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Abstract

Graph homophily refers to the phenomenon that connected nodes tend to share
similar characteristics. Understanding this concept and its related metrics is crucial
for designing effective Graph Neural Networks (GNNs). The most widely used
homophily metrics, such as edge or node homophily, quantify such "similarity" as
label consistency across the graph topology. These metrics are believed to be able
to reflect the performance of GNNSs, especially on node-level tasks. However, many
recent studies have empirically demonstrated that the performance of GNNs does
not always align with homophily metrics, and how homophily influences GNNss still
remains unclear and controversial. Then, a crucial question arises: What is missing
in our current understanding of homophily? To figure out the missing part, in this
paper, we disentangle the graph homophily into three aspects: label, structural, and
feature homophily, which are derived from the three basic elements of graph data.
We argue that the synergy of the three homophily can provide a more comprehensive
understanding of GNN performance. Our new proposed structural and feature
homophily consider the neighborhood consistency and feature dependencies among
nodes, addressing the previously overlooked structural and feature aspects in graph
homophily. To investigate their synergy, we propose a Contextual Stochastic Block
Model with three types of Homophily (CSBM-3H), where the topology and feature
generation are controlled by the three metrics. Based on the theoretical analysis of
CSBM-3H, we derive a new composite metric, named Tri-Hom, that considers all
three aspects and overcomes the limitations of conventional homophily metrics. The
theoretical conclusions and the effectiveness of Tri-Hom have been verified through
synthetic experiments on CSBM-3H. In addition, we conduct experiments on 31
real-world benchmark datasets and calculate the correlations between homophily
metrics and model performance. Tri-Hom has significantly higher correlation
values than 17 existing metrics that only focus on a single homophily aspect,
demonstrating its superiority and the importance of homophily synergy. Our code
is available athttps://github. com/zylMozart/Disentangle_GraphHom.

1 Introduction

Graph Neural Networks (GNNs) have been widely used in processing non-Euclidean data due to their
superiority in extracting topological relations [[10} 13} 26} 41}|35]. They have achieved great success
on numerous real-world applications, e.g., recommendation [49, 58], bio-informatics [21} |20]] and
telecommunication [34]]. It is found that their success, especially on node-level tasks, is closely related
to the homophily assumption [47, 72,138} !43L 136, [71], i.e., similar nodes tend to be connected [17]].
On the other hand, when dissimilar nodes are more likely to be connected, which is known as the
non-homophily/heterophily scenario, GNNs fail to capture the useful neighbor information and
even underperform Multilayer perceptrons (MLPs) [37]]. Several homophily metrics, such as edge
homophily [72} [1]] and node homophily [50] were proposed, which were believed to be able to
recognize the difficult datasets [43] and measure the performance of GNNs [39].
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However, recent studies [46 39,51} 140]] show that the conventional homophily metrics [72} 1} 50] are
insufficient to measure the performance of GNNs: Luan et al. [38] show that the homophily metrics
cannot tell if GNNs work well under heterophily. Ma et al. [46] reveals that homophily is not a
necessary assumption for effective GNNs and they propose to identify "good" and "bad" heterophily
to explain why GNNs still work well under heterophily. Luan et al. [39] discovers a mid-homophily
pitfall, showing the performance of GNNs reaches the worst in a medium level of homophily instead
of the lowest. Then, a crucial question arises based on the above studies: What is missing in our
current understanding of homophily?

In this paper, we fill the missing parts by investigating different perspectives of the "node similar-
ity". Conventional homophily metrics quantify the "similarity" as an indicator function of whether
connected nodes share the same label while ignoring the co-existence of three basic elements in
graph data: label, structural, and node feature information. The ignorance of structural and feature
information leads to insufficient understanding and unsatisfactory alignment between homophily
metrics and GNN performance.

A complete understanding of graph homophily should include all the above three basic elements.
To this end, we disentangle graph homophily into three corresponding aspects: label, structural,
and feature homophily. Specifically, our new proposed structural homophily quantifies the "simi-
larity" by considering the neighborhood structure consistency, and feature homophily measures the
dependencies of node features across the topology. To investigate how their synergy affects GNN
performance, we propose a Contextual Stochastic Block Model controlled with three types of Ho-
mophily (CSBM-3H). The node feature generation process in CSBM-3H breaks the i.i.d. assumption
in previous studies [46, [39], which is closer to real-world scenarios [14} 59} |61]]. With the three
metrics, CSBM-3H enables a more comprehensive study on the impact of graph homophily than
previous analysis [46 39/ 129, (60].

From the theoretical study of CSBM-3H, we derive a new composite metric named Tri-Hom to
measure the synergy, which includes all three homophily aspects. Through CSBM-3H, our theoretical
analysis and simulation results both show that the performance of GNNs is highly influenced by
Tri-Hom. It can help explain how the three types of homophily influence GNN behavior individually
or collectively. In addition, our theoretical findings can explain some interesting phenomena observed
in previous literature, such as "good" or "bad" heterophily [46} 38] and the impact of feature shuffling
on GNNs [29]]. To verify the effectiveness of Tri-Hom, we conduct experiments on 31 real-world
datasets. The results show that GNN performance is significantly better aligned with Tri-Hom than
the other 17 existing metrics that focus only on a single homophily aspect. This implies that Tri-Hom
can complete the absent parts in existing homophily metrics.

2 Preliminary

We denote G = (V, £) as an undirected graph, where V is the node set and £ is the edge set. The
graph has N nodes with C classes. The adjacency matrix of the graph is denoted as A € RV*N,
We use A,, = 1 orey, € & to denote the existence of an edge between node u and v, otherwise
A, =0orey, ¢ E. Node degree vector is denoted as D € RY where D,, is the degree of node
u. Node label vector is denoted as Y € R” and its one-hot encoding matrix is Z € RV*¢. The
number of nodes in class ¢ is denoted as N, = [{u|Y,, = ¢,u € V}|. The neighbor set of node u
is denoted as \V,, = {v|ey, € E£}. The features of all the nodes is denoted as X € RV*M where
X, are the features of node v with M dimensions. We use I € RE*F and 15 € RE*F to denote
identify matrix and all-ones matrix with size F, respectively.

Graph homophily metrics are used to measure the similarity between connected nodes. Edge [1,[72]
and node homophily [50] are 2 most commonly used metrics and are defined as follows,
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These metrics qualify the ratio of whether the labels of two connected nodes are the same in a graph.
However, this definition of graph homophily only considers a label aspect and neglects structural and
feature aspects, resulting in a partial understanding of graph homophily. Therefore, we propose to
disentangle the graph homophily as label, structural, and feature homophily in the next section.

Graph-aware models MY and graph-agnostic models M ™9 refer to the models that either
utilize structure information or do not, respectively. For example, baseline graph-aware models



MY, such as Graph Convolutional Network (GCN) [26], Graph Attention Network (GAT) [57]
and GraphSage [16]], encode both graph structure and node feature information in each layer; the
corresponding graph-agnostic models M ™9 are the Multilayer Perceptrons (MLPs), which only
encode node features [39].

Structural-agnostic features refer to the node features X that are conditionally independent of
graph topology A given Y, i.e., (X 1 A|Y); structural-aware features indicate (X J{ A|Y).

3 Disentangled Graph Homophily

In this section, we first introduce the definition of disentangled graph homophily from label, structural,
and feature aspects to complete the missing part of the graph homophily. Then, in the next section,
we will introduce how they collectively impact the performance of GNNs.

3.1 Label Homophily
Definition 1. Label homophily is defined as the consistency of node labels across the topology.

Label homophily is the most widely used con-
ventional metric of graph homophily and it qual-
ifies the similarity between connected nodes u
and v using an indicator function 1(Y,, = Y,,).
Most of the conventional homophily metrics ) ot % o RN
focus on label homophily, including edge ho- % s+l % 3l i e
mophily [} [72]], node homophily [30], class ho- oA N T
mophily [33], adjusted homophily [S1], density-

aware homophily [30], 2-hop neighbor class ho- ~ @he =01 (®)hr =05 (c) hr =0.9
mophily [5]], and neighbor homophily [[13]]. Tl

However, label homophily only focuses on the
consistency of label information for connected
nodes while neglecting structural and feature in-
formation, which are two indispensable compo-
nents of graph data. Hence, it offers only a par- ! '

tial understanding of graph homophily, which (d) hs =0.1 (e) hs =0.5 () hs =0.9
cannot always align well with the performance g s Sy L A

of GNNs [46, 38, 39]. To capture the miss- . 7'tt "0 w0 Jot (utensle

ing structural and feature information and better ~ r.. 7 ** fclra L T

understand graph homophily, we give the defini-

tions of structural and feature homophily in the

following 2 subsections.

3.2 Structural homophily ©hr=-07  (Whr =0T @hr=09
For structural homophily, the "atom" informa- Figure 1: Visualization of synthetic graphs gen-
tion of a node is structural information instead ~erated by CSBM-3H with varying levels of label
of the label. It is meaningless to define the struc- homophily, structural homophily, and feature ho-
tural homophily using the consistency across mophily. The node colors denote node classes in
the graph topology as in the label homophily be- sub-figure (a-f) and node features in sub-figure (g-
cause the structural information already contains 1)

the information from the graph topology. There-

fore, we define the structural information as the

consistency of structural information among the

nodes from the same classe which better disentangles itself from the label homophily.

Definition 2. Structural homophily is defined as the consistency of structural information of nodes
within the same class. The structural homophily in a graph is defined as:
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c=1

'"There we do not consider the inter-class structural information because the structural homophily repre-
sents a property of a graph instead of the node distinguishability[39]. The detailed discussion of the node
distinguishability is shown in Section[4.2}



where hg . is the class-wise structural homophily for class ¢, function S(-) measures structural
information, o denotes standard deviation of structural information, and 0,4, denotes the maximum
value of o.

In this paper, we quantify the structural information for node u through neighbor distribution (the

class distribution of local neighbors) D{:f = [Pu1sDu.2; - - - Du,c)» Where p, = W is

the proportion of neighbors of node u that belong to class c. A high structural homophily indicates that
the graph-aware models leveraging structural encoding will have similar embeddings for intra-class
nodes after aggregation, which are expected to outperform graph-agnostic models, irrespective of a
low label homophily. There are also some homophily metrics that focus on the structural aspect in
previous studies, including label informativeness [51]], neighborhood similarity [46], and aggregation
homophily [38]], which is similar as the structural homophily defined there.

u

3.3 Feature Homophily

Previous feature-based graph homophily metrics, such as generalized edge homophily [23], local
similarity [[7], attribute homophily [67]], and class-controlled feature homophily [29]], mainly focus
on the consistency of node features across the graph topology, which is similar as the definition of
Dirichlet energy in graphs. However, these homophily metrics on feature consistency cannot fully
disentangle itself from label homophily: Since the features of nodes in a graph are supposed to
depend on their classes, when the graph shows a high/low label homophily, the connected nodes are
more likely to share the same/different labels, resulting in a high/low feature similarity. Therefore,
these feature-based homophily metrics are dependent on label homophily. Such dependency contains
redundancy, which decreases the useful information inside feature-based homophily and impedes our
understanding of the relationship between node features and GNN performance.

To disentangle the feature effect from label and graph structure, we define the feature homophily as the
dependencies of node features across the graph topology, thereby dissociating it from label homophily
and structural homophily. Inspired by graph diffusion [6] and interactive particle systems [S5. 164],
we have the structural-agnostic unobserved feature X (0) and the observed structural-aware feature
X that satisfy the following relation
X :[Z@Aﬂ X(0) = (I —wA)"'X(0) 3)
t=0
The detailed process of this relation is given in Appendix Here w € (—ﬁ, ﬁ) is a parameter

that controls the feature dependencies, where a positive, negative, or zero value corresponds to
an attractive relation, repulsive relation, or independence of the nodes with their neighbors in
graphs [53, [64]]. The feature dependencies (wA)? of t-order neighbors are introduced to structural-
agnostic features X (0). Finally, the state of all the nodes will converge to an equilibrium with
structure-aware feature X . The w in Eq. (3) is independent of the graph topology because no matter
how the label homophily or structural homophily changes, w will remain unaffected. To disentangle
feature homophily from label homophily and structural homophily, we define the feature homophily
based on w as follows.

