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Abstract

Large language models (LLMs) can often accurately describe probability distri-1

butions using natural language, yet they still struggle to generate faithful samples2

from them. This mismatch limits their use in tasks requiring reliable stochasticity,3

such as Monte Carlo methods, agent-based simulations, and randomized decision-4

making. We investigate this gap between knowledge and sampling in the context5

of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a6

natural-language adaptation of classical rejection sampling that prompts the LLM7

to reason about and accept or reject proposed samples. Despite relying on the same8

Bernoulli mechanism internally, VRS substantially reduces sampling bias across9

models. We provide theoretical analysis showing that, under mild assumptions,10

VRS improves over direct sampling, with gains attributable to both the algorithm11

and prompt design. More broadly, our results show how classical probabilistic12

tools can be verbalized and embedded into LLM workflows to improve reliability,13

without requiring access to model internals or heavy prompt engineering.14

1 Introduction15

Large language models (LLMs) have demonstrated remarkable capabilities in generating coherent16

text and even performing reasoning tasks. An emerging question is whether LLMs can understand17

and reproduce probabilistic processes when prompted in natural language. In particular, if we18

ask an LLM to behave like a random sampler for a known distribution (e.g., produce coin flip19

outcomes with a given probability), will it faithfully do so? Reliable sampling underpins Monte Carlo20

algorithms [13, 19], probabilistic programming [4], agent-based simulations [11, 3], and randomized21

decision making [16, 15]; yet, despite randomness being central to modern computation, the extent to22

which contemporary LLMs can generate faithful i.i.d. samples remains largely unexplored.23

Recent work has begun to study LLMs not just as next-word predictors but as generators of random24

outcomes drawn from specified distributions. Empirical evidence shows that, while LLMs can infer25

probability distributions [6] and do Bayesian updates to approximately infer a coin’s bias when given26

data [7], their own samples from a distribution remain biased [11]. Figure 1(a;b) illustrate this gap for27

Bernoulli distributions. Hence, LLMs know what a fair coin is, but they struggle to behave like one.28

This mismatch poses concrete risks from a user’s perspective. A user who sees an LLM accurately29

reasoning about a distribution might trust it to sample from that distribution; hidden bias can then30

contaminate downstream workflows, skew survey simulators, or introduce unfairness in stochastic31

tie-breakers. If an LLM cannot flip a fair coin, could it be trusted to sample from more complex32

distributions? This raises safety, reliability, and fairness concerns across the stack.33
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Figure 1: Illustrations of the knowledge-sampling gap and two different sampling methods.

In the setting of Bernoulli distributions, we present a comprehensive study of correcting LLM sam-34

pling bias via a language-adapted rejection-sampling framework, and uncover surprising interactions35

between prompt design and algorithmic guarantees. Our contributions include:36

• Sampling Faithfulness Study (Section 4). We measure how faithfully LLMs generate i.i.d.37

Bernoulli samples when prompted directly. Across four models, sampling bias varies significantly38

with the phrasing of the distribution. Chain-of-thought only helps in some cases. We also quantify39

the gap between a model’s ability to identify a distribution and its ability to simulate it.40

• Verbalized Rejection Sampling (VRS) (Section 5). We adapt the classical rejection sampling41

method through natural language into LLMs. VRS is model-agnostic (for both open-source and42

proprietary LLMs), requires no access to the model weights, and keeps the LLM in a black-box.43

Given a fixed prompt with textual descriptions of the target and proposal distributions alongside44

a candidate sample, the LLM is instructed to perform the accept/reject step. Our empirical study45

shows a significant reduction of the bias for the samples.46

• Empirical and Theoretical Insights (Section 6). Effectively, VRS draws a Bernoulli random47

variable to decide whether to accept a proposed sample. Counter-intuitively, this indirection48

produces less sampling bias than prompting the model to output a sample directly. We analyze this49

phenomenon theoretically, proving—under mild assumptions—that VRS can generate samples50

with less bias than direct sampling and separating the gains attributable to the prompt phrasing51

from those guaranteed by the algorithm itself.52

Beyond correcting the specific failure mode of Bernoulli sampling, our study opens a broader path53

towards integrating principled randomness into LLM-based systems. Faithful Bernoulli generation54

is a basic requirement for reliable LLM-driven simulations and stochastic reasoning. Our results55

show that a lightweight, theoretically sound wrapper—without model access or hyper-parameter56

tuning—substantially narrows the knowledge-sampling gap. More broadly, our work illustrates57

how classical statistical tools can be verbalized and paired with LLMs to deliver reliability without58

resorting to opaque prompt engineering.59

2 Related Work60

Sampling and flipping coins with LLMs. Recent work shows that LLMs often exhibit a gap61

between knowing and sampling from a distribution. [6] find that LLMs can describe the target62

probabilities, yet when asked to “roll a die” or “flip a coin” their outputs exhibit large bias. They63

show that incorporating code generation with Python tool use can alleviate the problem. In contrast,64

we focus on improving sampling within the natural language space, leveraging LLMs’ inherent65

probabilistic reasoning capabilities. While one could bypass the model to obtain true samples from66

a target distribution, enabling LLMs to faithfully perform such tasks themselves is both practically67

useful and scientifically insightful. [14] explore how LLMs “flip a fair coin” and “flip 20 fair coins”.68

They find that current LLMs not only replicate human biases but often amplify them. [7] probe the69

online learning setting of Bernoulli distribution from a Bayesian inference angle. They show that70

with sufficient in-context examples, LLMs update their estimate of a coin’s bias roughly following71

Bayes’ rule. Unlike their focus on online learning and belief updating, we do not assume sequential72

2



You are a sampler. You will come up with a sample based on 
the descriptions below. 

