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ABSTRACT

The accurate identification of subcellular structures is crucial for understanding
cellular functions. However, due to the varied morphology of different cells,
conventional segmentation methods typically depend on a substantial collection
of accurately labeled images of cell structures. The creation of such precise
labels is often time-consuming and labor-intensive. To address this issue, we
introduce an efficient, self-supervised method for segmenting subcellular struc-
tures, named HiS4MAE (High-efficiency Segmentation of Subcellular Structure
via Self-distillated Masked Autoencoder). Leveraging an enhanced masked au-
toencoder (MAE), we train the encoder using the masked image modeling (MIM)
framework, followed by clustering the encoded high-dimensional features to
achieve pixel-level segmentation of structures. We employ a self-distillation tech-
nique to accelerate the model’s training process and propose an inference method
that is less time-consuming. We also introduce a discrete codebook to assist the
self-distillation process, enhancing the model’s stability during training. When
applied to a publicly available volumetric electron microscopy (VEM) dataset of
primary mouse pancreatic islet 8 cells, HIS4MAE not only surpasses the state-of-
the-art technique but also significantly reduces the time required for both training
and inference.

1 INTRODUCTION

Biologists use microscopes to understand cells. In this process, segmenting the various compo-
nents within cells (such as nuclei, mitochondria, and Golgi apparatus) from microscopy images is
crucial. This technique is known as subcellular structure segmentation. Precisely segmenting sub-
cellular structures at the pixel level helps researchers understand cellular functions and simulate
complex biological processes within cells. With the continuous advancement of microscopy imag-
ing technology, acquiring images is no longer a bottleneck. Techniques such as volumetric electron
microscopy and confocal laser scanning microscopy (Peddie et al., 2022; Amos & White, [2003)) can
now capture hundreds of gigabytes to terabytes of data at speeds ranging from several frames to
hundreds of frames per second. This allows researchers to easily observe the fine structures within
cells, but how to efficiently utilize these massive amounts of images is a problem worth considering.

Some supervised image segmentation methods, such as those based on the convolutional neural
network or the transformer (Dosovitskiy et al.,|2021)), have achieved remarkable results. However,
these methods often require a large number of precisely annotated images for training to achieve
satisfactory performance. Annotating different types of images requires domain experts to invest
significant time and effort. In reality, it is impractical for a few experts to manually annotate hun-
dreds of gigabytes to terabytes of images, which greatly limits the utilization of these images by
researchers.

Consequently, self-supervised or unsupervised methods have gained the attention of researchers.
Notably, the same organelles tend to exhibit similar textural features in images. Research (Hsu
et al} |2021) has shown that by using representation learning to distinguish these textures, different
organelle regions can be segmented. Han et al. used a variational autoencoder (VAE) (Kingma &
Welling, 2013) to encode image patches, mapping textured image patches to a high-dimensional
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space for clustering, achieving relatively good results and providing a new approach for self-
supervised segmentation (Han et al.| [2022)).

This method of encoding image patches is reminiscent of MAE, a masked image modeling (MIM)
method that trains the model to recover masked image patches, thereby learning deep features of
the images. Xie et al. proposed a self-supervised segmentation method (Xie et al., 2023)) based on
MAE, using a technique called cover-stride to expand encoded features into the latent space and
then performing clustering in the feature space to achieve pixel-level segmentation. This method is
effective but still has some issues. The performance of K-means clustering depends on the selection
of initial cluster points, and different cluster points can result in significantly different clustering
outcomes. Additionally, while cover-stride is an effective method, its inference requires multiple
model invocations, resulting in considerable time consumption. Chen et al. indicate that a self-
distillation architecture can significantly increase the training efficiency of MIM methods. They
propose an architecture named the self-distillated masked autoencoder (SAAE) (Chen et al., [2022).
This architecture surpasses the performance of MAE after 1600 training epochs with only 300 train-
ing epochs. However, this method’s pretext task differs from MAE, leading to unstable performance
during training and some degree of degradation.