Definition 3. Feature homophily is defined as the degree of feature dependencies of nodes across
the topology. For the linear case of the graph diffusion process with feature dependencies, the feature
homophily for feature m satisfies

th !
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where p(A) is the spectral radius of A, X (0) ~ p(X|Y) are the unseen structural-agnostic
node features, and X ~ p(X|Y, A) is the observed structural-aware node features. The feature
homophily for the whole graph is the averaged feature homophily for all the features

1 M
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Note that it is easy to control the feature homophily in the generation of synthetic graphs. However,
since both A, and X. ,,(0) are unknown in Eq. (E]), one more condition is required to estimate
feature homophily in real-world datasets. To address this issue, we consider the case where the
intra-class distances of X :7m(0) are small. This case holds in lots of real-world scenarios [38, 39]



and we can utilize this property to estimate h ., without solving X ,,,(0). Specifically, the feature
homophily h ., for feature m can be estimated with the following optimization process

* . hEom
hpym(g, X:,m7 Y) = arg IIllIl;LFYm Zq{/lv:e)\;’; ||Xu¢m(0) - X1),777,(0)H2 ) where X:,m(o) = (I - pfA) A) X:A,m (6)

The estimation of feature homophily is invariant to the operations of feature shifts, scaling, or
changing variance, where the proof is shown in Appendix [C| This estimation process will be used in
Section[3.2] for calculation.

Remark To better understand the definitions of three types of graph homophily, Figure [T visualizes
examples of graphs under varying hy, hg, and hp: 1) Label homophily. As label homophily hp,
increases, as shown in Figures a), (b), and (c), nodes are more likely to connect with others that
share the same label. Particularly, a high h, (Figure[I[c)) results in several clusters with distinct class
boundaries, while a low hj, causes nodes to more likely connect to nodes with different classes. 2)
Structural homophily. As structural homophily kg increases, as shown in Figures d), (e), and
(f), the neighbor distributions of intra-class nodes become more consistent. Therefore, a high hg
is expected to capture effective structural information with message aggregation. Interestingly, we
also find that a higher hs makes a graph resemble planar graphs [3]] and periodic graphs [9)]. We
hypothesize this phenomenon occurs because stable structural information leads to more regular and
meaningful patterns, which would be interesting to explore the connection between hg and these
geometric properties of graphs in the future. 3) Feature homophily. Figures[I(g), (h), and (i) illustrate
different levels of feature homophily (h ) within the same graph topology. Figure|l|(h) demonstrates
that under a medium positive h, features of some boundary nodes exhibit characteristics of both
neighboring classes. For instance, a node on the boundary of the red class and the blue class
appears purple, a mixture of these classes. A higher hp (Figure[I](i)) increases feature dependencies,
particularly affecting more nodes closer to class boundaries. In social networks, a positive hp
indicates that people’s opinions are influenced by their friends, resulting in similar characteristics.
Conversely, a negative hr causes nodes to become more dissimilar from their neighbors. As shown
in Figure [T] (2), a negative hp creates a distinct boundary between classes. Additionally, for the
intra-class nodes in Figure[T|(g), the node colors differ in shades from their neighbors. This occurs
because node features become more dissimilar due to the "repulsive force" rather than the "attractive
force" induced by a negative h . For example, in online social media, people are likely to argue with
those holding different opinions on certain topics. After such interactions, individuals may reinforce
their original opinions, a phenomenon resulting from the "repulsive force" associated with a negative
hg.

4 Impact of Disentangled Graph Homophily

To study the model performance in a graph, the Contextual Stochastic Block Model (CSBM) has been
widely used to study the performance of GNNs with controlled graph topology and node features.
Previous studies [51}129, 139} 146]] on graph homophily generally adopt a modified CSBM to control
the label homophily through assigning nodes with different probabilities that connect to the nodes
from other classes. Then the node features are sampled solely based on the classes. However, this
graph modeling, which only considers label homophily, has two drawbacks: First, the probabilities of
nodes from the same class connecting to the nodes with different classes are uniform, which lacks
diversity. Second, the sampled node features are independent with their structures i.e.,(X 1L A|Y),
which is uncommon in real-world scenarios where interactions influence the attributes of connected
nodes [61} 14, 59]. Therefore, we propose a Contextual Stochastic Block Model with three types
of Homophily (CSBM-3H), a random graph generative model that integrates the three types of
homophily (Section.1]), where the newly proposed structural homophily /s and feature homophily
hr can well address the aforementioned two drawbacks and fills the missing part of graph homophily.
Then, Based on CSBM-3H, we theoretically study how the graph-agnostic and graph-aware models
are affected by label, structural, and feature homophily metrics to explore their relationship and verify
the effectiveness of proposed metrics (Section #.2)).

41 CSBM-3H

Graph Topology Generation Following the topology generation process in existing studies 39,
60], we assume all the nodes are class-balanced and share the same node degree d. We use node
homophily Ay, to control the label consistency across the graph topology and hg to control the
consistency of neighbor distribution D" of nodes within the same classes. Then, the neighbor
distribution can be expressed as:
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where DV € RV*C is the neighbor distribution for all the nodes, S € R€* is a class-sampling
matrix, and € € RE* is a noise matrix. Each entry of € is a noise of neighbor sampling that follows
a Gaussian distribution N (0, uz%f)z) The class-sampling matrix .S should be legal in practice [60]
ie, Syn >0and ) S,, = 1. Then an adjacency matrix A can be sampled from a neighborhood
sampling matrix A, = %DN Z", where E[Ay, = 1] = (A})u, for each pair of nodes u, v. In this
way, we control the label homophily h, and structural homophily hg in a graph.

Node Feature Generation. For any node w in a graph, we first sample its structural-agnostic features
X, (0) € RY from a class-wised Gaussian distribution X,,(0) ~ Ny, (uy,, By, ) with gy, € RF
and Xy, € RF*F. We also assume each dimension of the feature vector is independent of each
other, thereby Xy, € R¥*¥ is a diagonal matrix. Then the observed structural-aware features can be
generated by the unseen structure-agnostic feature as described in Eq. (@).

4.2 Node distinguishability
Suppose we have the representations of node v as H,. = é Yo w7, Xo: for graph-aware models

MY and H,. = X,,. for graph-agnostic models M™Y. Inspired by the principles of neural collapse
[28l 27]] and node distinguishability [39], we quantify the impact of the aforementioned homophily
metrics on both the graph-aware models MY and graph-agnostic models M ™9 by measuring the
ratio of intra-class node distance to inter-class distance. To ideally distinguish nodes from different
classes, a smaller intra-class distance Djy,(H ) and larger inter-class distance Djy, (H ) is preferred
because this will reduce boundary nodes and increase the margins among classes. The metric is
defined as follows,

2
imra(H) _ Eyu:y“,e |:||Hu - Hq)“ :|
inter(H) Eyuiyuﬁ {HHu _ Hv||2:|
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A smaller J indicates better node embeddings for the model performance and vice versa, which has
been proved in [39]]. With the proposed CSBM-3H, we can analyze the impacts of iy, hg, and hr on
M9 and MY by studying their relations with 7, which will be derived in the following theorems.

Theorem 1. In CSBM-3H, the ratio of the expectation of intra-class distance to the expectation of
inter-class distance of node representations for graph-agnostic models M ™9 and graph-aware models

MY is:
T =0+ InT9) P and 79 = 1+ InTY) ! )
_1 ) — 1-hg)? hpC—1\2
ey, ROCD vy, by, P g 1 (o) 2O G o S (RS
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and 79 = ol J79. (See the proof in Appendix|G.1|)
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From Theorem 1 we can see that, J is a normalized distance term which is a constant given the
distribution of structural-agnostic features and is irrelevant with graph information; J}?g and J, hg are
controlled by the three types of homophily, which can reflect the influence of graph homophily on
model performance. We name 7’ 9 and jhg as Tri-Hom for M ™9 and MY. To study the effect of
Tri-Hom in more detail, we take the partial derivative of jhg with respect to hg, hr, and hy, to show
the analytical results of their influence§’] (See calculation in Appendix and[G.7})

Theorem 2.1. The partial derivative of 7, hg with respect to label homophily Ay, satisfies,

g
{%‘Zh <0, ifhy€[0,3)
: 1
P 207 lth€[67l}

(10)

From Theorem 2.1 we can see that, the worst performance of MY is reached when h; = %, which
corresponds to the scenario with the highest number of unpredictable boundary nodes among classes.
This finding explains the misalignment between label homophily and GNN performance mentioned
in previous studies [46, 38l 139].

2We also calculate the partial derivative of T 9 and discuss the impact of three types of homophily on M9
in Appendix




Theorem 2.2. The partial derivative of 7, ,f with respect to structural homophily hg satisfies,
0T

> 11
ahS_O QY

From Theorem 2.2 we can see that, a larger hg consistently improves the performance of M9 . This
is intuitive for MY because more consistent intra-class neighbor distributions will lead to closer
intra-class node representations after feature aggregation. This conclusion is also shown in Wang et
al. [60], where the topological noise (which is inversely proportional to hg) has a detrimental impact
on node separability.

Theorem 2.3. The partial derivative of 7, hg with respect to feature homophily hp satisfies,

g N
00 <0, ifhy € (0,h7); hy € (hy,hf) and hp € (hp,1)

g ~

g >0, ifhp € (Wf, 1) by € (b hf) and hp € (<1,hr) (12)
g ~

g‘}{’} =0, ifhy=4; hy € (hy,hf) and hp = hp

where 0 < h} < hzr <land—1<h r < 1. The expressions and detailed calculation of h, hz
and hp are shown in Appendix

From Theorem 2.3 we can see that, when hy, is high in a graph, nodes with the same labels tend to
be connected, thereby a larger hr makes the intra-class nodes share more similar representations
and positively affect MY; when hy, is low in a graph, nodes with the different labels tend to be
connected, thereby a larger hr makes the inter-class nodes share more similar representations and
negatively affect MY when hy is on a medium level i.e., hy, € (hi7 hz), an increase of hp will

first improve and then reduces the performance of MY with the cut-off point at b = hp. There the
h is influenced by hp, hg, C, and p(A), and the h; and hz are influenced by hg, C, and p(A).

Remark Apart from the new findings mentioned above, Tri-Hom can help explain other interesting
but under-explored phenomena of the graph homophily in previous studies, e.g., 1) "good" or "bad"
heterophily [46], which states that GNN can still perform well in some heterophily cases; and 2)
feature shuffling [29]], which states that shuffling the node features randomly within the same class
can improves the performance of GNNs on node classification. Our explanations with Tri-Hom
are: 1) The occurrence of "good" or "bad" heterophily is due to the fact that the model performance
is influenced by a combination of hr, hr, and hg, instead of hy, alone. When the hy, is low, the
graph-aware models can still achieve good performance with a high hg or a low hg; 2) feature
shuffling is due to the existence of the structural-aware features of nodes. When hrp > 0, nodes
are positively dependent on their neighbors. In this case, the nodes at the class boundaries or class
centers are the hardest or easiest ones to predict because of the feature dependencies. If we randomly
shuffle the nodes inside their classes, the nodes at the class boundaries will be easier to be classified
because their features are more likely to be replaced by the nodes from the center, which are more
distinguishable. For the nodes close to the class centers, it will be compensated by their neighbors.

5 Experimental Results

In Section we conduct experiments on synthetic data generated by CSBM-3H to verify the
conclusions from Theorem 2.1, 2.2, and 2.3, demonstrate the synergy of label hp,, structural hg, and
feature homophily h r and test whether Tri-Hom 7, hg can reflect GNN performance. In Section we
evaluate the effectiveness of Tri-Hom on real-world benchmark datasets to test how well it can predict
the model performance in real-world scenarios. In addition, we calculate the correlation between
Tri-Hom value and model performance and compare them with the results of other 17 existing metrics.
The results show that Tri-Hom has a significantly higher correlation with the model performance,
demonstrating the necessity of filling the missing part by disentangling graph homophily from three
aspects.

5.1 Experiments on Synthetic Datasets

To verify our theoretical results in a more general case, we measure the performance of GCN on
synthetic datasets, where we can easily control hr,, hg, and hr. Specifically,

7



MY, hg =02 MY, he =04 MY, hs =06 MY, hs =08

(a) Numerical results of Tri-Hom

GCN, hs =04 GCN, hs =0.6

Accuracy
Accuracy
Accuracy
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(b) Model Performance on synthetic datasets

Figure 2: We measure the impact of label homophily hj, feature homophily hr, and structural
homophily hg through numerical results of Tri-Hom 7, hg and simulation results of the node classifi-
cation accuracy with GCN on synthetic datasets.