** Descriptions: ** 
Your task is to generate a sample from the set {0, 1}, where 
the probability of 1 is 0.0. 

Please give your output strictly in the following format: 

``` 
Explanations: [Your step-by-step analyses and results; You 
DO NOT have access to a computer or a random number 
generator] 

Output:  
[Your output MUST be an integer in {0, 1}] 
``` 
Please ONLY reply according to this format, don't give me 
any other words.

Distribution P(x; �)

You are a rejection sampler. Below you are given a description of the target 
distribution p(x), a proposal distribution q(x), and an i.i.d. sample from q(x). You 
need to decide whether or not to accept the sample. 

** Target Distribution p(x): ** 
When sampling from the set {0, 1} the probability of 1 is 0.0. 

** Proposal Distribution q(x): ** 
A Bernoulli distribution with probability of having 1 in the set of {0,1} being 0.5 

** Sample from q(x): ** 
1 

Please give your output strictly in the following format: 

``` 
Explanations: [Your step-by-step analyses and results; You DO NOT have access to 
a computer or a random number generator] 

Output:  
[Your output MUST be a letter in {T, F}] 
``` 
Please ONLY reply according to this format, don't give me any other words.

A Sample from Q(x; �)

Distribution P(x; �)

Distribution Q(x; �)

Prompt Template for Direct Sampling

Prompt Template for Verbalized Rejection Sampling

Binary Output

Binary Output

Figure 2: Prompt templates for direct sampling and Verbalized Rejection Sampling.

access to data and instead concentrate on the generation of i.i.d. samples from a fixed Bernoulli73

distribution. [11] and [8] find similar gaps in settings beyond Bernoulli (e.g., poll simulation,74

categorical distribution), showing that LLMs can summarize distributions but fail to sample from75

them reliably, echoing the Bernoulli findings on a higher-dimensional setup. Together, these studies76

reveal a recurring pattern: LLMs know the right distributions but struggle to sample from them77

faithfully. Our work aims to reduce this mismatch by adapting the rejection sampling algorithm to78

LLMs, leveraging their internal probabilistic behavior to guide natural language based sampling.79

Natural language and text based parameterization. Recent work explores using natural lan-80

guage to parameterize models, treating LLMs as inference engines that interpret and evaluate these81

descriptions. This makes model specification more accessible and interpretable. [12] introduce LLM82

Processes, where LLMs generate predictive distributions conditioned on natural language inputs and83

in-context data. Their method operates in an in-context, non-parametric style and requires access to84

token logits. In contrast, we treat language as a parametric description of a fixed distribution, without85

past data or logit access. [18] propose Verbalized Machine Learning (VML), where prompts act as86

natural language parameters for deterministic functions. Our work instead focuses on probabilistic87

distributions and faithful sampling. [2] presents a theoretical framework demonstrating that a finite88

set of function compositions, analogous to a vocabulary, can approximate any continuous mapping,89

drawing parallels between linguistic compositionality and function approximation. These studies90

underscore the potential of natural language as a medium for specifying probabilistic models. In our91

work, we focus on the Bernoulli distribution as a fundamental case study, demonstrating how LLMs92

can be guided to generate faithful samples from a simple yet foundational probabilistic model.93

3 Problem Setup94

Our investigation focuses on the ability of LLMs to generate faithful i.i.d. samples from distributions95

described purely in natural language. Focusing on Bernoulli distributions, defined by a single96

numerical parameter p 2 [0, 1], we treat LLMs as samplers accessed solely through text interaction.97

3.1 Parameterizing Distributions in Natural Language98

In our setting, the distribution is parameterized by a textual prompt. Formally, we denote this natural99

language parameterized distribution as P (x; ✓), where ✓ captures both the underlying numerical100

parameter p and the linguistic phrasing of the prompt. Figure 2(left) shows an example, where101

P (x; ✓) = “Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.0.”.102

For the same p, different phrasings may lead to different sampling behaviors. We test several ways of103

phrasing a Bernoulli distribution, and write P (x; p) for a fix phrasing. For each phrasing, we test 101104

values of p 2 {0.0, 0.01, 0.02, . . . , 1.0}. For each p, we query the LLM 100 times independently with105

the same prompt, and extract the binary output (i.e., ‘0’ or ‘1’) to form the resulting i.i.d. samples.106
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3.2 LLMs as Black-Box Samplers107

We treat LLMs as black-box samplers, accessed solely via APIs. The only controllable input is the108

prompt; the only observable output is text. For open-source models, we use vLLM [9], but we assume109

no access to internals such as weights, activations, or token-level logits. This contrasts with prior110

work [7, 8, 12] that uses output token logits to estimate sampling probabilities.111

This API-only setup allows consistent evaluation across both open-source and proprietary models,112

reflecting realistic usage where internals are inaccessible. It also better supports techniques like113

chain-of-thought (CoT; [17]) prompting, which can distort token-level probabilities by conditioning114

on generated reasoning: with CoT, logits reflect p(x | reasoning for x) instead of the intended p(x).115

