Under review as a conference paper at ICLR 2023

GRASSMANNIAN CLASS REPRESENTATION IN DEEP
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We generalize the class representative vector found in deep classification networks
to linear subspaces and show that the new formulation enables the simultaneous
enhancement of the inter-class discrimination and intra-class feature variation.
Traditionally, the logit is computed by the inner product between a feature and
the class vector. In our modeling, classes are subspaces and the logit is defined
as the norm of the projection from a feature onto the subspace. Since the set of
subspaces forms Grassmann manifolds, finding the optimal subspace representation
for classes is to optimize the loss on a Grassmannian. We integrate the Riemannian
SGD into existing deep learning frameworks such that the class subspaces in a
Grassmannian are jointly optimized with other model parameters in Euclidean.
Compared to the vector form, subspaces have two appealing properties: they can be
multi-dimensional and they are scaleless. Empirically, we reveal that these distinct
characteristics improve various tasks. (1) Image classification. The new formulation
brings the top-1 accuracy of ResNet50-D on ImageNet-1K from 78.04% to 79.37%
using the standard augmentation in 100 training epochs. This confirms that the
representative capability of subspaces is more powerful than vectors. (2) Feature
transfer. Subspaces provide freedom for features to vary and we observed that the
intra-class variability of features increases when the subspace dimensions are larger.
Consequently, the quality of features is better for downstream tasks. The average
transfer accuracy across 6 datasets improves from 77.98% to 80.12% compared to
the strong baseline of vanilla softmax. (3) Long-tail classification. The scaleless
property of subspaces benefits classification in the long-tail scenario and improves
the accuracy of ImageNet-LT from 46.83% to 48.94% compared to the standard
formulation. With these encouraging results, we believe that more applications
could benefit from the Grassmannian class representation. Codes will be released.

1 INTRODUCTION

The idea of representing classes as linear subspaces in machine learning can be dated back, at least,
to 1973 (Watanabe & Pakvasa (1973)), yet it is mostly ignored in the current deep learning literature.
In this paper, we revisit the scheme of representing classes as linear subspaces in the deep learning
context. To be specific, each class 7 is associated with a linear subspace .S;, and for any feature vector
x, the i-th class logit is defined as the norm of projection

l; = Hprojsi:cH) (D

Since a subspace is a point in the Grassmann manifold (Absil et al. (2009)), we call this formulation
the Grassmannian class representation. In the following, we answer the two critical questions,

1. Is Grassmannian class representation useful in real applications?

2. How to optimize the subspaces in training?

The procedure fully-connected layer — softmax — cross—entropy loss is the
standard practice in deep classification networks. Each column of the weight matrix of the fully-
connected layer is called the class representative vector and serves as a prototype for one class. This
representation of class has achieved huge success, yet it is not without imperfections.

Under review as a conference paper at ICLR 2023

In the study of transferable features, researchers noticed a dilemma that representations with higher
classification accuracy on the original task lead to less transferable features for downstream tasks
(Kornblith et al. (2021); Miiller et al. (2019)). This is connected to the fact that they tend to collapse
intra-class variability of representations, resulting in loss of information in the logits about the
resemblances between instances of different classes. Furthermore, the neural collapse phenomenon
(Papyan et al. (2020)) indicates that as training progresses, the intra-class variation becomes negligible,
and features collapse to their class-means. So this dilemma inherently originates from the practice
of representing classes by a single vector. The Grassmannian class representation shed light on this
issue as features of each class are allowed to vary in a high-dimensional subspace without incurring
losses in classification.

In the study of the long-tail classification, researchers found that the norm of class representative
vectors is highly related to the number of training instances in the corresponding class (Kang et al.
(2019)) and the recognition accuracy is affected. To counter this effect, the class representative vector
is typically been rescaled to unit length during training (Liu et al. (2019)) or re-calibrated in an extra
post-processing step (Kang et al. (2019)). In addition to these techniques, the Grassmannian class
representation provides a natural and elegant solution for this as subspace is scaleless.

It is well known that the set of k-dimensional linear subspaces form a Grassmann manifold, so
finding the optimal subspace representation for classes is to optimize on the Grassmann manifold.
Thus for the second question, the natural solution is to use the geometric optimization (Edelman
et al. (1998)), which optimizes an objective function under the constraint of a given manifold.
Points being optimized are moving along geodesics instead of following the direction of Euclidean
gradients. The preliminary concepts of geometric optimization are reviewed in Section 3, and the
technical details of subspace learning are presented in Section 4. We implemented an efficient
Riemannian SGD for optimization in Grassmann manifold as shown in Algorithm 1, which integrates
the geometric optimization algorithms to deep learning frameworks so that both the linear subspaces
in Grassmannian and model weights in Euclidean are jointly optimized.

Going back to the first question, we experiment on three concrete tasks in Section 5 to demonstrate the
practicality and effectiveness of Grassmannian class representation. We find that (1) Grassmannian
class representation improves large-scale image classification accuracy. (2) Grassmannian class
representation produces high-quality features that can better transfer to downstream tasks. (3) Grass-
mannian class representation improves the long-tail classification accuracy. With these encouraging
results, we believe that Grassmannian class representation is a promising formulation and more
applications may benefit from its attractive features.

2 RELATED WORK

Geometric Optimization Edelman et al. (1998) developed the geometric Newton and conjugate
gradient algorithms on the Grassmann and Stiefel manifolds in their seminal paper. Riemannian SGD
was introduced in Bonnabel (2013) with an analysis on convergence and there are variants such as
Riemannian SGD with momentum (Roy et al. (2018)) or adaptive (Kasai et al. (2019)). Other popular
Euclidean optimization methods such as Adam are also studied in the Riemannian manifold context
(Becigneul & Ganea (2019)). Lezcano-Casado & Martinez-Rubio (2019) study the special case of
SO(n) and U(n) and uses the exponential map to enable Euclidean optimization methods for Lie
groups. The idea was generalized into trivialization in Lezcano Casado (2019). Our Riemannian
SGD Algorithm 1 is tailored for Grassmannian, so we have a closed-form equation for geodesics.
Other applications of geometric optimization include matrix completion (Mishra & Sepulchre (2014);
Li et al. (2015b;a); Nimishakavi et al. (2018)), hyperbolic taxonomy embedding (Nickel & Kiela
(2018)), etc. Hamm & Lee (2008) propose the Grassmann discriminant analysis, in which features
are modeled as linear subspaces. These applications are mostly using shallow models. Zhang et al.
(2018) use subspaces to model clusters in unsupervised learning, which share similar spirit with our
work. Simon et al. (2020) model classes as subspaces in few-shot learning, however, their subspaces
are computed from data matrix rather than explicitly parametrized and learned. Roy et al. (2019) use
Stiefel manifold to construct Mahalanobis distance matrix in Siamese networks in order to improve
feature embeddings of deep metric learning.