In this work, we propose a novel approach to address these issues. We hypothesize that MAE
outperforms VAE because the MIM framework allows the model to learn more high-level features.
However, simple decoding methods like cover-stride can make it difficult to cluster overly abstract
features, leading to segmentation failure. The key is to balance these factors. We incorporated
the self-distillation architecture from SAAE but retained the MAE pretext task of reconstructing
pixels. Additionally, we used a discrete codebook to assist the model’s self-distillation, preventing
degradation during training. Our subsequent experiments demonstrated the effectiveness of this
approach. To eliminate the impact of different initial cluster points on segmentation results, we
selected fixed cluster centers. Furthermore, we developed a method called expand-stride to reduce
the time cost of inference. Experiments have shown that our method is highly effective. In summary,
our contributions include:

* We introduce self-distillation to enhance the performance of the encoder, improving seg-
mentation effects while reducing training costs. Our method only requires training for 700
epochs to surpass the effects achieved by the original method after 2800 epochs. At the
same time, it increases the overall segmentation effect by more than 13%.

* To our knowledge, we are the first to use the discrete codebook to assist in model self-
distillation. This method effectively prevents model degradation during the training process
and further enhances the model’s efficiency in utilizing the dataset.

* We propose an inference method named expand-stride, which significantly reduces the time
complexity during inference compared to the cover-stride method in the state-of-the-art
approach.

2 RELATED WORK

2.1 APPLICATION OF DEEP LEARNING TO MICROSCOPIC IMAGE

With the advancement of deep learning, its impact on the field of microscopic imaging has become
increasingly significant. Numerous pivotal models proposed in the realm of deep learning have been
extensively applied in the domain of biological imaging. Since its inception, U-net (Ronneberger
et al 2015) has emerged as a vital paradigm in the field of biological imaging. Works such as
RepMode (Zhou et al.| 2023) and Sparse SSP (Zheng et al., [2024)) have built upon U-net to achieve
precise predictions of subcellular structures in microscopic images, yet similar approaches generally
necessitate authentic and accurate labels for training. For unsupervised or self-supervised methods,
VQ-VAE (Van Den Oord et al.,|2017), VAE (Kingma & Welling, |2013)), and ViT (Dosovitskiy et al.,
2021)) have also played crucial roles. A viable paradigm involves training a model with some pre-
text task, and subsequently using only the encoder to process images, followed by clustering of
the encoded features to yield results for downstream tasks. Han et al. leverage VAE and metric
learning to fit the distribution of image patches in latent space, ultimately obtaining segmentation
outcomes through K-means. Similar methodologies are not confined to segmentation tasks; for in-
stance, cytoself (Kobayashi et al.,[2022)), based on VQ-VAE, also accomplishes protein localization
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analysis and clustering at the subcellular level through the pretext task of image reconstruction. This
demonstrates the formidable feature extraction capabilities of neural networks and substantiates the
immense potential of self-supervised approaches in the field of microscopic imaging.

2.2  SELF-SUPERVISED LEARNING AND MASKED IMAGE MODELING

Han et al. contend that this paradigm is more effective when the global context of the image is
not critical for downstream tasks. In contrast, the researchers behind MAESTER (Xie et al., 2023)
propose an alternative approach. Rather than employing convolutional neural networks as encoders,
they transitioned to a masked autoencoder (MAE) based on transformer architecture, resulting in
superior performance. Transformers are widely regarded as more adept at capturing long-range
global dependencies compared to CNNs. Consequently, they posit that this ability to capture global
dependencies facilitates the segmentation of subcellular structures.