We also fix all decoding hyperparameters (e.g., temperature, top-k) to their default values given in the116

API, since most real world users do not adjust them, and often do not have the ability to do so.117

4 How Reliable is Direct Sampling?118

This section examines the reliability of direct sampling from LLMs. We first compare their ability to119

generate samples to their ability to recognize distributions, then explore how prompt phrasing affects120

sampling bias, and finally test whether chain-of-thought reasoning improves sample quality.121

4.1 Measuring the Knowledge-Sampling Gap122

To assess the gap between an LLM’s understanding of a Bernoulli distribution and its ability to sample123

from it, we compare its evaluative and generative performance in a controlled setup, using Llama-3.1-124

70B-Instruct [5]. We first test the model’s ability to identify the correct Bernoulli distribution from125

data. For 11 equally spaced probabilities p0, ..., p10, s.t. pi 2 [0, 1], we generate 100 i.i.d. samples126

using Python, forming datasets Si. For each pair (i, j), we prompt the LLM to decide whether Si127

was drawn from Bern(pj), producing an 11⇥ 11 response matrix. Diagonal entries should be “Yes”,128

off-diagonals “No”. We repeat this process five times and report average accuracies in Figure 3(a).129

We then test the model’s sampling behavior by prompting it to generate 100 samples for each pi,130

using the template in Figure 2(left). The resulting sets Ŝi are evaluated using the same method as131

before. The average accuracies over five runs are reported in in Figure 3(b).132
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Figure 3: Recognition accuracy matrix.

The left panel shows high off-diagonal accuracy for133

Python generated data (i.e., confidently rejecting134

incorrect hypotheses), with minor errors along the135

diagonal due to natural sample variation (e.g., 48136

ones out of 100 for p = 0.5 may lead to confusion137

with p = 0.48, hence, rejecting the correct hy-138

potheses). In contrast, the right panel shows major139

degradation for LLM-generated samples. Diagonal140

accuracy drops significantly for all pi, except the141

edge cases when p = 0.0 and p = 1.0. Moreover,142

we observe an asymmetry in the off-diagonal en-143

tries: the lower triangle of the matrix exhibits much worse accuracy than the upper triangle. This144

indicates that samples from pi are often misclassified as having come from pj with j > i, suggest-145

ing that the LLM-generated samples are consistently biased toward ones. These results reveal a146

clear knowledge–sampling gap: LLMs can evaluate distributions well but fail to sample from them147

faithfully. Unlike question answering, where each input has a correct target, i.i.d. sampling lacks148

per-instance ground truth, making it a fundamentally different and underexplored capability.149

4.2 How Much Can Prompt Phrasing Reduce Sampling Bias?150

The previous section used a single fixed phrasing to describe the Bernoulli distribution (see Figure 2,151

left). Yet, natural language allows many equivalent ways to express the same distribution, raising the152

question: how much can phrasing affect sampling bias? In the prior setup, the prompt emphasized the153

probability of generating a 1, denoted P1(x; p), as illustrated in Figure 4(b). Notably, this formulation154

focuses solely on the probability of generating a 1, which may partly explain the tendency of the155

model to produce more 1s than 0s in the in the sampled outputs.156
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''Your task is to generate a sample from the set {0, 1}, where the probability of 1 is .''P1(x; p) = p

''Your task is to generate a sample from the set {0, 1}, where the probability of 0 is .''P0(x; p) = 1 � p

''Your task is to generate a sample from the set {0, 1}, where the probability of 1 is , and the probability of 0 is .''P10(x; p) = p 1 � p

''Your task is to generate a sample from the set {0, 1}, where the probability of 0 is , and the probability of 1 is .''P01(x; p) = 1 � p p

(a) Calibration Plot (b) Four different phrasings for a Bernoulli with p
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Figure 4: Calibration plots for direct sampling and the four different phrasings.

To explore this, we test three alternative phrasings that shift or balance the focus across outcomes, as157

shown in Figure 4(b). For each, we sample across a range of p values using Llama-3.1 and plot the158

empirical frequency of 1s against the ground truth, yielding calibration curves shown in Figure 4(a).159

The calibration curves show that the balanced descriptions, i.e., those stating both probabilities, yield160

samples that are better calibrated. Nevertheless, all four phrasings result in noticeable bias. This161

result resonates with [1], where they found that when prompting humans to imagine a coin flip,162

mentioning only ‘heads’ or mentioning only ‘tails’ will lead to a similar sampling bias.163

Quantitative comparison using Sum of TV Distance (STVD). To quantify the calibration per-164

formance of different phrasings, we compute the area between each calibration curve and the ideal165

diagonal reference line. Specifically, for each pi, we calculate the absolute difference between166

the empirical sampling frequency p̃i and the true value pi, and sum these over all 101 values, i.e.,167

STVD =
P100

i=0 |p̃i � pi|. Since this absolute difference corresponds to the total variation (TV)168

distance between two Bernoulli distributions, we refer to the resulting metric as the Sum of TV169

Distances (STVD) where smaller is better. See Appendix A.1 for more details about the TV distance.170

Table 1 presents the STVD values for the four phrasings under direct sampling. For Llama 3.1, the171

best-performing phrasing P01 achieves an STVD of 11.08, nearly half that of the baseline P1, which172

scores 21.80. We also include results for other LLMs, including GPT-4.1-nano, DeepSeekV3 [10], and173

Qwen-2.5 72B [20]. Interestingly, the best-performing phrasing varies across models, as highlighted174

by the underlined entries. The calibration plots for the other models can be found in Appendix B.1.175

These findings suggest that while prompt design can influence sampling bias, relying solely on prompt176

engineering to eliminate bias can be difficult and inconsistent across model family, and additional177

mechanisms are likely needed for more systematic approaches to correct sampling bias.178

Table 1: Quantitative comparison between Direct Sampling and VRS in STVD (#).