Under review as a conference paper at ICLR 2023

Orthogonal Constraints in Deep Learning There are works that enforce orthogonality on weights,
which study the regularization effect of orthogonal constraints. Contrastingly, we used orthogonal
matrices as the numerical representation of the geometry object of subspaces and focus on the
representation of classes. The approaches of enforcing orthogonality include regularizations (Arjovsky
et al. (2016); Xie et al. (2017a); Bansal et al. (2018); Qi et al. (2020); Wang et al. (2020), etc.),
geometric constraints (Ozay & Okatani (2018); Harandi & Fernando (2016)) and paraunitary systems
(Su et al. (2022)). Orthogonally constrained data is also explored by Huang et al. (2018).

Improving Diversity in Feature Learning Grassmannian class representation encourages the
intra-class variation implicitly by providing a subspace to vary. In metric learning, there are efforts to
explicitly encourage feature diversity. For example, SoftTriplet Loss (Qian et al. (2019)) models each
class as local clusters with several centers. Zhang et al. (2017) use a global orthogonal regularization
to encourage local descriptors to spread out in the features space. Yu et al. (2020) propose to learn
low-dimensional structures from the maximal coding rate reduction principle. The subspaces are
estimated using PCA on feature vectors after the training. In our formulation, subspaces are directly
optimized in the Grassmann manifold during training.

Normalized Classification Weights Normalizing class representative vectors has been found use-
ful in representation learning (Wang et al. (2017; 2018); Deng et al. (2019)) and long-tail classification
(Liu et al. (2019); Wang et al. (2021)). However, works such as ArcFace (Deng et al. (2019)) focus
on adding an extra margin to suppress intra-class variance. In contrast, our subspace formulation
encourages intra-class variation.

3 PRELIMINARIES

In this section, we briefly review the essential concepts in geometric optimization. Detailed exposition
can be found in Edelman et al. (1998) and Absil et al. (2009). Given an n-dimensional Euclidean
space R", the set of k-dimensional linear subspaces forms the Grassmann manifold G(k,n). A
computational-friendly representation for subspace S € G(k, n) is an orthonormal matrix § € R"*¥,
where ST S = I, and Iy, is the k x k identity matrix. Columns of matrix S can be interpreted as an
orthonormal basis for the subspace S. The matrix representation is not unique, as right multiplying by
an orthonormal matrix will get a new matrix representing the same subspace. Formally, Grassmannian
is a quotient space of the Stiefel manifold and the orthogonal group G(k,n) = St(k,n)/O(k), where
St(k,n) = {X € R"*|XTX = I,;} and O(k) = {X € R***|XT X = I,;}. When the context
is clear, we use the notation of space .S and one of its matrix representations S interchangeably. The
tangent space of the Grassmann manifold at S consists of all n x k matrices T such that STT = 0.

Given a function f : G(k,n) — R defined on the Grassmann manifold, the Riemannian gradient of f
at point S € G(k,n) is given by (Edelman et al., 1998, Equ. (2.70)),
Vf(S)=fs—SS"fs, 2

where fg is the Euclidean gradient with elements (fg);; = %. When performing gradient descend
ij

on the Grassmann manifold, and suppose the current point is .S and the current Riemannian gradient
is G, then the next point is the endpoint of .S moving along the geodesic toward the tangent G with
some step size. The formula of the geodesic is given by (Edelman et al., 1998, Equ. (2.65)),

S(t) = (SV cos(tX) + Usin(tx)) V7, 3)

where USVT = @ is the thin singular value decomposition of G.

4 LEARNING THE GRASSMANNIAN CLASS REPRESENTATION

Denote the weight of the last fully-connected layer in a classification network by W € R"*¢ and
the bias by b € R€, where n is the dimension of features and C is the number of classes. The i-th
column vector w; of W is called the i-th class representative vector. The ¢-th logit is computed as
the inner product between a feature « and the class vector (and optionally offset by a bias b;), namely
wl'x + b;. We extend this well-established formula to a multi-dimensional subspace form

l; := ||projsisr:H , €]

Under review as a conference paper at ICLR 2023

61,2)

wt+1

[

Figure 1: Geometric optimization in Grassmann manifold G(1,2). Each point (e.g. w") in the black circle
represent the 1-dimensional linear subspace passing through it. g is the Riemannian gradient obtained by the
projection of Euclidean gradient d. w’ moves along the geodesic towards the direction g to a new point w'™?.

where S; € G(k,n) is a k-dimensional subspace in the n-dimensional feature space. We call S; the
i-th class representative space, or class space in short. Comparing the new logit to the standard one,
the inner product of feature & with class vector is replaced by the norm of the subspace projection
projg, « and the bias term is omitted. We found that re-normalizing features to a constant length -y

improves training. Incorporating this, Equation (4) becomes ‘

projg, ﬁ ’ To simplify notation, we

assume feature « has been properly re-normalized throughout this paper unless otherwise specified.

The application of the subspace class representation requires two modifications to an existing network.
Firstly, the last fully-connected layer is replaced by its geometric counterpart, which is detailed in
Section 4.1. The new geometric layer will transform features to logits using Equation (4). Secondly,
the optimizer should be extended to process the new geometric layer simultaneously, which is
explained in Section 4.2. Parameters of the geometric layer are optimized using Geometric SGD,
while all other parameters are optimized as usual using the standard SGD algorithm.

4.1 GRASSMANNIAN CLASS REPRESENTATION

Suppose for class i, = 1,2, ..., C, its subspace representation is S; € G(k;, n), where the dimension
k; is a hyperparameter and is fixed during training. Then the tuple of subspaces (51, Sa, ..., S¢) will
be optimized in the product space G(k1,n) X G(ka,n) X - - - X G(kc,n). Denote a matrix instantiation
of S; as S; € R™**_ where the column vectors form an orthonormal basis S;, then we concatenate
the matrices into a big matrix

S =818y --- S¢| € RV kathat-the) (5)

The matrix S contains the parameters that are optimized numerically. For feature x, the product
STz gives the coordinate of proj s, under the orthonormal basis formed by the columns of S;. By
definition in Equation (4), the logit for class ¢ and feature « is computed by

L = [[prois,] = |57 ©

Grassmannian Fully-Connected Layer We can implement a geometric fully-connected layer
using the plain old fully-connected layer. The shape of the weight S'is n x (k1 + ko + --- + k¢), as
shown in Equation (5). In the forward pass, the input feature is multiplied with the weight matrix to
get a temporary vector t = S”z, then the first element of the output is the norm of the sub-vector
(t1,...,tx,), and the second element of the output is the norm of (¢x, 41, tky+2, - - - » thy+k2)s €LC.

Parameter Initialization Each matrix instantiation of the subspace should be initialized as an
orthonormal matrix. The geometric optimization algorithm described in Section 4.2 ensures their
orthonormality during training. Specifically, for Grassmannian fully-connected layer, each block .S;
of the weight S in Equation (5) is orthonormal. The whole matrix S needs not be orthonormal.

