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Abstract

Large language models (LLMs) can often accurately describe probability distri-
butions using natural language, yet they still struggle to generate faithful samples
from them. This mismatch limits their use in tasks requiring reliable stochasticity,
such as Monte Carlo methods, agent-based simulations, and randomized decision-
making. We investigate this gap between knowledge and sampling in the context
of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a
natural-language adaptation of classical rejection sampling that prompts the LLM
to reason about and accept or reject proposed samples. Despite relying on the same
Bernoulli mechanism internally, VRS substantially reduces sampling bias across
models. We provide theoretical analysis showing that, under mild assumptions,
VRS improves over direct sampling, with gains attributable to both the algorithm
and prompt design. More broadly, our results show how classical probabilistic
tools can be verbalized and embedded into LLM workflows to improve reliability,
without requiring access to model internals or heavy prompt engineering.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in generating coherent
text and even performing reasoning tasks. An emerging question is whether LLMs can understand
and reproduce probabilistic processes when prompted in natural language. In particular, if we
ask an LLM to behave like a random sampler for a known distribution (e.g., produce coin flip
outcomes with a given probability), will it faithfully do so? Reliable sampling underpins Monte Carlo
algorithms [13, 19], probabilistic programming [4], agent-based simulations [11, 3], and randomized
decision making [16, 15]; yet, despite randomness being central to modern computation, the extent to
which contemporary LLMs can generate faithful i.i.d. samples remains largely unexplored.

Recent work has begun to study LLMs not just as next-word predictors but as generators of random
outcomes drawn from specified distributions. Empirical evidence shows that, while LLMs can infer
probability distributions [6] and do Bayesian updates to approximately infer a coin’s bias when given
data [7], their own samples from a distribution remain biased [11]. Figure 1(a;b) illustrate this gap for
Bernoulli distributions. Hence, LLMs know what a fair coin is, but they struggle to behave like one.

This mismatch poses concrete risks from a user’s perspective. A user who sees an LLM accurately
reasoning about a distribution might trust it to sample from that distribution; hidden bias can then
contaminate downstream workflows, skew survey simulators, or introduce unfairness in stochastic
tie-breakers. If an LLM cannot flip a fair coin, could it be trusted to sample from more complex
distributions? This raises safety, reliability, and fairness concerns across the stack.
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Figure 1: Ilustrations of the knowledge-sampling gap and two different sampling methods.

In the setting of Bernoulli distributions, we present a comprehensive study of correcting LLM sam-
pling bias via a language-adapted rejection-sampling framework, and uncover surprising interactions
between prompt design and algorithmic guarantees. Our contributions include:

* Sampling Faithfulness Study (Section 4). We measure how faithfully LLMs generate i.i.d.
Bernoulli samples when prompted directly. Across four models, sampling bias varies significantly
with the phrasing of the distribution. Chain-of-thought only helps in some cases. We also quantify
the gap between a model’s ability to identify a distribution and its ability to simulate it.

* Verbalized Rejection Sampling (VRS) (Section 5). We adapt the classical rejection sampling
method through natural language into LLMs. VRS is model-agnostic (for both open-source and
proprietary LLMs), requires no access to the model weights, and keeps the LLM in a black-box.
Given a fixed prompt with textual descriptions of the target and proposal distributions alongside
a candidate sample, the LLM is instructed to perform the accept/reject step. Our empirical study
shows a significant reduction of the bias for the samples.

* Empirical and Theoretical Insights (Section 6). Effectively, VRS draws a Bernoulli random
variable to decide whether to accept a proposed sample. Counter-intuitively, this indirection
produces less sampling bias than prompting the model to output a sample directly. We analyze this
phenomenon theoretically, proving—under mild assumptions—that VRS can generate samples
with less bias than direct sampling and separating the gains attributable to the prompt phrasing
from those guaranteed by the algorithm itself.

Beyond correcting the specific failure mode of Bernoulli sampling, our study opens a broader path
towards integrating principled randomness into LLM-based systems. Faithful Bernoulli generation
is a basic requirement for reliable LLM-driven simulations and stochastic reasoning. Our results
show that a lightweight, theoretically sound wrapper—without model access or hyper-parameter
tuning—substantially narrows the knowledge-sampling gap. More broadly, our work illustrates
how classical statistical tools can be verbalized and paired with LLMs to deliver reliability without
resorting to opaque prompt engineering.

