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Abstract

A central question in artificial intelligence is the extent to which machine learning
models comprehend mathematics. To address this, we propose a novel framework
for measuring mathematical reasoning that moves beyond standard benchmarks to
diagnose specific failure points. Our method first generates structured, step-by-step
reasoning from gpt-3.5-turbo and gpt-4o-mini on the GSM8K, SVAMP and ASDiv
datasets. We then use a more capable analyst model, gpt-4o-mini, to categorize er-
rors and, crucially, perform an unsupervised clustering of every reasoning sentence
to identify emergent "reasoning modes." This analysis reveals a cognitive profile
with a stark, nonhuman-like brittleness: while the models achieve near-perfect
accuracy on procedural modes like sequential calculation, their performance on
modes requiring combinatorial reasoning with restrictions plummets. By identi-
fying and quantifying the reliability of these distinct reasoning skills, our work
provides a more granular method to evaluate mathematical comprehension and
offers a precise roadmap for developing new capabilities and more reliable future
applications.

1 Introduction

The ability of Large Language Models (LLMs) to perform mathematical reasoning has advanced
dramatically, driven by two key developments. First, the creation of high-quality benchmarks, such
as the GSM8K dataset, provided a clear target to measure multi-step reasoning skills [2]. Second, the
discovery of Chain-of-Thought (CoT) prompting demonstrated that eliciting a series of intermediate
steps could unlock reasoning capabilities in these models, significantly boosting performance beyond
even supervised methods of the time [8].

These advancements have shifted the research frontier from merely achieving correct final answers to
ensuring the faithfulness and reliability of the reasoning process itself. The most promising efforts
in this area have focused on process supervision, which provides feedback for each intermediate
reasoning step during training. As Lightman et al. (2023) demonstrated, this approach is significantly
more effective than supervising only the final outcome, leading to more robust models [3]. However,
their work also highlights a critical, unresolved issue: even state-of-the-art, process-supervised
models still regularly produce logical mistakes. While the field has developed powerful methods
for training models to reason, we lack a systematic, scalable framework for diagnosing the failures
that persist. When a model fails, is it due to a miscalculation, a flawed logical inference, or a deeper
misinterpretation of the problem?

This paper introduces a novel framework for the automated, post-hoc diagnosis of these reasoning
failures. Our work complements training-focused approaches by providing a method to measure and
understand the specific cognitive patterns that lead to errors. Our pipeline first generates structured
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reasoning traces from a generator model (gpt-3.5-turbo) and then uses a more capable analyst model
(gpt-4o-mini) to identify and categorize the first point of failure in incorrect solutions.

Our primary contribution is the discovery, through unsupervised clustering, of distinct "reasoning
modes" and the quantification of their reliability. This analysis reveals a cognitive profile of LLM
reasoning that is both powerful and profoundly brittle.

2 Related Work

The literature on the mathematical reasoning capabilities of LLMs can be broadly organized into
two key themes: techniques for generating and supervising reasoning paths, and the use of LLMs
themselves as tools for analysis and evaluation.

2.1 Generating and Supervising Reasoning Paths

The dominant paradigm for eliciting mathematical reasoning is the Chain of Thought (CoT) method,
which prompts models to produce a series of intermediate steps leading to a final answer [8]. This
approach has been shown to be highly effective on benchmarks like GSM8K [2]. Recognizing
the limitations of a single, linear reasoning path, subsequent research has explored more complex
reasoning structures. The "Tree of Thoughts" (ToT) framework, for instance, generalizes CoT by
allowing a model to explore multiple, divergent reasoning paths and self-evaluate choices, significantly
enhancing performance on problems that require strategic planning or search [9].

Concurrent with efforts to improve reasoning generation, a major focus has been on improving model
reliability through fine-grained supervision. The work on process supervision, notably by Lightman et
al. (2023), demonstrated that providing feedback for each intermediate reasoning step is significantly
more effective for training reliable models than supervising only the final outcome [3]. This has
established that the quality of intermediate steps is a critical factor in achieving robust performance.

2.2 The LLM-as-Evaluator Paradigm

The scaling of LLM capabilities has led to their use as automated evaluators of other models’ outputs.
The validity of this "LLM-as-a-Judge" approach was rigorously examined by Zheng et al. (2023),
who found that strong models like GPT-4 can achieve over 80% agreement with human preferences
on open-ended tasks, making them a scalable and reliable tool for evaluation [10]. This paradigm has
also been applied in iterative refinement loops. The Self-Refine framework, for example, uses a single
LLM to generate an initial output, provide feedback on its own work, and then use that feedback
to improve its output, demonstrating performance gains across a variety of tasks [4]. These works
provide a strong foundation for using LLMs as a core component in an analytical workflow.

