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ABSTRACT

Post-training model pruning is a promising solution, yet it faces a trade-off: simple
heuristics that zero weights are fast but degrade accuracy, while principled joint
optimization methods recover accuracy but are computationally infeasible at modern
scale. One-shot methods such as SparseGPT offer a practical trade-off in optimality
by applying efficient, approximate heuristic weight updates. To close this gap, we
introduce OPTIMA, a practical one-shot post-training pruning method that balances
accuracy and scalability. OPTIMA casts layer-wise weight reconstruction after mask
selection as independent, row-wise Quadratic Programs (QPs) that share a common
layer Hessian. Solving these QPs yields the per-row globally optimal update with
respect to the reconstruction objective given the estimated Hessian. The shared-Hessian
structure makes the problem highly amenable to batching on accelerators. We
implement an accelerator-friendly QP solver that accumulates one Hessian per layer
and solves many small QPs in parallel, enabling one-shot post-training pruning at
scale on a single accelerator without fine-tuning. OPTIMA integrates with existing
mask selectors and consistently improves zero-shot performance across multiple LLM
families and sparsity regimes, yielding up to 2.53% absolute accuracy improvement.
On an NVIDIA H100, OPTIMA prunes a 8B-parameter transformer end-to-end in
40 hours with 60 GB peak memory. Together, these results set a new state-of-the-art
accuracy-efficiency trade-offs for one-shot post-training pruningﬂ

1 INTRODUCTION

Large language models (LLMSs) deliver unprecedented capabilities across a wide array of natural language
tasks (Team et al., [2024a; |Comanici et al., [2025; [Touvron et al., 2023} /Guo et al., [2025). However, their
rapidly growing parameter counts create severe compute and memory burdens that complicate deployment
and inference. Post-training one-shot pruning (Hoefler et al., [2021)), which removes parameters from
a pretrained model with only a small calibration dataset, promises to reduce these costs, yet it faces a
fundamental trade-off: very fast, heuristic schemes that simply zero weights (e.g., Wanda (Sun et al.; 2023)
and ProxSparse (Liu et al., 2025)) are cheap but often incur noticeable accuracy losses, while principled
second-order approaches (e.g., Optimal Brain Surgeon (Hassibi et al.l |1993))) recover accuracy but are
computationally infeasible at modern LLM scales. One-shot approximations such as SparseGPT (Frantar
& Alistarhl 2023)) and related heuristics (Ilin & Richtarik] [2025)) try to navigate this middle ground, but
they sacrifice reconstruction optimality and therefore leave headroom in accuracy.

In this paper we introduce OPTIMA, a practical one-shot post-training pruning framework that closes much
of this gap by combining principled optimality with accelerator-grade efficiency. The core idea is a precise
reformulation of the layer-wise reconstruction step that follows mask selection. That is, after fixing a binary
mask for a weight matrix, the reconstruction (least-squares) objective decomposes across rows and each
row’s update can be written as a small quadratic program (QP). Crucially, every row in the same layer shares
the same Hessian matrix H = X " X, while the linear constraints differ only according to which entries
the mask removes. This shared-Hessian, row-wise QP structure yields two immediate benefits: (1) per-row
global optimality for the reconstruction objective (given the estimated Hessian), and (2) uniform problem
structure that enables massive batching and parallelism on off-the-shelf ML accelerators (GPUs/TPUs).

'The code and data for OPTIMA is available at https://anonymous.4open.science/t/OPTIMA-ICLR2026
2For a more detailed discussion of the related work, see §


https://anonymous.4open.science/r/OPTIMA-ICLR2026
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Figure 1: OPTIMA generates a shared Hessian among the different rows of the pruned weight using a small calibration
dataset. Then, the weights in different rows will be updated in parallel using a QP solver and the shared Hessian.

Realizing this formulation in practice requires careful numerical and systems engineering. We adopt a
first-order primal-dual QP solver ({APDHG (Lu & Yang, [2023))) that is well-suited to our constrained
problems and whose critical operations reduce to matrix—vector products with the shared Hessian. This
makes the inner loops extremely efficient on accelerators. We further avoid explicit dense equality matrices
by enforcing fixed entries via tight bounds, accumulate layer Hessians incrementally from calibration
sequences to save memory, and solve rows in batches so thousands of small QPs are processed in parallel.
These implementation choices make OPTIMA not only theoretically principled but also practical to run
on a single accelerator.

We evaluate OPTIMA across multiple model families (LLaMA, Gemma, and others) and sparsity
regimes (unstructured and 2:4 semi-structured sparsity). OPTIMA is modular and plugs into existing
mask selectors (e.g., Wanda, SparseGPT, Thanos), consistently improving zero-shot performance. Across
eight zero-shot downstream benchmarks in Language Model Evaluation Harness, we observe up to 2.53
percentage-point absolute gains on downstream tasks without any post-pruning fine-tuning. In summary,
our contributions are:

* We present a row-wise QP reformulation of the post-training reconstruction problem that yields per-row
global optimality under a shared-Hessian model and is provably equivalent to the least-squares objective
after mask selection (§[3).