2 Related Work

Sampling and flipping coins with LLMs. Recent work shows that LLMs often exhibit a gap
between knowing and sampling from a distribution. [6] find that LLMs can describe the target
probabilities, yet when asked to “roll a die” or “flip a coin” their outputs exhibit large bias. They
show that incorporating code generation with Python tool use can alleviate the problem. In contrast,
we focus on improving sampling within the natural language space, leveraging LLMs’ inherent
probabilistic reasoning capabilities. While one could bypass the model to obtain true samples from
a target distribution, enabling LLMs to faithfully perform such tasks themselves is both practically
useful and scientifically insightful. [14] explore how LLMs “flip a fair coin” and “flip 20 fair coins”.
They find that current LLMs not only replicate human biases but often amplify them. [7] probe the
online learning setting of Bernoulli distribution from a Bayesian inference angle. They show that
with sufficient in-context examples, LLMs update their estimate of a coin’s bias roughly following
Bayes’ rule. Unlike their focus on online learning and belief updating, we do not assume sequential
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Prompt Template for Verbalized Rejection Sampling

Prompt Template for Direct Sampling

ﬁou are a rejection sampler. Below you are given a description of the target

( \ distribution p(x), a proposal distribution q(x), and an i.i.d. sample from q(x). You
You are a sampler. You will come up with a sample based on need to decide whether or not to accept the sample.

the descriptions below.

** Target Distribution p(x): **

** Descriptions: ** ‘When sampling from the set {0, 1} the probability of 1 is 0.0.
Your task is to generate a sample from the set {0, 1}, where ,r --------------
the probability of 1 is 0.0. '

** Proposal Distribution q(x): ** ~ Jeeeeeeeemmmaaan
' 20 A Bernoulli distribution with probability of having 1 in the set of {0,1}
Please give your output strictly in the following format: bttt

** Sample from q(x): ** yoaonon gz e)

Explanations: [Your step-by-step analyses and results; You | | 2 DaMpPE TOM 24, )
DO NOT have access to a computer or a random number Please give your output strictly in the following format:
generator]

Output: Binary Output Explanations: [Your step-by-step analyses and results; You DO NOT have access to

[Your output MUST befan integer in {0, 1}] a computer or a random number generator]

Please ONLY reply according to this format, don't give me Output: Binary Output

any other words. [Your output MUST befa letter F}1

\ Please ONLY reply according to this format, don't give me any other words. )

Figure 2: Prompt templates for direct sampling and Verbalized Rejection Sampling.

access to data and instead concentrate on the generation of i.i.d. samples from a fixed Bernoulli
distribution. [11] and [8] find similar gaps in settings beyond Bernoulli (e.g., poll simulation,
categorical distribution), showing that LLMs can summarize distributions but fail to sample from
them reliably, echoing the Bernoulli findings on a higher-dimensional setup. Together, these studies
reveal a recurring pattern: LLMs know the right distributions but struggle to sample from them
faithfully. Our work aims to reduce this mismatch by adapting the rejection sampling algorithm to
LLMs, leveraging their internal probabilistic behavior to guide natural language based sampling.

Natural language and text based parameterization. Recent work explores using natural lan-
guage to parameterize models, treating LLMs as inference engines that interpret and evaluate these
descriptions. This makes model specification more accessible and interpretable. [12] introduce LLM
Processes, where LLMs generate predictive distributions conditioned on natural language inputs and
in-context data. Their method operates in an in-context, non-parametric style and requires access to
token logits. In contrast, we treat language as a parametric description of a fixed distribution, without
past data or logit access. [18] propose Verbalized Machine Learning (VML), where prompts act as
natural language parameters for deterministic functions. Our work instead focuses on probabilistic
distributions and faithful sampling. [2] presents a theoretical framework demonstrating that a finite
set of function compositions, analogous to a vocabulary, can approximate any continuous mapping,
drawing parallels between linguistic compositionality and function approximation. These studies
underscore the potential of natural language as a medium for specifying probabilistic models. In our
work, we focus on the Bernoulli distribution as a fundamental case study, demonstrating how LLMs
can be guided to generate faithful samples from a simple yet foundational probabilistic model.

3 Problem Setup

Our investigation focuses on the ability of LLMs to generate faithful i.i.d. samples from distributions
described purely in natural language. Focusing on Bernoulli distributions, defined by a single
numerical parameter p € [0, 1], we treat LLMs as samplers accessed solely through text interaction.

3.1 Parameterizing Distributions in Natural Language

In our setting, the distribution is parameterized by a textual prompt. Formally, we denote this natural
language parameterized distribution as P(z;8), where 6 captures both the underlying numerical
parameter p and the linguistic phrasing of the prompt. Figure 2(left) shows an example, where

P(x;0) = “Your task is to generate a sample from the set {0, 1}, where the probability of 1 is 0.0.”.

