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ABSTRACT

The accumulation of single-cell omics datasets in the public domain has opened
new opportunities to reuse and leverage the vast amount of information they con-
tain. Such uses, however, are complicated by the need for complex and resource-
consuming procedures for data transfer, normalization, and integration that must
be addressed prior to any analysis. Here we present scvi-hub: a platform for evalu-
ating, sharing, and accessing probabilistic models that were trained on single-cell
omics datasets. We demonstrate that these pre-trained models allow immediate
access to a slew of fundamental tasks like visualization, imputation, annotation,
outlier detection, and deconvolution of new (query) datasets with a much lower
requirement for compute resources. We also show that pretrained models can help
drive new discoveries with the existing (reference) datasets through rapid, model-
based analyses. Scvi-hub is built within scvi-tools and integrated into scverse.
Scvi-hub is publicly available to enable efficient sharing of single-cell omic stud-
ies, and also to put advanced capabilities for transfer learning at the fingertips of
a broad community of users. We provide an extended journal version on bioRxiv.

1 INTRODUCTION

Machine learning models have been central to efforts to catalog cell states in health and disease
with single-cell omics technologies Kharchenko (2021); Wagner et al. (2016); Heumos et al. (2023).
These models are capable of performing a variety of analysis tasks including dimensionality reduc-
tion, differential expression comparison, automated cell type annotation, denoising, deconvolution
of spatial data, and modality imputation Heumos et al. (2023). With the growth of single-cell data
corpora, transfer learning will be an essential technique for accomplishing such tasks by leveraging
large-scale datasets as reference atlases in a computationally efficient and performant manner. At
present, transfer learning is primarily used for projecting cells onto a common low-dimensional rep-
resentation that is used for tasks such as annotation or trajectory inference Lotfollahi et al. (2021);
Kang et al. (2021); Hao et al. (2022). However, moving forward, additional applications will become
more prevalent, such as the interpretation of spatial data Lopez et al. (2022) the prediction of the
outcome of a genetic perturbation Roohani et al. (2023), the prediction of multi-modal information
from single-modality data Ashuach et al. (2022), the detection of abnormal cellular subsets Dann
et al. (2022), or a more robust analysis of differential expression Boyeau et al. (2023).

Methods for transfer learning in single-cell omics broadly fall into two categories: nonparametric
and parametric. In the non-parametric case, the algorithm uses the reference data directly to remove
unwanted sources of variation. For example, Seurat and FastMNN integration utilize mutual near-
est neighbors between reference and query data to remove query-specific effects Hao et al. (2022);
Haghverdi et al. (2018). In the second case, the algorithm uses a parametrized model like a con-
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ditional variational autoencoder (cVAE) to reduce the dimension of the reference data and remove
unwanted variation. The same model can then be leveraged to project new data onto the same low-
dimensional space. This approach is used by methods like scVI+scArches Lotfollahi et al. (2021);
Lopez et al. (2018); Gayoso et al. (2022) and can be efficiently designed so that at query time only
the query dataset is used, and not the original, potentially large, reference dataset. In many cases,
these models also offer the benefit of a neural network decoder that can regenerate normalized raw
count data with high fidelity from the low-dimensional representation.

Although parametric approaches have been used successfully in large-scale analyses Suo et al.
(2022); Jones et al. (2022), there are still challenges to realize the power of reusing trained mod-
els. First, models can be trained using a variety of machine learning libraries and frameworks or
using different versions of the same library, making them difficult to quickly ingest and use. Sec-
ond, there is no standard for how pre-trained models should be deposited, which limits reuse to
knowledge of a particular publication or model deposition. Finally, it can be difficult to assess the
quality of a pre-trained model without standardized summary statistics of key performance metrics.

To address these issues, we introduce scvi-hub, a platform for sharing and reusing single cell ma-
chine learning models that are implemented in the scvi-tools codebase Gayoso et al. (2022). As a
new component of scvi-tools, scvi-hub provides access to various popular single-cell model architec-
tures spanning the core data analysis tasks. Scvi-hub facilitates model sharing through the Hugging
Face Model Hub. For model consumers, it offers streamlined access to a variety of downstream anal-
ysis tasks using the downloaded models while using a minified version of the data to lower the data
storage and download bandwidth requirements, thus increasing accessibility and inclusion within
the data analysis community 3. For model developer, it allows sharing trained models in a stream-
lined way and offers posterior predictive checks to evaluate quality of fit of a trained model. To
demonstrate its utility, we have seeded scvi-hub with a collection of more than 90 models pretrained
on a variety of tissues and experimental conditions from the Tabula Sapiens consortium Jones et al.
(2022) and other projects (https://huggingface.co/scvi-tools).

2 RESULTS

2.1 SCVI-HUB FACILITATES REUSE OF MACHINE LEARNING MODELS PRE-TRAINED ON
SINGLE-CELL DATASETS.

For the community of contributors, scvi-hub provides features that facilitate both evaluation and
sharing of models. Scvi-hub uses posterior predictive checks Gelman et al. (1996) with model-
simulated data to evaluate models. Here, we implemented previously described metrics for single-
cell omics data, including the coefficient of variation Levitin et al. (2019); Gayoso et al. (2021b), as
well as new metrics based on differential expression (see Methods). Importantly, these metrics are
dataset-agnostic, in that they do not require dataset-specific information (such as cell-type labels or
sample metadata) and are therefore broadly and immediately applicable.