Numerous studies, such as CAE (Chen et al., 2024) and SAAE (Chen et al., |2022)), focus on opti-
mizing the encoder of MAE. CAE introduces a regressor with cross-attention to further decouple
the encoder and decoder, enhancing the performance of both. However, this also results in more
abstract features post-encoding, which are not conducive to subsequent segmentation tasks. SAAE,
building upon the foundation of MAE, incorporates an encoder without gradients as a teacher branch
and modifies the pretext task of MAE, transforming the decoding target into a vector with the same
dimensionality as the latent space. Experimental results indicate that this approach indeed improves
the training efficiency of the encoder, but in terms of the downstream task of segmentation, the
model’s performance post-clustering after changing the pretext task is not satisfactory.

2.3 DISCRETE CODEBOOK

The mechanism of the codebook has been employed since the advent of VQ-VAE, encoding im-
ages into a discrete matrix to reduce the time complexity of generating images. Such a codebook
effectively serves as a cluster center during the training process. The subsequent BEiT (Bao et al.,
2021)) also introduced this mechanism, utilizing dVAE to generate discrete encodings. Recent re-
searchers (Du et al.,|2024) theoretically substantiate the enhancement of the MIM framework by the
codebook mechanism. Choosing a codebook that is more aligned with data classes can improve the
model’s performance.

3 METHOD

3.1 SUBCELLULAR STRUCTURE SEGMENTATION AND MASKED IMAGE MODELING

Subcellular structure segmentation within microscopic images is a specialized task that necessitates
the delineation of various cellular organelles. To formalize this, let X denote a collection of 3-
dimensional microscopic cell images, each with dimensions D x H x W. Correspondingly, ¥
represents a set of fully segmented subcellular structure images, also dimensioned D x H x W,
where each pixel in Y is labeled from O to 7" — 1, with T representing the total number of distinct
cell types to be segmented. The objective is to develop a mapping function f, implemented via a
neural network, that accurately transforms X into Y, ie., f: X — Y.

Drawing inspiration from the work of MAESTER (Xie et al.l 2023), we adopt the masked image
modeling (MIM) framework to address this challenge. Given that the dimensions of the images in
X and Y are substantial, on the order of 10% in each spatial dimension, it is impractical to process
the entire image in one pass through the network. Consequently, we initiate the process by randomly
sampling a 2D slice X; from X. Following the terminology introduced by MAESTER, we refer to
the shape of X as the field of view (FOV), with our FOV matching that of Xie et al., specifically
80 x 80 pixels.

In the context of MIM approaches, the process involves segmenting the 2D image X; into n patches
of uniform size, where n is the count of perfect squares. Subsequently, a set of binary masks m, with

m; € {0,1} fori = 0,1,2,...,n— 1, is used to partition X; into two disjoint subsets, X; (m; = 0)

and X; (m; = 1). The core objective of the MIM approach is then to minimize a specific loss



Under review as a conference paper at ICLR 2025

') l__.;:di?“:- e ‘i‘"'

.,.%'

eacher no gradient

" f" ® quantized
J

yw3a
.
Q.

quantized

:(b)Infer‘ence "

aEnEreEs
i._ hﬂﬁ expond B MW NS
. ._sfpidg,_» Wcluster

3, student !
-!Etg i

-------------------------------------------------------------------------------------------------------------------------

Figure 1: (a) The overall structure of the HiS4MAE. Its pretext task is to reconstruct the masked
image patches. (b) The process of cell segmentation. It only uses the encoder of the student
branch to infer the complete image, and after clustering the inferred high-dimensional features,
segmentation is completed. (c) The mechanism of the codebook. For each high-dimensional
vector, select the one closest in the codebook’s vectors to replace it.

function, which we denote as:
1 / -
L = - L(h(X,),t(X, 1
oss = 3 LH(X)), (X)) M

Here, h(z) is a function that reconstructs the original image from the unmasked X, while ¢(z)
serves as a transformation function, which in some architectures, represents the tokenizers. But in
MAE 2022), t(z) is an identity function, in other words, ¢(x) = z. The exact forms
of h(x) and t(x) are subject to variation depending on the specific neural network architecture
employed.

In our approach, aligning with the methodology of MAE, the loss function L is defined as the mean
square loss (MSE). This choice is made to ensure robustness and accuracy in the segmentation of
subcellular structures across diverse cell types.