4.2 OPTIMIZE THE SUBSPACES

Geometric optimization is to optimize functions defined on manifolds. The key step is to find the
Riemannian gradient of the loss function and then descend along the geodesic. Here the manifold in
concern is the Grassmannian G(k,n). As an intuitive example, G(1, 2) consists of all lines through
the origin in a two-dimensional plane. We can visualize it as a unit circle where each point on the unit
circle represents the line passing through it. Antipodal points represent the same line. To illustrate

Under review as a conference paper at ICLR 2023

Algorithm 1 An Iteration of the Riemannian SGD with Momentum for Grassmannian at Step ¢

Input: Learning rate v > 0, momentum g € [0, 1), Grassmannian weight matrix S®) € R"*%,
momentum buffer M *~1) € R"** Euclidean gradient D € R™**.

1: Compute Riemannian gradient G « (I,, — SST)D. > Equation (8)

2: Approximately parallel transport M to the tangent space of current point S®*) by projection
M « (I, — SST)M (), (11)

3: New momentum M® « uM + G. > PyTorch version

4: Move along geodesic using equation (3). If UXV”T = M®) is the thin singular value decompo-

sition, then
St (S(t)Vcos(ny) + Usin('yE)) VT,

5: (Optional) Re-orthogonalization S**1) by QR decomposition. > For numerical stability

how geometric optimization works, we define a toy problem on G(1,2) that maximizes the norm of
the projection of a fixed vector x(onto a line through the origin, namely

ma rojexol| . 7
slnax [projsol| (7)

As shown in Figure 1, we represent S with a unit vector w € S. Suppose at step ¢, the current point
is w(®), then it is easy to compute that the Euclidean gradient at w® is d = x, and the Riemannian
gradient g is the Euclidean gradient d projected to the tangent space of G(1, 2) at point w®. The next
iterative point w**1) is to move w(®) along the geodesic toward the direction g. Without geometric
optimization, the next iterative point would have lied at w(*) + vd, jumping outside of the manifold.

The following proposition computes the Riemannian gradient we needed.

Proposition 1. Let S € R™"** be a matrix instantiation of subspace S € G(k,n), and x € R" is a
vector in Euclidean space, then the Riemannian gradient G of (S, x) = ||projgx|| w.rt. S is
1

G:
l

(I, — 88T xx”S. (8)

Proof. Rewrite ||projgz|| = Va&TSSTx, and compute the Euclidean derivatives as

ol 1 7 ol 1.7

— == S, —=-SS"=x 9

9 1" x 177 F ©
Then Equation (8) follows from Equation (2). O
We give a geometric interpretation of Proposition 1. Let w; be the unit vector along direction projg,
then expand it to an orthonormal basis of .S, say {w1, ws, ..., wy}. Since Riemannian gradient is
invariant to the matrix instantiation, we can set S = [w; wy --- wg]. Then Equation (8) becomes

G=[(I,-88")z 0 --- 0], (10)
since w; 1 x,i =2,3,...,k and wlz = [. Equation (10) shows that in the single-sample case,

only one basis vector w; needs to be rotated towards vector &, where w; is the unit vector in .S that
is closest to .

Riemannian SGD During training, parameters of non-geometric layers are optimized as usual
using the vanilla SGD algorithm. For geometric layers such as the Grassmannian fully-connected
layer, their parameters are optimized using the Riemannian SGD algorithm. The pseudo-code of
the Riemannian SGD with momentum, which we implemented in our experiments, is described in
Algorithm 1. We only show the code for the single-sample, single Grassmannian case. It is trivial
to extend them to the batch version and the product of Grassmannians. Note that in step 2, we
use projection to approximate the parallel translation of momentum for efficiency, and in step 5 an
optional extra orthogonalization can improve numerical stability. The momentum update formula
is adapted from the PyTorch implementation of the vanilla SGD. Weight decay does not apply here
since spaces are scaleless. Algorithm 1 works together with the vanilla SGD and modifies the gradient
from Euclidean to Grassmannian on-the-fly for geometric parameters.

Under review as a conference paper at ICLR 2023

5 EXPERIMENT

In this section, we study the influence of Grassmannian class representation through experiments.
Firstly, in Section 5.1, we show that the expressive power of Grassmannian class representation
improves accuracy in large-scale image classification. Secondly, in Section 5.2, we show that the
Grassmannian class representation improves the feature transferability by allowing larger intra-class
variation. Thirdly, in Section 5.3, we demonstrated that the scaleless property of the Grassman-
nian class representation improves the classification accuracy in the long-tail scenario. Additional
experiments on hyper-parameter choices and design decisions are presented in Appendix B.

We choose the vanilla softmax loss and the cosine softmax loss (without margin) as baselines since
they reflect the current typical class representations. The former uses a plain vector and the latter
uses a normalized vector. Other innovations on losses, such as adding margins (Deng et al. (2019)),
re-balancing class-wise gradients (Wang et al. (2021)), are orthogonal to our contribution.

5.1 GRASSMANNIAN CLASS REPRESENTATION IMPROVES CLASSIFICATION ACCURACY

We apply the Grassmannian class representation to large-scale classification, where consistent
improvement over baselines is shown. We then analyze the characteristics of both the learned features
and the learned class subspaces. On the feature representation side, we compare the feature sparsity
and intra-class variability. On the class representation side, we visualize the principal angles between
any pair of classes, a concept that only appears when classes are Grassmannian.

Experimental Setting We use the ResNet50-D (He et al. (2019)) architecture as the base model,
and benchmark on ImageNet-1K (Deng et al. (2009)). ResNet50-D is a slight modification of the
original ResNet-50 (He et al. (2016)) with about 1% improvement in accuracy. ImageNet-1K is a
large-scale image classification dataset containing 1.28M training images and 50K validation images
in 1000 categories. We set v = 25 for both cosine softmax and the Grassmannian class representation.
Our method replaces the last fully-connected layer of ResNet50-D by a Grassmannian fully-connected
layer. To reduce the number of hyper-parameters, we simply set the subspace dimension & to be the
same for all classes. We vary the hyper-parameter & in the range [1, 2,4, 8, 16]. Since the dimension
of feature is 2048, the Grassmannian fully-connected layer has the geometry of I1123°G(k, 2048).