The provided Hugging Face Model Hub has features that make it ideal for single-cell genomics.
Models can be discovered, enabled via an advanced search interface and a uniform documentation
and presentation with Model Cards (description files that accompany and provide information on
the uploaded model). Additionally, the Hugging Face Model Hub provides backward compatibility
through built-in git-based version control. Model contributors have the option to upload and share
the data behind their model, allowing for a wide variety of uses (examples in Figures 1, 2). Data
can be uploaded to Hugging Face in its raw form (count matrix) or in a substantially reduced form,
using a new feature, which we refer to as ”data minification”, in which we only store the posterior
parameters of the data, which can then be converted into an approximated and normalized form of the
original data, using the generative part of the model (see Methods). Since the models occupy orders
of magnitude less space than the raw data, this feature makes available a compressed representation
of the reference data set, while the generative part still allows efficient downstream analysis, such as
differential expression, feature correlation, and missing data imputation Lopez et al. (2018); Gayoso
et al. (2021a); Ashuach et al. (2022); Boyeau et al. (2023); Steier et al. (2023). Using minified data
also provides more than 50% speed improvement over standard datasets by improving speed of the
dataloaders.
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The second set of users to which scvi-hub caters is the model consumer who wishes to analyze
existing (reference) datasets or leverage reference datasets to analyze their own (query) data. Since
scvi-hub is part of the scvi-tools package and the scverse ecosystem Virshup et al. (2021), which
includes Scanpy Wolf et al. (2018), consumers can seamlessly integrate the downloaded models
into existing analysis workflows. There are extensive tutorials on working with scvi-hub in the R
ecosystem as well, thus supporting downstream analysis with Seurat Butler et al. (2018) and other
popular environments.

2.2 SCVI-HUB ENABLES EFFICIENT EXPLORATION AND RE-ANALYSIS OF LARGE REFERENCE
DATASETS.

Figure 1: Figure 1: Reference-only tasks enabled by scvi-hub. Using the Human Lung Cell Atlas
(HLCA) Sikkema et al. (2023) as an example of a reference data set in scvi-hub. (A-B). Cells colored
by the original studies and cell type. (C). Coefficient of variation (CV) of the HLCA scANVI model.
Each dot is a cell. y-axis shows CV computed on raw data, while x-axis shows the CV computed for
generated data. (D). Posterior predictive checks using Scanpy differential expression (DE) between
the cell-types in panel B (one vs. all DE); each dot represents metrics for one cell-type. Reported
are: F1 accuracy, evaluated by overlap of the top 100 genes, Pearson and Spearman correlation
coefficients between the log-2 fold-changes (LFC) evaluated with raw vs. generated counts, and
area under the precision-recall curve (auPRC) with genes identified by analysis of the raw data
(adjusted p-value below 0.2) as the set of true hits and gene ranking defined by p-values evaluated
with the generated counts. (E). Comparison of top marker genes for all immune cell-types (taking
the top two for each type). Entries are colored by LFC of the respective one-vs-all comparison and
sized by the number of cells with non-zero values for the respective gene in the raw data (left) or
model-estimated proportion of expressing cells (right; see methods).

The first set of analyzes facilitated by scvi-hub is centered on the reference datasets, without inclu-
sion of any additional (query) information. This approach allows for rapid exploration and reanalysis
of reference atlases (without requiring time-consuming and resource-heavy model training proce-
dures). After searching for a model that fits the user’s specification in Hugging Face (i.e., tissue, cell
types, and a modeling scheme, such as scVI, DestVI etc.), model consumers can pull (download) the
model and its corresponding data, which can be in raw or minified format (see Methods). Analysis
of reference datasets includes operations that concern the low-dimensional (latent) representation
of cells, such as visualization, clustering, trajectory inference, and differential abundance analysis.
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Additionally, model consumers can perform analyses at the high-dimensional omics measurement
level by accessing the raw data or generating count data using the minified format. These high-
dimensional representations can then be readily analyzed in Scanpy Wolf et al. (2018) or Seurat
Butler et al. (2018), through a slew of procedures.

Figure 1 highlights the use of scvi.criticism coefficient of variation and differential expression metric
and highlights that minified data gives well correlated estimates of gene expression (further discus-
sion in the Appendix).

2.3 SCVI-HUB ENABLES EFFICIENT REFERENCE-BASED ANALYSIS OF QUERY DATA BY
TRANSFER LEARNING.

The most fundamental part in analyzing a query data set given the appropriate reference is to repre-
sent the query data using the reference model. In the context of scvi-tools, this is done by calculating
the coordinates of each query cell in the latent space of cell states that is encoded by the model and
that is initially populated by the reference cells (Fig. 1B). While the encoder networks in scvi-tools
can readily provide latent representation for any query cells, these representations might be dis-
torted by batch effects. As retraining the model anew on the reference and query data together is a
resource-consuming procedure, an efficient way to address this is to perform minimal training only
to capture these batch effects and leaving the model otherwise unchanged. This procedure, which
is implemented by scArches Lotfollahi et al. (2021), effectively produces a joint embedding of the
reference and query data set while quickly removing unwanted variation. Here, we demonstrate the
capabilities of scvi-hub to analyze query data with transfer learning through four such fundamental
tasks: visualization, annotation, anomaly detection, comparative analysis.