3.2 MODEL ARCHITECTURE

Since the inception of convolutional neural networks (CNN), they have achieved remarkable suc-
cess across various domains of deep learning, establishing themselves as a dominant approach in
computer vision. However, with the advent of Transformer in the field, there is a growing consen-
sus among researchers that the attention mechanism employed by transformers excels at capturing
global image information compared to CNN. Our methodology leverages MAE and integrates atten-
tion blocks within an encoder-decoder framework. Empirical evidence from numerous experiments
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suggests that asymmetric encoder-decoder configurations enhance the model’s focus on the encod-
ing process. Building upon the ViT-B foundation, MAESTER has further optimized the parameter
count. Our baseline model architecture settings are derived from MAESTER.

Motivated by the SAAE (Chen et al.}[2022), we have incorporated a self-distillation structure into our
model, which is anticipated to significantly curtail the training duration. The architecture comprises
two encoders: a teacher branch and a student branch, both sharing an identical model architecture.
During training, the teacher network refrains from updating gradients, opting instead for an exponen-
tial moving average (EMA) approach to parameter updates. It is noteworthy that SAAE’s primary
objective is not the reconstruction of masked image patches but rather the alignment of features
within the latent space. This contradicts our initial hypothesis that the reconstruction of the image
itself aids in the task of subcellular structure segmentation. Our experiments have also demonstrated
that it is challenging to achieve subcellular structure segmentation of microscopic cell images by
training encoders solely through the alignment of features in the latent space. Consequently, our
model retains the the same pretext task as utilized in MAE. Let the reconstructed image be X;, we
show the loss function of the reconstruction as follow:

Lrccon = MSE(X;, X;) 2)

Our initial idea was to augment the model of SAAE with an additional decoder for image reconstruc-
tion. In practical experimentation, we observed a non-linear correlation between model reconstruc-
tion efficacy and segmentation performance. In essence, the model’s proficiency in reconstructing
the original image does not necessarily translate to effective clustering of high-dimensional features.
As training progresses, while the reconstruction loss remains relatively stable, the segmentation per-
formance of the encoder tends to deteriorate. We will elaborate on this point in the subsequent
experimental section. To address this issue, we have introduced a discrete codebook to facilitate
model self-distillation. The final architecture of our model is depicted in Figure [I| The codebook
is an embedding layer of shape k x embed_dim. We define the feature encoded by the encoder as
Z and the vector set within the codebook as Z,,. Our strategy aims to minimize the discrepancy be-
tween Z, and the teacher branch’s encoding Z;.,, subsequently leveraging Z, to bolster the student
branch’s training. To this end, we employ MSE to constrain Z; to Z;., and cosine similarity to align
Zq with Zy,,, expressed as:

Lieo = MSE(Z,Z,) 3)

Ly =1 — cosine_similarity(Zy, Zsty) )

In summary, our final loss function is formulated as:
Loss = Lrecon + aLtea + 5Lstu (5)

Mechanisms analogous to the codebook have been previously proposed in the literature (Hirsch
et al., 2023} [Van Den Oord et al.l 2017). In this context, we draw inspiration from the approach
taken in VQ-VAE (Van Den Oord et al., 2017), setting 5 = 0.25«. The values of these parameters
are shown in Table[]]

However, this approach may encounter a challenge akin to that faced by the deep cluster (Caron
et all 2018)): trivial solutions may emerge. Specifically, the majority of Z,., are clustered near
a small number of Z,, leading to a reduction in the accuracy of image segmentation results. To
counteract this, we automatically update the isolated part of Z, after each training epoch using the
following adjustment:

Z;solated =X Z;urrounded + (1 _ ,Y) X Z;solated’ v c (O’ 1) (6)

where «y is a hyperparameter that controls the update rate of Z,.