For the same p, different phrasings may lead to different sampling behaviors. We test several ways of
phrasing a Bernoulli distribution, and write P(x;p) for a fix phrasing. For each phrasing, we test 101
values of p € {0.0,0.01,0.02, ..., 1.0}. For each p, we query the LLM 100 times independently with
the same prompt, and extract the binary output (i.e., ‘0’ or ‘1°) to form the resulting i.i.d. samples.
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3.2 LLMs as Black-Box Samplers

We treat LLMs as black-box samplers, accessed solely via APIs. The only controllable input is the
prompt; the only observable output is text. For open-source models, we use vLLM [9], but we assume
no access to internals such as weights, activations, or token-level logits. This contrasts with prior
work [7, 8, 12] that uses output token logits to estimate sampling probabilities.

This API-only setup allows consistent evaluation across both open-source and proprietary models,
reflecting realistic usage where internals are inaccessible. It also better supports techniques like
chain-of-thought (CoT; [17]) prompting, which can distort token-level probabilities by conditioning
on generated reasoning: with CoT, logits reflect p(«x | reasoning for z) instead of the intended p(z).
We also fix all decoding hyperparameters (e.g., temperature, top-k) to their default values given in the
API, since most real world users do not adjust them, and often do not have the ability to do so.

4 How Reliable is Direct Sampling?

This section examines the reliability of direct sampling from LLMs. We first compare their ability to
generate samples to their ability to recognize distributions, then explore how prompt phrasing affects
sampling bias, and finally test whether chain-of-thought reasoning improves sample quality.

4.1 Measuring the Knowledge-Sampling Gap

To assess the gap between an LLM’s understanding of a Bernoulli distribution and its ability to sample
from it, we compare its evaluative and generative performance in a controlled setup, using Llama-3.1-
70B-Instruct [5]. We first test the model’s ability to identify the correct Bernoulli distribution from
data. For 11 equally spaced probabilities py, ..., p10, s.t. p; € [0, 1], we generate 100 i.i.d. samples
using Python, forming datasets S;. For each pair (4, j), we prompt the LLM to decide whether .S;
was drawn from Bern(p,), producing an 11 x 11 response matrix. Diagonal entries should be “Yes”,
off-diagonals “No”. We repeat this process five times and report average accuracies in Figure 3(a).
We then test the model’s sampling behavior by prompting it to generate 100 samples for each p;,
using the template in Figure 2(left). The resulting sets .S; are evaluated using the same method as
before. The average accuracies over five runs are reported in in Figure 3(b).

The left panel shows high off-diagonal accuracy for
Python generated data (i.e., confidently rejecting
incorrect hypotheses), with minor errors along the
diagonal due to natural sample variation (e.g., 48
ones out of 100 for p = 0.5 may lead to confusion
with p = 0.48, hence, rejecting the correct hy-
potheses). In contrast, the right panel shows major 00 02 04 06 08 10 00 02 04 06 08 10
degradation for LLM-generated samples. Diagonal Si 5
accuracy drops significantly for all p;, except the
edge cases when p = 0.0 and p = 1.0. Moreover,
we observe an asymmetry in the off-diagonal en-
tries: the lower triangle of the matrix exhibits much worse accuracy than the upper triangle. This
indicates that samples from p; are often misclassified as having come from p; with j > 4, suggest-
ing that the LLM-generated samples are consistently biased toward ones. These results reveal a
clear knowledge—sampling gap: LL.Ms can evaluate distributions well but fail to sample from them
faithfully. Unlike question answering, where each input has a correct target, i.i.d. sampling lacks
per-instance ground truth, making it a fundamentally different and underexplored capability.

O
3
Accuracy

(a) Samples from Python (b) Samples from LLMs
Figure 3: Recognition accuracy matrix.

4.2 How Much Can Prompt Phrasing Reduce Sampling Bias?

The previous section used a single fixed phrasing to describe the Bernoulli distribution (see Figure 2,
left). Yet, natural language allows many equivalent ways to express the same distribution, raising the
question: how much can phrasing affect sampling bias? In the prior setup, the prompt emphasized the
probability of generating a 1, denoted P (; p), as illustrated in Figure 4(b). Notably, this formulation
focuses solely on the probability of generating a 1, which may partly explain the tendency of the
model to produce more 1s than Os in the in the sampled outputs.
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P, (x; p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 1 is p."

Py(x; p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 0 is 1 — p."

05

Py(x; p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 1 is p, and the probability of 0 is 1 — p."

Emp. Frequency

— Po

o
S
L

Py (x: p) = "Your task is to generate a sample from the set {0, 1}, where the probability of 0 is 1 — p, and the probability of 1 is p."