As a first test case, we used a query dataset of three healthy individuals and three emphysema
patients Wang et al. (2023) and designated the HLCA data set as a reference. The two datasets
(query and reference) are well integrated with scANVI as reference model and with use of scArches
to add the query data, leading to an informative and reference-informed visualization of the query
data (Figs. 2 A-B). To annotate the cells states in our query, we transferred labels from HLCA using
a simple KNN classifier (using the reference embedding in the joint latent space a neighborhood
index; Fig. 2b). We found that the reference-based annotation is consistent with the labels provided
by the original study of the query dataset, yet adds a great deal of resolution. For example, cells
that were originally labeled Endothelial Cells (EC) were now divided into several subgroups of that
lineage, including venous systemic, venous capillary, arterial, and aerocyte capillary.

The reference-based probabilistic representation computed for each query cell can also facilitate
comparative analysis within the query data set. To explore this, we first used Milo (which relies
on the integrated embedding space) to compare the composition of cell states in the three healthy
query samples versus the three emphysema-affected samples. We found a significant increase (FDR
< 10%) in the abundance of certain states of macrophages, fibroblasts, and epithelial cells in the
emphysema samples (Fig. 2D). To gain more insight into the change in cell states, we next used the
differential expression function built into scvi-tools (which uses the reference-based scVI model) to
explore disease-associated gene expression changes in fibroblasts of the query data (Fig. 2E). We
find that fibroblasts in patients with emphysema strongly upregulate pro-inflammatory chemokines
that attract neutrophils (CXCL1/CXCL2/CXCL8), monocytes (CCL2, CSF3) and T cells (CCL19,
CCL20). We were unable to generate equally insightful differentially expressed genes by pseu-
dobulk differential expression analysis or training models from scratch, but improved performance
is restricted to using the reference-based model (Supplementary Fig. 3, 4). We confirmed these
findings using raw gene expression (Fig. 2F)

The original publication highlighted the role of fibroblasts in inducing a niche for resident memory T
cells, further corroborated by the fact that depletion of fibroblasts in a mouse model led to a decrease
in resident Th17 cells. Therefore, our reference-powered analysis highlights additional putative
mechanisms associated with neutrophils and monocytes. In fact, neutrophils release granule proteins
such as neutrophil elastase and myeloperoxidase and have thus been associated with emphysema
Gernez et al. (2010). Similarly, monocyte-derived macrophages produce metalloproteinases that
lead to tissue remodeling in emphysema Shapiro (1999).
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Figure 2: Figure 2: Query-to-Reference mapping tasks enabled by scvi-hub. (A). Joint embedding
and UMAP visualization of the emphysema dataset (as query) and HLCA (as reference); cells are
colored by their respective tissue and dataset. Q denotes the query dataset, while R denotes the
reference data set. (B). Visualization of the reference cells in the same UMAP coordinates, colored
by coarse-level cell type (ann level 3 in HLCA). For display purposes, the different annotations for
smooth muscle cells and lymphatic endothelial cells were summarized into one label. (C). UMAP
computed on query cells only (using their coordinates in the joint query and reference latent space).
Cells are colored by their summarized transferred cell-type. (D). Differential abundance computed
using Milo between cells from healthy donors vs. patients with emphysema. Colored by log-2 fold
change for neighborhoods with FDR < 10%. (E). Model-based differential gene expression, com-
paring fibroblasts from healthy vs. diseased samples. The mean log-2 fold change is displayed on
the x-axis and probability for non-DE on the y-axis. All genes displayed are significant with an
FDR < 10%. (F). Violin plots of key differentially expressed genes based (library-size normal-
ized and log1p transformed raw data). (G). Embedding of T cells from the cross-tissue immune
cell dataset (as query) integrated with HLCA reference dataset. CD3D expression is library-size
normalized and log1p transformed. (H). Confusion matrix between the finest annotation scheme in
HLCA (rows) and the labels infused using the query annotations (columns). (I). Canonical marker
genes for cell-types are displayed on normalized raw data. (J). Pseudo-bulk differential expression
analysis between Tem/Temra CD8 cells from COVID-19 infected samples vs. healthy controls us-
ing PyDESeq2.
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2.4 SCVI-HUB ENABLES EFFICIENT RE-ANALYSIS OF REFERENCE DATA SETS BY INFUSING
NOVEL INSIGHTS FROM QUERY DATA SETS.

The joint embedding of query and reference datasets can also be used for an additional, less prevalent
procedure, which we term label infusion. Although reference atlases tend to include large numbers
of samples and cells, their levels of annotations can be limited in granularity. By re-annotating
reference datasets based on labels in more finely annotated datasets, fine cellular subsets of interest
can be identified and their function in disease contexts can be studied leveraging the power of the
reference dataset.

We demonstrate label infusion by refining the cell-type labeling of NK and T cells in the HLCA
dataset (Fig. 2G). We used a recent study of immune cells in different organs Conde et al. (2022),
subsetted this study to only NK and T cells across all different organs, and integrated the resulting
”query” data set with the reference HLCA, using its scANVI model. The joint embedding then
helped us transfer knowledge from the query to the reference (label infusion; Fig. 2H). We further
validated cell-type labels infused by checking their canonical cell-type marker genes (Fig. 2I) and
found agreement.