Synthetic Data Generation We generate the synthetic graphs using CSBM-3H with a given
tuple (hr,hs,hr), where hy, € {0,0.1,...,0.9,1}, hgs € {0,0.1,...,0.9,1} and hp €
{-0.8,0.6,...,0.6,0.8}. For each (hr,hg,hr), we generate 1000 nodes with three balanced
classes and the node degrees are sampled from a uniform distribution [1, 10]. For node features, we
first sample the structural-agnostic features from class-specific Gaussian distributions, then we use Eq.
(@) to propagate these features across the graph topology with feature homophily iz to generate the
observed structural-aware features as the final node features. Then, we evaluate the node classification
performance of GCN [26] on these synthetic graphs. To get a robust evaluation and mitigate the
numerical instability, we generate 10 graphs with 10 random seeds for each (hy,, hg, hr) and report
the average and standard deviation of classification accuracy on validation sets. The detailed process
of topology and feature generation is shown in Appendix [E-I.1}

Numerical Results of Tri-Hom To verify whether Tri-Hom 7, hg can reflect the behavior of GCN,
we calculate its numerical results with the same setting as the synthetic graphs and make a comparison.
Specifically, we set C' = 3 and p(A) = 10 to mitigate the influences of varying numbers of classes
and spectral radius.

Comparison and Analysis The results are shown in Figure 2] For a better demonstration, we only
show the results for hg = {0.2,0.4,0.6,0.8} and each subfigure is a slice of hg that visualizes the
impact of hz, and hp on GCN and Tri-Hom. From the comparison of Figure 2a]and we have
two main observations: 1) Overall, the impact of iy, hg, and hr on synthetic datasets aligns well
with the numerical results of Tri-Hom 7, hg . The only difference is that A seems to have less impact
on GCN. We speculate that this is because the parameters in the graph filter in GCN are optimized
during the training process, while these parameters are simplified as a fixed value in the theoretical
analysis, leading to the differenceﬂ 2) Our theoretical analysis of the impact of hr, hr and hg on
Tri-Hom is consistent with GCN’s behavior in Figure 2B} Theorem 2.1 shows the worst performance
of MY is reached when hy = %, corresponding to the ravine in Figure |2b|for iy ; Theorem 2.2
shows an increase of hg consistently improves the performance of MY, corresponding to the overall
increases of the accuracy in Figure [2b] from the left to the right; Theorem 2.3 shows the influences of
hg to MY is determined by the A .. Even if this is not obvious in Figure we show more detailed
figures of the individual impact of i, hg, and hp in Appendix [E.6] confirming the impact of A in
Theorem 2.3.

3We also show the detailed influences of hr., hs, and hp individually to MLP or GCN in Appendix
which correlates well with our theoretical results of the homophily impact.




5.2 [Experiments on Real-world Datasets

In this subsection, we show the superiority of our proposed Tri-Hom over the existing metrics by
studying the correlation between the estimated metric values and model performance on real-world
graph data.

Experimental Settings To verify the effectiveness of our proposed Tri-Hom and compare with
existing metrics, we train baseline models, MLIﬂ, GCN [26], GraphSage [[16l], GAT [S7] and estimate
metrics, J,’ g, jhg , hp, hg, and hy(we use hj,,qe in our experiments), on 31 real-world heterophilic
and homophilic datasets. These datasets include Roman-Empire, Amazon-Ratings, Mineweeper,
Tolokers, and Questions from [52]; Squirrel, Chameleon, Actor, Texas, Cornell, Wisconsin originally
from [50,153] and refined by [52]; Cora, PubMed, and CiteSeer from [69]]; CoraFull, Amazon-Photo,
Amazon-Computer, Coauthor-CS, and Coauther-Physics from [54]; Flickr from [70]; WikiCS from
[48]); Blog-Catalog from [68]]; Ogbn-Arxiv from [19]; Genius, Twitch-DE, Twitch-ENGB, Twitch-ES,
Twitch-FR, Twitch-PTBR, Twitch-RU, and Twitch-TW from [32]] El Besides, we also calculate other
graph homophily and performance metrics on the benchmark datasets, the metrics include label-based
hOHlOPhlly hedge [72]’ hnode [50], hclass [33]’ hadj [5119 hden [30]’ h2hop [5], hnei [15]’ structural-
based homophily: LI [51]], hns [46], hage [38]]; feature-based homophily: hgg [23l, hrs-cos [Z],
his-euc (71, Pawe [67], her [290]; and classifier-based homophily metrics [39]: hkgr, hong, hsym On
these datasets. The detailed definitions of these metrics are summarized in Appendix [Aland the
details of all estimations are shown in Appendix [E.1.2]

MLP GCN GraphSage GAT
Cor. p-value Cor. p-value Cor. p-value Cor. p-value

Dedge 0.4441 0.0123 0.5663 0.0009 0.4737 0.0071 0.5344  0.0020 6.25
Pnode 0.4232  0.0177 0.5457 0.0015 0.4524 0.0106 0.5257 0.0024 8.00
helass 0.6078  0.0003 0.6120 0.0003  0.5790 0.0006 0.6169  0.0002 2.50
Dadj 0.4972  0.0044 0.5486 0.0014 0.4932 0.0048 0.5396 0.0017 5.25
Rden 0.0038 09839 0.1483 0.4258 0.0525 0.7791 0.1258 0.5001  19.00
honop 04517 0.0107 05182 0.0028 0.4692 0.0078 0.4870  0.0055 7.50
Pnei 0.3961 0.0274 0.4793 0.0064 0.4473 0.0116 0.4535 0.0104 10.75
LI 0.4502 0.0110 0.4992 0.0043 0.4270 0.0166 0.4731 0.0072  9.75
hns 02898 0.1139 0.3603  0.0465 0.3452 0.0572 03671 0.0422 14.00
Nagg 0.5201  0.0027 0.5617 0.0010 0.6040 0.0003 0.5832  0.0006 3.75
hs 0.0981 05994 0.2345 0.2042 0.1981 0.2854 0.2886 0.1153 17.50
hce 03641 0.0440 0.4501 0.0111 0.4347 0.0145 0.4094 0.0222 11.75
hiscos 03511 0.0528 0.4389 0.0135 04254 0.0170 0.4061 0.0234 13.00
hisewc 01272  0.4953 0.1101 0.5555 0.1117 0.5498 0.1168 0.5313 18.50
Pattr 02022  0.2754 0.0990 0.5963 0.0735 0.6945 0.1121 0.5482 19.00
hcr 0.2549 0.1664 0.2890 0.1149 03154 0.0840 0.3167 0.0825 15.25
hr 0.4035 0.0244 0.4994 0.0042 0.4814 0.0061 0.4767 0.0067 8.50
hxr -0.5318 0.0021 -0.3536 0.0510 -0.3854 0.0323 -0.3599 0.0468 22.00
hong -0.3796  0.0352 -0.2440 0.1858 -0.2828 0.1232 -0.2421 0.1894 21.00
hsvm 02430 0.1878 0.2741  0.1356  0.3320 0.0681 0.2961 0.1058 15.75
J,?g 0.5800 0.0006 0.6286 0.0002 0.5978 0.0004 0.6136  0.0002 2.50
jhg 0.5471  0.0014  0.6650  0.0000 0.6223  0.0002 0.6731  0.0000 1.50

Metric Rank

Table 1: Pearson correlation with p-value of all the metrics with model performance of node
classification on 31 real-world datasets.

Correlations with Model Performance To find out which metric can better align with the per-
formance of GNNs on graphs with different properties, in Table |1} we show Pearson correlation
between all the metrics and model performance on the 31 real-world datasetsﬂ For example, to show

*We measure the performance of MLP to verify the effectiveness our proposed 7, A 9 and compare the
performance gap between GNNs and MLP.

>See the dataset statistics, training details and model performance on node classification in Appendix
and [E.3] respectively.

®In addition to the Pearson correlation, we show Kendall’s Tau rank correlation [4]] in Appendix
Besides, we show the correlations between the metrics with performance gaps between GNNs and MLP in

Appendix[E9}



how well h.qqe align with the performance of GCN, we measure the values of h.qg. (in Table [3)
and GCN performance (in Table [d) on node classification tasks across 31 datasets then calculate
their correlation. For each model, the homophily metrics with the best, second, and third highest
correlation values are highlighted in red, blue and purple, respectively. To get more robust comparison
results, we rank the metrics for each model and report the average rank in the last column.

Comparison and Analysis The results show that: 1) jhg achieves the highest correlation values
with all models, much better than the other metrics that only consider a single aspect of graph data.
This confirms the effectiveness of Tri-Hom in filling the missing part of graph homophily by taking all
the three types of homophily hy,, hg, hp into account, providing a comprehensive understanding of
graph homophily; 2) j}?g, the Tri-Hom for M ™9, also shows high correlation values. This indicates
the existence of structural-aware features of nodes in graphs, which justifies our modeling of feature
homophily in CSBM-3H. Compared with other variants of CSBM [46, 39], which assume node
features are conditionally independent of graph topology given node labels, the setting of CSBM-3H
is closer to real-world scenarios. This is one of the important reasons that the metrics derived from
CSBM-3H are better than the existing metrics.

6 Conclusions

In this paper, we study the missing components of graph homophily by disentangling it from label,
structural, and feature perspectives. Compared with previous homophily metrics, the combination of
the three homophily metrics provides a unique and comprehensive understanding of graph homophily.
Notably, our proposed feature homophily can measure the feature dependencies among nodes, fully
disentangling itself from the label and structural homophily, which helps us analyze the disentangled
impact. The theoretical study on CSBM-3H leads us to Tri-Hom, a combination of the three types
of homophily. By investigating how each type influences Tri-Hom, we gain deeper insights into the
effect of graph homophily on model performance and elucidate intriguing phenomena observed in
previous studies [29,|60]]. The synthetic experiments on CSBM-3H verify the theoretical results and
the effectiveness of Tri-Hom. The high correlation with GNN behaviors on 31 real-world benchmark
datasets confirms the superiority of Tri-Hom over 17 existing metrics.

7 Future Directions

In the future, it will be interesting to investigate the disentangled graph homophily in more general
CSBM settings without some assumptions, e.g., uniform node degrees, balanced class, and linear
feature dependencies. Additionally, the estimation of three types of homophily in unsupervised or
weak-supervised scenarios would be important for label-scarcity cases. Since the theoretical results
in the paper reveal a nuanced understanding of graph homophily, we briefly introduce future studies
on model designs or applications as follows.

For the model designs, previous studies [38 |50} 42|] of heterophily-oriented GNNs mostly focus on
label homophily, neglecting structural homophily hg and feature homophily i, that also influence
GNN performance. For hg, the proposed structural information function S(-) could be replaced by
any of the measurements regarding the task. Besides, the consistency of structural information could
be different in the different classes, leading to the class-specific designs for each class. For hp, it
will be interesting to propose new approaches to identify how node features are influenced by their
neighbors from both the global and local perspectives and then design new methods to treat the graphs
or nodes differently according to hp. Please refer to Appendix [FI] for more detailed explanations of
the future directions on model designs

For the applications, such as social networks, recommendation systems, or urban computing, our
proposed disentangled graph homophily could provide new insights. For example, in recommendation
systems, the preferences of each user could be influenced by their neighbors. When people recognize
or reject others’ suggestions, it leads to a high hr or low hp, causing them more likely or less
likely to buy specific items. Please refer to Appendix |F.2|for more details on the applications of the
disentangled graph homophily.

8 Acknowledgements

Thanks to all the reviewers for their insightful comments. We also thank the organizers of NeurIPS
for honoring us with the Scholar Award.

10



References

[1] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,
G. Ver Steeg, and A. Galstyan. Mixhop: Higher-order graph convolutional architectures
via sparsified neighborhood mixing. In international conference on machine learning, pages
21-29. PMLR, 2019.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] M. Barthelemy. Morphogenesis of spatial networks. Springer, 2018.

[4] D. J. Best and P. G. Gipps. Algorithm as 71: The upper tail probabilities of kendall’s tau.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 23(1):98-100, 1974.

[5] A. Cavallo, C. Grohnfeldt, M. Russo, G. Lovisotto, and L. Vassio. 2-hop neighbor class
similarity (2ncs): A graph structural metric indicative of graph neural network performance.
arXiv preprint arXiv:2212.13202, 2022.

[6] B. Chamberlain, J. Rowbottom, M. 1. Gorinova, M. Bronstein, S. Webb, and E. Rossi. Grand:

Graph neural diffusion. In International Conference on Machine Learning, pages 1407-1418.
PMLR, 2021.

[7]1 Y. Chen, Y. Luo, J. Tang, L. Yang, S. Qiu, C. Wang, and X. Cao. Lsgnn: towards general graph
neural network in node classification by local similarity. arXiv preprint arXiv:2305.04225,
2023.

[8] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph
neural network. arXiv preprint arXiv:2006.07988, 2020.

