otherwise.

B.2 BASIC DEFINITION

We define the L-smoothness of functions as below.

Definition B.1 (L-smooth). We say that a function f : R? — R is L-smooth if |V f(x1) —
Vf(z2)ll2 < Ll|z1 — x2|2 for all z1, x5 € R4

We state a common fact of L-smooth functions as follow.
Fact B.2. If a function f : R* — R is L-smooth, then we have

Fl2) < F@) + (V(en)saa = ) + 5 s~ ml
Flea) 2 F@) + (Y f(a)swa = 21) = 5w = il

We also define PL-condition as below.
Definition B.3 (PL-condition). A function f : R* — R satisfies the p-Polyak—Lojasiewicz (PL)
condition with constant j1 > 0 if the following inequality holds for all x € R?:

IV f(@)]? > 2u(f(x) = f),
where [* is the minimum value of the function f, i.e., f* = inf cga f(x).
B.3 ADAM OPTIMIZER
Adam (Adaptive Moment Estimation) [Kingma & Bal (2014)) is a widely-used optimizer that com-

bines the benefits of RMSprop |[Hinton et al.| (2012) and momentum by maintaining both first and

10
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second moment estimates of the gradients. The algorithm adapts the learning rates for each param-
eter using these estimates.

Definition B.4 (Adam). The parameter update rule for Adam is given by:
my = Brmy—1 + (1= B1)ge
v o= Povi1 + (1 — Ba)g}

~ my
my 1=
t
1-p4
~ Ut
Vp = ———
t
1-p3%
my
Ut -

\/ﬁt +e€
W41 = W — NtUt,

where w; is the weight at time step t, my and v; are the first and second momentum estimates
respectively, g = V., Li(wi_1) is the current gradient, 51 and 35 are decay rates for the moment
estimates, € is a small constant for numerical stability, and 1 is the learning rate at step t.

B.4 Li1oN OPTIMIZER

Evolved Sign Momentum (Lion) |Chen et al.[(2024) is an efficient optimizer that leverages momen-
tum and sign-based updates. Lion’s key innovation lies in its update rule, which combines both
current and momentum gradients through sign operations.

Definition B.5 (Lion Parameter Update). The parameter update rule for Lion is given by:
uy = sign(Bime—1 + (1 — B1)gr)
Wt 2= Wr—1 — Tt - Ut
my := Pamy—1 + (1 — B2)g¢,

where wy is the weight at time step t, my_1 is the momentum term, g = V., L (wy_1) is the current
gradient, B1 and Py are the momentum coefficients, 1, is the learning rate at step t, and sign is

defined in Definition

Lion’s efficiency stems from its memory-efficient design - it only needs to maintain a single mo-
mentum term and operates primarily through sign operations. This makes it particularly suitable
for large-scale training where memory constraints are significant. The optimizer has demonstrated
strong performance in training large language models and vision transformers, often achieving com-
parable or better results than Adam while using less memory.

C USEFUL FACTS

Fact C.1. Given vectors a,b,c € R<, we have
(a,bocy = {aob,c).
Fact C.2. Let two vectors a,b € R", then:
(a, —sign(a) o [b]) = — (|al, |b])

Proof. For the left side of the equation:

(a, —sign(a) o |b]) = Z —aysign(a;)|bl;
i=1

n
= = lalilbls
i=1

= — (lal.[b])
where the first step comes from the definition of inner product, the second step uses Fact [C.5] and
the final step uses the definition of inner product again. [

11
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Fact C.3. Let two vectors a,b € R", then:
(a,b) — (al,[b]) < 0.

Proof.
(a,0) — (lal, [b]) = > aib; — |al;[b];
=1

_ Zn: {0 if a; and b; have the same sign
i=1

—2|a;||b;| if a; and b; have opposite signs
<0

9

where the first step uses the definition of inner product, the second step discusses the only two cases
we have for signs, and the final inequality comes from basic algebra. O

Fact C.4. Let x = a o b be an element-wise product of two vectors a,b € R, then:

{a,b) = (lal, [b]) = (@0 b,1 = Laop0) <0

Proof.
(a,b) = (lal, [b]) = (a0 b,1 = 140p>0)

n

> aibi =Y aillbil = O aibi — > aiby)
i=1 1 i=1

i= : izaib; >0
n n
= > abi— Y laillbil,
i:a;b; >0 i=1

where the first step expands the terms, and the second step simplifies by splitting the sum based on
the sign of a;b;.