3 Experimental Setup and Methodology

3.1 Experimental Setup

As per reviewers’ feedback our analysis pipeline was expanded to a total of six model-dataset
combinations. We used three diverse mathematical reasoning datasets: GSM8K [2] (1,000-problem
random sample from the training split), ASDiv [5] (1,000-problem random sample), and SVAMP
[6](700-problem sample).

For our "generator" models, we used two OpenAI models: gpt-3.5-turbo-1106 and gpt-4o-mini. We
prompted each generator to produce initial reasoning traces for all problems in each dataset. For all
generations, the temperature was set to 0.0 to ensure deterministic outputs.

For the analysis pipeline, OpenAI’s text-embedding-3-large was used to generate sentence em-
beddings, and the gpt-4o-mini model served as the "analyst" for all subsequent diagnostic and
auto-labeling tasks, leveraging its strong analytical capabilities.
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3.2 Methodology

Our methodology begins with structured reasoning elicitation, where we prompted the generator
models to return solutions in a JSON format containing a step-by-step reasoning trace and a final
answer. This forces the model’s reasoning into a discrete, machine-readable format. Next, in the
automated diagnosis stage, the analyst model programmatically examined each failed trace to identify
and categorize the first point of failure.

The core of our method is the analysis of reasoning modes via clustering. We performed an unsu-
pervised clustering on every sentence from all generated traces. This process involved several steps.
First, each sentence was converted into a high-dimensional vector using the text-embedding-3-large
model. These embeddings [7] were then L2-normalized. We then applied the HDBSCAN [1]
clustering algorithm directly to these high-dimensional normalized embeddings to group them by
semantic similarity. The resulting semantic clusters were then automatically labeled by prompting
our gpt-4o-mini analyst to generate a concise, descriptive summary for a sample of sentences from
each group. This process allowed us to identify emergent "modes" of reasoning (e.g., ’calculating
total costs’).

To measure the reliability of these modes, we labeled each entire reasoning trace based on its final,
verifiable outcome; if the answer was wrong, every sentence in the trace was considered part of a
"failed reasoning process." This trace-level labeling is justified because any single error invalidates
the entire reasoning, effectively we are punishing the model for taking a confusing route. We
acknowledge that this is a strict, pessimistic metric: a single calculation error at the final step will
mark all preceding, potentially correct, reasoning steps as ’failed.’ This metric should therefore be
interpreted as a measure of end-to-end task success for a given reasoning chain. A more granular,
node-level accuracy analysis is in progress, with the challenge being building a reliable LLM based
adjudicator for each reasoning step. The current, trace-level labelling allows for a clean, binary
outcome of the trace for our analysis. Finally, we calculated a "correctness rate" for each cluster,
defined as the percentage of its sentences that belonged to a successfully completed reasoning trace.
This transforms the sentence clusters into a quantifiable map of the model’s skills.

3.3 Contribution to the Field

First, this work provides a novel tool for measuring mathematical reasoning that moves beyond
task-level accuracy to a granular, diagnostic map of a model’s cognitive profile. Second, it offers
a new comparative lens on AI vs. human cognition by revealing the non-human-like ’brittleness’
where mastery and total failure coexist. Finally, by pinpointing the exact reasoning modes that are
brittle, our framework provides a clear, data-driven agenda for future research to build more robust
and reliable models

4 Results and Discussion

We applied our diagnostic pipeline to reasoning traces generated by gpt-3.5-turbo and gpt-4o-mini
across three arithmetic word problem benchmarks: GSM8K, ASDiv, and SVAMP. As an illustrative
example, the gpt-3.5-turbo run on 1,000 GSM8K problems yielded an 84.9% accuracy, leaving 151
incorrect responses for analysis. Our full diagnostic analysis focuses on the complete set of incorrect
traces from all six model-dataset combinations.

4.1 High-Level Failure Categorization

First, our analyst model categorized the first point of failure for each incorrect trace. The complete
comparative distribution of error types is presented in Table 1. The analysis reveals that "Reasoning
Error" is the most dominant failure mode across all six combinations, consistently ranging from 43.6%
to 64.7%. This indicates that flaws in the logical plan are a more common and persistent challenge
than simple arithmetic mistakes. We also observe clear shifts in brittleness: the newer gpt-4o-mini
model effectively eliminates "Factual Invention" errors while concentrating its remaining weaknesses
on "Calculation Errors" (rising to 41.6% on GSM8K). Conversely, the linguistic complexity of the
SVAMP dataset specifically triggers a high proportion of "Misinterpretation Errors" (up to 22.1%).
While this high-level categorization reveals important model- and dataset-specific trends, these broad
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Table 1: Distribution of failure types at the first erroneous step across model-dataset combinations.
Percentages show the proportion of each error category among all failures. N indicates the total
number of failures analyzed for each combination.