Method Llama-3.1 70B GPT-4.1-nano DeepSeekV3 Qwen-2.5 72B
P1 P0 P10 P01 mean P1 P0 P10 P01 mean P1 P0 P10 P01 mean P1 P0 P10 P01 mean

Direct 21.80 17.95 12.10 11.08 15.73 17.87 30.23 16.63 19.24 21.00 17.76 19.39 20.78 23.26 20.30 20.73 18.72 19.00 22.64 20.27
VRS 5.91 7.63 5.52 5.56 6.20 12.96 13.06 9.50 8.46 11.00 5.34 9.06 5.29 6.94 6.66 5.93 6.35 4.49 5.12 5.47

4.3 Does Chain-of-Thought (CoT) Help Sampling?179

Since phrasing alone does not eliminate sampling bias, we explore whether modifying the instruction180

for the output can help. Prior work [14, 7, 8, 12] often asks LLMs to output the sample immediately,181

enabling access to token logits for estimating predictive distributions. However, this approach is182

constrained to open-source models and treats LLMs more as likelihood models than samplers. In183

our setting, we only use LLMs for sampling and do not require access to logits or early output. This184

allows us to apply CoT [17] prompting, where the model first generates reasoning before giving its185

final answer. While sampling differs from question answering, CoT may increase output variability186

by encouraging diverse reasoning paths, potentially reducing bias.187

To test this, we instruct the model to produce reasoning of varying lengths N (ranging from 0 to188

500 words) before answering, along to an ‘Auto’ setting where no length constraint is imposed.189

The ‘Auto’ is the default setting for experiments in previous sections, which uses the template in190

Figure 2(left). For different N , we modify the ‘Explanations’ instruction in the prompt template to191

include a sentence saying that ‘Your analysis must have around N words’.192
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Figure 5 presents the calibration plots (left) and STVD scores193

(right) for Llama-3.1 under different CoT length constraints.194

Overall, reasoning length has limited effect on bias, though195

longer CoT slightly improves calibration. Direct output without196

reasoning often performs worse than the ‘Auto’ setting. How-197

ever, this pattern does not hold across models. As shown in198

Figure 6, GPT-4.1 and Qwen2.5 show no consistent improve-199

ment with longer CoT; in some cases, STVD increases as reasoning length grows. These mixed200

results suggest that, unlike in question answering, CoT is not a reliable method for reducing sampling201

bias, and its effect is model-dependent. For consistency, we use ‘Auto’ in all remaining experiments.202

5 Verbalized Rejection Sampling203

In the previous section, we explored ways to reduce sampling bias through prompt phrasing and204

instruction design. While these strategies do influence the behavior of LLMs, the results suggest205

that prompt-only interventions are insufficient for reliably eliminating bias. If direct sampling206

cannot be fully corrected through language alone, we may instead embrace the bias and mitigate207

it using algorithmic techniques. In probabilistic methods, several algorithms exist to transform208

biased proposals into unbiased samples. One such method is rejection sampling, which generates209

candidate samples from a proposal distribution and selectively accepts them to match a desired target210

distribution. In the remainder of this section, we adapt rejection sampling to operate entirely within211

the language interface of LLMs, and we refer to this method as verbalized rejection sampling (VRS).212

5.1 Rejection Sampling213

Rejection sampling is a sampling technique to generate samples from a target distribution P while214

only having access to samples from a (typically simpler) proposal distribution Q. We assume that215

both P and Q can be evaluated (but only Q can be directly sampled from). The general idea is that we216

can generate a sample from P by instead sampling from Q and accepting the sample with probability217

P (x)/(MQ(x)) where M < 1 is a bound on the ratio P (x)/Q(x). We assume that both P and Q218

are Bernoulli distributions with parameters p and q. In this case, we can compute M analytically as:219

M = max{p/q, (1� p)/(1� q)}. Let A(x) denote the acceptance probability of x ⇠ Q which is220

A(x) =

(
P (x)

MQ(x) =
p

Mq if x = 1
P (x)

MQ(x) =
1�p

M(1�q) if x = 0
. (1)

The accept/reject step effectively draws a sample from Bern(A(x)). The overall acceptance rate is221

↵ =
P

x2{0,1} Q(x)A(x) = 1/M . See Appendix A.2 for more details about rejection sampling.222

5.2 Adapting Rejection Sampling to LLMs223

Figure 1(c) illustrates the overall idea behind VRS. Classical rejection sampling requires three inputs:224

the target distribution P , the proposal distribution Q, and a sample x ⇠ Q. The algorithm evaluates225
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(a) Overall Acceptance Rate � (b) Acceptance Prob. A(x = 0) (c) Acceptance Prob. A(x = 1)
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Figure 8: Empirical acceptance rates for VRS.