The infused labels can be used to gain new insight from the reference data. To demonstrate this,
we focus on a subset of cells that we reannotated as CD8+ resident memory T cells (labeled as
Tem/Temra CD8 in Fig. 2). Since the HLCA includes samples from COVID patients in addition to
healthy donors, we were now able to examine the specific effects of infection on this more narrowly
defined immune subset. This analysis finds an up-regulation of markers of exhaustion of CD8+
T cells (LAG3, CD38, TIMD4, and HAVCR2) as well as an increase in interferon-regulated genes
(GBP2, MX1, MX2, IFI16, XAF1, SAMD9L, and IFI44), both of which are consistent with recent,
more targeted studies of COVID infection Szabo et al. (2021); Rha & Shin (2021).

3 DISCUSSION

Given the growing corpus of single-cell omics datasets (both individual studies and atlas-level ef-
forts), transfer learning techniques are becoming pivotal in enabling studies of both new and re-
visited datasets. Despite the promise of these techniques, their use has been limited owing to two
major reasons. First, the use of large reference datasets can be prohibitive both in terms of the re-
quired compute resources (e.g. to access and process the data) and expertise (e.g. for integrating it
with query data). Second, there is a need for an appropriate platform to facilitate communication
between data providers and consumers and to provide the infrastructure for quality control, access,
and downstream analysis. Scvi-hub provides a way to alleviate these problems by establishing a
platform for sharing and reusing single-cell omics data. Sharing of models helps reduce the need
for technical expertise and expensive compute resources (e.g., to process atlas-scale references and
integrate them with query data), and the respective API was designed to facilitate a wide variety of
analyzes.

The decentralized nature of scvi-hub enables community access through friendly and easy-to-use in-
terfaces. As such, we envision scvi-hub to serve several types of users. First, we expect it to become
a platform for individual researchers who wish to make their analyses accessible and reproducible.
Second, we expect it to be used in efforts to generate tissue atlases and large-scale single-cell cen-
sus datasets as a way of facilitating advanced use of these atlases. Third, we expect the research
community to leverage the models in scvi-hub as an actionable resource for an array of use cases,
from annotation of new scRNA-seq samples to deconvolution of ST samples. To demonstrate this,
we presented several case studies showing that the incorporation of external references can improve
and enrich the analysis of individual datasets and provide novel insights into disease mechanisms.

The model-centric approach of scvi-hub enables representation of large reference datasets in a mini-
fied format, which enables access with limited memory resources or download bandwidth, and
thereby accelerates access to those valuable resources. It is our hope that this will help democra-
tize single-cell data analysis and expand it to communities with low compute resources. Validating
the findings in the original expression space is key. Scvi-hub can serve as a central gateway to
data repositories, such as CELLxGENE Discover CZI Single-Cell Biology Program et al. (2023),
which allows users to access selected portions of very large datasets (e.g., genes or subpopulations
highlighted by the model-based analysis) for close inspection.
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An important part of the interface between data providers and consumers is the ability to criticize and
make informed decisions about the merits of a given reference data set or model for an application
of interest. To that end, we developed a new suite scvi-criticism, which can serve to validate models
prior to upload as well as for evaluating how well a query dataset fits a reference model. We believe
both are essential for effective transfer learning.

The development of scvi-hub aims to foster a model-driven paradigm in the single-cell data analysis
community, one where models are easy to find, access, develop and share, and can be efficiently
leveraged to analyze various aspects of new and existing datasets. We expect it to become a growing
resource, catering for new types of analyzes, use cases, and data modalities.
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A APPENDIX

A.1 SCVI-HUB PROVIDES EVALUATION PROCEDURES TO SELECT MODELS AND TEST THEIR
SUITABILITY FOR QUERY DATASETS.

Evaluation of model quality is an essential part of scvi-hub. It allows contributors to scrutinize their
models before upload, and consumers to verify that the models that they download are relevant and of
sufficient quality. To achieve this, we developed scvi.criticism - a new module for evaluating models
that were trained with scvi-tools. scvi.criticism implements posterior predictive checks (PPCs),
which compare the distribution generated by the fitted model and the actual observed data Lopez
et al. (2018); Gelman et al. (1996); Gayoso et al. (2021a). To perform PPC, we first sample from
the distribution of the data as predicted by the fitted model and then compute summary statistics
per gene (coefficient of variation and differential expression between prespecified groups of cells)
in this distribution and in the raw data. The PPC consists of measuring the closeness between the
resulting pairs of statistics (raw vs. generated). Close similarity is a standard measure that defines
a well-trained model that is representative of the original data. To demonstrate this, we computed
PPC on the Human Lung Cell Atlas dataset (HLCA), Sikkema et al. (2023) using the scANVI model
provided by the author Xu et al. (2021) that was trained on this data (Fig. 2A-B). We reported the
coefficient of variation, as well as a set of metrics computed based on the results of differential
expression between the author-provided cell-type labels, performed on the predicted data and on the
raw data (Fig. 2D-F). We observed that the data generated by the model fit well to the raw data, e.g.,
identifying similar sets of differentially expressed genes in a one- vs.-all-cell-type comparison.