If all a;b; > 0, then Z;L:aibi>0 abi = Y. |as||bs|, so the expression is 0. Otherwise,
Sy ladllbi| > 377, 5,50 @ibi, so the expression is negative.

Thus,

n

(a,b) — <\a|, |b|> — <a o b, ]-d — ]—aob>0> = Z aibi — Z |a1\|bz| S 0.
=1

i:a;b;>0
The proof is complete. ]
Fact C.5. Given a scalar a € R, we have:

a - sign(a) = |al.

Proof. Let a € R. By Definition[2.1}

1, ifa>0,
sign(a) =<0, ifa=0,
~1, ifa<0.

Consider the following cases:

* If a > 0, then sign(a) = 1, so:

a-sign(a) =a-1=a=|al.

 If a = 0, then sign(a) = 0, so:
a-sign(a) =0-0=0 = |al.

12
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* If a < 0, then sign(a) = —1, so:

a-sign(a) =a-(—1) = —a = |al.

Thus, in all cases, a - sign(a) = |al.
Fact C.6. Given a vector a = (a1, as,...,a,) € R", we have:
aosign(a) = [al,

where the operations are applied component-wise.

Proof. Leta = (a1,az,...,a,) € R". By Definition 2.1} the sign function is applied component-

wise:
sign(a) = (sign(a1), sign(az), . .., sign(an)).
Expanding the Hadamard product a o sign(a) component-wise:
aosign(a) = (a - sign(a1), as - sign(az), . . ., an - sign(ay)).
By Fact[C.3|(the scalar version), for each i:
a; - sign(a;) = |a;|.

Thus:
aosign(a) = (|a1l, |as|, ..., |an]) = |al,

where the absolute value |a| is applied component-wise.

D Loss DESCENT

Lemma D.1. Suppose that £ : R® — R is L-smooth. Let A'Cw&l,wt be defined in Deﬁnition

wtC_H is updated from w; using Deﬁnition Then we have the followings:

e Part 1. It holds that
L 2
ALyC  w, < = 1t © o, Lugog>0) + %Ilutlli,
e Part 2. It holds that

Aﬁwgl,wt > — 77t<ut O gi, 1ut°9t20>’

o Part3. If py < ﬁt”%<ut © gt Lu,og,>0), then Aﬁwg <0.

1,Wt —

Proof. Proof of Part 1. We can show that
A‘ngrl,wt = E(wt+1) - [’(wt)

L
< L(wg) + (g, wep1 — wy) + EHth —wll5 — L(wy)
L 2
= (g6, Wep1 — wy) + 5\\wt+1 — w3
L 2
= <gt7 —Tut © 1ut°$]t20> + 5”7775”15 © 1Utogt20H2

L
= —ne{us 0 gt, Luyog,>0) + 5\\7716% 0 Lusog,>0l3

Lug

22 ol

< — g 0 G, Luyog,>0) +

13
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where the first step follows from Definition [2.3] the second step follows from that £ is L-smooth
and Fact[B.2] the third step follows from basic algebra, the fourth step follows from Definition [2.2]
the fifth step follows from Fact[C.I} and the last step follows from basic algebra.

Proof of Part 2. Next, we can show that

A,C e} = E(wt+1) — L(wt)

Wiy q1,Wt
L
> L(wg) + (g, W1 + wy) — 5\\wt+1 - wt||§ — L(wy)

> (e, Weg1 — Wy)
= <gt, —TMUtg © lutogt20>
= — iUt © Gr, Lusog,>0) )

where the first step follows from Definition [2.3] the second step follows from that £ is L-smooth
and Fact[B.2] the third step follows from basic algebra, the fourth step follows from Definition 2.2
the last step follows from Fact|[C.1]

Proof of Part 3. By rearranging the Eq. {@), it is clear that if 1, < mwt 0 gt, Lu,0g,>0), then

we have Aﬁwa <0. O

1 Wt —

Lemma D.2 (Formal version of Lemma [3.2). Suppose that L : R? — R is L-smooth. Let
Aﬁwtc;ﬁmswt be defined in Deﬁnition wA™s s updated from wy using Eq. @). Then we have

the following:

e Part 1. It holds that

AL < L0E 2 6
wergme w, S ~Me{(Gel, Jue) + == [luell- (©)

e Part 2. It holds that

A/jw?ﬂms’wt = =1 (lgel, [ue])-
e Part 3. If ny < ﬁ(lgm |ue|), then we have Acwﬁ:i‘“‘s,w <0