whether to accept or reject x based on these inputs, returning a binary decision. To implement this in226

the LLM setting, we design a prompt template (Figure 2, right) that verbalizes all three components,227

i.e., descriptions of P, Q, and the proposed sample x, as natural language. These are inserted into228

fixed slots in the template. The model is instructed to reason through its decision and then output229

a single letter from {T,F}, indicating whether to accept (T) or reject (F) the sample. We send the230

completed prompt to the LLM and parse its response. If the response indicates acceptance, we231

retain the sample; otherwise, we generate a new proposed sample and repeat the process. This loop232

continues until we collect the required number of accepted samples.233

5.3 Experiments234
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Figure 7: Calibration plot for VRS

We evaluate VRS on four different LLMs: Llama-3.1, GPT-4.1-235

nano, DeepSeekV3, and Qwen-2.5. For each model, we run236

VRS until it accepts 100 samples for each of the 101 values237

of p 2 [0.0, 1.0], following the same setup as in the direct238

sampling experiments. As the proposal distribution Q, we fix239

it to a uniform Bernoulli with q = 0.5 across all values of240

p. The resulting calibration plot for Llama-3.1 is shown in241

Figure 7, and the corresponding STVD scores across all models242

are included in Table 1. The calibration plots for other three LLMs can be found in Appendix B.2.243

Comparing the calibration plot for VRS (Figure 7) with that of direct sampling (Figure 4a), we observe244

a significant reduction in sampling bias. Across all four prompt phrasings, the calibration curves245

under VRS closely align with the ideal diagonal reference, indicating much improved fidelity to the246

target Bernoulli distributions. Figure 8 shows the corresponding empirical acceptance probabilities,247

which seem to align well with the analytical targets. The improvement is also reflected quantitatively248

in Table 1: the STVD scores for VRS are substantially lower than those for direct sampling, with249

most cases showing a reduction of over 50%. In some instances, STVD drops to nearly 25% of250

the original value. Crucially, this improvement holds across all four LLMs tested (i.e., Llama-3.1,251

GPT-4.1-nano, DeepSeekV3, and Qwen-2.5), demonstrating that VRS consistently mitigates bias and252

does so independently of the underlying model.253

6 Why Does Verbalized Rejection Sampling Work?254

The effectiveness of VRS in reducing sampling bias is surprising at first glance since, internally, VRS255

still relies on the LLM to perform a Bernoulli trial, i.e., deciding whether to accept or reject a sample,256

which is precisely the type of stochastic behavior we have shown LLMs to struggle with.257

If LLMs are biased in direct sampling, why does wrapping the decision in rejection sampling help?258

Is the improved calibration a result of the specific prompt design used in VRS? Or does the rejection259

sampling algorithm itself introduce structural guarantees that correct bias, even when implemented via260

a biased LLM? The remainder of this section explores these possibilities empirically and theoretically.261

6.1 Is It the Magic in the Prompt?262

To investigate whether VRS’s improvement stems purely from prompt design, we remove external263

randomness by fixing the proposed sample to a constant, i.e., x = 1. In this case, a faithful LLM264
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(a) Calibration for VRS-simple (b) Calibration for VRS-simple-M

Explanations:  
First, we need to calculate the probability of the sample from the 
target distribution p(x) and the proposal distribution q(x).  
p(1) = 0.3 
q(1) = 0.5 
Next, we calculate the acceptance probability using the formula:  
a = p(1)/q(1) = 0.3/0.5 = 0.6 
Since a = 0.6 < 1, we will accept the sample with probability 0.6.  

Output:  
T

Wrong Acceptance Probability

(c) Example Output for VRS-simple

Figure 9: Calibration plots for two ablations and an example LLMs output for VRS-simple.

should accept with probability A(1), as defined in Equation (1). We compare this with the empirical265

acceptance probability Ã(1), estimated from the LLM’s responses. Figure 8(c) shows Ã(1) for266

various p, using a fixed proposal Q = Bern(0.5). For the trivial case p > 0.5, the alignment is strong.267

For p < 0.5, the results appear reasonable overall but show a consistent bias, particularly in the range268

p 2 [0.2, 0.5]. To compare more directly with direct sampling, we evaluate Ã(1) over 101 equally269

spaced values of A(1), using the inverse of Equation (1) to recover the corresponding p. For each, we270

generate a VRS prompt with the computed p, a fixed Q = Bern(0.5), and a fixed sample x = 1. We271

refer to this setup with fixed proposal and no introduced randomness as VRS-simple. If prompt design272

alone explains the improvement, VRS-simple should outperform direct sampling in calibration.273

Table 2: Ablation STVD (#)
Method P1 P0 P10 P01 mean

Direct 21.80 17.95 12.10 11.08 15.73
VRS 5.91 7.63 5.52 5.56 6.20

VRS-simple 15.83 6.55 13.97 11.05 11.85
VRS-simple-M 11.43 29.08 13.45 19.52 18.37
VRS-M 4.97 11.74 5.91 7.03 7.41