3.3 MODEL INFERENCE

After the model training is completed, we only utilize the student branch of the model’s encoders for
inference. During the inference process, we no longer perform mask operations on the images; in-
stead, we feed all the slices X; into the encoder, encoding X; into a matrix Z; of size n x embed_dim.
As we know, the semantics of pixels within the same patch are roughly similar. Consequently, we
employ a linear function to replace the nonlinear function to fit the value of each pixel within the
patch, thereby obtaining features Z; that match the size of FOV. Subsequently, we infer the entire



Under review as a conference paper at ICLR 2025

image set X with a fixed stride S. The time complexity of our inference approach is equivalent
to only é of that of MAESTER. Finally, we achieve pixel-level subcellular structure segmentation
through clustering. We employ K-means (Lloyd|,|1982) for clustering, with cluster centers calculated
from a subset sampled from X, the size of the subset being one-thousandth of X.

4 EXPERIMENT

4.1 DATASET

Our dataset originates from an open-source data platform named OpenOrganelle (Heinrich et al.,
2021). This data portal showcases numerous high-resolution cellular images captured by focused
ion beam scanning electron microscopy (FIB-SEM). We select a dataset referred to as *BetaSeg’ in
OpenOrganelle (Miiller et al., [2021; [Heinrich et al., 2021)) for the training and testing of our model.
This dataset comprises multiple high-resolution microscopic images of primary mouse pancreatic
islet 3 cells, with various subcellular structures annotated within the cells. These annotations are
generated collaboratively by human labor and neural networks. A variety of subcellular structures
are labeled, including centrioles, nucleus, plasma membrane, microtubules, Golgi apparatus, gran-
ules, and mitochondria. The dataset is divided into two groups based on whether the cells are treated
with a high dose of glucose. For ease of comparison with previous work, we utilize only the group
that involved high-dose glucose treatment. This subset includes four high-resolution single-cell 3D
images, namely high_c1, high_c2, high_c3, and high_c4. Each 3D microscopic image has a Z-axis
depth of 1000. We employ high_c1, high_c2, and high_c3 for model training, while high_c4 is used
to evaluate the segmentation outcomes of the model.

4.2 TRAINING SETTINGS

First, we conduct random sampling within 3D images according to the size of the FOV, with each
sample taken along a randomly selected axis from the X, Y, and Z axes. To make full use of the
abundant microscopic cell images, we re-sample randomly in each training epoch. Given a large
number of microscopic cell images, we can approximately consider each set of sampled images to
be unique. This sampling method also helps to prevent the model from overfitting. Subsequently,
we employ random flipping and random cropping for data augmentation to obtain our final training
dataset. We select AdamW as the optimizer for our model and adjust the learning rate using a cosine
decay schedule with a warm-up phase. Our model implementation is based on the vision transformer
from the timm library and is trained on Nvidia RTX4090 graphics cards, with a maximum of 2800
training epochs. The detailed training settings are shown in Table 2]

4.3 MODEL SETTINGS

We test the HiIS4MAE on high_c4, utilizing only the student branch of the encoder to encode high_c4
for clustering to achieve pixel-level subcellular structure segmentation. We compare HiS4MAE with
several transformer-based self-supervised and supervised methods to validate its effectiveness and
advancement. We compare it with MAESTER (Xie et al., 2023), SAAE-recon (SdAE (Chen et al.,
2022) with an additional decoder), Vanilla ViT (Dosovitskiy et al.| 2021), and Segmenter (Strudel
et al., 2021). For both MAESTER and SdAE-recon, we also achieve segmentation by clustering
the encoded high-dimensional vectors. We have also attempted segmentation using the original
architecture of SAAE, but due to the difference in pretext tasks, its performance in segmentation

Table 1: Model parameter details Table 2: Training settings
parameter value config value
o 1073 Ir 5x 107*
B 2.5 x 107* min Ir 8x 1077
vy 0.8 epoch 2800
k 512 batch size 256
embed_dim 192 sample number | 2 x 10*
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under the same method is very poor, hence we use SAAE-recon instead. It is worth mentioning that
since BetaSeg fully annotates the subcellular structures of only one cell per image, for the supervised
Vanilla ViT and Segmenter, we randomly sample the training set from the fully annotated regions of
the images to ensure a fair comparison of the supervised methods.