Proof. Proof of Part 1. We can show that
A‘ngﬁ"”,wt = E(wt_H) - E(wt)

L
< L(wy) + (g, we1 — wy) + §||wt+1 — w3 — L(wy)
L 2
= (g, w1 — wy) + §||wt+1 — w3

. L .
= (g0, e - sign(ge) © [url) + 5 lIne - sign(ge) © w13

. L
— N¢(ge o sign(gy), lug) + EHnth%
Ln2
— gl ) + Z )

IN

where the first step follows from Definition [2.3] the second step follows from that £ is L-smooth
and Fact[B.2] the third step follows from basic algebra, the fourth step follows from Definition
the fifth step follows from the Fact|C.1| and the last step follows from g; o sign(g:) = |g¢|-

Proof of Part 2. Next, we can show that
Aﬁw?ﬁ?ms,wt = E(wt-l—l) — L'(wt)
L
> L(wy) + (g¢, w1 + wy) — §||wt+1 — w3 — L(wy)

> (gt Wep1 — wy)

14
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= (gt —n - sign(ge) © |ue|)

— e (lge s |uel) ®)
where the first step follows from Definition [2.3] the second step follows from that £ is L-smooth
and Fact[B.2] the third step follows from basic algebra, the fourth step follows from Definition [3.1]
the last step follows from the Fact[C.T]and Fact[C.6]

Proof of Part 3. By rearranging the Eq. (7), it is clear that if n; < ﬁ (lgT], lut]), then we have

tlli2
ALy o, < 0. 0

Theorem D.3 (Loss Descent Comparison, formal version of Theorem 3.3)). Suppose that £ : R% —
R is L-smooth. For any parameter vector w at optimization step t, let w>"™ and w¥ be the update
of Grams in Definition[3.1|and Cautious optimizers in Definition 2.2} respectively. If the stepsize 1,
satisfies

e -min{(us 0 g¢, Luyog,>0)s (Ut © gty Luyogo<0) b

e <

then we have

Aﬁth;elxms’wt S AL < O

c
Wyl q,We —

Proof. We define the index sets:
I ={ie[d]: u gti >0}
I ={i€[d] : usi,gt,i <0}

By Part 1. of Lemma[D.2] we have

AL < L0E 2 9
wergme w, S ~e{(gel, [uel) + == luellz- ©)

By Part 2. of Lemma|[D.I| we have
ALye  w, = — Me{ue © gt Lusog,>0)- (10)

Then we can show that

Ln?
Aﬁwtcﬁmiwt - Aﬁw&l,wt < = ne{lgel, [uel) +meue 0 ge, Luyog,>0) + TtHUtH%

d
L 2
= =Y unallgudl +m Y weigei + =l
=1

el +
= =1 [ue,illge,il — ne |ut,illge.il +me Ut,iGt,i + %HWH%
K . ; ; 2
ielt i€l— ielt
= e Y e 3 sl Y g+ 2
4 s s . , s 4 , , 2 2
iel+ icl— iel+
L 2
= > ugillgeal + = luel

iel-
where the first step follows from Eq. (I0) and Eq. (9), the second step expands vectors element-wise,

the third step follows from that [d] is the disjoint union of I+ and I, the fourth step follows from
that |u¢ ;||ge.i] = ur,ige,; fori € I't, and the last step follows from basic algebra.

To ensure Aﬁwtcﬁms’wt — Aﬁwthr , < 0, it suffices to have

1w

e weallgesd + 2 g3 < 0
77t‘ - t,il|Gt,i 5 tilg = U.
1el—

15
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Rearranging the above inequality gives

m < |t||gt|
Lllu HQZ B

2
= m@t 0 Ut, Luyog,<0)s

where the last step follows from the definition of 7~ and basic algebra.

Note that by Part 3 of Lemma ifn, < ﬁtl\g@t o ut, 1g,0u,>0), we have Lye w, <0 O

E HAMILTONIAN DYNAMICS

Definition E.1 (Section 2.1 from |Liang et al, (2024)). Momentum-based algorithms can be typi-
cally viewed as monotonic descending algorithms on an augmented loss H(W, S), which satisfies
ming H(W, S) = L(W), so that minimizing L(W) is equivalent to minimizing H(W, S). A typical
choice is

H(w,s) = L(w) + K(s),

where K(-) is any lower bounded function. The continuous-time form of most momentum-based
algorithms can be written into a Hamiltonian descent form:

d
= VE(st) — (VL(wy))

d
aSt Vﬁ(wt) — \I/t(VIC(St)) (11)

where H(W, S) is a Hamiltonian (or Lyapunov) function that satisfies
méin H(W,S)=L(W), VW,
so that minimizing L(W) reduces to minimizing H(W, S); and ®(-), ¥(-) are two monotonic map-
pings satisfying
(x,®(x)) >0, (x,T(x)) >0, Vo e X.