Training Strategy All settings share the same training strategy. Each training includes 100 epochs
with total batch size 256 on 8 NVIDIA Tesla V100 GPUs. SGD is used for baselines and Riemannian
SGD described in Algorithm 1 is used for Grassmannian class representations. The momentum
is 0.9 and the weight decay is 0.0001. The initial learning rate is 0.1 and then follows the cosine
learning rate decay. The checkpoint with best validation score is used. The input size is 224 x 224
and we use the standard augmentation for ImageNet, namely, random resized crop followed by
random horizontal flip. The code is implemented using the mmclassification (MMClassification
Contributors (2020)) package, and uses PyTorch as the training backend. Note that to make the
number of experiments tractable due to our limited computation resources, we omitted many tricks
that has shown to improve representation learning, such as stronger augmentation (Cubuk et al.
(2020)), longer training (Wightman et al. (2021)), adding margins (Deng et al. (2019)) etc., and focus
on the improvements solely contributed by the Grassmannian formulation.

Feature Norm Regularization We noticed that the norm of the feature (before re-normalization)
decreases as training progresses (details see Appendix A). For example, in the case of £ = 16, the
average norm of feature decreases from 1.051 at epoch 10 to 0.332 at epoch 100. Although the norm
of the feature does not affect inference result due to the feature re-normalization when computing
logits, we empirically find that encouraging the norm to be larger than a constant L improves the
training. Specifically, we propose a feature norm regularization loss LN,

1 1
LN = — Z 5 (eelu (L= [l (12)

where «; is the feature of the ¢-th sample before normalization and K is the number of features with
norm larger than L. In our experiments, L = 1 and the loss is directly added to the softmax loss

Under review as a conference paper at ICLR 2023

Table 1: ResNet50-D on ImageNet-1K classification dataset, under different logit formulations. The sparsity of
validation features and the variability of training features are listed. FN denotes the feature norm regularization.

. . . Variability Accuracy
Setting Dim Sparsity Intra-Class Inter-Class Topl Top5
Softmax — 0.55 60.12 90.01 78.04 93.89
Cosine Softmax — 77.70 56.87 89.98 78.30 94.07
Grassmannian 1 77.92 56.52 89.98 78.48 94.24
Grassmannian 2 78.96 59.20 89.98 78.92 94.32
Grassmannian 4 78.49 61.25 89.99 78.86 94.34
Grassmannian 8 78.03 63.57 89.99 79.12 94.41
Grassmannian 16 78.12 65.81 90.00 79.21 94.29
Grassmannian + FN 1 33.51 56.32 90.02 78.65 94.24
Grassmannian + FN 8 45.55 63.01 90.02 79.37 94.53

with equal weight. We also tried larger values of L or to regularize the norm of feature on both sides,
however, they degrade the performance.

Results The validation accuracies of different models on ImageNet-1K is listed in Table 1. All
models with the Grassmannian class representation achieve higher top-1 and top-5 accuracies than
the vanilla softmax and the cosine softmax. A general trend is that, with larger subspace dimension k,
the accuracy improvement is greater. When subspace dimension is 16, the top-1 accuracy is 79.21%,
which is 1.17% points higher than the vanilla softmax loss. With feature norm regularization, the
top-1 accuracy further improves from 79.12% to 79.37% for dimension 8.

Intra-Class Variability Increases with Dimension The intra-class variability is measured by the
mean pair-wise angles (in degrees) between features within the same class, and then average over all
classes. The inter-class variability is the average of mean pair-wise angles between features from
different classes. Following the convention in the study of neural collapse (Papyan et al. (2020)), we
use the global centered training feature to compute variabilities. Kornblith et al. (2021) showed that
alternative objectives that improve accuracy, including label smoothing, dropout, sigmoid, cosine
softmax, logit normalization, efc., collapse the intra-class variability in representation, which in
consequence degrades the quality of feature on downstream tasks. However, this conclusion does
not apply when the classes are modeled by subspaces. The intra-class variability does reduces from
baseline’s 60.12 to Grassmannian formulation’s 56.52 when the subspace dimension k£ = 1, however,
as k increases, both the top-1 accuracy and the intra-class variability grow. This indicates that
representing classes as subspaces enables the simultaneous improvement of class discriminative
power and expansion of intra-class variability.

Feature Sparsity The feature sparsity is measured by the average percentage of zero activations
on the validation set. As shown in Table 1, the feature from vanilla softmax networks are very dense,
with only 0.55% zero activations. Cosine softmax and Grassmannian class representations all result
in more sparse representations, with around 78% zero activations. The feature norm regularization
decreases the sparsity about a half.

Principal Angles Between Class Representative Spaces When classes are subspaces, relation-
ships between two classes can be measured by k angles called principal angles, which contain
richer information than a single angle between two class vectors. The principal angles between two
k-dimensional subspaces S and R are recursively defined as (Absil et al. (2006))

cos(f;) = maxmaxs’r = slr;, sts||=|r|=18"s;=rTr;=0,j=1,...,i— 1, (13)
scS reR
fori=1,...,kand 6; € [0, 7/2]. In Figure 2, we illustrate the smallest and largest principal angles

between any pair of classes for a model with £ = 8. From the figure, we can see that the smallest
principal angle reflects class similarity, and the largest principal angle is around 7 /2. A smaller angle
means the two classes are correlated in some directions, and a 7/2 angle means that some directions
in one class subspace is completely irrelevant (orthogonal) to the other class.

Under review as a conference paper at ICLR 2023

(a) (b) (©

Figure 2: Each sub-figure is a heatmap of 1000 x 1000 grids. The color at the i-th row and the j-th column
represent an angle between class ¢ and class j in ImageNet-1K. (a) Pair-wise angles between class vectors of the
ResNet50-D trained by vanilla softmax. Grids with red hue is large than 90°, and blue hue means smaller than

90°. (b) Pair-wise smallest principal angles between 8-dimensional class subspaces of a ResNet50-D model.
Deeper blue colors indicates smaller angles. (c) Pair-wise largest principal angles of the same model as in (b).

Grayish color means they are close to 90°.

Table 2: Linear transfer using SVM. Models are the same as in Table 1. R? is the class separation.

Settin Dim ImageNet Transfer

g Top-1 R? CIFARIO CIFARIO0 Food Pets Cars Flowers Avg.
Softmax — 78.04 0.495 90.79 67.76 72.13 92.49 51.55 93.17 77.98
Cosine Softmax — 7830 0.528 89.34 65.32 64.79 91.68 43.92 87.28 73.72
Grassmannian 78.48 0.534 89.62 64.40 64.94 91.91 4349 84.67 73.17

1
Grassmannian 2 78.92 0.493 89.71 66.33 66.08 91.44 45.11 87.81 74.41
Grassmannian 4 78.86 0.463 90.01 67.72 67.68 91.68 50.49 88.64 76.04
Grassmannian 8 79.12 0.429 90.63 68.25 69.85 91.83 51.83 94.06 77.74
Grassmannian 16 79.21 0.395 90.74 68.98 T71.17 92.18 56.15 93.36 78.76

Grassmannian + FN 1 78.65 0.541 90.20 67.58 69.07 92.02 53.45 94.49 77.80
Grassmannian + FN 8 79.37 0.439 91.31 69.67 72.46 92.59 58.91 95.77 80.12

5.2 GRASSMANNIAN CLASS REPRESENTATION IMPROVES FEATURE TRANSFERABILITY

In this section we compare the linear transferability of the features learned by different models
trained on the ImageNet-1K dataset. The feature transfer benchmark dataset includes CIFAR-10
(Krizhevsky et al. (2009)), CIFAR-100 (Krizhevsky et al. (2009)), Food-101 (Bossard et al. (2014)),
Oxford-IIIT Pets (Parkhi et al. (2012)), Stanford Cars (Krause et al. (2013)), and Oxford 102
Flowers (Nilsback & Zisserman (2008)). For each of the transfer dataset, we use the same trained
models as in Table 1 to extract their features. Then all features are normalized to unit length. We
fit linear SVM with one-vs-rest multi-class policy on the training set, and report the accuracies
on their test set. The regularization hyper-parameter for SVM is grid searched with candidates
[0.1,0.2,0.5,1,2,5,10, 15, 20] and determined by five-fold cross-validation on the training set.