T T T T
0.00 0.25 0.50 0.75 1.00
True Probability (p)

(a) Calibration Plot (b) Four different phrasings for a Bernoulli with p

Figure 4: Calibration plots for direct sampling and the four different phrasings.

To explore this, we test three alternative phrasings that shift or balance the focus across outcomes, as
shown in Figure 4(b). For each, we sample across a range of p values using Llama-3.1 and plot the
empirical frequency of 1s against the ground truth, yielding calibration curves shown in Figure 4(a).
The calibration curves show that the balanced descriptions, i.e., those stating both probabilities, yield
samples that are better calibrated. Nevertheless, all four phrasings result in noticeable bias. This
result resonates with [1], where they found that when prompting humans to imagine a coin flip,
mentioning only ‘heads’ or mentioning only ‘tails’ will lead to a similar sampling bias.

Quantitative comparison using Sum of TV Distance (STVD). To quantify the calibration per-
formance of different phrasings, we compute the area between each calibration curve and the ideal
diagonal reference line. Specifically, for each p;, we calculate the absolute difference between
the empirical sampling frequency p; and the true value p;, and sum these over all 101 values, i.e.,

STVD = Zg% |pi — pi|. Since this absolute difference corresponds to the total variation (TV)
distance between two Bernoulli distributions, we refer to the resulting metric as the Sum of TV

Distances (STVD) where smaller is better. See Appendix A.1 for more details about the TV distance.

Table 1 presents the STVD values for the four phrasings under direct sampling. For Llama 3.1, the
best-performing phrasing Py, achieves an STVD of 11.08, nearly half that of the baseline P;, which
scores 21.80. We also include results for other LLMs, including GPT-4.1-nano, DeepSeekV3 [10], and
Qwen-2.5 72B [20]. Interestingly, the best-performing phrasing varies across models, as highlighted
by the underlined entries. The calibration plots for the other models can be found in Appendix B.1.

These findings suggest that while prompt design can influence sampling bias, relying solely on prompt
engineering to eliminate bias can be difficult and inconsistent across model family, and additional
mechanisms are likely needed for more systematic approaches to correct sampling bias.

Table 1: Quantitative comparison between Direct Sampling and VRS in STVD ().

Method Llama-3.1 70B GPT-4.1-nano DeepSeekV3 Qwen-2.5 72B
Py Py Pio Por ‘mean Py Py Pio Por ‘mean Py Py Pig Por ‘mean Py Py Py Po: ‘mean
Direct

21.80 17.95 12.10 11.08|15.73|17.87 30.23 16.63 19.24|21.00|17.76 19.39 20.78 23.26|20.30{20.73 18.72 19.00 22.64|20.27
591 7.63 5.52 5.56|6.20 [12.96 13.06 9.50 8.46 [11.00| 534 9.06 5.29 6.94 | 6.66 | 593 6.35 4.49 5.12 | 547

VRS

4.3 Does Chain-of-Thought (CoT) Help Sampling?

Since phrasing alone does not eliminate sampling bias, we explore whether modifying the instruction
for the output can help. Prior work [14, 7, 8, 12] often asks LLMs to output the sample immediately,
enabling access to token logits for estimating predictive distributions. However, this approach is
constrained to open-source models and treats LLMs more as likelihood models than samplers. In
our setting, we only use LLMs for sampling and do not require access to logits or early output. This
allows us to apply CoT [17] prompting, where the model first generates reasoning before giving its
final answer. While sampling differs from question answering, CoT may increase output variability
by encouraging diverse reasoning paths, potentially reducing bias.

To test this, we instruct the model to produce reasoning of varying lengths /N (ranging from 0 to
500 words) before answering, along to an ‘Auto’ setting where no length constraint is imposed.
The ‘Auto’ is the default setting for experiments in previous sections, which uses the template in
Figure 2(left). For different NV, we modify the ‘Explanations’ instruction in the prompt template to
include a sentence saying that ‘Your analysis must have around N words’.
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Figure 5: Calibration plots and STVD trend for various reasoning length constraints.

Figure 5 presents the calibration plots (left) and STVD scores o
(right) for Llama-3.1 under different CoT length constraints. 2 © o ]—-'-'.'-'-'-'.'.—v—v—v—v—l
Overall, reasoning length has limited effect on bias, though & 3 25] ...--.-.