With ®(X) = U(X) = 0, the system in (T1)) reduces to the standard Hamiltonian system that keeps
H(Wy, Sy) = const along the trajectory. When adding the descending components with ® and U,
the system then keeps H(W, S) monotonically decreasing:

d
aH(wt,st) = AH(wt7st) S 07

where
Apg(we, s¢) = —(z, ®(z)) — (x, (x)). (12)

On the other hand, L(w), which is the true objective, is not necessarily decreasing monotonically.

d
aﬁ(wt) = —Ar(w, st),
where
A[;(wt, St) = <V£(U)t), VlC(st)> + <VK(’LU15), @t(VE(wt» (13)

Definition E.2 (Grams Hamiltonian Dynamics). We could modify Hamiltonian dynamics with
Grams’ optimizing scheme,

%wt = —sign(VL(w) o [VK(sy)| — ®(VL(wy))
d
ast = V,C(wt) — \I/t(VIC(st)),

where | - | denotes element-wise absolute value, o is the Hadamard product, and ®;, U are scaling
functions.

16
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Theorem E.3 (Theorem 2.3 in |Liang et al.| (2024)). For Hamiltonian dynamics of Cautious opti-
mizer (in Definition[2.2), we have:

d
&H(wu St) = <5L’t7 1- lxt20> - AH(wt> 3t)~

Af:(wt) =

A%(wh St) =

€ L) = — (w1, La,20) — (VE(wn), B (VL)
= <$t, 1-— 1xt20> — Aﬁ(’wt, St).

where Apr(we, s¢) and Az (wy) represent the decreasing rates of H and L in accordance with the
system in Definition [E.]]

Hence:

o If (xy, (14 — sign(z;))) < 0 for any x € RY, then both H and L decrease faster than the
original system:

— AH(wt, St) S 0,
— Aﬁ(wt, St).

AH(wta St)

<
AG(wy) <

o If (z,sign(VL(w;))) > 0 for any x € R, then L decreases monotonically:

Theorem E.4 (Convergence of Grams Hamiltonian Dynamics). Following the dynamics in Defini-
tion we have

d
aH(wh St) S Oa

d
AGmms —
£ (we) dt

where A (wy, s¢) and Ap(wy, s¢) represent the decreasing rates of H and L in accordance with
the system in Definition|E. I

A(g{rams (wt s St) =

L(w:) < —Ar(wy, s¢),

Proof. Recall Eq. (12)) and (T3):
Agr(we, s1) == (VL(we), D(VL(we))) + (K(s1), WK (s1)))
Ap(wy, st) = (VL(we), V(5¢)) + (VL(we), Pe(VL(wy)).

Following the dynamics in Deﬁnition we can calculate the derivative of H (wy, s;) with respect
to ¢:

d d
ACI}{ramq(wt’ St) (Vﬁ(wt), dt > + <VK: St)? &50

(
= (VL(w), —sign(VL(wy)) o [VE(s¢)| — @1(VL(wy)))
+ (K (st), VL(wy) — ¥ (VK (s1)))
L(

= (VL(wy), =sign(VL(wy)) o [VE(s1)]) + (VE(st), VL(we)) = (VL(wy), Be(VL(wy)))
— (VK(s1), Wi (VK(s1)))
= (VL(w:), VE(s1)) = ([VL(wy)[, [VE(s0)[) = Amr(wi, 51)

<0,

where the first step follows from the chain rule for the time derivative of the Hamiltonian H, the
second step substitutes the dynamics from Definition[E.2] the third step separates the inner products
for clearer analysis, the fourth step follows the definition of AH (wy, s;) and Fact m and the last
step follows Fact[C.3] and —AH (wy, s¢) < 0.

Then, we calculate the derivative of £(w;) with respect to t.