Model contributors can use scvi.criticism to evaluate the goodness-of-fit of their models, select
among several candidate models (e.g., with different hyperparameters) and optionally include these
evaluations as part of the respective Model Card on Hugging Face. This is particularly useful in the
case where the data are minified, as it provides more confidence in the reliability of the counts gen-
erated by the model in the absence of the full raw counts. To demonstrate this, we used scvi.criticism
to evaluate the goodness of fit of one well-trained and two poorly trained scVI models on the Heart
Cell Atlas dataset Litviňuková et al. (2020) (Supplementary Fig. 1 and Methods). We compared the
cellwise coefficient of variation results computed on the raw data and on the estimated data from
each of the three models. We observe that the well-trained model performs better (higher Pearson
correlation with the raw coefficients of variation) than both poorly trained models. We also report
similarities between the differential expression results calculated on the raw and estimated data from
each of the three models (Supplementary Fig. 1B). We observed, once again, that the well-trained
model performed consistently better than either of the two poorly trained models in most metrics.

Another important use case of scvi.criticism is to evaluate the extent to which a reference model
is apt to analyze a query dataset. To demonstrate this, we created a query dataset consisting of all
epithelial cells from the Tabula Sapiens Jones et al. (2022) project (spanning different tissues) and
used the HLCA pre-trained scANVI model as our reference (i.e., many cell types, but airway only).
We projected the query data set onto the reference model, using the scArches functionality. We
then fed the obtained latent representation of the query data to the generative part of the model after
transfer learning to test whether it is capable of generating gene expression profiles that are similar to
the raw query data (evaluated using scvi.criticism). Reassuringly, we see very good performance in
lung epithelial cells, airway epithelial cells, and epithelial cells from the back of the tongue (arguably
similar to the upper airway epithelium). All of these organs are included in the HLCA reference
dataset. For tissues that are not represented in the HLCA, we find a substantially worse correlation,
indicating that the model does not capture their underlying distribution of gene expression well.
Criticism, therefore, allows us to detect reference models that are well suited for the query dataset
at hand and rely on those for downstream analysis.

B METHODS

B.1 HUBMODEL

Scvi-hub is implemented as a lightweight submodule within scvi-tools (scvi.hub), which provides
an API for uploading and downloading pre-trained models to the Hugging Face Model Hub.
To do so, scvi-hub uses the huggingface hub Python API. The main construct within scvi.hub
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Figure 3: Figure 1: Overview of scvi-hub, depicting the new functionality for model contribution
(purple) and retrieval (teal) that is implemented in scvi-hub, and its placement in an analysis work-
flow. A code snippet is presented for each of the tasks, highlighting the simplicity of this workflow.
The workflow for model deposition (for model contributors) consists of training the model on ref-
erence data, evaluating model fit, minifying the reference data, and uploading the model to the
scvi-hub. The training data (minified or raw) can be uploaded as well, either to Hugging Face or
using any other online storage system (e.g., Zenodo) that can provide a direct link to access the
data. This link is included in the Model card (visible through Hugging Face). The workflow for
model retrieval (for the model consumer) consists of selecting the desired reference on scvi-hub and
using the scvi-hub API for download and analysis. Note that the model consumers do not need to
train a model on the reference data, and can also use the minified reference data instead of the raw
form, thus lowering the current resource barriers (compute power, time and memory) for analysis.
A single line of code switches from the minified version of the data to the full uploaded raw data to
allow further downstream analysis.

is the scvi.hub.HubModel class, which represents a pre-trained scvi-tools model hosted on the
Hugging Face Model Hub. An instance of this class has properties that can be used to load
the model (HubModel.model) and data (HubModel.adata) into memory on demand (i.e. only
when/if the property is invoked). To help with new model creation and upload, we also provide
a scvi.hub.HubModelCardHelper class – which can be used to autogenerate a template Model Card
for a new model to be uploaded to the hub – and a scvi.hub.HubMetadata class which encapsu-
lates metadata required to be uploaded with the model to the hub. Model versioning is built into
scvi-hub via usage of Hugging Face as our storage platform, since Hugging Face Hub Models are
backed by git. Hub users can thus request a specific version of the model at download time via the
revision argument to the pull from huggingface hub function. We additionally support Hub Models
uploaded to an AWS s3 bucket using scvi.hub.HubModel.pull from s3. This allows interacting with
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models that are stored privately inside company buckets or shared with the community without the
requirement to register to HuggingFace.

B.2 DATA MINIFICATION

We allow to store the latent posterior parameters (variance and mean in the latent space for each
cell). This allows for faster generation of estimated gene expression as the inference function of
scvi-tools models is not executed and instead the stored latent posteriors are used for the generative
parts of the models. In addition, we can reduce the size of the data set by removing all count data
from the AnnData object. This is performed by setting all expression values to zero and storing
count objects as a sparse matrix (therefore zero entries in the sparse matrix). We additionally allow
storing latent posteriors without removing the associated count data. A few functions in scvi-tools
rely on computing the reconstruction loss and therefore require access to the full count data. These
functions are not executable after data minification. All code used throughout the manuscript is
compatible with data minification.

B.3 EVALUATION USING scvi.criticism

scvi.criticism is a new submodule in scvi-tools that can be used to efficiently compute model eval-
uation metrics for scvi-tools models. Models must inherit from the scvi’s BaseModelClass class
and implement the posterior predictive sample method, which samples from the generative distri-
bution used by the scvi-tools model such as a negative binomial distribution. The main entry point
for using scvi.criticism is the PPC class, which computes and stores various metrics for the pro-
vided collection of models. The PPC class can be initialized with one or a collection of models (for
instance for model comparison), the raw counts, and a host of configuration options (such as num-
ber of posterior predictive samples to compute). It internally computes and stores a user-provided
number of posterior predictive samples for each model (samples from the generative function of
the model with user-provided library size). A crucial aspect of this package is integrated support
for 3D sparse arrays. As the posterior predictive samples are n cells x n features x n samples
data cubes, their size grows linearly with the size of the dataset and the number of posterior pre-
dictive samples. We use the sparse (https://github.com/pydata/sparse) and xarray
(https://github.com/pydata/xarray) Python packages to store the raw counts and pos-
terior predictive samples in sparse format in memory, and only hydrate the data one batch at a time
(this logic is implemented in the scvi-tools package). Supporting sparse arrays in scvi.criticism
enables efficient evaluation of models trained on large-scale datasets.