[9] E. Cohen and N. Megiddo. Recognizing properties of periodic graphs. In Applied geometry and
discrete mathematics, pages 135-146. Citeseer, 1990.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv, abs/1606.09375, 2016.

[11] B. Finkelshtein, X. Huang, M. Bronstein, and I. I. Ceylan. Cooperative graph neural networks.
arXiv preprint arXiv:2310.01267, 2023.

[12] N. Gholinejad and M. H. Chehreghani. Heterophily-aware fair recommendation using graph
convolutional networks. arXiv preprint arXiv:2402.03365, 2024.

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1263-1272. JMLR. org, 2017.

[14] P. Goldsmith-Pinkham and G. W. Imbens. Social networks and the identification of peer effects.
Journal of Business & Economic Statistics, 31(3):253-264, 2013.

[15] S. Gong, J. Zhou, C. Xie, and Q. Xuan. Neighborhood homophily-based graph convolutional
network. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pages 3908-3912, 2023.

[16] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[17] W. L. Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[19] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open
graph benchmark: Datasets for machine learning on graphs. Advances in neural information
processing systems, 33:22118-22133, 2020.

[20] C. Hua, Y. Liu, D. Zhang, O. Zhang, S. Luan, K. K. Yang, G. Wolf, D. Precup, and S. Zheng.
Enzymeflow: Generating reaction-specific enzyme catalytic pockets through flow matching and
co-evolutionary dynamics. arXiv preprint arXiv:2410.00327, 2024.

[21] C. Hua, S. Luan, M. Xu, Z. Ying, J. Fu, S. Ermon, and D. Precup. Mudiff: Unified diffusion for
complete molecule generation. In Learning on Graphs Conference, pages 33—1. PMLR, 2024.

11



[22] W.Jiang, X. Gao, G. Xu, T. Chen, and H. Yin. Challenging low homophily in social recommen-
dation. In Proceedings of the ACM on Web Conference 2024, pages 3476-3484, 2024.

[23] D. Jin, R. Wang, M. Ge, D. He, X. Li, W. Lin, and W. Zhang. Raw-gnn: Random walk
aggregation based graph neural network. arXiv preprint arXiv:2206.13953, 2022.

[24] K.Z. Khanam, G. Srivastava, and V. Mago. The homophily principle in social network analysis:
A survey. Multimedia Tools and Applications, 82(6):8811-8854, 2023.

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[27] V. Kothapalli. Neural collapse: A review on modelling principles and generalization. arXiv
preprint arXiv:2206.04041, 2022.

[28] V. Kothapalli, T. Tirer, and J. Bruna. A neural collapse perspective on feature evolution in graph
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

[29] S. Y. Lee, S. Kim, F. Bu, J. Yoo, J. Tang, and K. Shin. Feature distribution on graph topology
mediates the effect of graph convolution: Homophily perspective. International Conference on
Machine Learning, 2024.

[30] S.Li, D. Kim, and Q. Wang. Restructuring graph for higher homophily via adaptive spectral
clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
8622-8630, 2023.

[31] X.Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian. Finding global homophily in
graph neural networks when meeting heterophily. In International Conference on Machine
Learning, pages 13242-13256. PMLR, 2022.

[32] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N. Lim. Large scale
learning on non-homophilous graphs: New benchmarks and strong simple methods. Advances
in Neural Information Processing Systems, 34:20887-20902, 2021.

[33] D. Lim, X. Li, F. Hohne, and S.-N. Lim. New benchmarks for learning on non-homophilous
graphs. arXiv preprint arXiv:2104.01404, 2021.

[34] Q. Lu, S. Luan, and X.-W. Chang. Gcepnet: Graph convolution-enhanced expectation propaga-
tion for massive mimo detection. arXiv preprint arXiv:2404.14886, 2024.

[35] Q.Lu,J.Zhu, S. Luan, and X.-W. Chang. Flexible diffusion scopes with parameterized laplacian
for heterophilic graph learning. arXiv preprint arXiv:2409.09888, 2024.

[36] S. Luan, C. Hua, Q. Lu, L. Ma, L. Wu, X. Wang, M. Xu, X.-W. Chang, D. Precup, R. Ying,
et al. The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis,
applications and challenges. arXiv preprint arXiv:2407.09618, 2024.

[37] S. Luan, C. Hua, Q. Lu, J. Zhu, X.-W. Chang, and D. Precup. When do we need graph neural
networks for node classification? In International Conference on Complex Networks and Their
Applications, pages 37-48. Springer, 2023.

[38] S. Luan, C. Hua, Q. Lu, J. Zhu, M. Zhao, S. Zhang, X.-W. Chang, and D. Precup. Revisiting
heterophily for graph neural networks. Advances in neural information processing systems,
35:1362-1375, 2022.

[39] S. Luan, C. Hua, M. Xu, Q. Lu, J. Zhu, X.-W. Chang, J. Fu, J. Leskovec, and D. Precup. When

do graph neural networks help with node classification? investigating the homophily principle
on node distinguishability. Advances in Neural Information Processing Systems, 36, 2024.

[40] S. Luan, Q. Lu, C. Hua, X. Wang, J. Zhu, X.-W. Chang, G. Wolf, and J. Tang. Are heterophily-
specific gnns and homophily metrics really effective? evaluation pitfalls and new benchmarks.
arXiv preprint arXiv:2409.05755, 2024.

[41] S. Luan, M. Zhao, X.-W. Chang, and D. Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. Advances in neural information processing systems, 32, 2019.

[42] S.Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting

aggregation filtering with diversification for graph convolutional networks. arXiv preprint
arXiv:2008.08844, 2020.

12



[43] S.Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting
aggregation filtering with diversification for graph convolutional networks. In NeurIPS 2022
Workshop: New Frontiers in Graph Learning, 2022.

[44] M. Luenendonk. Niche to discount: 12 major types of retail stores & retailers. In FounderJar,
2023.

[45] Y. Luo, L. Shi, and X.-M. Wu. Classic gnns are strong baselines: Reassessing gnns for node
classification. arXiv preprint arXiv:2406.08993, 2024.

[46] Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural networks? arXiv
preprint arXiv:2106.06134, 2021.

[47] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415-444, 2001.

[48] P. Mernyei and C. Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks.
arXiv preprint arXiv:2007.02901, 2020.

[49] R. K. Ong, W. Qiu, and A. W. Khong. Quad-tier entity fusion contrastive representation learning
for knowledge aware recommendation system. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, CIKM ’23, page 1949-1959, New
York, NY, USA, 2023. Association for Computing Machinery.

[50] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks. arXiv preprint arXiv:2002.05287, 2020.

[51] O. Platonov, D. Kuznedelev, A. Babenko, and L. Prokhorenkova. Characterizing graph datasets
for node classification: Homophily-heterophily dichotomy and beyond. Advances in Neural
Information Processing Systems, 36, 2024.

[52] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look
at the evaluation of gnns under heterophily: Are we really making progress? arXiv preprint
arXiv:2302.11640, 2023.

[53] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-Scale Attributed Node Embedding. Journal of
Complex Networks, 9(2), 2021.

[54] O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann. Pitfalls of graph neural network
evaluation. arXiv preprint arXiv:1811.05868, 2018.

[55] D. Shi, A. Han, L. Lin, Y. Guo, Z. Wang, and J. Gao. Design your own universe: A
physics-informed agnostic method for enhancing graph neural networks. arXiv preprint
arXiv:2401.14580, 2024.

[56] S. Suresh, V. Budde, J. Neville, P. Li, and J. Ma. Breaking the limit of graph neural networks by
improving the assortativity of graphs with local mixing patterns. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1541-1551, 2021.

[57] P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[58] B. Wang, J. Chen, C. Li, S. Zhou, Q. Shi, Y. Gao, Y. Feng, C. Chen, and C. Wang. Distri-
butionally robust graph-based recommendation system. In Proceedings of the ACM on Web
Conference 2024, pages 3777-3788, 2024.

[59] G.-N. Wang, H. Gao, L. Chen, D. N. Mensah, and Y. Fu. Predicting positive and negative
relationships in large social networks. PloS one, 10(6):¢0129530, 2015.

[60] J. Wang, Y. Guo, L. Yang, and Y. Wang. Understanding heterophily for graph neural networks.
arXiv preprint arXiv:2401.09125, 2024.

[61] J. Wang, H. Xie, F. L. Wang, L.-K. Lee, and M. Wei. Jointly modeling intra-and inter-session
dependencies with graph neural networks for session-based recommendations. Information
Processing & Management, 60(2):103209, 2023.

[62] K. Wang, G. Li, S. Wang, G. Zhang, K. Wang, Y. You, J. Fang, X. Peng, Y. Liang, and Y. Wang.
The snowflake hypothesis: Training and powering gnn with one node one receptive field. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 3152-3163, 2024.

13



[63] Y. Wang, S. Xiang, and C. Pan. Improving the homophily of heterophilic graphs for semi-
supervised node classification. In 2023 IEEE International Conference on Multimedia and
Expo (ICME), pages 1865-1870. IEEE, 2023.

[64] Y. Wang, K. Yi, X. Liu, Y. G. Wang, and S. Jin. Acmp: Allen-cahn message passing for graph
neural networks with particle phase transition. arXiv preprint arXiv:2206.05437, 2022.

[65] C. Xiao, J. Zhou, J. Huang, T. Xu, and H. Xiong. Spatial heterophily aware graph neural
networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2752-2763, 2023.

[66] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[67] L. Yang, M. Lj, L. Liu, C. Wang, X. Cao, Y. Guo, et al. Diverse message passing for attribute
with heterophily. Advances in Neural Information Processing Systems, 34:4751-4763, 2021.

[68] R. Yang, J. Shi, X. Xiao, Y. Yang, S. S. Bhowmick, and J. Liu. Pane: scalable and effective
attributed network embedding. The VLDB Journal, 32(6):1237-1262, 2023.

[69] Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pages 40-48. PMLR, 2016.

[70] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Graphsaint: Graph sampling
based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

[71] Y. Zheng, J. Xu, and L. Chen. Learn from heterophily: Heterophilous information-enhanced
graph neural network. arXiv preprint arXiv:2403.17351, 2024.

[72] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020.

14



A Related Work on Homophily Measurements

In general, graph homophily metrics can be categorized as either statistic-based metrics or classifier-
based metrics. The former can be further classified into the homophily on label, structural, or feature
aspect. The definitions of these metrics are introduced as follows.

A.1 Homophily on Label Aspect

Edge homophily [72] measures the graph homophily at the edge level, which is defined as the
fraction of edges in a graph that connects nodes with the same labels:
‘{euv|euv€€Y Y}|
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(13)

Node homophily [50] measures the graph homophily at the node level, where the homophily degree
for each node is computed as the proportion of the neighbors sharing the same class. Then the node
homophily for the whole graph is defined as the average homophily degree for all the nodes:
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Class homophily [33]] addresses class imbalance by treating all classes equally. This metric mitigates
the sensitivity of edge homophily and node homophily to the number of classes and nodes in each
class. The definition of class homophily is given by:
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Adjusted homophily [51] considers the probability of an edge endpoint connecting to a node with a
particular class and adjusts the edge homophily using node degrees, which is defined as:
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Density-aware homophily [30] is introduced as an improvement over class homophily, which only
captures relative edge proportions and disregards graph connectivity. This limitation results in inflated
homophily scores for highly disconnected graphs [51]]. The proposed density-aware homophily aims
to provide a more accurate measurement of edge density and is defined as:

1+ min{¢. — CAc}S:1
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a7
where (j, is the edge density of the subgraph formed by intra-class edges of class k£ and ék is the
maximum intra-class edge density of class k.

2-hop Neighbor Class Similarity [5]. Since the information of 1-hop neighbors might be less
representative or even misleading [S)], 2-hop Neighbor Class Similarity extends the concept of
"neighbors" from 1-hop to 2-hop, which is defined as:

’{u\uENQ) Y, = Y}|

’U.

hanon(G.Y) = 5 Z (18)

uey

where {2 = { | N, }\{u} represents the two-hop neighbors of node w.

UENu

Neighbor Homophily [[15] is proposed to address the "good" and "bad" heterophily issue by consid-
ering the dominant neighbors. The homophily score for any given node u is based on the number
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of nodes in which its class holds dominance among its k-hop neighbors. The definition of neighbor
homophily in a graph is defined as:

(19)

c
max{Mv IS ./\fék)‘} _
h G, Y, k) e=1
v (G Y R =y Z, T3l

where ME’“) represents the k-hop neighbors of node w.