Results As shown in Table 2, the cosine softmax and the Grassmannian with subspace dimension
k = 1 has comparable transfer performance, but both are lower than the vanilla softmax. However,
when the subspace dimension increases, the transfer performance gradually improves, and when
k = 16, the transfer performance is on par with vanilla softmax. The feature norm regularization
improves the transfer quality, as shown in the £ = 1, 8 cases. We hypothesize that this might relate to
the fact that features with norm regularization are less sparse, so more information are encoded.

Class Separation The class separation is measured by the index R?, which is defined as one minus
the ratio of the average intra-class cosine distance to the overall average cosine distance (Kornblith
etal., 2021, Eq. (11)). Kornblith et al. (2021) found that greater class separation R? is associated with
less transferable features. This may explain the feature transfer performance of Grassmannian class

110

105

- 100

F 95

r 90

-85

- 80

75

70

Under review as a conference paper at ICLR 2023

Table 3: Long-tail classification on ImageNet-LT. Test accuracies are shown.

Base Model Dim Many(> 100) Medium(20-100) Few(< 20) Overall
Softmax — 65.42 40.64 15.97 46.83
Cosine Softmax — 67.16 42.37 16.87 48.45
Grassmannian 1 67.70 42.87 17.22 48.94
Grassmannian 2 67.75 42.75 15.44 48.66
Grassmannian 4 68.02 40.82 12.88 47.49
Grassmannian 8 67.78 37.60 10.88 45.59

representations. The vanilla softmax has lower separation (0.495) compared to the cosine softmax
(0.528) and the Grassmannian class representation with subspace dimension £ = 1 (0.534). From
subspace dimension k = 1 to k = 16, the separation from Grassmannian models decreases from a
high value (0.534) to a low value (0.395). The change in class separation is roughly in line with the
change of transfer performances.

5.3 SCALELESS OF SUBSPACE IMPROVES LONG-TAIL RECOGNITION

We benchmark its effectiveness in long-tail classification using the ImageNet-LT dataset (Liu et al.
(2019)). ImageNet-LT is a subset of ImageNet-1K, where the number of images per class ranges
from 5 to 1280. There are totally 115.8K images, roughly 1/10 the size of ImageNet-1K. We use the
same ResNet50-D networks as in Section 5.1. All training settings including optimizer, augmentation,
initial learning rate are also kept the same except we modify the total epochs to 200 and the learning
rate is decayed by 1/10 at epoch 150, 180, and 195. The last checkpoint is used for evaluation. We
use the instance-balanced sampling, as it was reported by Kang et al. (2019) that class-balanced
sampling, and square-root sampling both degrade the performance.

We report the top-1 accuracies on the test set in Table 3. We find that both the cosine softmax and the
Grassmannian class representation with small subspace dimension improve the long-tail classification
accuracy. Specifically, the cosine softmax is 1.62% higher in score compared to the vanilla softmax,
and the Grassmannian class representation with subspace dimension k& = 1 is 2.11% higher in score
compared to the vanilla softmax. However, when the subspace dimension increases, the accuracy
drops. We notice that for few-shot classes, there are not enough sample to learn a good higher
dimensional subspace for its representation, as the accuracy of few-shot classes degrade significantly
when dimension are large. Too few training data for a class is an example scenario when larger
dimension does not offer much help.

6 LIMITATION AND FUTURE DIRECTION

One problem that remains open is how to choose the optimal dimension. Currently, we treat it as
a hyper-parameter and decide it through experiments. Computational side, geometric optimization
incurs some computational overhead since it contains SVD decomposition. This might hinder the
training speed when k£ is very large. The Grassmannian class representation allows for greater
intra-class variability, but we did not explicitly promote the intra-class variability in any form. It
will be very interesting to explore ways to explicitly encourage intra-class variability. For example,
a potential way is to combine it with self-supervised learning. We hope our work would stimulate
progress in these directions.

7 CONCLUSION

In this work, we proposed to use linear subspaces as the class prototype in deep neural networks.
The geometric structure of the related Grassmannian fully-connected layer and the Grassmannian
convolutional layer are products of Grassmannian. We optimize the subspaces using geometric
optimization and provide an efficient Riemannian SGD implementation tailored for Grassmannians.
We apply the new formulation to large-scale image classification, feature transfer, and long-tail
classification tasks. Experiments demonstrate that the new Grassmannian class representation is able
to improve performances in these settings.

Under review as a conference paper at ICLR 2023

REFERENCES

P-A Absil, Alan Edelman, and Plamen Koev. On the largest principal angle between random
subspaces. Linear Algebra and its applications, 414(1):288-294, 2006.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120-1128. PMLR, 2016.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regu-
larizations in training deep networks? Advances in Neural Information Processing Systems, 31,
2018.

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rleiqgi09K7.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. /EEE Transactions on
Automatic Control, 58(9):2217-2229, 2013.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446—461. Springer,
2014.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702-703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4690-4699, 2019.

Alan Edelman, Tomas A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303-353, 1998.

Jihun Hamm and Daniel D Lee. Grassmann discriminant analysis: a unifying view on subspace-based
learning. In Proceedings of the 25th international conference on Machine learning, pp. 376-383,
2008.

Mehrtash Harandi and Basura Fernando. Generalized backpropagation,\’{E} tude de cas: Orthogo-
nality. arXiv preprint arXiv:1611.05927, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 558-567, 2019.

Zhiwu Huang, Jiging Wu, and Luc Van Gool. Building deep networks on grassmann manifolds. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis

Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

10

https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7

Under review as a conference paper at ICLR 2023

Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gradient
algorithms on matrix manifolds. In International Conference on Machine Learning, pp. 3262-3271.
PMLR, 2019.

Simon Kornblith, Ting Chen, Honglak Lee, and Mohammad Norouzi. Why do better loss functions
lead to less transferable features? In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=8twKpG5s8Qh.

Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. Collecting a large-scale dataset of
fine-grained cars. 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. Advances in
Neural Information Processing Systems, 32, 2019.

Mario Lezcano-Casado and David Martinez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on
Machine Learning, pp. 3794-3803. PMLR, 2019.

Zhizhong Li, Deli Zhao, Zhouchen Lin, and Edward Y. Chang. Determining step sizes in geometric
optimization algorithms. In 2015 IEEE International Symposium on Information Theory (ISIT), pp.
1217-1221, 2015a. doi: 10.1109/ISIT.2015.7282649.

Zhizhong Li, Deli Zhao, Zhouchen Lin, and Edward Y. Chang. A new retraction for accelerating
the riemannian three-factor low-rank matrix completion algorithm. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2015b.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537-2546, 2019.

Bamdev Mishra and Rodolphe Sepulchre. R3mc: A riemannian three-factor algorithm for low-rank
matrix completion. In 53rd IEEE Conference on Decision and Control, pp. 1137-1142, 2014. doi:
10.1109/CDC.2014.7039534.

MMClassification Contributors. OpenMMLab’s Image Classification Toolbox and Benchmark, 7
2020. URL https://github.com/open-mmlab/mmclassification.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances
in neural information processing systems, 32, 2019.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International Conference on Machine Learning, pp. 3779-3788. PMLR,
2018.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722-729. IEEE, 2008.

Madhav Nimishakavi, Pratik Kumar Jawanpuria, and Bamdev Mishra. A dual framework for low-rank
tensor completion. Advances in Neural Information Processing Systems, 31, 2018.

Mete Ozay and Takayuki Okatani. Training cnns with normalized kernels. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652-24663, 2020.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498-3505. IEEE, 2012.

11

https://openreview.net/forum?id=8twKpG5s8Qh
https://openreview.net/forum?id=8twKpG5s8Qh
https://github.com/open-mmlab/mmclassification

Under review as a conference paper at ICLR 2023

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for
visual recognition. In International Conference on Machine Learning, pp. 7824-7835. PMLR,
2020.

Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric
learning without triplet sampling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6450-6458, 2019.

Soumava Kumar Roy, Zakaria Mhammedi, and Mehrtash Harandi. Geometry aware constrained
optimization techniques for deep learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4460—4469, 2018.

Soumava Kumar Roy, Mehrtash Harandi, Richard Nock, and Richard Hartley. Siamese networks:
The tale of two manifolds. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3046-3055, 2019.

Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. Adaptive subspaces for
few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4136-4145, 2020.

Jiahao Su, Wonmin Byeon, and Furong Huang. Scaling-up diverse orthogonal convolutional networks
by a paraunitary framework. In International Conference on Machine Learning, pp. 20546-20579.
PMLR, 2022.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere
embedding for face verification. In Proceedings of the 25th ACM international conference on
Multimedia, pp. 1041-1049, 2017.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5265-5274, 2018.

Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.

9695-9704, 2021.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11505-11515, 2020.

Satosi Watanabe and Nikhil Pakvasa. Subspace method of pattern recognition. In Proc. Ist. IJCPR,
pp. 25-32, 1973.

Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training
procedure in timm. In NeurlPS 2021 Workshop on ImageNet: Past, Present, and Future, 2021.
URL https://openreview.net/forum?id=NG6MJInV16M5.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176-6185,
2017a.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=NG6MJnVl6M5

Under review as a conference paper at ICLR 2023

Table 4: Validation accuracy of Grassmannian ResNet50-D on ImageNet with different retractions.
The first two rows are two implementations of Riemannian SGD, while the third row is the vanilla
SGD without any manifold constraints.

Setting Dim Optimization Retraction Topl Top5
Grassmannian 8 RSGD Algorithm 1 Move along geodesic 79.12 94.41
Grassmannian 8 RSGD Algorithm 1 variant Retraction via QR 79.13 94.45
Unconstrained 8 SGD None 78.55 94.18

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492—-1500, 2017b.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction. Advances in
Neural Information Processing Systems, 33:9422-9434, 2020.

Tong Zhang, Pan Ji, Mehrtash Harandi, Richard Hartley, and Tan Reid. Scalable deep k-subspace
clustering. In Asian Conference on Computer Vision, pp. 466—481. Springer, 2018.

Xu Zhang, Felix X Yu, Sanjiv Kumar, and Shih-Fu Chang. Learning spread-out local feature
descriptors. In Proceedings of the IEEE international conference on computer vision, pp. 4595—
4603, 2017.

A TECHNICAL DETAILS

Alternative Implementation of Riemannian SGD The step 4 of Algorithm 1 is called retraction
in geometric optimization. There are alternative implementations of retraction other than moving
parameters along the geodesic. For example, replace step 4 with the Euclidean gradient update and
followed by the re-orthogonalization via QR decomposition in Step 5. The subspace parameter may
move away from the Grassmannian after the Euclidean gradient update, but it will be pulled back
to the manifold after the QR re-orthogonalization (details see Absil et al. (2009, Equ. (4.11))). For
ease of reference, we call this version of Riemannian SGD as “Algorithm 1 variant”. We compare the
two implementations in the first two rows of Table 4. The results show that the Grassmannian class
representation is effective on both versions of Riemannian SGD.

Necessity of Grassmannian Formulation and Geometric Optimization To show that the neces-
sity of constraining the subspace parameters to lie in the Grassmannian, we replace the Riemannian
SGD with the vanilla SGD and compare it with Riemannian SGD. Note that with SGD, the logit
formula || ST z|| no longer means the projection norm because S; is not orthogonal anymore. The
result is shown at the third row of Table 4, from which we observe a significant performance drop for
the unconstrained setting.

Numerical Stability of Algorithm 1 The numerical stability issue is caused by the accumulation
of tiny computational errors of Equation (3). After many iterations, the resultant matrix S might
not be perfectly orthogonal. For example, after 100, 1000, and 5000 iterations of the Grassmannian
ResNet50-D with subspace dimension k = 8, we observed that the error max;||S] S; — I is
1.9e-5, 9.6e-5 and 3.7e-4, respectively. After 50 epochs, the error accumulates to 0.0075. One can
run step 5 every 100 iterations to keep the error at low level and the computational cost is neglectable.
For this reason, we marked this step as “optional”.

Decreasing Feature Norm During Training We show the changes of average norm on the valida-
tion set of ImageNet from epoch 10 to epoch 100 in Figure 3. The subspace dimension k = 16.

13

Under review as a conference paper at ICLR 2023

10 20 30 40 50 60 70 80 90 100
Epoch

Figure 3: The average norm of features on the validation set. The error bar shows the std of norms.

Table 5: Validation accuracy of Grassmannian ResNet50-D on ImageNet with varying ~y. Different
from other experiments, this set of comparison was conducted using the step learning schedule.