AG™S (1) = (VL(wy), —sign(VL(wy)) o [VK(s¢)] — @¢(VL(wy)))
= (VL(wy), —sign(VL(wr)) o [VE(s¢)[) = (VL(we), (VL (wy)))

17
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= —{(IVL(w)|, [VE(s:)[) = (VL(wy), Pi(VL(wy)))
= (VL(wi), VE(s1)) = ([VL(wy)[, [VE(s:)])
= (VL(we), @4(VL(wr))) + (VL(wy), VE(s1)))
= (VL(wi), VE(s1)) = ([VL(wy)[, [VE(s1)[) = Ar(we, st)

where the first step follows from the chain rule, and the second step separates the inner products.
The third step follows Fact the fourth step adds and subtracts the term (VL(w;), VIC(s¢))
simultaneously, the fifth step follows the definition of A/ (wy, s¢) from Eq. (T3).

Since we know (VL(w;), VK (s:)) — ([VL(wy)|, [VK(se)]) < 0 from Fact|C.3]
(VL(we), V(1)) = (IVL(w)], [VE(s)]) < =Ar(wr, 5t)
Thus we complete the proof. O

Theorem E.5 (Convergence Comparison of Hamiltonian Dynamics between Grams and Cautious
Optimizers). From Theoremand recall AG™™ (w;) and AG (wy):

AZ ™ (wy) < AZ (wy).

Proof. We calculate the difference between A%™™ (w,) and AG (w;):
AZ (wy) — AL (we) = (VL(w), VK (51)) = (IVL(we) |, [VL(we)[) = (24,1 = 14,0),
where ©; = VL(w;) o VK(s¢).
By applying Fact[C.4] we know:
(VL(we), VE(50)) — (IVLw)|,[TK(s0l) — (0,1 — Tayz0) <0,
with equality if all components of VL(w;) o VK(s¢) > 0.
Thus:
G (1) — AG () <0,
which implies:

AZ™ (wy) < AL (wr).

Thus we complete the proof. O

F GLOBAL CONVERGENCE

In this subsection, we establish the global convergence properties of the Grams optimizer. By ana-
lyzing the update rules and assumptions on the optimization landscape, we demonstrate that Grams
converges to a stationary point of the objective function. This analysis underscores the optimizer’s
robustness and effectiveness in a wide range of optimization scenarios.

F.1 ASSUMPTIONS

To ensure theoretical rigor, we base our analysis on the following standard assumptions commonly
used in optimization theory. These assumptions define the properties of the loss function and the
optimization setting, enabling precise derivations of convergence guarantees.

Assumption F.1 (Lower bound of loss). The Loss function £ : R¢ — R is differentiable and closed
within its open domain dom(L) C R? and is bounded from below, i.e., L* := inf,, L(w) > —oc0.

Assumption F.2 (Bounded gradient). The Loss function £ : R — R satisfies VL(w) < G for all
w € dom(L).

Assumption F.3 (L-smooth). The Loss function £ : R® — R is L-smooth for some L > 0.

Assumption F.4 (u-PL-condition). The Loss function £ : R?* — R satisfies pu-PL-condition for
some 1 > 0.

18
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F.2 CONVERGENCE

In this subsection, we provide a detailed analysis of the convergence properties of the Grams op-
timizer. We begin by revisiting the convergence guarantee of the widely-used Adam optimizer as
established in|Li et al.| (2023). Using this as a foundation, we extend the analysis to Grams, high-
lighting its enhanced convergence behavior under the same assumptions.

Lemma E.5 (Convergence of Adam, Section 5.3 in |Li et al.| (2023)). Suppose that Assump-
tions and hold. Given initial weight wy with initial optimality gap A1 := L(w1) — L* <
00, choose an large enough G such that G > max{e, 3v/LA1}, a small enough fixed step size 1 > 0,

and B = ©(nG/?). Consider that the weight w; is updated by Adam for each t € [T). Then we
have

SGA
= Z IVL (w13 < -

The result in Lemma [F5]establishes a baseline for the convergence of Adam under standard assump-
tions. Building on this, we extend the analysis to Grams by leveraging its unique update mechanism,
which decouples the direction and magnitude of updates. The following theorem demonstrates that
Grams achieves global convergence, meaning that it is guaranteed to reach the optimal objective
value from any initial point with finite initial optimality gap.