A.2 Homophily on Structure Aspect

Label informativeness [S1] measures the informativeness of a neighbor’s label for a node’s label
using condition entropy:

LIG,Y) = 7201,02 p(c1, c2) log #};&L) 9 ch,@ p(er, c2) logp(er, c2) (20)
’ 22 p(c) log p(c) 22 p(c) log p(c)

where p(c1, ca) = Z(u,v)e £ W represents mutual distribution for a randomly sampled

edge from class c; to class ¢ and p. = 2‘ £] represents the distribution of the node degree for class c.

Neighborhood Similarity [46] measures the similarity of the neighbor distributions between two
classes. A high similarity of intra-class neighbor distributions and a low similarity of inter-class
neighbor distributions ensure the neighborhood patterns for nodes with different labels are distin-
guishable [46]. Therefore, the ratio of inter-class to intra-class neighborhood similarity could reflect
the performance of GNNsE]

Ey,—v, [DY (D})T]

v

Ey, v, Dy (DY)"]

v

hns(G, DN,Y) = 1)

where Nék) is the k-hop neighbors of node u.

Aggregation homophily [38] measures the ratio of nodes in a graph that has a higher intra-class
aggreganon similarity than inter-class aggregation similarity. The ja\lfggregation similarity of node u
and w is the mult1pl1cat10n of their neighbor distribution i.e., DN Dy . The definition of aggregation
homophily is given as:

Pagy(G, DV, Y) =

{ Yyvaoy, DY (DT L Ly, DY (D))"
H{olYu =Y}l = HolYu # Yo}

,vGMuGV}
(22)

Vi

A.3 Homophily on Feature Aspect

Generalized edge homophily [23]] defines the feature homophily in graphs as the feature consistency
across the graph topology:

1 X, XT
hee(G, X) = 74 — (23)
@X) =g 2 T

The difference between this homophily with edge homophily is that generalized edge homophily
replaced the indicator function of two connected nodes in edge homophily, i.e., 1{Y, = Y, },toa
similarity measurement of node features, i.e., sim(X,, X,).

Local Similarity [7] measures feature homophily at the node level based on the hypothesis that nodes
with similar features are likely to belong to the same class. The definition is given based on either

cosine similarity
DD 24)
TV & A HX ||||X [

hLS cos g X

"This definition is not directly given in the original paper [46]. We define this ratio based on the proposition
[46] that a high intra-class neighborhood similarity and a low inter-class neighborhood similarity improves GNN
performance.
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or Euclidean similarity.

his—cuc(G, X) = MZ Z 1 X = Xoll2) (25)

Attribute homophily [67] considers the homophily with respect to each feature, which is defined as:

1 Zvé/\fu X’U;m>

hattr,m(gy X:,m) = 27)( (Xu,m d
uey WM ey “

(26)
attr(g X Z hattrm g X )

where h gy, represents the attribute homophlly for the whole graph and A4t ., represents the attribute
homophily for feature m.

Class-controlled feature homophily [29] considers the interplay between graph topology and feature
dependence through the disparity of nodes’ expected distances to random nodes with their neighbors,
which is defined as:

her(G,X,Y) = |V|Z > (dlw\{u) —d(v. {u)}))

u UGN
d(u,V') = |v' > I(XulY) = (XY 27)
vey’
vy, Xo
XY =X, - =
| (|{vm =V, vn)

where X, |Y represents class-controlled features and d(-) denotes a distance function.

A.4 Classifier-based homophily

Classifier-based homophily [39]] uses a classifier to capture the feature-based linear or non-linear
information without iterative training. To determine when graph-aware models perform better than
graph-agnostic models, a hypothesis test is conducted on the original feature X and the aggregated
features H, as shown below:

Hj : Prop(G-aware model) > Prop(G-agnostic model); H; : Prop(G-aware model) < Prop(G-agnostic model)

The resulting p-value from this hypothesis test can indicate whether the performance of H is superior
to that of X. Three types of classifier, Gaussian Naive Bayes, Kernel Regression, and Support Vector
Machine are used in [39]], which correspond to the metrics hgn B, hx r, and hgy s in this paper.

B Structural-Aware Node Features

This section explores the impact of graph topology on node features. Unlike the data in Euclidean
space, where samples are i.i.d., the data sampled from a graph for each node are structural-aware
i.e,(X )L A]Y). To model the feature dependencies of nodes in graphs, we follow [55]] and adopt a
graph diffusion process [6], which is shown as follows

T
X(t) = X(0) +/O 8)(;@) dt,

(28)

0X(t
where 8t( ) =(FA-DHX(t—-1)+X(0)
Here the structural-agnostic node features X (0) ~ p(X|Y) are sampled from the distributions
with respect to each class, while the structural -aware node features X (¢t > 0) ~ p(X|Y, A) are

generated through the diffusion process. In = t(t) the first term describes how the dependencies

are introduced with a feature dependency function F : (A) — RY*¥ and the second term X (0)
preserves the node distinguishability. Then, based on the Eq. (28), we have

X(t)=X(0)+FAX(t—-1)=X(0)+ (F(A)'X(0) + -+ (F(A)'X(0) (29)
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We can also interpret the process as an interactive particle system [S5] where all node features collapse
into an equilibrium eventually. The equilibrium requires Eq. (29) to have a closed form when ¢ — oo,
implying the spectral radius of the adjacency matrix p(F(A)) < 1. This constraint also implies that
|F(A)|F > |F(A)|* " for k > 0, which aligns with the common relations in graphs that nodes are
likely to have higher dependencies with their closer neighbors than with farther neighbors.

For simplicity and a better understanding of feature dependencies, we consider a linear case as in
[6, /53] and use a parameter w to control the feature dependencies i.e., F(A) = wA with a range of
(- ﬁ, ﬁ). Then we can represent the structural-aware features as

X :{ (wA)t]X = (I —wA)~'X(0) (30)
=0

t

C Properties of Feature Homophily

We further investigate properties of the estimation of feature homophily under specific feature
transformations, including shifts, scaling, and changes in variance. The problem is defined as follows:
In a graph G = {V, £} with N nodes, there are node labels Y and node features X ,,, in dimension
m. We can estimate the feature homophily A, ,, for feature X ,,, in dimension m as:

th
W (G, Xem, Y) = argmin Y [Xym(0) = X, m(0)]°, where X, m(0) = <I’A>X;,m
Fm( ) = arg min [Xu,m (0) m(0)] (0) o(A)

u,vEV,

Y, =Y,

€29)

Then we prove the estimation of feature homophily is invariant to the operations of feature shifts,
scaling, or changing variance.

A. Shifts
Let’s consider a shift of node features X, ., by a constant vector C":

X! n=Xoym +C (32)

Then we have structural-agnostic features as

hr
X!, (0 :<I— ’mA)X.’m
£m (0) (A :

_ (1 - Za”) A) (Xom +C) (33)
et (o)

Then a new estimation of i/, under this feature shift can be expressed as

2

(G, X! Y) = argmin Y [X],,(0) = X, (0)]

= arg min > KX“””(O) + <I - Z& A> cu)

- (om0 + (1 222) c)}

— arg Hlfﬂ UZGV {(Xu,m(()) — Xoy.m(0) + (I - Z{ 2”) A) (C, — CU)] 2
Y.=Y,

(34)
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Since C'is a constant vector, we have C,, — C,, = 0. Next, we have

Cu,vEV, (35)

Therefore, we proved the estimation of feature homophily is invariant to the operation of feature
shifts.

B. Scaling

Let’s consider scaling node features X ,,, by a constant a::

X' =aX.m (36)

L,m -’

Then we have structural-agnostic features as

X!, (0) = (I - Z{ Z) A) (X! )
aXom(0)

Then a new estimation of 1%, under this feature shift can be expressed as

(G, X!, Y) =argmin Y [X,,(0) — X, (0)]

hF,nl ’ B (3 8)

= arg mln Oé2 Z u, m v m(O)]Q
u,vEV,

Yu* v
Since arg min, () is invariant to the scaling, e.g. arg min, (cf(x)) = argmin, (f(x)), we have

/F,7n(g’ X:,,m7 Y') = arg min Z [(Xu,m(0) — Xv,m(O))]Z
u,vEV, (39)

*Fm(gv X:,’n‘La Y)

Therefore, we proved the estimation of feature homophily is invariant to the operation of feature
scaling.

C. Variance Changing

Changing the variance of X ,, can be seen as the combination of scaling and shifts. Assume node
features follow a Gaussian distribution N (u1, 02), after the operation of changing the variance from
o2 to 802, we have new node features as

where X!, . is calculated by deducing i, multiplying /3, and adding p. We already show the
estimation of feature homophily is invariant to the operations of feature shifts and scaling. Since
the operation of variance changing is a combination of scaling and shifts, we can conclude that the
estimation of feature homophily is invariant to the variance changing.
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D Impact of Graph Homophily on Graph-agnostic Models

In addition to the impact of label homophily Ay, structural homophily % g, and feature homophily A
on Graph-aware models as discussed in Section .2} we further discuss the impact on Graph-agnostic
models through .7, ,?g in this section. Specifically, we compute the partial derivative of 7,9 with
respect to hg, hr, and by, to reveal the analytical influences. (See calculation in Appendix @ [G3]

and[G.4])

Theorem 3.1. The partial derivative of 7, ,;g with respect to label homophily hy, satisfies,

0T 9 (<0, ifhp e (—1,0)
Ohyp, >0, ifhpe [0, ].)

(41)

From Theorem 3.1 we can see that, under a positive i i.e.,the features of connected nodes become
similar, the increase of hy makes the features of intra-class nodes more distinguishable, thereby
improving the performance of M™Y. Conversely, under a negative hp i.e.,the features of con-
nected nodes become dissimilar, the increase of h; makes the features of intra-class nodes more
indistinguishable, resulting in a degradation of the performance of M™Y.

Theorem 3.2. The partial derivative of 7, ,:g with respect to structural homophily hg satisfies,

oT, 9
> 42
s >0 (42)

From Theorem 3.2 we can see that, since the existence of feature dependencies, a larger hg makes the
structural-aware features more distinguishable among different classes, improving the performance

of M™Y.
Theorem 3.3. The partial derivative of 7, ,:g with respect to feature homophily A satisfies,

<0, ifhg € (0,hy);hr € (hy,hf)and by € (hp,1)
>0, ifhy e (h Z 1;hg € (hy,hi)and hr € (—1,hp) (43)
=0, ithE(hL hT )anth:hF

oT,9
Ohp

where 0 < A}~ < Ay <land -1 < b} < 1.

From Theorem 3.3 we can see, how the impact of hz on M ™9 is determined by hz,. This result is
similar to the Theorem 2.3 in the case of MY. The increase of hr makes node features more similar
to their neighbors. As a result, under a high h,, features of intra-class nodes become more similar,
thereby improving the performance of M™Y; under a low h, features of intra-class nodes becomes
more similar, thereby reducing the performance of M™Y.

E Experimental Details

E.1 Datasets
E.1.1 Synthetic Datasets

We show the detailed process of constructing CSBM-3H in Algorithm [I] First, graph topology is
constructed with label homophily A, and structural homophily hg. Then, structural-aware node
features are constructed with feature homophily h . To investigate how three types of homophily

influence the model performance, we generate graphs with hz, € [0,0.1,...,1], hg € [0,0.1,...,1],
and hp € [—0.8,—0.6,...,0.8]. For each given hj, hg, and hr, we generate the graphs with 10
seeds from [0, 1, ..., 9] to mitigate random deviations. Each graph contains 1000 nodes distributed

across 3 classes, with node degrees sampled from a uniform distribution in the range

For the random graph generative models with homophily, current studies [51}[29} 139, 146] generally
adopt a Contextual Stochastic Block Model with Homophily(CSBM-H) to control the label homophily
hp, through assigning nodes with different probabilities that connect to the nodes from other classes.
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Algorithm 1 Stochastic Block Model controlled with 3 types of Homophily(CSBM-3H)

Input: Label homophily Ay, structural homophily /g, and feature homophily A g,
number of nodes IV, number of classes C', node degree D,
dimension of node features M, random seed ¢,
class-wised Gaussian mean g = [p1, . . ., pc|’, covariance ¥ = [21, ..., Xc]T with p. € RM
and . € RM*M for class c.
Output: Adjacency matrix A, node features X and node labels Y of a synthetic graph.
Initialize node features X, node labels Y, with X € RV*M 'y ¢ RY. Set random seed ¢.

forn =0to N do > Sample node labels
k ~ |Uniform(0, C') |
Y, <+ k
end for
Z < One-hot(Y") > One-hot encoding of node labels
S <« hplc+ 15ff (1c — I¢) > Introduce label homophily h,
DN — zs > Construct neighbor distribution
for DY, € DV do
€ ~ Normal (0, %) > Introduce structural homophily A g
D{X c D{X cte
end for
D <« diag(D)
Ap ~ %ﬁ_ sDND-: 77 > Construct neighbor sampling matrix with node degrees
Ay <+ max(0,min(1, Ap)) > Bound with [0, 1] before sampling
A << Sym o Binarize > (Ap) > Binarization sampling and symmetrize adjacency matrix
forn =0to N do > Sample Structural-agnostic node features
X,,,. ~ Normal(py, , Xy,)
end for
X« (Ic — %A)’QX > Introduce feature homophily h g
return A, XY

Then the node features are sampled solely based on the classes. However, these random graph
generative models have two drawbacks: First, the probabilities of nodes connecting to the nodes
with different classes are uniform, which lacks diversity. Second, the sampled node features are
independent with their structures i.e.,(X 1L A|Y"), which is uncommon in real-world scenarios
where interactions influence the attributes of connected nodes [61} 14} 59]. Our proposed CSBM-3H
well address these drawbacks by considering hg and hp, thereby providing a more comprehensive
and realistic model.