Figure 9(a) shows the calibration plot for VRS-simple using274

Llama-3.1. Compared to direct sampling (Figure 4a), the re-275

sults are slightly more calibrated. Table 2 confirms this, with276

the mean STVD dropping from 15.73 to 11.85. This suggests277

the VRS prompt helps reduce bias for direct sampling. How-278

ever, VRS-simple relies on explicitly computing the inverse279

of Equation (1) to tailor the prompt to each target p, and the280

improvement remains modest compared to full VRS.281

Magic or Mirage? To further understand why the VRS prompt improves sampling, we examine282

whether its structure encourages the model to reason differently. One hypothesis is that phrasing the283

sampling task in the context of rejection sampling prompts the LLM to internally compute acceptance284

probabilities, potentially disrupting its default biases learned during pretraining. To test this, we285

manually analyzed the model’s reasoning outputs from VRS-simple (see Figure 9(c)). We found286

that, while the model often tries to derive the acceptance probability, it frequently does so incorrectly.287

In the non-trivial cases where A(x) 6= 1, the model tends to compute only the ratio P (x)/Q(x),288

omitting the constant M in the denominator.289

Could this incorrect derivation be the reason behind the improvement? To test that, we designed290

variants of VRS-simple and VRS where we explicitly instruct the model to compute and use M291

correctly. We refer to these as VRS-simple-M and VRS-M, respectively. The calibration plot for292

VRS-simple-M is shown in Figure 9(b), with corresponding STVD scores in Table 2. Through293

output inspection, we verified that the LLM now correctly computes the constant M in its reasoning.294

However, this correction leads to worse performance: the mean STVD increases to 18.37, higher295

than in direct sampling. For the full VRS setup, adding the M -instruction also results in a slight296

degradation, with STVD rising from 6.20 to 7.41, though still outperforming direct sampling.297

These results suggest that the improvement from the VRS prompt is not due to accurate computation298

of the acceptance probability. Instead, the prompt seems to help in an unexpected way, but it299

alone cannot explain the full benefit. The remaining gains likely come from the rejection sampling300

mechanism itself, rather than prompt phrasing alone.301

6.2 Is the Improvement from the Algorithm?302

Prompt design alone cannot fully explain the gains from VRS. To analyze the role of the algorithm303

itself, we model the LLM as a biased Bernoulli sampler. In VRS, this means the acceptance decision304

is not sampled from the true probability A(x), but from a perturbed version Ã(x) = A(x) + e(x),305

where e(x) represents the model’s bias. Based on this, we can derive the following proposition.306
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Proposition 1 (Informal, see Proposition 1 in Appendix A.3.). Let P (x; p), Q(x; q) be Bernoulli307

distributions (target and proposal, respectively). Let P̃ denote the resulting distribution after308

rejection sampling, and assume a bound on the model’s bias |e(x)|  c 2 R. Then, with M defined309

in Section 5.1,310

TV(P̃ , P )  Mc

1� Mc
. (2)

From empirical observations, particularly in Figure 8(b;c), we note that the LLM appears well311

calibrated when A(x) = 1. Therefore, we can further derive the following result.312

Proposition 2 (Informal, see Proposition 2 in Appendix A.4.). Following Proposition 1, with the313

additional assumption that e(x) = 0 if A(x) = 1, i.e., we have Ã(x) = A(x) + e(x) if A(x) < 1,314

and Ã(x) = A(x) if A(x) = 1. Then, with x̂ being chosen such that A(x̂) < 1,315

TV(P̃ , P )  Q(x̂)Mc

(1� Q(x̂)Mc)
. (3)

This gives a bound for the TV distance between the resulting distribution from VRS (P̃ ) and the316

ideal target (P ). Now, we want to see when VRS is better than direct sampling. We can denote the317

resulting distribution from direct sampling as P̄ , and assume it has the same sampling bias e(x).318

Then, VRS is better than direct sampling if TV(P̃ , P ) < TV(P̄ , P ). We can derive the following.319

Corollary 1 (Informal, see Corollary 1 in Appendix A.5.). Following Proposition 2, and assuming320

that P̄ has the same bias as Ã(x), i.e., P̄ (x) = P (x) + e(x). Then,321

TV(P̃ , P ) < TV(P̄ , P ) () Q(x̂) <
1

M(1 + c)
. (4)
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Figure 10: Calibration plots
with error bounds ±c overlaid.

Intuitively, the corollary says that if the proposal Q puts little enough322

mass, i.e., less than 1/(M(1 + c)), on the state that sometimes gets323

rejected (x̂), the error introduced inside the rejection step hurts less324

than applying the same error directly to every draw from P̄ . In325

our experiments we fix the proposal to q = 0.5. This allow us,326

for each target p, to compute the corresponding M and derive the327

maximum allowable bias c under which VRS still outperforms direct328

sampling. In Figure 10, we visualize this by shading the box defined329

by clip(p ± c, 0.0, 1.0) on the top of the calibration plot Figure 4(a).330

The result shows that in most cases, the empirical frequencies from331

direct sampling fall well within this box, satisfying the theoretical condition. This provides strong332

evidence that the primary source of VRS’s improvement comes from the rejection sampling algorithm333

itself, not just prompt effects.334

7 Conclusion and Limitation335

We examined the ability of LLMs to sample from natural-language-described distributions, using336

Bernoulli as a test case. While LLMs can evaluate whether data matches a distribution, they struggle to337

generate unbiased samples, revealing a clear knowledge–sampling gap. This highlights that sampling338

is a fundamentally distinct ability from question answering: evaluation tasks have clear supervision,339

while i.i.d. sampling lacks per-instance ground truth and is only verifiable at the distribution level. We340

tested whether prompt phrasing or chain-of-thought reasoning could reduce bias. While both influence341

behavior, neither reliably closes the gap. To address this, we proposed Verbalized Rejection Sampling342