* We design and implement an accelerator-friendly QP solver pipeline that accumulates a single
Hessian per layer, enforces mask constraints via bounds, batches thousands of row QPs, and leverages
rAPDHG/MPAX for efficient execution on GPUs/TPUs (detailed in Algorithm [T}).

* We show the modularity of OPTIMA, which can be used as a drop-in weight-update step with common
mask selection algorithms (Wanda, SparseGPT, Thanos), consistently improving their accuracy without
fine-tuning (§@).

* We provide extensive empirical evidence and practical measurements. OPTIMA yields substantial
average accuracy gains across tasks and model sizes (up to 2.53%), demonstrates robustness at high
sparsity (up to 60%), and can prune billion-parameter models on a single H100 in less than 40 hours.

2 PRELIMINARIES

Post-training pruning (PTP) compresses pre-trained models without retraining, using a small calibration
dataset to produce a sparse model that preserves performance. To make PTP tractable, the problem is
decomposed into independent layer-wise subproblems. For layer [, the goal is to find a binary sparsity
mask M; and updated weights W, that minimize the output reconstruction error given original weights
W, and input activations X;. This task can be formulated as in Equation [T} where ® denotes the Hadamard
product, and IM; is a binary tensor of the same shape as W with Os for pruned weights and 1s for retained
ones. Equation [I|is solved sequentially across layers, with X; as the pruned output from layer [ — 1.
Finding the optimal M; is NP-hard, motivating heuristics.

argmin|| X, W, —X;(M; 0OW,) |3, M
M;, W,
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A common heuristic decouples mask selection from weight updates. After selecting M; (e.g., by
magnitude), the problem simplifies to Equation [2} which is a convex least-squares problem, but solving
it directly is computationally expensive for large LLM weights.

min] | X, Wi Xy (Mo W) [ @
1

Consequently, many methods employ strategies to circumvent the expensive weight update step. For
example, Wanda |Sun et al.[(2023) avoids weight updates altogether, simply setting the selected weights
to zero. However, other methods such as SparseGPT |Frantar & Alistarh| (2023) and Thanos (Ilin &
Richtarik, 2025)) adopt a compromise, performing a more complex update but only on a small subset of
the weights. These heuristics trade off optimality for computational feasibility.

3 OPTIMA: OPTIMAL WEIGHT UPDATES VIA QUADRATIC PROGRAMMING

To overcome the challenges of weight update in LLM pruning, we propose OPTIMA, a novel approach
that enables the efficient and optimal update of all remaining weights once the pruning mask M; has
been chosen. We achieve this by reformulating the least-squares problem as a set of independent Quadratic
Programs (QPs) that can be solved in parallel on hardware accelerators like GPUs or TPUs using
iterative methods. Specifically, we derive both a linearly constrained QP formulation and an equivalent
unconstrained formulation. While the unconstrained form can be useful for optimizers restricted to
such problems or in cases where it can be solved more efficiently, our implementation focuses on the
constrained QP formulation, which is more amenable to GPU/TPU acceleration.

3.1 REFORMULATION AS A QUADRATIC PROGRAM WITH LINEAR CONSTRAINTS

As discussed in § 2} our goal is to minimize the problem defined in Equation 2] The Frobenius norm
objective function in Equation [2]is separable by the rows of the weight matrix )| We can therefore solve
the optimization problem for each row independently.

Let w; be the j-th row of the original weight matrix W, and let w; be the corresponding row in the

updated matrix W,. The mask for this column is m;. The optimization for this single row can be
formulated as in Equation

min||X,w; — X, (m; 0w;)|3 ©
Wi

By defining the change in the weight row as Aw; = (m; ®W;)—w, the objective can then be rewritten
in terms of this change as in Equation[d]in standard quadratic form.

IAnin|| -X;Aw;]3 zginijT(XlTXl)ij €]
W Z

The constraints on Aw ; in Equation f] are determined by the mask my;. Let S; be the set of indices where
the mask is zero (i.e., weights to be pruned). For each index ¢ € S;, the corresponding entry in the updated
weight vector, (W;);, must be zero. This imposes a linear constraint on the change vector, as shown in

Equation 5]

(m;OW;); =0 = (Aw;);=—(W,); Vi€S; )

The entries of Aw; for the unpruned weights (where m;; = 1) remain as free variables to be optimized.

For each column j of the weight matrix, we have a QP of the form represented in Equation [6| where
H=X7X is the Hessian matrix, which is positive semi-definite and shared across all row-wise problems.
The fact that the Hessian is shared among all rows, and only the constraints change, makes it very easy
to parallelize on accelerators such as GPUs and TPUs.