E.1.2 Real-World Datasets

We conduct our experiments on 31 real-world datasets: Roman-Empire, Amazon-Ratings, Mine-
weeper, Tolokers, and Questions from [52]]; Squirrel, Chameleon, Actor, Texas, Cornell, Wisconsin
originally from [S0] and refined by [52]; Cora, PubMed, and CiteSeer from [69]; CoraFull, Amazon-
Photo, Amazon-Computer, Coauthor-CS, and Coauther-Physics from [54]]; Flickr from [70]]; WikiCS
from [48]; Blog-Catalog from [68]; Ogbn-Arxiv from [19]; Genius, Twitch-DE, Twitch-ENGB,
Twitch-ES, Twitch-FR, Twitch-PTBR, Twitch-RU, and Twitch-TW from [32]. These datasets contain
both the homophilic and heterophilic graphs that come from citation networks, webpage networks,
purchase networks, image description networks, coauthor networks, actor networks, and social
networks. The diversity of these datasets enables us to evaluate the model performance in a general
case. For these datasets, we show basic statistics in Table 2] and the graph homophily metrics or
model performance metrics in Table 3]

E.2 Training Detail
For all the datasets, we randomly split the train, validation, and test set as 50%:25%:25% for 10

runs. We use the Adam optimizer [25] with a learning rate of 0.001. The maximum training epoch
is set to 1000 with a patience of 40 for early stopping. To enhance performance, we incorporated
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Dataset #Nodes #Edges  #Features #Classes Average Degrees Spectral Radius

Roman-Empire 22,662 32,927 300 18 1.45 4.58
Amazon-Ratings 24,492 93,050 300 5 3.80 20.39
Minesweeper 10,000 39,402 7 2 3.94 7.99
Tolokers 11,758 519,000 10 2 44.14 392.36
Questions 48,921 153,540 301 2 3.14 95.31
Squirrel 2,223 46,998 2,089 5 21.14 206.02
Chameleon 890 8,854 2,325 5 9.95 78.05
Actor 7,600 26,659 932 5 3.51 37.37
Texas 183 279 1,703 5 1.52 10.98
Cornell 183 277 1,703 5 1.51 10.08
Wisconsin 251 450 1,703 5 1.79 11.88
Cora 2,708 10,556 1,433 7 3.90 14.39
CoraFull 19,793 126,842 8,710 70 6.41 25.63
CiteSeer 3,327 9,228 3,703 6 2.77 13.74
PubMed 19,717 88,651 500 3 4.50 23.24
Flickr 89,250 899,756 500 7 10.08 83.06
Amazon-Photo 7,650 238,162 745 8 31.13 122.54
Amazon-Computer 13,752 491,722 767 10 35.76 169.71
Coauthor-CS 18,333 163,788 6,805 15 8.93 24.60
Coauthor-Physics 34,493 495,924 8,415 5 14.38 51.18
WikiCS 11,701 431,726 300 10 36.90 149.77
Blog-Catalog 5,196 343,486 8,189 6 66.11 114.01
Ogbn-Arxiv 169,343 1,166,243 128 40 6.89 180.27
Genius 421,961 984,979 12 2 2.33 212.82
Twitch-DE 9,498 153,138 2,514 2 16.12 149.92
Twitch-ENGB 7,126 35,324 2,545 2 4.96 43.41
Twitch-ES 4,648 59,382 2,148 2 12.78 89.82
Twitch-FR 6,549 112,666 2,275 2 17.20 130.24
Twitch-PTBR 1,912 31,299 1,449 2 16.37 99.09
Twitch-RU 4,385 37,304 2,224 2 8.51 76.26
Twitch-TW 2,772 63,462 1,288 2 22.89 143.43

Table 2: Statistics on real-world datasets

skip connections [18]] and layer normalization [2]] in each layer. All models are trained on a single
NVIDIA RTX A5000 GPU with 24GB memory. For hyperparameter tuning, we perform a grid
search on the validation set. The search space included the following hyperparameters:

e Number of layers: {1, 2},

¢ Hidden dimension: {64, 128, 256},
* Dropout rate: {0.2, 0.4, 0.6, 0.8},

* Weight decay: {1e-3, le-4, le-5}.

E.3 Node Classification Performance

Table ] shows the averaged mean and stand deviation accuracy of node classification performance for
MLP, GCN, GraphSage, and GAT across 10 runs. Notably, graph-aware models M9 outperform
graph-agnostic models M ™ in most datasets. This phenomenon holds true for both homophilic
datasets, such as Cora, Citeseer, and PubMed, and heterophilic datasets, such as Roman-empire,
Chameleon-filtered, and Flickr. Consequently, relying solely on label homophily is insufficient to
determine the performance of MY, which aligns with previous studies [46} [39]

E.4 Tri-Hom for Graph-agnostic Models

We show the numerical results of Tri-Hom 7’ Y for graph-agnostic models M ™9 in Figure , where
each subfigure is a slicer of hg that visualizes the influences of hy, and hr on J, hg . For the impact of
hr, hp, and hg individually, we can get the same conclusions as in Theorem 3.1, 3.2, and 3.3. To
validate our theoretical results of M ™Y in a more general case, we further show the impact of three
types of homophily with MLP on synthetic datasets in Figure The results correlate well with our
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Dataset }Ledgg Rnode Relass hadj hden h2h,op Rnei LI hns hagg hs
Roman-Empire 0.0469 0.0460 0.0208 -0.0497 0.4994 0.0750 0.2925 -0.6554 3.2151 0.5874  0.5271
Amazon-Ratings 0.3804 0.3757 0.1266 0.1386 0.5000 0.3686 0.5132 -0.1462 1.7253 0.4191 0.5256
Minesweeper 0.6828 0.6829 0.0094 0.0095 0.5000 0.6809 0.7999 0.0200 2.1402  0.3937 0.7070
Tolokers 0.5945 0.6344 0.1801 0.0944 0.4984 0.6510 0.7390 0.0047 21232 -0.3217 0.5451
Questions 0.8616 0.8980 0.0790 0.1552 0.4999 0.9097 0.9342 0.0007 23.2975 -0.5480 0.5576
Squirrel 0.2072 0.1905 0.0398 0.0087 0.4907 0.2239 0.3191 -0.0316 1.2125 -0.1498 0.6030
Chameleon 0.2361 0.2441 0.0444 0.0276  0.4917 0.2739 04141 -0.0620 1.1318 0.1685  0.5367
Actor 0.2167 0.2199 0.0064 0.0024 0.4999 0.2135 0.3091 -0.2189 1.0833 -0.1476 0.3841
Texas 0.0609 0.0567 0.0000 -0.2822 0.4444 0.5429 0.6946 -0.2338 4.3899 0.4863 0.5158
Cornell 0.1227 0.1110 0.0383 -0.2526 0.4828 0.3989 0.5819 -0.4002 25518 0.4098 0.3676
Wisconsin 0.1778 0.1552 0.0461 -0.1909 0.4838 0.4239 0.5959 -0.2842 3.0825 0.6574 0.4687
Cora 0.8100 0.8252 0.7657 0.7717 0.5015 0.7407 0.8118 0.3240 14.9687 0.8789 0.6164
CoraFull 0.5670 0.5861 0.4959 0.5552 0.5012 0.4383 0.5661 0.2895 44.7329 0.8626 0.6980
CiteSeer 0.7391 0.7166 0.6267 0.6673 0.5010 0.6849 0.8389 -0.0571 6.4521 0.6495  0.3909
PubMed 0.8024 0.7924 0.6641 0.6836 0.5002 0.7435 0.8179 0.2525 39050 0.6707 0.3792
Flickr 0.3809 0.3221 0.0698 0.1758 0.5000 0.3362 0.4657 0.0130 29056 0.1328 0.6086
Amazon-Photo 0.8272 0.8493 0.7722 0.7845 0.5036 0.6576 0.7112 0.6373 22.0358 0.9312 0.7559
Amazon-Computer  0.7772  0.8017 0.7002  0.6809 0.5015 0.5656 0.6439 0.4962 19.7670 0.9236 0.7628
Coauthor-CS 0.8081 0.8320 0.7547 0.7846 0.5008 0.6862 0.7274 0.5292 43.5786 0.9474 0.7213
Coauthor-Physics ~ 0.9314 09153 0.8474 0.8692 0.5005 0.8369 0.8655 0.6675 269190 0.9424 0.7330
WikiCS 0.6547 0.6774 0.5675 0.5786 0.5022 0.3710 0.4306 0.3340 9.3530 0.7431 0.6366
Blog-Catalog 0.4011 0.3914 0.2680 0.2722 0.5029 0.2061 0.2479  0.0704 1.5237 0.5277  0.6987
Ogbn-Arxiv 0.6778 0.6353 0.4211 0.6158 0.5001 0.5013 0.6251 0.4535 51.7619 0.7367 0.5939
Genius 0.6689 0.5087 0.0229 0.1432 0.5000 0.7216 0.8078 0.0025 2.9629  0.0000 0.0931
Twitch-DE 0.6322 0.5958 0.1394 0.1351 0.5001 0.5431 0.6568 -0.0029 1.1644 0.2426 0.5364
Twitch-ENGB 0.5560 0.5452 0.0852 0.0823 0.5000 0.5235 0.6060 -0.0489 1.0328 0.1485 0.3853
Twitch-ES 0.5800 0.6186 0.1468 0.1067 0.4995 0.5794 0.6712 -0.0051 1.5146 -0.4148 0.5700
Twitch-FR 0.5595 0.5739 0.0855 0.0856 0.5000 0.5349 0.6105 -0.0081 1.1885 -0.2628 0.6009
Twitch-PTBR 0.5708 0.5949 0.1196 0.1082 0.4996 0.5418 0.6213 -0.0047 12712 -0.3086 0.5801
Twitch-RU 0.6176  0.6383 0.0424 0.0296 0.4998 0.6276 0.7470 -0.0086 1.7610 -0.5097 0.5698
Twitch-TW 0.5332  0.5500 0.0339 0.0331 0.5000 0.5212 0.5884 -0.0101 1.1133  -0.2150 0.6248