<o

longer CoT slightly improves calibration. Direct output without

. B N . Auto 0 20 40 100 200 300
reasoning often performs worse than the ‘Auto’ setting. How- CoT Length
ever, this pattern does not hold across models. As shown in Figure 6: STVD vs CoT Length.
Figure 6, GPT-4.1 and Qwen2.5 show no consistent improve-
ment with longer CoT; in some cases, STVD increases as reasoning length grows. These mixed
results suggest that, unlike in question answering, CoT is not a reliable method for reducing sampling
bias, and its effect is model-dependent. For consistency, we use ‘Auto’ in all remaining experiments.

5 Verbalized Rejection Sampling

In the previous section, we explored ways to reduce sampling bias through prompt phrasing and
instruction design. While these strategies do influence the behavior of LLMs, the results suggest
that prompt-only interventions are insufficient for reliably eliminating bias. If direct sampling
cannot be fully corrected through language alone, we may instead embrace the bias and mitigate
it using algorithmic techniques. In probabilistic methods, several algorithms exist to transform
biased proposals into unbiased samples. One such method is rejection sampling, which generates
candidate samples from a proposal distribution and selectively accepts them to match a desired target
distribution. In the remainder of this section, we adapt rejection sampling to operate entirely within
the language interface of LLMs, and we refer to this method as verbalized rejection sampling (VRS).

5.1 Rejection Sampling

Rejection sampling is a sampling technique to generate samples from a target distribution P while
only having access to samples from a (typically simpler) proposal distribution (). We assume that
both P and @) can be evaluated (but only @) can be directly sampled from). The general idea is that we
can generate a sample from P by instead sampling from () and accepting the sample with probability
P(z)/(MQ(z)) where M < oo is a bound on the ratio P(z)/Q(x). We assume that both P and Q)
are Bernoulli distributions with parameters p and q. In this case, we can compute M analytically as:
M =max{p/q,(1 —p)/(1 — q)}. Let A(z) denote the acceptance probability of x ~ @ which is

Plo) _ 2 ifz=1
e {A%?) s T W
MQ(@) ~ M(1-q) -

The accept/reject step effectively draws a sample from Bern(A(z)). The overall acceptance rate is
=3 cr01) Q@)A(x) =1/M. See Appendix A.2 for more details about rejection sampling.

5.2 Adapting Rejection Sampling to LLMs

Figure 1(c) illustrates the overall idea behind VRS. Classical rejection sampling requires three inputs:
the target distribution P, the proposal distribution (), and a sample x ~ ). The algorithm evaluates
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Figure 8: Empirical acceptance rates for VRS.

whether to accept or reject x based on these inputs, returning a binary decision. To implement this in
the LLM setting, we design a prompt template (Figure 2, right) that verbalizes all three components,
i.e., descriptions of P, (), and the proposed sample z, as natural language. These are inserted into
fixed slots in the template. The model is instructed to reason through its decision and then output
a single letter from {T, F}, indicating whether to accept (T) or reject (F) the sample. We send the
completed prompt to the LLM and parse its response. If the response indicates acceptance, we
retain the sample; otherwise, we generate a new proposed sample and repeat the process. This loop
continues until we collect the required number of accepted samples.

5.3 Experiments

We evaluate VRS on four different LLMs: Llama-3.1, GPT-4.1-
nano, DeepSeekV3, and Qwen-2.5. For each model, we run
VRS until it accepts 100 samples for each of the 101 values

o
1

Emp. Frequency
o
1

of p € [0.0,1.0], following the same setup as in the direct g Tdeal
sampling experiments. As the proposal distribution @), we fix 00 4 T T T :
0.00 0.25 0.50 0.75 1.00

it to a uniform Bernoulli with ¢ = 0.5 across all values of
p. The resulting calibration plot for Llama-3.1 is shown in
Figure 7, and the corresponding STVD scores across all models
are included in Table 1. The calibration plots for other three LLMs can be found in Appendix B.2.

True Probability (p)
Figure 7: Calibration plot for VRS

Comparing the calibration plot for VRS (Figure 7) with that of direct sampling (Figure 4a), we observe
a significant reduction in sampling bias. Across all four prompt phrasings, the calibration curves
under VRS closely align with the ideal diagonal reference, indicating much improved fidelity to the
target Bernoulli distributions. Figure 8 shows the corresponding empirical acceptance probabilities,
which seem to align well with the analytical targets. The improvement is also reflected quantitatively
in Table 1: the STVD scores for VRS are substantially lower than those for direct sampling, with
most cases showing a reduction of over 50%. In some instances, STVD drops to nearly 25% of
the original value. Crucially, this improvement holds across all four LLMs tested (i.e., Llama-3.1,
GPT-4.1-nano, DeepSeek V3, and Qwen-2.5), demonstrating that VRS consistently mitigates bias and
does so independently of the underlying model.