3Once the mask has been chosen, the weight reconstruction is separable for each row
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minimize AWTHij
Aw; J (6)
subjectto  (Aw;); =—(w;);,Vi€eS;

3.2 REFORMULATION AS AN UNCONSTRAINED QUADRATIC PROGRAM

As an alternative to the constrained formulation in Equation [6] we can reformulate each row-wise problem
as an unconstrained quadratic program. This can be useful in settings where solvers are optimized for
unconstrained problems or when eliminating constraints enables more efficient optimization. Although our
implementation adopts the constrained approach for reasons discussed below, we include the unconstrained
version for completeness.

The key idea is to eliminate the equality constraints in Equation 5] by substituting them directly into the
objective. For a given row j, define Z; as the set of indices where the mask is one (i.e., unpruned weights),
and let S; denote the complement set (i.e., pruned weights, where the mask is zero).

We reorder the entries of the change vector Aw; and the shared Hessian matrix H = X7X; based on
this partitioning, as shown in Equation 7}

AWIJ. ]

_ _(Hz;z; Hgg,
AWJ‘ = |:AWSJ ]

a |:HSJIj Hs;s,

O

As established in Equation [3] the entries of Aw; corresponding to S are fixed: (Aw;); =—(w;); for all
i€S;. Substituting these fixed values into the quadratic objective yields the expanded form in Equation 8]

AWJTHAW] = AW%; sz I AWL + QAW%; HL S; Ang + Ang Hs]. S; AWSj 8)

Since Aw;s, =—ws;, we substitute this to obtain the unconstrained objective in Equation E}

min (Aw%j Hz,7,Awz, — QAW%; Hz,s,ws, —I—ng Hs s, ws; ) 9

W .
IJ

The final term in Equation [[?]his constant with respect to the optimization variable Awz; and can therefore
be omitted. This results in the unconstrained quadratic program in Equation

migimize AwZL Q;Awg, —l—c;rszj (10)
wz; 7

where the problem-specific matrix and vector are defined as:
Qj=Hzz,, c¢;=—2HzsWs, (11

This formulation eliminates the need for explicit constraints, but introduces row-dependent variation in
problem dimensions. Specifically, the size of Q; and c; varies with the number of unpruned weights
in each row. Consequently, the unconstrained QPs have heterogeneous shapes and objectives across rows,
making them more difficult to batch and parallelize efficiently on accelerators like GPUs or TPUs. This
motivates our choice to adopt the constrained formulation in Equation [6| where the problem structure
is uniform and well-suited for high-throughput parallel execution.

3.3 SOLVING THE QUADRATIC PROGRAMS

With the constrained QP formulation established, we now select a solver, whose efficiency is crucial for
runtime and scalability on parallel hardware like GPUs and TPUs. Our QP, with its shared Hessian H
and simple bounds, suits specialized modern solvers. We adopt the state-of-the-art Restarted Accelerated
Primal-Dual Hybrid Gradient ({APDHG) algorithm (Lu & Yang| 2023)), a first-order method effective
here for three reasons: (1) its bottleneck—matrix-vector multiplications with H and its transpose—truns
efficiently on GPUs/TPUs; (2) it achieves provably optimal linear convergence; and (3) a high-performance,
open-source JAX-based implementation is available in MPAX (Lu et al.| [2024), designed for GPU/TPU
execution. This enables parallel solving of thousands of row-wise QPs, leveraging the shared structure.
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Algorithm 1 Layer-wise Pruning with Batched Row-wise Quadratic Programming

Input: Pre-trained LLM M, calibration data X, pruning masks M, QP solver S, batch size B.
Output: Pruned and updated LLM M, updated masks Mg .

1 for each layer L in the LLM M do

2 Initialize Hessian estimate H < 0. > Initialize covariance matrix
3 for each calibration sample = € X do
4 y<« L(x) > Forward pass for one sequence
5 H+H+yTy > Accumulate covariance
6 end for
7 Store intermediate inputs {Xyx7 | W € L} from a forward pass of L(X).
8 for each weight matrix W in layer L do
9 Retrieve corresponding mask M € M.
10 Partition the rows of W into batches of size .
11 for each batch of rows {w; } ?: 1 in parallel do
12 for each row w in the batch do
13 Sj«{i|M; ; =0} > Indices of pruned entries
14 Define QP:
min Aw? HAw;
Awj : a2
st (Aw;);=—(w;);,Vi€S;
15 end for
16 {Aw; 2~ SH{w; 1, {S;}0)
17 Update weights: w;j <—w; +Aw;, Vj
18 end for
19 end for
20 X<+ L(X) > Update activations for next layer
21 end for

Return: Updated model M, updated masks Musk.