Error Category GPT-4o-mini GPT-3.5-turbo
GSM8K ASDiv SVAMP GSM8K ASDiv SVAMP

Reasoning Error 48.3% 52.3% 43.6% 49.7% 50.5% 64.7%
Calculation Error 41.6% 33.0% 28.2% 33.1% 24.5% 11.0%
Misinterpretation Error 9.0% 6.4% 17.9% 11.3% 7.1% 22.1%
Uncategorized by Analyst 1.1% 8.3% 10.3% 3.3% 13.6% 0.7%
Factual Invention 0.0% 0.0% 0.0% 2.6% 4.3% 1.5%

Total Failures (N) 89 109 39 151 184 136

categories do not fully capture the granular nature of the model’s weaknesses, motivating our deeper
clustering analysis.

4.2 Identifying Robust and Brittle Reasoning Modes

Our primary finding comes from the unsupervised clustering of all reasoning sentences across all
model-dataset combinations. This analysis moves beyond error categorization to reveal a stark
contrast between highly reliable reasoning modes and those that are exceptionally brittle. To formally
validate our findings, we confirmed that the correctness rate for each selected cluster is statistically
significant. We performed a Fisher’s Exact Test, comparing each cluster’s performance against a
baseline sentence-level correctness rate derived from the overall problem-level accuracy for that
specific model-dataset combination. For all highlighted clusters in Tables 2 and 3, the tests yielded
p-values of less than 0.05, confirming that the observed performance is not due to random chance.
There are other clusters that have a statistically significant difference in performance, but are omitted
for brevity.

The results, presented in Tables 2 and 3 , showcase this performance gap. The models demonstrate
near-perfect, statistically significant reliability in well-defined, procedural tasks. For example, on
GSM8K, gpt-3.5-turbo-1106 achieved 100% correctness on clusters for Calculating total cost of
items, and on ASDiv, gpt-4o-mini achieved 100% on Calculating teams and student distribution.
This indicates a mastery of basic arithmetic and procedural execution.

In stark contrast, performance collapses when reasoning requires handling combinatorial constraints,
algebraic abstraction, or complex multi-step logic. Most notably, several "Brittle" clusters exhibit a
0.0% correctness rate, such as gpt-3.5-turbo-1106 on GSM8K for Calculating topping combinations
with restrictions and gpt-4o-mini on ASDiv for Define variable and establish relationships. This,
along with other low-performing clusters, represents clear, systematic, and statistically significant
failure modes.

Apart from insights into where models like gpt-3.5-turbo and gpt-4o-mini fail from a reasoning
perspective, this work helps in understanding the difference between human and machine cognition.
The cognitive profiles revealed here—exhibiting both absolute mastery and total, systematic failure
on closely related mathematical concepts—are profoundly non-human-like. A human student might
struggle with a concept, but they would not typically display this extreme binary of 100% success
versus 0% failure. This discovery of "brittle" reasoning modes provides a more granular method for
measuring the boundaries of an LLM’s mathematical comprehension and offers a clear, data-driven
roadmap for the targeted interventions needed to build more robust and reliable AI reasoners.

5 Limitations and Future Work

Our diagnostic framework relies on an LLM analyst (gpt-4o-mini), and a dedicated human validation
of its categorization accuracy remains an important area for future investigation. While this camera-
ready version has been expanded to include a comparative analysis across multiple models and
datasets (Section 4.1, Table 1) and a multi-model cluster analysis (Section 4.2, Tables 2 and 3), we
have also added further analysis to the appendix.This includes qualitative examples from robust and
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Table 2: Robust and brittle reasoning clusters for gpt-4o-mini across datasets. Correctness shows
the percentage of correct reasoning steps in each cluster. Count indicates the number of reasoning
sentences. * indicates statistical significance (p < 0.05) compared to the overall baseline for that
dataset.

Dataset Category Count Correct % Reasoning Mode
ASDiv Brittle 17 0.0% Define variable and establish relationships

Brittle 12 0.0% Equation manipulation and simplification
Robust 10 100.0%* Identifying and calculating quantities
Robust 10 100.0%* Calculating teams and student distribution

SVAMP Brittle 20 15.0%* Calculating total or average visitors
Brittle 14 21.4%* Identifying and adding quantities
Robust 10 100.0% Calculating totals and differences
Robust 10 100.0% Identifying and calculating Ferris wheel capacity

Table 3: Robust and brittle reasoning clusters for gpt-3.5-turbo-1106 across datasets. Correctness
shows the percentage of correct reasoning steps in each cluster. Count indicates the number of
reasoning sentences. * indicates statistical significance (p < 0.05) compared to the overall baseline
for that dataset.