6 Why Does Verbalized Rejection Sampling Work?

The effectiveness of VRS in reducing sampling bias is surprising at first glance since, internally, VRS
still relies on the LLM to perform a Bernoulli trial, i.e., deciding whether to accept or reject a sample,
which is precisely the type of stochastic behavior we have shown LLMs to struggle with.

If LLMs are biased in direct sampling, why does wrapping the decision in rejection sampling help?

Is the improved calibration a result of the specific prompt design used in VRS? Or does the rejection
sampling algorithm itself introduce structural guarantees that correct bias, even when implemented via
a biased LLM? The remainder of this section explores these possibilities empirically and theoretically.

6.1 Is It the Magic in the Prompt?

To investigate whether VRS’s improvement stems purely from prompt design, we remove external
randomness by fixing the proposed sample to a constant, i.e., x = 1. In this case, a faithful LLM
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Figure 9: Calibration plots for two ablations and an example LLMs output for VRS-simple.

should accept with probability A(1), as defined in Equation (1). We compare this with the empirical
acceptance probability A(1), estimated from the LLM’s responses. Figure 8(c) shows A(1) for
various p, using a fixed proposal @@ = Bern(0.5). For the trivial case p > 0.5, the alignment is strong.
For p < 0.5, the results appear reasonable overall but show a consistent bias, particularly in the range
p € [0.2,0.5]. To compare more directly with direct sampling, we evaluate A(1) over 101 equally
spaced values of A(1), using the inverse of Equation (1) to recover the corresponding p. For each, we
generate a VRS prompt with the computed p, a fixed @ = Bern(0.5), and a fixed sample x = 1. We
refer to this setup with fixed proposal and no introduced randomness as VRS-simple. If prompt design
alone explains the improvement, VRS-simple should outperform direct sampling in calibration.

Figure 9(a) shows the calibration plot .for VRS—simple using Table 2: Ablation STVD (J)
Llama-3.1. Compared to direct sampling (Figure 4a), the re-
sults are slightly more calibrated. Table 2 confirms this, with ~_Method | 71 Po Pio Por mean
; i Di 21.80 17.95 12.10 11.08 15.73
the mean STVD dropping from .15.73 to.l 1.85. Thlg suggests  Dwect e o o s
the VRS prompt helps reduce bias for direct sampling. How- -
ever, VRS-simple relies on explicitly computing the inverse Xﬁgzﬁg}ZM B A o
of Equation (1) to tailor the prompt to each target p, and the =~ VRS-M 4.97 1174 591 7.03 741
improvement remains modest compared to full VRS.

Magic or Mirage? To further understand why the VRS prompt improves sampling, we examine
whether its structure encourages the model to reason differently. One hypothesis is that phrasing the
sampling task in the context of rejection sampling prompts the LLM to internally compute acceptance
probabilities, potentially disrupting its default biases learned during pretraining. To test this, we
manually analyzed the model’s reasoning outputs from VRS-simple (see Figure 9(c)). We found
that, while the model often tries to derive the acceptance probability, it frequently does so incorrectly.
In the non-trivial cases where A(z) # 1, the model tends to compute only the ratio P(z)/Q(x),
omitting the constant M in the denominator.

Could this incorrect derivation be the reason behind the improvement? To test that, we designed
variants of VRS-simple and VRS where we explicitly instruct the model to compute and use M
correctly. We refer to these as VRS-simple-M and VRS-M, respectively. The calibration plot for
VRS-simple-M is shown in Figure 9(b), with corresponding STVD scores in Table 2. Through
output inspection, we verified that the LLM now correctly computes the constant M/ in its reasoning.
However, this correction leads to worse performance: the mean STVD increases to 18.37, higher
than in direct sampling. For the full VRS setup, adding the M -instruction also results in a slight
degradation, with STVD rising from 6.20 to 7.41, though still outperforming direct sampling.

These results suggest that the improvement from the VRS prompt is not due to accurate computation
of the acceptance probability. Instead, the prompt seems to help in an unexpected way, but it
alone cannot explain the full benefit. The remaining gains likely come from the rejection sampling
mechanism itself, rather than prompt phrasing alone.