Once initialized, the PPC class can be used to compute various metrics on the per-model posterior
predictive samples. The class will store a collection of metrics keyed by metric names where each
entry is a Pandas DataFrame holding results for all models that the class was initialized with.

We implemented the coefficient of variation, which is defined as the standard deviation over genes
or cells divided by the mean over the same axis. Respectively, the user decides whether the metric
is summarized over the different genes or different cells.

To generate Fig. 1C, we instantiated the PPC class with the HLCA raw counts data, the pre-
trained scANVI model, and a value of 2 for the number of posterior predictive samples. The plot
shows the coefficient of variation metric computed across the “features” dimension, using the co-
efficient of variation method of the PPC class. We generated 2D histograms shown along with the
best fit and identity lines. The method also prints out correlation measures (such as R2, Pearson and
Spearman correlations, and mean absolute error) between raw and approximated results. Results
can be stored as an obs column in AnnData.

We implemented the differential expression (DE) metric. For each of the posterior predictive sam-
ples differentially expressed genes are computed separately. The samples are normalized to the li-
brary size and transformed by log1p. We execute scanpy.tl.rank genes groups with a user-provided
column for the cell-types and the respective method for computation, t-test by default. For each sam-
ple, we afterwards compute the F1 score of the top 100 overlapping genes, the mean absolute error
(MAE), Pearson correlation and Spearman correlation between all estimated log2-fold changes and
the AUC under the ROC curve and the average precision score for all genes with a significant p-value
computed on the raw expression (significance threshold - pvalue thresh by default 0.001). Fig. 1D

10

https://github.com/pydata/sparse
https://github.com/pydata/xarray


Machine Learning for Genomics Explorations workshop at ICLR 2024

shows the differential expression metric computed using the differential expression method of the
PPC class, “ann level 3” key for cell types and a pvalue threshold of 0.2. We used the plot diff exp
method of the ppc utils function to generate the box plot shown. In Fig. 1E, we subsetted the dot-
plots to the immune cell subtypes, i.e. those with a cell type label in the following list: ”B cell
lineage”, ”Dendritic cells”, ”Macrophages”,”Mast cells”, ”Monocytes”, ”T cell lineage” and display
the log-2 fold-changes of the respective top 2 marker genes. To generate the dotplots, we used one
sample of the posterior predictive samples.

In Supplementary Fig. 1, we show the results of coefficient of variation (a) and dif-
ferential expression metrics (b) computed on a subset of the heart cell atlas dataset
Litviňuková et al. (2020). We preprocessed the dataset as presented in an scvi-tools tuto-
rial (https://docs.scvi-tools.org/en/stable/tutorials/notebooks/api_
overview.html), then trained three models on the preprocessed data as follows: A model was
trained with the default maximum number of epochs (400) and latent dimensions (10). The second
model was trained with only five epochs (and the default number of latent dimensions), and the third
model was trained with only two latent dimensions (and the default max number of epochs). (a) was
generated in the same way as the 2D histogram shown in Fig. 1C. (b) was generated in a similar
fashion to the Fig. 1D.

In Supplementary Fig. 2, we downloaded all epithelial cells from Tabula Sapiens
(https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5) and used
those cells as query cells for the pre-trained HLCA scANVI model. We set the batch key to the
respective tissue to learn independent transfer mappings for each organ. We computed the CV over
cells separately for each tissue and plotted the results similar to the top plot in Fig. 1C.

B.4 REFERENCE-BASED ANALYSIS

For this analysis, we used the Human Lung Cell Atlas (HLCA) Sikkema et al. (2023) dataset and
its pre-trained scANVI model. We used cellxgene census to download the dataset (implemented in
scvi-tools) and used for all analysis the raw, unnormalized counts. We used scvi-hub to download
the model from the Hugging Face Model Hub. The author-provided UMAP embeddings are used
and Scanpy is used for downstream analysis Wolf et al. (2018). The celltype UMAP is representative
of the “ann level 3” annotations.

B.5 TRANSFER LEARNING ANALYSES

For all models trained using transfer learning, we used following parameters surgery epochs=500
(200 for emphysema dataset), early stopping=True, early stopping monitor=’elbo train’,
early stopping patience=10, early stopping min delta=0.001, weight decay=0.0. For Tabula
sapiens epithelial cells, each tissue was treated as a separate batch inside scANVI to allow com-
parisons between the various organs, while for both the emphysema data set and the cross-organ
immune data set all cells were treated as a single batch.

We used the same HLCA reference model as in Fig. 1 as the reference data, and the data set from
human lung emphysema as the query data. We used the scArches functionality implemented in scvi-
tools to prepare and train a model on the query dataset. We then used the get latent representation
method of the concatenated reference and query dataset to retrieve coordinates of the query data
embeddings in the joint reference/query latent space. To generate Fig. 2A, we computed Scanpy’s
nearest neighbors in the combined latent space using n neighbors=30 and UMAP using min dist=0.3
in the RAPIDS implementation.