(VRS), a lightweight adaptation of classical rejection sampling expressed entirely in natural language.343

VRS improves calibration across models without accessing logits or tuning decoding parameters, and344

our analysis shows that the algorithm, not just prompt design, is key to its success. Beyond correcting345

this specific failure mode, our work points to a broader path: integrating principled randomness into346

LLM-based systems. Faithful Bernoulli sampling is a basic requirement for LLM-driven simulations347

and probabilistic reasoning. VRS illustrates how probabilistic tools can be verbalized and paired with348

LLMs to improve reliability—without resorting to opaque prompt engineering. This study is limited349

to the Bernoulli case; our theoretical results do not directly generalize to more complex distributions.350

Extending this framework to broader families remains an important direction for future work.351
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made in the paper.418
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contributions made in the paper and important assumptions and limitations. A No or420

NA answer to this question will not be perceived well by the reviewers.421
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much the results can be expected to generalize to other settings.423
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2. Limitations426

Question: Does the paper discuss the limitations of the work performed by the authors?427
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• The answer NA means that the paper has no limitation while the answer No means that431

the paper has limitations, but those are not discussed in the paper.432

• The authors are encouraged to create a separate "Limitations" section in their paper.433

• The paper should point out any strong assumptions and how robust the results are to434

violations of these assumptions (e.g., independence assumptions, noiseless settings,435

model well-specification, asymptotic approximations only holding locally). The authors436

should reflect on how these assumptions might be violated in practice and what the437

implications would be.438

• The authors should reflect on the scope of the claims made, e.g., if the approach was439
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tant role in developing norms that preserve the integrity of the community. Reviewers455

will be specifically instructed to not penalize honesty concerning limitations.456

3. Theory assumptions and proofs457

Question: For each theoretical result, does the paper provide the full set of assumptions and458

a complete (and correct) proof?459

Answer: [Yes]460
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• If the contribution is a dataset and/or model, the authors should describe the steps taken486

to make their results reproducible or verifiable.487

• Depending on the contribution, reproducibility can be accomplished in various ways.488

For example, if the contribution is a novel architecture, describing the architecture fully489

might suffice, or if the contribution is a specific model and empirical evaluation, it may490

be necessary to either make it possible for others to replicate the model with the same491

dataset, or provide access to the model. In general. releasing code and data is often492

one good way to accomplish this, but reproducibility can also be provided via detailed493

instructions for how to replicate the results, access to a hosted model (e.g., in the case494

of a large language model), releasing of a model checkpoint, or other means that are495

appropriate to the research performed.496
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sions to provide some reasonable avenue for reproducibility, which may depend on the498

nature of the contribution. For example499

(a) If the contribution is primarily a new algorithm, the paper should make it clear how500

to reproduce that algorithm.501

(b) If the contribution is primarily a new model architecture, the paper should describe502

the architecture clearly and fully.503

(c) If the contribution is a new model (e.g., a large language model), then there should504

either be a way to access this model for reproducing the results or a way to reproduce505

the model (e.g., with an open-source dataset or instructions for how to construct506

the dataset).507

(d) We recognize that reproducibility may be tricky in some cases, in which case508

authors are welcome to describe the particular way they provide for reproducibility.509

In the case of closed-source models, it may be that access to the model is limited in510

some way (e.g., to registered users), but it should be possible for other researchers511

to have some path to reproducing or verifying the results.512
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results. We will also release the code after.519
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• While we encourage the release of code and data, we understand that this might not be524

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not525
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• The instructions should contain the exact command and environment needed to run to528
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.530

• The authors should provide instructions on data access and preparation, including how531

to access the raw data, preprocessed data, intermediate data, and generated data, etc.532

• The authors should provide scripts to reproduce all experimental results for the new533

proposed method and baselines. If only a subset of experiments are reproducible, they534

should state which ones are omitted from the script and why.535

• At submission time, to preserve anonymity, the authors should release anonymized536

versions (if applicable).537

• Providing as much information as possible in supplemental material (appended to the538
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6. Experimental setting/details540

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-541

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the542

results?543

Answer: [Yes]544

Justification: We specify all details needed to understand the results in Section 3.2 and at the545

corresponding places in the experiments in Section 4 and in Section 5.546
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• The answer NA means that the paper does not include experiments.548

• The experimental setting should be presented in the core of the paper to a level of detail549

that is necessary to appreciate the results and make sense of them.550

• The full details can be provided either with the code, in appendix, or as supplemental551

material.552

7. Experiment statistical significance553

Question: Does the paper report error bars suitably and correctly defined or other appropriate554

information about the statistical significance of the experiments?555

Answer: [Yes]556

Justification: While error bars are not meaningful in our setup (due to the fact that we are557
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• The factors of variability that the error bars are capturing should be clearly stated (for565
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8. Experiments compute resources581

Question: For each experiment, does the paper provide sufficient information on the com-582

puter resources (type of compute workers, memory, time of execution) needed to reproduce583

the experiments?584

Answer: [Yes]585

Justification: We host the open-source model ourselves on 4 Nvidia H100 GPUs. Generating586

100 samples takes on average 25 seconds (see Appendix C).587
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• The answer NA means that the paper does not include experiments.589
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• The paper should provide the amount of compute required for each of the individual592

experimental runs as well as estimate the total compute.593

• The paper should disclose whether the full research project required more compute594

than the experiments reported in the paper (e.g., preliminary or failed experiments that595

didn’t make it into the paper).596
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societal impacts of the work performed?610