6.2 Is the Improvement from the Algorithm?

Prompt design alone cannot fully explain the gains from VRS. To analyze the role of the algorithm
itself, we model the LLM as a biased Bernoulli sampler. In VRS, this means the acceptance decision
is not sampled from the true probability A(z), but from a perturbed version A(x) = A(z) + e(x),
where e(x) represents the model’s bias. Based on this, we can derive the following proposition.
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Proposition 1 (Informal, see Proposition 1 in Appendix~A.3.). Let P(x;p), Q(x; q) be Bernoulli

distributions (target and proposal, respectively). Let P denote the resulting distribution after
rejection sampling, and assume a bound on the model’s bias |e(x)| < ¢ € R. Then, with M defined
in Section 5.1,

~ Mc

TV(P,P) < .
(P, )_1—Mc

@

From empirical observations, particularly in Figure 8(b;c), we note that the LLM appears well
calibrated when A(x) = 1. Therefore, we can further derive the following result.
Proposition 2 (Informal, see Proposition 2 in Appendix A.4.). Following Proposition 1, with the
additional assumption that e(x) = 0 if A(z) = 1, i.e., we have A(z) = A(z) + e(z) if A(x) < 1,
and A(x) = A(x) if A(z) = 1. Then, with & being chosen such that A(&) < 1,
Q(&)Mc

TR Y7 (3)
(1—Q(&)Mc)

This gives a bound for the TV distance between the resulting distribution from VRS (13) and the
ideal target (P). Now, we want to see when VRS is better than direct sampling. We can denote the
resulting distribution from direct sampling as P, and assume it has the same sampling bias e(x).

Then, VRS is better than direct sampling if TV (P, P) < TV (P, P). We can derive the following.
Corollary 1 (Informal, see Corollary 1 in Appendix A.5.). Following Proposition 2, and assuming
that P has the same bias as A(z), i.e., P(x) = P(x) + e(x). Then,

1

TV(P,P) < TV(P,P) < Q(&) < MiTd

“

Intuitively, the corollary says that if the proposal @) puts little enough
mass, i.e., less than 1/(M (1 + ¢)), on the state that sometimes gets
rejected (2), the error introduced inside the rejection step hurts less
than applying the same error directly to every draw from P. In
our experiments we fix the proposal to ¢ = 0.5. This allow us,
for each target p, to compute the corresponding M and derive the
maximum allowable bias c under which VRS still outperforms direct
sampling. In Figure 10, we visualize this by shading the box defined
by clip(p £ ¢, 0.0, 1.0) on the top of the calibration plot Figure 4(a).
The result shows that in most cases, the empirical frequencies from
direct sampling fall well within this box, satisfying the theoretical condition. This provides strong
evidence that the primary source of VRS’s improvement comes from the rejection sampling algorithm
itself, not just prompt effects.

Emp. Frequency
o

o
>

T T T T T
0.00 0.25 050 0.75 1.00
True Probability (p)

Figure 10: Calibration plots
with error bounds +c overlaid.

7 Conclusion and Limitation

We examined the ability of LLMs to sample from natural-language-described distributions, using
Bernoulli as a test case. While LLMs can evaluate whether data matches a distribution, they struggle to
generate unbiased samples, revealing a clear knowledge—sampling gap. This highlights that sampling
is a fundamentally distinct ability from question answering: evaluation tasks have clear supervision,
while i.i.d. sampling lacks per-instance ground truth and is only verifiable at the distribution level. We
tested whether prompt phrasing or chain-of-thought reasoning could reduce bias. While both influence
behavior, neither reliably closes the gap. To address this, we proposed Verbalized Rejection Sampling
(VRS), a lightweight adaptation of classical rejection sampling expressed entirely in natural language.
VRS improves calibration across models without accessing logits or tuning decoding parameters, and
our analysis shows that the algorithm, not just prompt design, is key to its success. Beyond correcting
this specific failure mode, our work points to a broader path: integrating principled randomness into
LLM-based systems. Faithful Bernoulli sampling is a basic requirement for LLM-driven simulations
and probabilistic reasoning. VRS illustrates how probabilistic tools can be verbalized and paired with
LLMs to improve reliability—without resorting to opaque prompt engineering. This study is limited
to the Bernoulli case; our theoretical results do not directly generalize to more complex distributions.
Extending this framework to broader families remains an important direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are listed in the abstract and introduction. The introduction includes
a list of contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section 7.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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461 Justification: We provide an informal version of the theoretical statements in the main text

462 which we rigorously prove in Appendix A (Appendix A.3, Appendix A.4, Appendix A.5).
463 Guidelines:

464 * The answer NA means that the paper does not include theoretical results.

465  All the theorems, formulas, and proofs in the paper should be numbered and cross-
466 referenced.

467 * All assumptions should be clearly stated or referenced in the statement of any theorems.
468 * The proofs can either appear in the main paper or the supplemental material, but if
469 they appear in the supplemental material, the authors are encouraged to provide a short
470 proof sketch to provide intuition.