We transferred labels to the query dataset by first learning a nearest neighbors index on the latent
space of the reference atlas, using the NNDescent class of the Pynndescent package, and then using
the index to compute a nearest neighbor graph for the query dataset. We then used this graph to
assign to each cell in the query dataset, a predicted cell type based on the reference dataset, along
with a prediction uncertainty (we used the “ann level 3” for the cell type annotation in the refer-
ence dataset). To this end, we converted nearest neighbor distances to affinities, and weighted the
predictions using these affinities (this follows the approach used in the HLCA). For the emphysema
dataset, we only use predictions for the confusion matrices with an uncertainty below 0.4 (4.8% of
cells filtered out for emphysema dataset). For transferring labels from the query dataset to the refer-
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ence dataset, the same function was used but the role of reference and query dataset were replaced.
We used an uncertainty threshold of 0.2 (52.1% of cells filtered out of extended HLCA dataset) for
the confusion matrix.

In Fig. 2C, we display summarized cell-type labels after recomputing UMAP using Scanpy with
n neighbors set to default. In Fig. 2D, we compute differential abundance using Milo between
healthy and diseased cells from the query dataset using 100 neighbors in the latent embedding space,
treating donor id as the sample columns and not correcting for any covariates. Results are displayed
for an FDR ¡ 0.1.

In Fig. 2E, to compute differentially expressed genes, we set idx1 to all fibroblast from diseased
individuals and idx2 to fibroblast from healthy individuals. Fibroblasts were identified as all cells
labeled as Distal fibroblast, Proximal fibroblast or Peribronchial fibroblast in the original publica-
tion. The differential expression function of the HLCA model was used filtering for outlier cells and
correcting the batch. Of note, weighting=’Importance’ requires access to the full expression values
of the reference dataset and was deactivated here. Genes were selected to be expressed with an esti-
mated mean (scale in scvi-tools) of ¿1e-4 in either of both groups. For the volcano plot decoupler-py
was used highlighting the top 20 genes. The mean log-2 fold-changes are displayed on the x-axis
and proba not de on the y-axis. In Fig. 2F, violin plots were created using Scanpy on library-size
normalized and log1p-transformed raw gene expression values. In Supplementary Fig. 3, for PyDE-
Seq2, we used decoupler-py and filtered out all genes with min count=50 and min total count=150
grouped by disease status. Pseudobulks were computed per donor. All genes were used in the top
panel, while for the bottom run we subsetted all genes to the ones incorporated in the reference
model before running PyDESeq2. In Supplementary Fig. 4, we set the batch key to the donor id to
remove additional batch correction from the reasons for outperforming PyDESeq2, we find similar
performance. For the bottom plot, we set unfreeze True during query model training to retrain the
whole network We find worse interpretability of predicted differentially expressed genes. For Fig.
2G, we downloaded all T cells and innate lymphoid cells from CELLxGENE Discover and subset
this object to all cells originating from the lung. Analysis was performed as described above. Labels
were infused to the extended HLCA dataset and confusion matrix is displayed in Fig. 2H. For Fig.
2I, marker genes were hand-selected and expression is displayed using library-size normalized and
log1p raw expression values. For Fig. 2J, we subset to all cells labeled as Tem/Temra CD8 and used
PyDESeq2 without correcting for covariates.

B.6 AVAILABILITY OF DATA AND MATERIALS

We used the Human Lung Cell Atlas (HLCA) dataset in our analysis,
which can be found here (https://cellxgene.cziscience.com/e/
066943a2-fdac-4b29-b348-40cede398e4e.cxg/) and their pre-trained scANVI model
which can be found here (https://zenodo.org/record/6337966/files/HLCA_
reference_model.zip). We provide tutorials for data minification (https://docs.
scvi-tools.org/en/stable/tutorials/notebooks/minification.html), as
well as how to implement this feature for newly developed latent variable models.

As additional single-cell datasets, we used several datasets from CELLxGENE Discover.
Namely we accessed Tabula sapiens data at (https://cellxgene.cziscience.com/e/
53d208b0-2cfd-4366-9866-c3c6114081bc.cxg/) and epithelial cells at (https://
cellxgene.cziscience.com/e/97a17473-e2b1-4f31-a544-44a60773e2dd.
cxg/). The emphysema dataset was downloaded from (https://cellxgene.cziscience.
com/collections/03cdc7f4-bd08-49d0-a395-4487c0e5a168). All files
were downloaded. The cell-type information of AT2 cells was used and the three sepa-
rate datasets were concatenated and treated as one dataset for query analysis. The cross-
tissue immune-cell dataset was downloaded from (https://cellxgene.cziscience.
com/e/ae29ebd0-1973-40a4-a6af-d15a5f77a80f.cxg/). The Heart Cell At-
las was downloaded from (https://cellxgene.cziscience.com/collections/
b52eb423-5d0d-4645-b217-e1c6d38b2e72). The Visium dataset for the prostate was
downloaded from 10X (https://cf.10xgenomics.com/samples/spatial-exp/2.
0.0/Visium_FFPE_Human_Prostate_IF/Visium_FFPE_Human_Prostate_IF_
spatial.tar.gz). All datasets were accessed and used in the version of December 1st, 2023.
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C SUPPLEMENTARY MATERIAL