Dataset he  his—cos  his—cuc hattr hcr hr hxri  hons  _hsva T J9
Roman-Empire 0.0257 0.0255 -8.0595 0.0585 0.7781 0.1300 0.0000 0.0000 0.0000 0.9887 0.1519
Amazon-Ratings 0.1146  0.1192 -24.3967  0.6159  0.5976  1.0000 0.9992 0.0253 1.0000 1.0079 0.0080
Minesweeper 0.3330 0.3332 -0.9430 0.1856  0.0930 0.5000 1.0000 1.0000 1.0000 1.0533 0.6042
Tolokers 0.8093  0.7705 -0.2957 0.1099  0.2228 1.0000 0.9982 0.0000 0.0000 1.0768 0.2814
Questions 0.4267 0.5544 -0.1423 0.0050 0.9060 0.7100 0.0000 0.6304 1.0000 1.1122 0.7210
Squirrel 0.0138  0.0219 -0.5155 0.0007 -0.4113 0.0000 1.0000 1.0000 0.0000 1.0000 0.0481
Chameleon 0.0141 0.0135 -0.5673 0.0006  0.0819 0.0000 0.9893 1.0000 0.0000 1.0000 0.0272
Actor 0.1594  0.1566 -0.6630 0.0011  0.0229 0.0000 0.0000 0.0000 0.0000 1.0000 0.0289
Texas 0.3487 0.3448 -0.1400 0.0008 -0.0266 0.0000 0.0000 0.0000 1.0000 1.0000 0.1415
Cornell 0.3322  0.3391 -0.1455 0.0009  0.1393  0.0000 0.0000 0.0000 1.0000 1.0000 0.0782
Wisconsin 0.3414  0.3373 -0.1444 0.0009  0.2975 0.0000 0.0000 0.0000 1.0000 1.0000 0.0553
Cora 0.1677  0.1780 -0.3338 0.0066  0.1410 0.1500 1.0000 1.0000 1.0000 1.0216 0.6881
CoraFull 0.1447  0.1604 -0.2263 0.0037  0.0052 0.0000 1.0000 1.0000 0.0000 1.0000 0.3069
CiteSeer 0.1906  0.2229 -0.2208 0.0067  0.1487 0.7700 0.0000 1.0000 0.0000 1.0935 0.4090
PubMed 0.2719  0.2658 -0.2384 0.0099  0.2326  1.0000 0.0000 0.0000 0.0000 1.1443 0.5139
Flickr 0.3815  0.4084 -0.0950 0.0027  0.0924 0.3000 0.0000 0.0000 0.0000 0.9982 0.0007
Amazon-Photo 0.4878  0.4450 -0.0843 0.0016  0.1062 0.9100 0.0000 0.0000 0.0034 1.1435 0.9500
Amazon-Computer  0.4897 0.4402 -0.0829 0.0015  0.0337 1.0000 0.0000 0.0000 1.0000 1.1413 0.8955
Coauthor-CS 0.2944  0.3194 -0.1763 0.0056  0.2355 0.4400 0.0000 0.0000 1.0000 1.0644 0.8288
Coauthor-Physics ~ 0.3513 0.3723 -0.2160 0.0069 03741 0.8800 0.0000 0.0000 1.0000 1.1704 1.0292
WikiCS 0.3342  0.3916  -277.1482 -0.0209 0.9998 1.0000 0.0000 0.0000 0.0000 1.0980 0.4899
Blog-Catalog 0.1223 0.1228 -0.1818 0.0001  -0.0430 0.0000 0.0000 0.0000 0.0000 1.0000 0.0249
Ogbn-Arxiv 0.8389  0.8649 -0.0546 0.0028  0.2352  1.0000 0.0057 0.0000 0.0000 1.0974 0.4470
Genius 0.6656  0.5909 -0.2162 0.1585 0.1898 0.7500 0.0001 0.0000 0.0000 1.0521 0.1059
Twitch-DE 0.1961 0.1919 -0.2860 0.0006  0.0782 0.0000 0.0390 0.9831 0.0000 1.0000 0.3217
Twitch-ENGB 0.2101 0.2001 -0.2836 0.0007  0.0232 0.0000 0.0571 09191 0.0231 1.0000 0.1350
Twitch-ES 0.2039  0.1976 -0.2939 0.0007  0.0278 0.0000 0.3051 0.9999 0.0001 1.0000 0.2505
Twitch-FR 0.2251 0.2117 -0.2850 0.0007 0.0716  0.0000 0.9968 0.2459 0.0000 1.0000 0.2304
Twitch-PTBR 0.2135  0.2030 -0.2860 0.0009  0.0911 0.0000 0.3399 0.9971 0.0009 1.0000 0.2396
Twitch-RU 0.1925 0.1902 -0.2829 0.0006  0.0256 0.0000 0.9293 0.0307 0.4450 1.0000 0.3195
Twitch-TW 0.1893  0.1914 -0.3037 0.0010  0.0271  0.0000 0.3110 0.0705 0.0001 1.0000 0.1935

Table 3: Graph homophily metrics and graph performance metrics on real-world datasets
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MLP GCN GraphSage GAT

Acc+ Std Acc+ Std Acc# Std Acc+ Std

Roman-Empire 65.47+0.66 78.76+0.66 83.74+0.52 83.79+0.65
Amazon-Ratings ~ 47.58+0.30 50.67+0.75 53.21£0.66 51.72+0.59
Minesweeper 51.06+0.92 90.16+0.59 90.74+0.57 90.55+0.67

Dataset

Tolokers 73.52+£0.90 84.55+0.65 83.21+0.49 84.28+0.58
Questions 71.36+0.96 76.35+£0.93 76.84+£0.97 77.83+0.75
Squirrel 40.12+1.55 40.24+1.58 40.37£1.83 40.06+3.12
Chameleon 41.474+3.38 43.10£2.73 41.88+4.32 41.70+5.99
Actor 3597£1.08 35.10+1.05 35.52+0.92 35.51+0.88
texas 75.26+4.61 72.28+7.41 79.60+£5.47 74.72+4.27
Cornell 72.434+490 67.84+£590 73.24+4.31 69.194£5.73
Wisconsin 80.98+£4.81 78.244+5.43 83.53+£3.94 79.41£6.49
Cora 71.57£1.56 86.36+0.93 87.10£1.43 87.26%+1.51
CoraFull 59.184+0.68 68.74+0.76  69.06£0.71 70.124+0.69
CiteSeer 72.36+1.30 76.44+0.79 77.07£1.09 76.96+1.12
PubMed 87.26+0.24 89.12+0.38 89.30+£0.28 89.26+0.44
Flickr 46.83+0.33 52.80+£0.43 52.41+0.35 53.52+0.37

Amazon-Photo 91.28+0.51 95.16+0.54 95.724+0.35 95.59+0.24
Amazon-Computer  83.99£0.59 91.58+0.61 91.17+0.56 91.75£0.54
Coauthor-CS 94.544+0.32 95.68+0.23 95.53£0.29 95.58+0.24
Coauthor-Physics  95.18+0.27 96.93+£0.25 96.83+0.30 96.73+0.28
WikiCS 81.38+£0.51 85.204+0.28 85.71+£0.47 85.89+0.48
Blog-Catalog 93.95+0.70  96.07+0.57 96.49£0.64 96.02+0.54
Ogbn-Arxiv 58.024+0.30 73.91+0.21 73.39£0.25 73.8240.14

Genius 86.53+0.07 90.59+0.22 90.99£0.17 81.92+4.75
Twitch-DE 67.65+£0.93 72.26+1.00 70.14£0.85 72.46+1.14
Twitch-ENGB 61.47£1.11 62.89+£095 61.96+1.55 62.50£1.08
Twitch-ES 61.59+1.84 65.58+1.64 62.80£1.58 66.71+2.19
Twitch-FR 60.93+1.64 64.84+1.79 61.82£1.94 64.77+2.29
Twitch-PTBR 63.61+2.74 66.90+1.58 65.05£1.98 67.60+1.77
Twitch-RU 50.344+1.94 53.74+3.21 50.88£1.51 53.004+2.50

Twitch-TW 59.84+2.16 61.89+2.25 60.68£1.79 63.73+1.84

Table 4: Node classification performance on real-world datasets.

numerical results, showing the effectiveness of 7’ Y in measuring the performance of M ™9 under
the influences of three types of homophily.

E.5 Numerical Results of Tri-Hom with Three types of Homophily

We show how the label homophily hr, structural homophily hg, and feature homophily hr collec-
tively influence the J,?g and 7, hg in Figure@in a more general case, where the x-axis, y-axis, and
z-axis denotes hy,, hp, and hy. A lighter color (close to yellow) indicates a larger 7, ,;g or 7, f , which
also implies a better model performance. These numerical results align well with our theoretical
results of the individual impact on j,;g or jhg with respect to hy, hg, or hp. Furthermore, by
observing the gradients in Figure ] we can know how these three homophily metrics influence the
model performance collectively.

E.6 Influences of A Single Type of Homophily on Synthetic Datasets

To verify our theoretical results, we show how the performances of GCN and MLP are affected by
three types of homophily individually in Figure 5} which shows the influences of label homophily A,
structural homophily hg, and feature homophily hr on the node classification accuracy of GCN and
MLP on synthetic datasets. First, the top 3 subfigures show the influences of iy, under different /g
and hg. With the increase of hp, the accuracy of GCN first decreases and then increases with a pitfall
on a medium-level of homophily, and the accuracy of MLP is dependent on the sign of i, leading to
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Figure 3: We measure the impact of label homophily %, feature homophily hp, and structural
homophily hg through numerical results of Tri-Hom 7, 9 and simulation results of the node classifi-
cation accuracy with MLP on synthetic datasets.

(a) Graph-agnostic Models (b) Graph-aware Models

Figure 4: The Influences of label homophily Ay, structural homophily hg, and feature homophily A g
to graph-agnostic models and graph-aware models

the same results as in Theorem 2.1 and 3.1. Second, the medium 3 subfigures show the influences
of hp. With the increases of hp, the accuracy of both of the GCN and MLP will decreases with a
low hp, increases with a high hy, and increases first and then decreases with a medium hy. The
result also aligns well with Theorem 2.3 and 3.3. Last, the bottom 3 subfigures show the influences of
hs. Even if the influences under different iy, or hy would slightly vary, an increase of hg generally
improves the performance of both the GCN and MLP, aligning well with Theorem 2.2 and 3.2.

E.7 Visualization of Real-world Dataset with Three Types of Homophily

To better visualize the impact of hy, hg, and h to graph-aware models MY on real-world datasets,
we show the performance of GCN on all the datasets with these homophily metrics in Figure 6} where
hr, hr,and hg are shown as the x-axis, y-axis, and the size of the scatter respectively. Generally, the
correlation of three homophily metrics with the performance of GCN is similar to our theoretical
results in Figure @ With the increase of hp, the performance of GCN decreases first and then
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Figure 5: The impact of label homophily hy, feature homophily A, and structural homophily hg on
the accuracy of node classification using MLP and GCN.

increases, with a pitfall (as shown by datasets of Actor, Squirrel, and Chameleon). We also see that a
higher h g leads to a better performance when we fix hr and hy (as shown by datasets of Question
with Amazon-photo, and Cora with Coauthor-CS). As for the A, since its influence is not so obvious
compared with hy, and hg as shown in Figure [5|and the scarcity of real-world datasets, it is hard to
see its influence in real-world datasets.

E.8 Influences of Class-wised Structural Homophily on Real-world Datasets

As shown in Figure[7] we investigate more nuanced influences of structural homophily kg without
the interference of hy, and hr on real-world datasets with respect to each class. Specifically, we
calculate node classification accuracy with respect to each class inside one dataset and show the
alignment of the class-wised accuracy and class-wised structural homophily hg. The results show for
some of the datasets such as Citeseer, Amazon-ratings, and Coauthor-physics, we can clearly observe
the accuracy increases with hg while for datasets such as Corafull and Coauthor-CS, we can only see
the general tendency of alignment with noises. We speculate that for Corafull and Coauthor-CS, the
hg is not as uniform as other datasets for the nodes in one class, leading to the noises.

E.9 Correlation of Metrics with Performance Gap of GNNs and MLP

To investigate when GNNs are better than MLP, we show the differences in the performance between
GNNs and MLP in Figure[5] The results indicate that, among the statistic-based homophily metrics,
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Figure 6: Label, feature, and structural homophily metrics on real-world datasets are shown as the
x-axis, y-axis, and the size of the scatter respectively. The classification performance of GCN is
denoted by the color of the scatters.
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Figure 7: The influences of structural homophily to both the GCN and MLP for each class on
real-world datasets.
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GCN-MLP GraphSage-MLP GAT-MLP

Cor. p-value Cor. p-value Cor. p-value

hedge 0.2937 0.1087 0.1189 0.5242 0.2073 0.2632  8.00
Rnode 0.2930 0.1097 0.1155 0.5362 0.2316  0.2099 8.33
Relass 0.0454 0.8084 0.0075 0.9678 0.0459 0.8064 19.67

Metric Rank

hadj 0.1420 0.4461 0.0500 0.7896 0.1101 0.5555 16.00
Rden 0.3164 0.0829 0.1096 0.5572  0.2537  0.1685 7.33
hahop 0.1722  0.3543 0.0925 0.6208 0.0932 0.6178 15.67
Pnei 0.2055 0.2675 0.1615 0.3854 0.1367 0.4632 11.33
LI 0.1338  0.4729 0.0012 0.9948 0.0674 0.7186 18.33
hns 0.1716  0.3561 0.1585 03945 0.1736  0.3503 11.00
hagg 0.1220 0.5132  0.2497 0.1755 0.1542 04076  9.67
hs 0.3040  0.0964 0.2356  0.2020 0.4001  0.0257 2.33
hcr 0.2096 0.2577 0.2011 0.2779 0.1102  0.5550 11.00

hrs—cos 02130 0.2500 0.2080 0.2614  0.1299 04862  9.67
hrs—ewe -0.0299 0.8733 -0.0197 09160 -0.0159 0.9323 21.00

hattr -0.2137 0.2484 -0.2644 0.1506 -0.1781 0.3376 22.00
hcr 0.0897 0.6313 0.1657 03730 0.1398  0.4531 13.00
hr 0.2338  0.2056 0.2224  0.2292  0.1701  0.3604 7.67
hxr 0.3582  0.0478 0.2650 0.1497 0.3336  0.0667 1.33

hans 0.2740  0.1357 0.1721 0.3546  0.2689  0.1435 6.67
hsvm 0.0825 0.6590 0.2281 0.2171 0.1211  0.5162 12.67
T 0.1407 0.4503 0.1086 0.5610 0.0954 0.6096 16.00
T 0.2903  0.1131 0.2333  0.2065 0.2860  0.1188 4.33

Table 5: Pearson correlation with p-value of all the metrics with the performance differences of GNNs
with MLP of node classification on real-world datasets.

the structural homophily hg shows a strong correlation with the differences in the performance
between GNNs and MLP. This is because hg measure the consistency of the structural information
of nodes within the same class, thereby reflecting the differences in the performance between GNNs
and MLP. We also observe that the h i has the highest correlation with differences, confirming the
effectiveness of the classifier-based metrics in measuring the differences in the performance between
GNNs and MLP [39]].