471 * Inversely, any informal proof provided in the core of the paper should be complemented
472 by formal proofs provided in appendix or supplemental material.

473 * Theorems and Lemmas that the proof relies upon should be properly referenced.

474 4. Experimental result reproducibility

475 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
476 perimental results of the paper to the extent that it affects the main claims and/or conclusions
477 of the paper (regardless of whether the code and data are provided or not)?

478 Answer: [Yes]

479 Justification: We provide all information necessary to reproduce the experiments in Sec-
480 tion 3.2.

481 Guidelines:

482 * The answer NA means that the paper does not include experiments.

483 * If the paper includes experiments, a No answer to this question will not be perceived
484 well by the reviewers: Making the paper reproducible is important, regardless of
485 whether the code and data are provided or not.

486 * If the contribution is a dataset and/or model, the authors should describe the steps taken
487 to make their results reproducible or verifiable.

488 * Depending on the contribution, reproducibility can be accomplished in various ways.
489 For example, if the contribution is a novel architecture, describing the architecture fully
490 might suffice, or if the contribution is a specific model and empirical evaluation, it may
491 be necessary to either make it possible for others to replicate the model with the same
492 dataset, or provide access to the model. In general. releasing code and data is often
493 one good way to accomplish this, but reproducibility can also be provided via detailed
494 instructions for how to replicate the results, access to a hosted model (e.g., in the case
495 of a large language model), releasing of a model checkpoint, or other means that are
496 appropriate to the research performed.

497 * While NeurIPS does not require releasing code, the conference does require all submis-
498 sions to provide some reasonable avenue for reproducibility, which may depend on the
499 nature of the contribution. For example

500 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
501 to reproduce that algorithm.

502 (b) If the contribution is primarily a new model architecture, the paper should describe
503 the architecture clearly and fully.

504 (c) If the contribution is a new model (e.g., a large language model), then there should
505 either be a way to access this model for reproducing the results or a way to reproduce
506 the model (e.g., with an open-source dataset or instructions for how to construct
507 the dataset).

508 (d) We recognize that reproducibility may be tricky in some cases, in which case
509 authors are welcome to describe the particular way they provide for reproducibility.
510 In the case of closed-source models, it may be that access to the model is limited in
511 some way (e.g., to registered users), but it should be possible for other researchers
512 to have some path to reproducing or verifying the results.

513 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include sufficient instructions in the main text to reproduce the experiment
results. We will also release the code after.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all details needed to understand the results in Section 3.2 and at the
corresponding places in the experiments in Section 4 and in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While error bars are not meaningful in our setup (due to the fact that we are
sampling Bernoulli variables), we draw 100 samples for every Bernoulli parameter p that
we investigate and ensure statistical significance in this way.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We host the open-source model ourselves on 4 Nvidia H100 GPUs. Generating
100 samples takes on average 25 seconds (see Appendix C).

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conform, in every aspect, with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The scope of the research is very narrowly focusing on sampling from Bernoulli
distributions utilizing LLMs, but we do mention the broader implication in the introduction,
since faithful sampling in LLMs is fundamental for safety and fairness.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no data or models released with this research.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the open-source models, we use Llama-3.1 under the LLAMA 3.1
COMMUNITY LICENSE AGREEMENT, DeepSeekV3 under the DEEPSEEK LICENSE
AGREEMENT, and Qwen-2.5 under the Qwen LICENSE AGREEMENT. We buy the
service from OpenAl to use GPT-4.1-nano. We included this info in Appendix C.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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720 * Depending on the country in which research is conducted, IRB approval (or equivalent)

721 may be required for any human subjects research. If you obtained IRB approval, you
722 should clearly state this in the paper.

723 * We recognize that the procedures for this may vary significantly between institutions
724 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
725 guidelines for their institution.

726 * For initial submissions, do not include any information that would break anonymity (if
727 applicable), such as the institution conducting the review.

728 16. Declaration of LLLM usage

729 Question: Does the paper describe the usage of LLMs if it is an important, original, or
730 non-standard component of the core methods in this research? Note that if the LLM is used
731 only for writing, editing, or formatting purposes and does not impact the core methodology,
732 scientific rigorousness, or originality of the research, declaration is not required.

733 Answer: [NA]

734 Justification: We only use LLMs for editing the paper. However, this paper is concerned
735 with analyzing and explaining sampling from Bernoulli distributions with LLMs. The setup
736 on how LLMs are used is described clearly in Section 3.

737 Guidelines:

738 * The answer NA means that the core method development in this research does not
739 involve LLMs as any important, original, or non-standard components.

740 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
741 for what should or should not be described.
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