Dataset Category Count Correct % Reasoning Mode
GSM8K Brittle 11 0.0%* Calculating topping combinations with restrictions.

Brittle 11 27.3%* Calculate and round time or quantity.
Robust 26 100.0%* Calculating total cost of items.
Robust 22 100.0%* Sequential Calculation Steps.

ASDiv Brittle 16 0.0% Defining variables and calculating costs
Brittle 15 0.0% Establishing age relationships and equations
Robust 10 100.0%* Performing Subtraction to Find Remaining

Amount
Robust 10 100.0%* Defining and solving for total distance

SVAMP Brittle 10 0.0%* Calculating totals through addition and subtraction
Brittle 15 6.7%* Calculating average and total visitors
Robust 10 100.0% Calculating total after additions
Robust 10 100.0% Calculating the difference between two numbers

brittle clusters (Appendix A) and a justification of the HDBSCAN clustering parameters (Appendix B)
to address reviewer concerns.

To build on this work, our plan is twofold. First, we will expand our analysis to more complex
reasoning domains, such as the MATH dataset. Second, and most critically, we plan to "close the
loop" from diagnosis to solution. By using the sentences from identified brittle clusters (such as
those in Table 3) as a targeted dataset for fine-tuning, we will investigate whether this data-efficient
intervention can surgically repair these specific reasoning deficiencies—a key step toward building
more robust and reliable models.
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A Qualitative Failure Analysis

To provide a more granular view of the failure modes identified in our high-level categorization
(Section 4.1), we present two representative examples of incorrect reasoning traces. These examples
illustrate the difference between a fundamental flaw in logic (Reasoning Error) and a flaw in execution
(Calculation Error).

A.1 Example 1: Reasoning Error (gpt-3.5-turbo-1106 on SVAMP)

Question: There are 17 different movies and 11 different books in the ’crazy silly school’ series. If
you read 13 of the books and watched 63 of the movies How many more movies than books are there
in the ’crazy silly school’ series?

Model: gpt-3.5-turbo-1106

Error Type: Reasoning Error

Model’s Reasoning Trace:

Step 1: First, we calculate the difference between the number of movies and the number of
books: 63 movies - 13 books = 50 more movies than books.

Analysis: The model correctly identified the required operation (subtraction) but failed to select
the correct operands. It was distracted by the irrelevant quantities (63 movies watched, 13 books
read) and used them instead of the total quantities given (17 movies, 11 books). This is a classic
reasoning failure where the model’s logical plan does not correctly map the question’s constraints to
the provided numbers. The correct calculation should have been 17− 11 = 6.

A.2 Example 2: Calculation Error (gpt-4o-mini on ASDiv)

Question: For the final act, the circus brought out dancing animals wearing crowns. If each crown is
made with 7 different colored feathers, how many feathers are needed for 934 crowns?

Model: gpt-4o-mini

Error Type: Calculation Error

Model’s Reasoning Trace:
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Step 1: First, I identified that each crown requires 7 different colored feathers.

Step 2: Next, I calculated the total number of feathers needed by multiplying the number of
crowns (934) by the number of feathers per crown (7).

Step 3: The calculation is 934 crowns * 7 feathers/crown = 6558 feathers.

Analysis: The model formulated a perfect logical plan. It correctly identified the operation (multipli-
cation) and the correct operands (934 and 7). However, it failed at the final step of pure arithmetic.
This demonstrates a calculation failure, as the model’s reasoning was sound, but its execution was
flawed. The correct calculation is 934× 7 = 6538.

B Effects of Clustering Parameters

The cluster analysis in Section 4.2 relies on the HDBSCAN algorithm, which is sensitive to the ‘min
cluster size‘ hyperparameter. This parameter controls the trade-off between cluster granularity and
stability. We manually inspected the cluster outputs from a range of parameter settings.

We observed that low values (e.g., ‘min cluster size < 5‘) resulted in a high number of "micro-clusters"
that were not semantically distinct or interpretable. Conversely, high values (e.g., ‘min cluster size
> 10‘) grouped too many distinct reasoning patterns into single, overly broad clusters, masking the
specific failure modes we sought to identify. The ‘min cluster size‘ of 6 used in this paper was
selected as an optimal balance point, as it yielded the most interpretable and semantically coherent
set of reasoning modes, clearly separating both robust and brittle categories.
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