Setting Dim Lr Schedule ~ Topl Top5
Grassmannian 8 Step 16 7827 93.87
Grassmannian 8 Step 20 78.55 94.05
Grassmannian 8 Step 25 78.71 94.11
Grassmannian 8 Step 32 78.47 94.07

B HYPER-PARAMETERS AND DESIGN DECISIONS

Choice of Gamma We use v = 25 throughout the main text. Here we give more results with
different choice of v when subspace dimension k¥ = 8 in Table 5. Due to that we conducted this set
of experiments in early exploration stage, the learning rate decay policy is to divide by 10 at epochs
30, 60 and 90, which is different from our main results using the cosine learning rate schedule. The
top-1 accuracy is slightly lower than the cosine learning rate counter part. Other training settings
such as augmentation are the same as in Table 1.

Importance of Re-Normalizing Features Re-normalizing the feature is critical to effectively learn
the class representative subspaces. Below we provide training results without feature re-normalization
in Table 6. There are significant performance drop without re-normalization. For reference, the cosine
softmax also requires feature re-normalization for effective learning.

Importance of Joint Training Joint training the subspaces and the features is essential. To support
this claim, we add an experiment that only fine-tunes the class subspaces from weights pre-trained
using the regular softmax (third row of Table 7). For comparison, we also add another experiment
that fine-tunes all parameters (fourth row of Table 7). We find that if the feature is fixed, changing the
regular fc to the geometric version does not increase performance noticeably (top-1 from 78.04% to
78.14%). But when all parameters are free to learn, the pre-trained weights is a better initialization
than the random initialization (top-1 from 79.12% to 79.44%).

More Results of FN We present more results using the feature norm regularization trick in Table 8.
From the results, we observe that FN also works for the baseline Cosine Softmax. For Grassmannian
+ FN, the performance reaches peak at dimension £ = 8 and then decreases when k = 16.

Stronger Augmentation Improves Accuracy Generally speaking, stronger augmentation miti-
gates the overfitting problem and benefits models with larger capacity. To demonstrate the effect of
stronger augmentations, we run experiments using RandAug (Cubuk et al. (2020)) in Table 9. We can
see that stronger augmentation indeed further increases the accuracy. Together with longer training
and SyncBN, the top-1 accuracy for ResNet50-D reaches 80.17%.

14

Under review as a conference paper at ICLR 2023

Table 6: Compare the validation accuracy of Grassmannian ResNet50-D on ImageNet with/without
re-normalization.

Setting Dim Re-Normalization Topl Top5
Grassmannian 1 v 78.48 94.24
Grassmannian 1 77.91 93.78
Grassmannian 8 v 79.12 94.41
Grassmannian 8 78.12 93.90

Table 7: Validation accuracy of ResNet50-D on ImageNet trained with fine-tuning. Models of the
last two rows are initialized using the weights from the first row.

Setting Dim Initialization Fine-Tune Topl Top5
Softmax — Random — 78.04 93.89
Grassmann 8 Random — 79.12 94.41
Grassmann 8 Weights trained using softmax Only last layer 78.14 93.97
Grassmann 8 Weights trained using softmax All parameters 79.44 94.58

C MORE BASELINES

We have compared the proposed method with vanilla softmax and the cosine softmax the main text. In
this section we compare with baselines that use the same amount of parameters, and run experiments
on different network structures.

Multi-FC We add multiple classification fc layer to the network. During training, these independent
fcs are trained side by side, and their losses are averaged. During testing, the logits are first averaged,
and then followed by softmax to output the prediction probability.

SoftTriple In the SoftTriple loss (Qian et al. (2019)), each class is modeled by multiple centers.
The logit is a weighted average of logits computed from individual class centers. We adapted the
official code into our codebase to train on the ImageNet dataset. The recommended parameters are
used. Specifically, A =20,y =0.1,7 = 0.2 and 6 = 0.01.

For the above two settings, we use the same training protocols as in Table 1. Results are shown in
Table 10, from which we find that the Grassmannian class representation is the most effective one.

More Architectures We show experiments on ResNet101-D and ResNeXt (Xie et al. (2017b)) in
Table 11. The training settings are the same as in Table 1, namely, we use the standard augmentation,
cosine learning rate schedule, and train for 100 epochs. The results show that our formulation is
effective across different model architectures.

D TRAINING SPEED AND SVD SPEED

During inference, the computational cost is K times the vanilla softmax. Since it is mostly matrix
multiplication, the GPU acceleration can speed up even further. For example, on a V100 GPU, the
average time of multiplying a 1000 x 2048 matrix with a 2048 dimensional vector is 20 & 2.9us,
while multiplying an 8000 x 2048 matrix with a 2048 dimensional vector takes about 105 4 7.6 s.
The cost is neglectable compared to the network forward time.

During training, the most costly operation in Algorithm 1 is SVD. We measure the actual iteration
time during training in Table 12. We observe that when K is small, it is as fast as the vanilla softmax.
When k£ = 8, the full training needs roughly 1.7x time compared to vanilla softmax (this can be
reduced greatly with the new version of PyTorch, as we will discuss below).

Since the release of PyTorch 1.13, they supported the fast approximate SVD algorithm GESVDA.
We saw great speed improvement in the case of £k = 8 and & = 16. The benchmark time is shown

15

Under review as a conference paper at ICLR 2023

Table 8: Validation accuracy of ResNet50-D on ImageNet with FN regularization.

Setting Dim Topl Top5

Cosine Softmax + FN — 78.64 94.24
Grassmannian + FN 1 78.65 94.24
Grassmannian + FN 2 7887 94.43
Grassmannian + FN 4 79.10 94.58
Grassmannian + FN 8 79.37 94.53
Grassmannian + FN 16 79.09 94.37

Table 9: Validation accuracy of ResNet50-D on ImageNet with stronger augmentation and longer
training. SyncBN also improves accuracy.

Setting Dim Augmentation SyncBN Epochs Topl Top5
Softmax — Standard 100 78.04 93.89
Softmax — RandAug v 100 78.04 94.05
Cosine Softmax — Standard 100 78.30 94.07
Cosine Softmax — RandAug v 100 78.95 94.55
Grassmannian 8 Standard 100 79.12 9441
Grassmannian 8 RandAug 100 79.32 94.46
Grassmannian 8 RandAug v 100 79.49 94.64
Grassmannian 8 RandAug 300 79.91 94.87
Grassmannian 8 RandAug v 300 80.03 94.77
Grassmannian 16 Standard 100 79.21 94.29
Grassmannian 16 RandAug v 100 79.53 94.58
Grassmannian 16 RandAug v 300 80.17 94.93

in Table 13. With computational optimizations as such, we expect the computational cost of SVD
would be minimal for £ < 32.