E.10 Other Types of Correlation

In our experiments on real-world datasets, we explore the correlation between all the metrics and
model performance. In addition to the widely used Pearson correlation, we employ Kendall’s Tau
rank correlation to assess these relationships. Let = and ¢ be two observed variables with «, y € RY,
the Pearson correlation p can be calculated as

N _ _
i=1\Ti —T)\Yi —Y
pe D) w
VEN @ - 225 i - 9
where Z and ¥ are the means of = and y respectively.

Kendall’s Tau rank correlation [4]] 7 can be calculated as

|concordant pairs| — |discordant pairs|
T =

(45)
iIN(N -1)

where concordant pairs occur when the ranks of both variables agree, while discordant pairs occur
when they disagree.

Pearson correlation measures linear correlation between two variables, which is widely used and easy
to interpret. Kendall’s Tau rank correlation measures the similarity ranking between two variables,
which has no assumptions of the data distribution and are robust to outliers.
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MLP GCN GraphSage GAT GCN-MLP GraphSage-MLP GAT-MLP
Cor. p-value Cor. p-value Cor. p-value Cor. p-value Cor. p-value Cor. p-value Cor. p-value

Redge 0.3677  0.0033  0.4832  0.0001 04452 0.0003 0.4839 0.0001 0.3462 0.0058 0.2129 0.0960 02731 0.0314
Pnode 0.3204  0.0110  0.4409 0.0004 0.4065 0.0011 04624 0.0002 03161 0.0122 0.1828 0.1545 03118  0.0135
Retass 0.3935  0.0016  0.4194 0.0007 0.4022 0.0012 04237 0.0006 0.1570 0.2231 0.1785 0.1647 02387  0.0611

Metric

Radj 0.3892  0.0018 0.4667 0.0001 04323 0.0005 0.4538 0.0002 0.2731 0.0314 0.2602 0.0407 0.2602  0.0407
Rden 0.2430  0.0565 0.3634 0.0037 0.3548 0.0047 0.3677 0.0033 0.2559 0.0442 02258 0.0770  0.2430  0.0565
hanop 0.3892  0.0018 0.4065 0.0011 03720 0.0029 0.3935 0.0016 0.1785 0.1647 0.1742  0.1754  0.0968  0.4578
hnei 0.3376  0.0073  0.3720  0.0029  0.3462  0.0058 0.3591 0.0042 0.1871 0.1448 02086 0.1031 0.1054 0.4178
LI 0.3462  0.0058 0.4753  0.0001  0.4409 0.0004 0.5054 0.0000 03505 0.0052 0.2774 0.0287 0.3204  0.0110
hns 0.3720  0.0029  0.4581  0.0002 0.4409 0.0004 04710 0.0001 02473 0.0521 04237 0.0006 02258 0.0770
hagg 0.3849  0.0020 0.4452  0.0003  0.4624  0.0002 0.4495 0.0003 0.0022 1.0000 0.2129 0.0960 0.0323  0.8135
hs 0.0667  0.6130  0.2387  0.0611  0.2129 0.0960 0.2774 0.0287 0.2172 0.0893 0.1613  0.2104  0.3075 0.0149
hae 0.3376  0.0073  0.3376  0.0073  0.3290 0.0090 0.3247  0.0100 0.1441  0.2644  0.2860 0.0240  0.0624  0.6369

hrs—cos 03677  0.0033 03591 0.0042 03505 0.0052 0.3462 0.0058 0.1570 0.2231 0.3075 0.0149 0.0753  0.5664
hrps—ewe -0.2989 0.0181 -0.2387 0.0611 -0.2559 0.0442 -0.2172 0.0893 0.0409 0.7616 -0.1527 0.2363  0.0968  0.4578

hattr -0.1183 03617 -0.2903  0.0218 -0.2817 0.0263 -0.2688 0.0343  -0.2688 0.0343 -0.4366 0.0004 -0.2387 0.0611
her 0.2860  0.0240  0.2946  0.0199 03032 0.0164 0.3075 0.0149 0.1699 0.1865 0.3118 0.0135 0.1742  0.1754
hr 0.2871  0.0365 0.3920 0.0043  0.3870  0.0048  0.3920 0.0043 0.3071 0.0253 0.4169 0.0024  0.2821  0.0399
hixr -0.4186  0.0010 -0.3236  0.0107 -0.3495 0.0059 -0.3279 0.0097 0.2416 0.0568 0.0734  0.5631  0.2201  0.0828

hanB -0.2929  0.0222 -0.2317 0.0704 -0.2580 0.0440 -0.2361 0.0653  0.1093  0.3935 -0.0874 0.4948  0.1487  0.2458
hsvm 0.1531  0.2364 0.1176 03631  0.1398  0.2797 0.1309 03114 -0.1753 0.1752 -0.0067 0.9589 -0.0688 0.5948
J9 0.4106  0.0024 0.4693 0.0005 0.4546 0.0008 0.4790 0.0004 0.1369 0.3108 0.2004 0.1378  0.1027  0.4472
J9 0.3290  0.0090 0.5097  0.0000 0.4753  0.0001 0.5398 0.0000 0.2473  0.0521 0.2344 0.0661 02602  0.0407

Table 6: Kendall’s Tau rank correlation of all the metrics with model performance of node classifica-
tion on real-world datasets

The correlation of all the metrics with model performance measured by Kendall’s Tau rank correlation
is shown in Table EI, which is similar as the results in Pearson correlation. Our Tri-Hom 7, ,f still
shows the highest correlation with GNNs performance compared with other types of metrics, which
confirms the necessity of disentangling graph homophily.

E.11 Correlation of Homophily Metrics

To investigate the similarity of the information contained in graph homophily metrics and GNNs
performance metrics, we show the Pearson correlation of these metrics on real-world datasets in
Figure[8| We can see a high correlation among the homophily on label aspect (including hedge, Pnodes
hetass> Nadjs Ndens Nanop, and Ny,e;). These metrics measure the label consistency across the graph
topology, sharing a similar characteristic. This also holds for the homophily on the structural aspect
(including L1, hyc, hqagg, and hg), since these metrics measure how informative the neighbors are
for the node labels. However, the Pearson correlation among the homophily on feature aspect (hg g,
hLS—coss PLS—cos> Pattr» hor, and hg) is low. We speculate that this is because different types of
feature aspect (hgg, hop, and hg) or different similarity measurements (hrs—cos and hrs_cos)
could vary a lot for real-world datasets.

F Future Directions

Each of the disentangled graph homophily, including label homophily, structural homophily, or feature
homophily, derives many interesting directions for future research. In this section, we introduce these
potential future directions from the perspective of model design and applications.

F.1 Model Design

A. Label homophily

We discussed how label homophily influences GCN and MLP, providing both theoretical proof
and empirical experiments. Our results show that GCN performs better than MLP in conditions of
extremely low homophily (good heterophily [46]), but significantly worse than MLP in medium
levels of homophily (mid-homophily pitfall [39]]). This suggests that GCNs sometimes fail to extract
effective topological information. To mitigate this weakness, it is preferable to add a residual
connection to GNNs or introduce a learnable parameter that allows the model to balance graph-aware
and graph-agnostic information. The necessity of residual connections has been verified in previous
studies [66} 45 [52].

In addition to model design at the graph level, we can also consider a fine-grained approach at the
node level. Our results indicate that GCN does not always outperform MLP, suggesting that different
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Figure 8: Pearson correlation between all the metrics. Each cell refers to the correlation between two
metrics measured on 31 real-world datasets.

models could be applied to nodes with varying levels of label homophily. This type of personalized
design has been explored in current GNN research on heterophilic graphs [62} [T1]], yet it holds
significant potential for improving overall model performance.

B. Structural homophily

As mentioned in Theorem 2.2, the performance of graph-aware models improves with an increase
in structural homophily. This leads to a crucial question: how can we deal with graphs exhibiting
varying levels of structural homophily? To address this issue, we can enhance current GNNs using
message-passing calibration and graph rewiring.

For the message passing calibration, several methods, such as GPRGNN [8]], FB-GNNs [43]], and
ACM-GNNss [38], propose adding an additional high-pass filter to capture local variations and
details in the graph structure. When structural homophily is low, the high-pass filter captures the
diversification of individual nodes. Along with a low-pass filter, these methods perform well on
graphs with varying levels of homophily. However, the high-pass filters used in these methods cannot
capture more complicated structural information. Since S(-) in structural homophily can be any
measurement of structural homophily, this metric can evaluate more complex graph structures. In the
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future, it is promising to design novel filters based on structural homophily to capture more intricate
structural information and improve model performance.

For the graph rewiring, many methods (MVGCN [63], GloGNN [31]], WRGNN [56]) propose
deriving a new graph topology based on node features or embeddings. This operation improves
the connectivity of nodes with similar semantic contexts, thereby enhancing model performance.
However, this rewiring could connect nodes from different classes, which impedes GNN performance.
To resolve this, we can measure class-wise structural homophily as shown in Eq. (2) and design
adaptations for different classes, which will be particularly beneficial for class-imbalanced graphs,
such as in bot detection and fraud detection. Furthermore, we can adapt the structural measurement
function S(+). Since most current rewiring methods do not evaluate the informativeness of their
rewiring basis (node embeddings with structural information), the proposed structural homophily can
serve as a metric to evaluate which types of rewiring basis to select. For example, Geom-GNN [50]]
uses structural node embeddings to construct new neighbors of nodes and empirically determines the
best approach. Our structural homophily could identify the most effective embedding approach before
training GNNs. Therefore, structural homophily provides a guideline for graph rewiring methods.

C. Feature homophily

The feature homophily proposed in this paper measures how node features are influenced by their
neighbors. To our knowledge, only a few GNNs [55] consider these feature dependencies in their
design. There is significant potential to explore how feature dependencies function in graphs. For
instance, in social networks, people’s opinions are affected by those around them. Identifying
different user types while filtering out the noise introduced by their neighbors remains an open
question. Both our theoretical results (Theorem 2.3) and empirical results (Figure 4) demonstrate the
synergy between feature homophily and label homophily in enhancing model performance. Based on
these findings, future work could focus on designing various graph filters to optimize the objective
in Eq. (8) by considering both label and feature homophily. Furthermore, feature homophily can
explain the presence of node features, making it worthwhile to investigate how much features are
influenced by their neighbors, particularly in temporal graphs.

F.2 Applications

Current real-world applications of graph homophily only focus on label homophily, which cannot
align well with GNNs performance as shown in this paper and other studies [46} 39]. To address
this weakness, our findings provide a comprehensive view of 3 types of homophily, which could
be applied in many real-world applications, such as social networks, recommendation, and urban
computing.

A. Social Networks

In social networks, homophily is defined as the tendency for people to seek out or be drawn to others
who are similar to themselves [24]. This definition primarily explains the consistency of certain
characteristics of people within the network topology. Our proposed concepts of structural homophily
and feature homophily offer additional insights into social networks.

Structural homophily refers to the similarity of the local neighbors of individuals of the same type,
which can be used to analyze the friend circles of specific user groups. For instance, in fraud detection
on social media, fraudsters often target older individuals who are more vulnerable to scams, resulting
in a high level of structural homophily. Therefore, we can identify potential fraudsters based on their
structural connections. However, structural information can vary and may not always be informative.
If fraudsters randomly select users to contact, identifying them through their neighbors becomes
challenging, leading to a low level of structural homophily. Future research could focus on measuring
the level of structural homophily in social networks to better understand user behaviors.

Feature homophily, on the other hand, describes how individuals a