4.4 EVALUATION

To facilitate comparison with previous work, we actually select only three types of organelles
for evaluating segmentation effectiveness, categorizing the cell images into four types: nucleus,
mitochondria, granules, and unrecognized. We assess the segmentation performance of all self-
supervised and supervised methods based on the Dice Similarity Coefficient (DSC). For the seg-
mentation results of self-supervised algorithms, we re-match the optimal predicted labels using the
Hungarian algorithm (Kuhnj |1955).

Table 3: DSC comparison of different models. Two fully ground truth-trained supervised methods
are distinguished by a dark background. The optimal results are presented in bold font, while the
best results excluding the two fully supervised methods are highlighted in red font.

model epochs nucleus granules mitochondria unrecognized

SdAE-recon 700 0.932 0.766 0.880 0.900
SdAE-recon 2800 0.849 0.609 0.719 0.854
MAESTER 2800 0.950 0.556 0.786 0.844
HiS4MAE (ours) 700 0.949 0.781 0.896 0.908
HiS4MAE (ours) 2800 0.971 0.800 0.909 0.916
Vanilla ViT (supervised) 2800 0.990 0.885 0.871 0.935
Segmenter (supervised) 2800 0.989 0.872 0.876 0.932

4.5 ABLATION

To demonstrate the generalizability of HiIS4MAE, we calculate the DSC for different models on the
entire high_c4, which is a 3D image of size 1021 x 545 x 1082. We present the DSC for all models
in Table[3] Additionally, the segmentation results for some images are also listed in Figure[2] Since
only the organelles of a single cell are annotated in the dataset, the results we present include only
this particular cell. We perform sampling on high_c4 at multiple distinct depths along the Z-axis.
For both HiIS4MAE and SdAE-recon, we select the epoch with the highest DSC for demonstration.

Self-distillation Architecture. From the results in Table[3] it can be observed that compared to the
MAE-based MAESTER, both the SAAE-recon and HiS4MAE, which incorporate self-distillation
architectures, demonstrate superior subcellular structure segmentation performance in a shorter time.
The performance of these two methods after 700 training epochs surpasses that of the fully trained
MAESTER after 2800 epochs. To visually illustrate the differences among the models, we took
slices from the top of the cell nucleus, the middle of the cell nucleus, and the bottom of the cell
where the nucleus is absent. This also helps to demonstrate the generalization capability of different
models for various cellular regions. As shown in Figure 2] MAESTER’s pixel-level segmentation
results for the cell nucleus contain some voids. In contrast, HIS4MAE exhibits good segmentation
results for cell nuclei in different positions.

Model Degradation and the Codebook. We observe in our experiments that as the number of
training epochs increases, the image reconstruction accuracy and the feature extraction capability of
the encoder do not exhibit a strict positive correlation. This phenomenon occurs during the training
process of SdAE-recon. In Figure [3] we present the changes in the loss function values used for
image reconstruction and the average DSC values of four types of organelles during the training
process of SAAE-recon. It can be seen that although the MSE loss for reconstructing images does not
change significantly with the increase in training epochs, the segmentation performance of the model
continuously degrades. We believe that this phenomenon is unlikely to be caused by overfitting, as
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Figure 2: Segmentation outcomes across various models. The images, from left to right, represent
slices of the 3D microscopic images at the 350th, 550th, and 820th layers along the Z-axis.

the model resamples the training set in each training epoch. This phenomenon results in SdAE-
recon being unable to fully utilize a large number of microscopy images. As shown in Figure
SdAE-recon performs poorly in segmenting cell nuclei located at the top, while it performs better
for cell nuclei located in the middle.