Answer: [Yes]611
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Guidelines:615

15

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.616

• If the authors answer NA or No, they should explain why their work has no societal617

impact or why the paper does not address societal impact.618

• Examples of negative societal impacts include potential malicious or unintended uses619
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11. Safeguards638

Question: Does the paper describe safeguards that have been put in place for responsible639

release of data or models that have a high risk for misuse (e.g., pretrained language models,640

image generators, or scraped datasets)?641

Answer: [NA]642

Justification: There is no data or models released with this research.643

Guidelines:644

• The answer NA means that the paper poses no such risks.645

• Released models that have a high risk for misuse or dual-use should be released with646

necessary safeguards to allow for controlled use of the model, for example by requiring647

that users adhere to usage guidelines or restrictions to access the model or implementing648

safety filters.649

• Datasets that have been scraped from the Internet could pose safety risks. The authors650

should describe how they avoided releasing unsafe images.651

• We recognize that providing effective safeguards is challenging, and many papers do652

not require this, but we encourage authors to take this into account and make a best653

faith effort.654

12. Licenses for existing assets655

Question: Are the creators or original owners of assets (e.g., code, data, models), used in656

the paper, properly credited and are the license and terms of use explicitly mentioned and657

properly respected?658

Answer: [Yes]659

Justification: For the open-source models, we use Llama-3.1 under the LLAMA 3.1660

COMMUNITY LICENSE AGREEMENT, DeepSeekV3 under the DEEPSEEK LICENSE661

AGREEMENT, and Qwen-2.5 under the Qwen LICENSE AGREEMENT. We buy the662

service from OpenAI to use GPT-4.1-nano. We included this info in Appendix C.663

Guidelines:664

• The answer NA means that the paper does not use existing assets.665

• The authors should cite the original paper that produced the code package or dataset.666

• The authors should state which version of the asset is used and, if possible, include a667

URL.668
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.669

• For scraped data from a particular source (e.g., website), the copyright and terms of670

service of that source should be provided.671

• If assets are released, the license, copyright information, and terms of use in the672

package should be provided. For popular datasets, paperswithcode.com/datasets673

has curated licenses for some datasets. Their licensing guide can help determine the674

license of a dataset.675

• For existing datasets that are re-packaged, both the original license and the license of676

the derived asset (if it has changed) should be provided.677

• If this information is not available online, the authors are encouraged to reach out to678

the asset’s creators.679

13. New assets680

Question: Are new assets introduced in the paper well documented and is the documentation681

provided alongside the assets?682

Answer: [NA]683

Justification: The paper does not release new assets.684

Guidelines:685

• The answer NA means that the paper does not release new assets.686

• Researchers should communicate the details of the dataset/code/model as part of their687

submissions via structured templates. This includes details about training, license,688

limitations, etc.689

• The paper should discuss whether and how consent was obtained from people whose690

asset is used.691

• At submission time, remember to anonymize your assets (if applicable). You can either692

create an anonymized URL or include an anonymized zip file.693

14. Crowdsourcing and research with human subjects694

Question: For crowdsourcing experiments and research with human subjects, does the paper695

include the full text of instructions given to participants and screenshots, if applicable, as696

well as details about compensation (if any)?697

Answer: [NA]698

Justification: The paper does not involve crowdsourcing nor research with human subjects.699

Guidelines:700

• The answer NA means that the paper does not involve crowdsourcing nor research with701

human subjects.702

• Including this information in the supplemental material is fine, but if the main contribu-703

tion of the paper involves human subjects, then as much detail as possible should be704

included in the main paper.705

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,706

or other labor should be paid at least the minimum wage in the country of the data707

collector.708

15. Institutional review board (IRB) approvals or equivalent for research with human709

subjects710

Question: Does the paper describe potential risks incurred by study participants, whether711

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)712

approvals (or an equivalent approval/review based on the requirements of your country or713

institution) were obtained?714

Answer: [NA]715

Justification: The paper does not involve crowdsourcing nor research with human subjects.716

Guidelines:717

• The answer NA means that the paper does not involve crowdsourcing nor research with718

human subjects.719
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• Depending on the country in which research is conducted, IRB approval (or equivalent)720

may be required for any human subjects research. If you obtained IRB approval, you721

should clearly state this in the paper.722

• We recognize that the procedures for this may vary significantly between institutions723

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the724

guidelines for their institution.725

• For initial submissions, do not include any information that would break anonymity (if726

applicable), such as the institution conducting the review.727

16. Declaration of LLM usage728

Question: Does the paper describe the usage of LLMs if it is an important, original, or729

non-standard component of the core methods in this research? Note that if the LLM is used730

only for writing, editing, or formatting purposes and does not impact the core methodology,731

scientific rigorousness, or originality of the research, declaration is not required.732

Answer: [NA]733

Justification: We only use LLMs for editing the paper. However, this paper is concerned734

with analyzing and explaining sampling from Bernoulli distributions with LLMs. The setup735

on how LLMs are used is described clearly in Section 3.736

Guidelines:737

• The answer NA means that the core method development in this research does not738

involve LLMs as any important, original, or non-standard components.739

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)740

for what should or should not be described.741
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