E PYTORCH CODE FOR RIEMANNIAN SGD

We provide a sample implementation of Algorithm 1 in Figure 4 using PyTorch (Paszke et al. (2019)).
The sample code checks if a parameter is geometric by checking whether it has an ‘geometry’
attribute. If not, then it runs the original SGD on that parameter. If the ‘geometry’ property is not
None, then it is a list of numbers indicating the dimension of class representative subspaces for all
classes. If all the dimensions are the same, then it goes to the batch version (line 23 of the code in
Figure 4). Otherwise, it goes to the for loop version (line 46 of the code in Figure 4).

16

Under review as a conference paper at ICLR 2023

Table 10: Validation accuracy of ResNet50-D on ImageNet trained with Grassmannian, Multi-FC
and SoftTriple. They use the same amount of parameters to represent a class.

Setting Class Parameters Topl Top5
Grassmannian k£ = 8 dimensional subspaces 79.12 94.41
Multi-FC 8 fc classification layers 77.34 93.65
SoftTriple 8 centers for each class 75.55 92.62

Table 11: Validation accuracy of ResNet101-D and ResNeXt50 on ImageNet.

Architecture Setting Dim Topl Top5
ResNeXt50 Softmax — 78.02 93.98
ResNeXt50 Grassmannian 8 79.00 94.28
ResNet101-D Softmax — 79.32 94.62

ResNet101-D Grassmannian 8 80.03 94.81

Table 12: Average iteration time (forward + backward) during training on 8xV100 server. The
PyTorch version used in this table is 1.11.0. The SVD step is computed on CPU due to PyTorch
performance regression prior to version 1.13.0.

Setting Dim Avg. Iter Time (ms)
Softmax — 147
Cosine Softmax — 150
Grassmann 1 149
Grassmann 2 145
Grassmann 4 177
Grassmann 8 256
Grassmann 16 449

Table 13: SVD time with Approximation on Nvidia GeForce GTX 1080 Ti using PyTorch 1.13.0.
The tested matrix has shape (num classes, feature dimension, subspace dimension). The numbers
should be smaller when running on more powerful devices such as V100.

Matrix Size CPU (ms) GPU (ms) GPU+GESVDA (ms)
1000 x 2048 x 1 3.1 117.7 41.3
1000 x 2048 x 2 8.2 196.8 41.1
1000 x 2048 x 4 18.9 366.3 41.8
1000 x 2048 x 8 80.5 495.1 45.2
1000 x 2048 x 16 211.9 627.1 55.4
1000 x 2048 x 32 640.3 834.9 92.5

17

Under review as a conference paper at ICLR 2023

[JCN J

1 def _single_tensor_rsgd(params: List[Tensor], d_p_list: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], *,
2 weight_decay: float, momentum: float, lr: float, dampening: float, maximize: bool):
3

4 for i, param in enumerate(params):

5 d_p = d_p_list[i]

6 if weight_decay != © and not hasattr(param, 'geometry'):

7 d_p = d_p.add(param, alpha=weight_decay)

8 if momentum != 0:

9 buf = momentum_buffer_list[i]

10 if buf is None:

11 buf = torch.clone(d_p).detach()

12 momentum_buffer_list[i] = buf

13 else:

14 # new momentum (step 3 in Alg. 1)

15 buf.mul_(momentum).add_(d_p, alpha=1 - dampening)

16 d_p = buf

17

18 alpha = 1r if maximize else -1r

19 buf = momentum_buffer_list[i]

20

21 if hasattr(param, 'geometry'):

22 # geometric SGD for parameters with 'geometry' attribute

23 if len(np.unique(param.geometry)) == 1:

24 # batch version

25 subdim = param.geometry[0]

26 featdim = param.size(1)

27 # reshape

28 batch_p = param.reshape(-1, subdim, featdim).permute([0, 2, 1])

29 batch_d_p = d_p.reshape(-1, subdim, featdim).permute([0, 2, 1])

30 batch_m = buf.reshape(-1, subdim, featdim).permute([0, 2, 1])

31 # euclidean grad to riemannian grad (equation (10) and (13))

32 batch_g = batch_d_p - batch_p @ (batch_p.permute([0, 2, 1]) @ batch_d_p)
33 # update momentum

34 buf.add_(batch_g.permute([©, 2, 1]).reshape(-1, featdim) - buf)

35 # svd

36 (batch_U, batch_s, batch_Vt) = torch.linalg.svd(batch_g, full_matrices=False)
37 # new parameter by moving along geodesic

38 new_batch_p = (

39 (batch_p @ batch_Vt.permute([©, 2, 1])) * torch.cos(alpha * batch_s).reshape(-1, 1, subdim) +
40 batch_U * torch.sin(alpha * batch_s).reshape(-1, 1, subdim)) @ batch_Vt
41 # qr decomposition

42 new_batch_p = torch.linalg.qr(new_batch_p).Q

43 # update param

a4 param.add_(new_batch_p.permute([@, 2, 1]).reshape(-1, featdim) - param)
45 else:

46 # general case

47 dims = [@, *np.cumsum(param.geometry)]

48 for ¢, cc in zip(dims[:-1], dims[1:]):

49 # reshape

50 p = param[c:cc].T

51 d = d_p[c:cc].T

52 m = buf[c:cc].T

53 # euclidean grad to riemannian grad (equation (10) and (13))

54 g=d-p@(p.T@d)

55 # update momentum

56 m.add_(g - m)

57 # svd

58 (U, s, Vt) = torch.linalg.svd(g, full_matrices=False)

59 # new parameter by moving along geodesic

60 new_p = torch.cat((p @ Vt.T, U), 1) @ torch.cat(

61 (torch.diagflat(torch.cos(alpha * s)), torch.diagflat(torch.sin(alpha * s))), ©) @ Vt
62 # qr decomposition

63 new_p = torch.linalg.qr(new_p).Q

64 # update param

65 p.add_(new_p - p)

66 else:

67 # original SGD

68 param.add_(d_p, alpha=alpha)

69

Figure 4: Pytorch implementation of the Riemannian SGD of Algorithm 1. The function shown in
this figure is the core part. To make it runnable, one can copy an implementation of SGD (https://
github.com/pytorch/pytorch/blob/master/torch/optim/sgd.py), and replace
the _single_tensor_sgd () function with _single_tensor_rsgd () shown above.

18

https://github.com/pytorch/pytorch/blob/master/torch/optim/sgd.py
https://github.com/pytorch/pytorch/blob/master/torch/optim/sgd.py

	Introduction
	Related Work
	Preliminaries
	Learning the Grassmannian Class Representation
	Grassmannian Class Representation
	Optimize the Subspaces

	Experiment
	Grassmannian Class Representation Improves Classification Accuracy
	Grassmannian Class Representation Improves Feature Transferability
	Scaleless of Subspace Improves Long-tail Recognition

	Limitation and Future Direction
	Conclusion
	Technical Details
	Hyper-parameters and Design Decisions
	More Baselines
	Training Speed and SVD Speed
	Pytorch Code for Riemannian SGD