This is the reason we introduce a codebook. From Figure [3] it can be seen that after introducing
the codebook, HiS4MAE exhibits more stable performance during the training process, without
showing significant degradation in segmentation performance over the entire 2800-epoch training
process. Moreover, HiIS4MAE achieves better performance than SdAE-recon with fewer model
weight parameters (by eliminating an decoder used for high-dimensional space alignment).

We attempt to explain the reasons behind this phenomenon. On one hand, the existence of the
codebook allows the encoded features to aggregate around the vectors in the codebook, achieving a
clustering effect similar to our inference method. On the other hand, this method acts as a special
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Figure 3: The variation in DSC and reconstruction loss during training for SdAE-recon and
HiS4MAE. The value of DSC is taken as the average of the DSCs of the four cell structures.

form of tokenizer. Recent research (Du et al., 2024)) indicates that the presence of such a tokenizer
can increase the connectivity among patches that share the same vectors in the codebook within the
MIM framework. Our experiments suggest that even when a tokenizer is introduced after encoding,
it can improve the model’s performance in downstream tasks to some extent.

Size of the Codebook. Our codebook is an embedding layer of size & x embed_dim. Different
choices of k values affect the model’s performance. We fix the number of training iterations at
2800 and observe the impact of changing k values on HiS4MAE. All results can be obtained from
Figure 4] We can see that HiIS4MAE achieves the best segmentation performance at £ = 512, with
an average DSC of 0.899. However, the model’s segmentation performance does not always increase
with larger k values; excessively large k values can slightly reduce the average DSC.
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Figure 4: As the value of k increases, the segmentation results of HiIS4MAE change. We evaluate
the quality of the segmentation results using the average of four types of DSC.

Visualization of Clustering Results. We utilize UMAP (Mclnnes et al., 2018) to visualize the clus-
tering results of HIS4MAE. UMAP is an algorithm that uses manifolds to reduce the dimensionality
of high-dimensional data and can be employed for high-dimensional data visualization. We use
UMAP to reduce the high-dimensional vectors encoded by the HiIS4AMAE encoder to 2 dimensions,
and the results are shown in Figure 5] Generally, it is believed that the dimensionality reduction
results of UMAP reflect, to some extent, the relative positional relationships of these vectors in their
original dimensions. In Figure[3] the portion representing granules is closest to the unrecognized
portion, and similarly, granules have the lowest DSC score among the four segmentation categories.
The portion representing mitochondria is more distinct compared to granules, and thus, the DSC
of mitochondria is higher. The nucleus is clustered into a separate portion far from the other or-
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ganelles, and its DSC is the highest. In summary, the visualization results of UMAP also match our
DSC results.

® nucleus

® mitochondria
® granules

@ unrecoghized

Figure 5: Visualization result of the high-dimensional vector encoded by HiS4MAE through UMAP
dimensionality reduction. We label the dimensionality reduction results by UMAP with ground-
truth tags.

5 CONCLUSION

In this work, we propose a method named HiS4MAE for subcellular structure segmentation. Our
approach can fully leverage a vast array of microscopic cell images without the need for large-scale
manual annotation of images. Compared to existing self-supervised methods, our technique exhibits
greater stability and requires reduced training and inference times. Our proposed method not only
outperforms existing state-of-the-art self-supervised approaches but also significantly narrows the
performance gap with supervised methods that leverage ground truth across different categories.

It is worth further contemplation as to why merely employing a MIM approach can enable the
model’s encoder to achieve an effect akin to clustering on microscopic cell images. What deeper
biological and mathematical principles might underlie this phenomenon? We aspire for our method
and work to enhance researchers’ productivity and assist them in gaining a deeper comprehension
of the internal structures of cells.

6 ETHICS STATEMENT

We propose a masked image modeling (MIM) method based on a self-distillation architecture to
address the problem of subcellular structure segmentation. Our dataset for segmentation consists of
mouse pancreatic islet cell microscopy images sourced from an open-source platform. To the best
of our knowledge, our research does not violate any ethical standards.
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