Supplementary Figure 1: (A) Cell-wise coefficient of variation for 3 different models trained on
the Heart Cell Atlas data: the left model is the base model trained for 400 epochs with 10 latent
dimensions, the middle model is trained for 5 epochs with 10 latent dimensions, the right model
is trained for 400 epochs with 2 latent dimensions. The Pearson correlation coefficient is lower
for both models trained with corrupted parameters. (B) Differential expression based metric with
F1-score of top-100 genes between the different celltypes, second and third Pearson and Spearman
correlation coefficient between all estimated log-2 fold-changes, fourth area under the precision-
recall curve (auPRC). All metrics despite auPRC display a reduced performance for those corrupted
models compared to the default model.
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Supplementary Figure 2: Scvi-criticism detects query data not suited for a reference model. We
trained a query model based on the HLCA reference model using all epithelial cells from Tabula
sapiens. Coefficient of variation is displayed separately for each organ. For lung, trachea and pos-
terior tongue (slightly worse) we find a high correlation of raw and model coefficient of variation.
For all other tissues (top right) we find a much worse capturing of the CV by the trained model.
For bladder, parotid gland, kidney, corneal, anterior tongue and eye there’s no correlation between
the model estimated CV and the raw data CV with the model estimated CV overestimating the raw
data CV. For other organs like prostate gland and exocrine and endocrine pancreas the raw CV is in
general higher than the model estimated CV with a low linear dependency. Of note, highly variable
genes were selected initially based on lung tissue and this causes the small CV for cornea and eye
epithelial cells.
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Supplementary Figure 3: Pseudo-bulk differential expression test does not reveal similarly relevant
differentially expressed genes. (A). Pseudo-bulk DE analysis considering all genes after filtering for
lowly expressed ones. Genes listed as up-regulated are described to be linked with tumorigenesis.
These genes have no specific role in fibroblasts and their role in emphysema remains unclear. (B) We
additionally computed differentially expressed genes after subsetting to the genes used to train the
HLCA model (i.e., the genes that were considered in the model-based DE in Fig. 3). Differentially
expressed genes are enriched in canonical marker genes of other cell-types (GNLY, XCL2 lymphoid
cells; TPSAB1 mast cells; CD163, VSIG4, TMIGD3 in macrophages). They also include genes
associated with P53 signaling such as CREB5, NFATC2, CPA3 and SFRP1, which are expected to
be upregulated in smoking individuals. These genes were also identified with the scvi-tools model-
based analysis.
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Supplementary Figure 4: Ablation study for differential expression function in scvi-tools. Both fig-
ures highlight differentially expressed genes with exactly the same settings as in Fig. 3E. (A) A
query model was trained using the same setting as in Fig. 3E. The batch key in scANVI was set
to the donor ID instead of providing a single batch key to the query model. In the DE function,
we are not using transform batch setting and instead generate the estimated expression using the
original donor IDs. (B) A query model was trained using the same settings as in Fig. 3E. During
scvi.model.SCANVI.load query data, we changed unfrozen=True, meaning that every component in
the reference model is updated based on the query data. Bottom plots displays much more differ-
entially expressed genes, with a high number of genes actually expressed by other cell-types than
fibroblasts (mainly CD8 T cells and plasma cells).
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Kleshchevnikov, Carlos Talavera-López, Lior Pachter, Fabian J Theis, Aaron Streets, Michael I
Jordan, Jeffrey Regier, and Nir Yosef. A python library for probabilistic analysis of single-cell
omics data. Nat. Biotechnol., 40(2):163–166, February 2022.

Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assessment of model fitness via
realized discrepancies. Stat. Sin., 6(4):733–760, 1996.

Y Gernez, R Tirouvanziam, and P Chanez. Neutrophils in chronic inflammatory airway diseases:
can we target them and how? Eur. Respir. J., 35(3):467–469, March 2010.

17



Machine Learning for Genomics Explorations workshop at ICLR 2024

Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol.,
36(5):421–427, June 2018.

Yuhan Hao, Tim Stuart, Madeline Kowalski, Saket Choudhary, Paul Hoffman, Austin Hartman, Avi
Srivastava, Gesmira Molla, Shaista Madad, Carlos Fernandez-Granda, and Rahul Satija. Dictio-
nary learning for integrative, multimodal, and scalable single-cell analysis. February 2022.

Lukas Heumos, Anna C Schaar, Christopher Lance, Anastasia Litinetskaya, Felix Drost, Luke Zap-
pia, Malte D Lücken, Daniel C Strobl, Juan Henao, Fabiola Curion, Single-cell Best Practices
Consortium, Herbert B Schiller, and Fabian J Theis. Best practices for single-cell analysis across
modalities. Nat. Rev. Genet., 24(8):550–572, August 2023.

Robert C Jones, Jim Karkanias, Mark A Krasnow, Angela Oliveira Pisco, Stephen R Quake, Julia
Salzman, Nir Yosef, Bryan Bulthaup, Phillip Brown, William Harper, Marisa Hemenez, Raviku-
mar Ponnusamy, Ahmad Salehi, Bhavani A Sanagavarapu, Eileen Spallino, Ksenia A Aaron,
Waldo Concepcion, James M Gardner, Burnett Kelly, Nikole Neidlinger, Zifa Wang, Sheela
Crasta, Saroja Kolluru, Maurizio Morri, Angela Oliveira Pisco, Serena Y Tan, Kyle J Travaglini,
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