Theorem F.6. Suppose that Assumptions [F2] [F3] and hold.  Given initial point w,
with initial optimality gap Ay := L(wy) — L* < oo, choose large an enough G such that
G > max{e,3v/LA1}, a small enough fixed step size 1 > 0, and B = O(nG'/?). Consider
that the weight w; is updated by Grams (Algorithm foreacht € [T). Then we have

Clwr) — £ < 2 (L) — £,

pnT
Proof. Given initial weight w,, we denote w], w5, . . ., w/. be the weights updated by Adam where
w} := w;. By Lemma|F.5| we have
T
8GA;
=) IVL(wy)|3 < : 14
T z:: IVEQDIE < = (9

For each t € [T'], we can show that

VL)l = 2u(£ wp) — L)
(L(wp) = L(wy_y) + L(w_y) = L(wi_p) + -+ + L(wh) — L{w)) + L(wy) — L)
(ALt oy F ALy g+ A ALy o, + L(w)) — L7)
> 2( ALy 1 + AL, sy s+ ALy wy + L(w7) = L7)
- 2:”’(A£wt7wf , t+ A[’wt 1,We—2 st A‘CwQ,wl + E(wl) - ‘C*)
(L(wy) — L(wi—1) + L{ws— 1) L(wi—g) + -+ L(ws) — L(wy) + L(wy) — L)
= 2u(£(wt) - L"), (15)
where the first step follows from Assumption the second step follows from basic algebra, the
third step follows from Definition 2.3] the fourth step follows form Theorem [D.3] the fifth step

follows from wj = wj, the sixth step follows from Definition and the last step follows from
basic algebra.

Combining Eq. (T4) and Eq. (T3) gives

L(wr) - L <W7T(£(w1)—£)-

Thus we complete the proof.
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G EXPERIMENTS DETAILS

For the Lion and C-Lion optimizers, we set the learning rate to % x Adam learning rate, as recom-
mended in |Chen et al.| (2024).

G.1 PRE-TRAINING

For the pre-training experiments with Llama 3.2 60M |Dubey et al.| (2024), we used the first
2,048,000 rows of training data from the English section of the C4 dataset |Raffel et al.| (2020).
We used the first 10,000 rows of validation data from the English section of the C4 dataset for
evaluation. Table[5) provides a detailed summary of the hyperparameters employed.

Table 5: Hyperparameters for Llama 3.2 60M pre-training experiments.

Optimizers | Grams/AdamW/CAdamW | Lion/CLion
Training
Epoch 1 1
Learning Rate 6e-3 6e-4
Weight Decay 0.0 0.0
Batch Size 2048 2048
Model Precision BF16 BF16
Mix Precision BF16&TF32 BF16&TF32
Scheduler Constant with warm-up Constant with warm-up
Warm-up Steps 50 50
Grad Clipping 1.0 1.0
581 0.9 0.9
Ba 0.95 0.95
€ le-6 le-6
Seq-len 256 256
Evaluating
Precision BF16
Seq-len 256

For the computer vision experiments, we used the CIFAR-10 dataset Krizhevsky| (2009) to train
and evaluate the WideResNet-50-2 model [Zagoruyko & Komodakis| (2016). Table [6] outlines the
corresponding hyperparameters.

G.2 FINE-TUNING

For fine-tuning experiments of the Llama 3.2 1B model, Table[7] provides the detailed hyperparam-
eters.

For PEFT of the Llama 3.2 3B model, Table[7|provides the detailed hyperparameters.
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Table 6: Hyperparameters for WideResNet-50-2 pre-training experiments.

| Grams/AdamW/CAdamW | Lion/CLion

Optimizers
Training
Epoch 10 10
Learning Rate 2e-3 2e-4
Weight Decay 0.0 0.0
Batch Size 128 128
Model Precision FP32 FP32
Mix Precision None None
Scheduler Linear Linear
Warm-up Steps 100 100
Grad Clipping 1.0 1.0
B 0.9 0.9
B2 0.999 0.99
€ le-6 le-6
Evaluating
Precision FP32

Table 7: Hyperparameters for Llama 3.2 1B fine-tuning experiments.

Optimizers | Grams/AdamW/CAdamW
Training
Epoch 1
Learning Rate le-4
Weight Decay 0.0
Batch Size 64
Model Precision BF16
Mix Precision BF16&TF32
Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0
b1 0.9
B2 0.999
€ le-6
Seq-len 512
Evaluating
Precision BF16
Seq-len 1024
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Table 8: Hyperparameters for Llama 3.2 3B PEFT experiments.

Optimizers \ Grams/AdamW/CAdamW
Training
Epoch 1
Learning Rate le-4
Weight Decay 0.0
Batch Size 128
Model Precision BF16
Mix Precision BF16&TF32
Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0
51 09
Ba 0.999
€ le-6
Seq-len 512
Rank 128
SORSA |Cao| (2024) ~ le-3
Evaluating
Precision BF16
Seq-len 2048
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