3.4 EFFICIENT IMPLEMENTATION

Naively implementing the optimization problem in Equation [f]is computationally expensive and incurs
substantial memory overhead. These costs, however, can be greatly reduced through a series of optimization
techniques. In the following, we describe the strategies we employ to solve the QPs efficiently on a single
GPU, even for very large LLMs. Additionally, a detailed algorithm of our implementation is provided
in Algorithm

Equality constraints. Directly encoding the constraints from Equation [5] into the standard quadratic
objective leads to a prohibitively large matrix of equalities, even though these constraints merely fix
individual variables to constant values. To avoid constructing such large matrices, we instead enforce
the constraints by setting upper and lower bounds on the corresponding variables. In particular, fixing
the bounds of (Aw;); to —(w;), effectively locks the variable to the desired value, without incurring the
overhead of explicit equality matrices.

Batching QP problems. In memory-limited scenarios, the optimization problems for all rows of the weight
matrices may not fit on a single GPU. To address this, we employ a batching strategy that solves a subset of
QP problems at a time. This approach reduces memory overhead while still leveraging the efficiency of solv-
ing multiple QPs in parallel. As a result, our method enables pruning of large LLMs even on a single GPU.

Hessian calculation. For each layer, the Hessian matrix can be estimated as the covariance of the dense
model’s outputs across multiple sequences. Suppose the output tensor is Y € R***X9_ where b is the
number of sequences, s is the sequence length, and d is the output dimension of the layer. To compute
the covariance directly, we would first reshape Y into Y e Rbsxd, effectively stacking all tokens from

all sequences into a single matrix, and then evaluate YTy,

While this formulation is straightforward, it requires storing the full Y in accelerator memory, which
becomes prohibitively expensive for large b and s, often causing out-of-memory errors. To make the
computation feasible, we observe that the covariance can be accumulated incrementally. Specifically,
Y can be decomposed into b smaller matrices, y; € R¥*?, each corresponding to the output of a single
sequence. Instead of materializing Y, we compute y? y; for each sequence separately and sum the results

asin H = Zleszyl This decomposition yields the same result as computing YTy directly, but avoids
the need to store the entire Y at once, making the approach scalable to very large LLMs.
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Figure 2: Relative error reduction on OPTIMA in comparison to Wanda, SparseGPT, and Thanos for LLaMA-3.2 1B.

4 EXPERIMENTS

Model, datasets, and evaluation. We evaluate OPTIMA on LLaMA 3.1, LLaMA 3.2 (Dubey et al.|

2024), Gemma 2 (Team et al} [2024b), and Gemma 3 (Team et all 2025) family of models. Model
accuracy is assessed on a range of zero-shot downstream tasks, including MMLU (Hendrycks et al} 2020),

Piga 2020), Arc-Easy, Arc-Challenge 2018), WinoGrande (Sakaguchi et al.,
2021), and OpenBookQA (Mihaylov et al.l 2018), all of which are commonly used to evaluate LLM
compression (Mozaffari et al., 2025a; [Sun et al., 2023)). For zero-shot evaluations, we utilize the Language
Model Evaluation Harness (Gao et al|2024) framework. In line with prior work (Sun et al}} 2023 [Frantar]
|& Alistarh|, 2023} [Mozaffari et al.l 2025a), we also report the perplexity of the models on a language
modeling task on the WikiText2 (Merity et al., dataset.

Baselines. We compare OPTIMA against state-of-the-art one-shot pruning methods, including Wanda
Sun et al., 2023), SparseGPT (Frantar & Alistarh| 2023), Thanos (Ilin & Richtarik, [2025), and ProxSparse
iu et al.| 2025) and show how OPTIMA can improve the performance of all these pruning methods
across different models and datasets. Additional details about the hyperparameters used in OPTIMA is
provided in §[C} and the sensitivity of OPTIMA to the calibration dataset size can be found in §[D] In terms
of memory reductions and speedup, our method is guaranteed to achieve the same performance as other
pruning methods such as Wanda and SparseGPT, since the sparsity pattern in these methods stays intact.

Model quality. We evaluate the accuracy of OPTIMA and other state-of-the-art pruning methods
across 2:4 and unstructured sparsity benchmarks. Wanda is a mask selection algorithm, that does not
provide any weight update mechanism for the weights. SparseGPT and Thanos, on the other hand, update
the weight values in addition to searching for the best mask. We couple OPTIMA weight update with
the masks generated using each of these methods and compare the resulting performance of the models.

Table|I| summarizes the the performance metrics for Wanda, SparseGPT, and Thanos with and without
the OPTIMA update mechanism for 50% unstructured sparsity. It can be seen that models pruned with
OPTIMA weight update scheme consistently outperform the methods using weight update methods,
providing up to 1.80% average accuracy improvement across six downstream tasks (Gemma-3-1B).

Table [2] presents the results of pruning transformer models using 2:4 semi-structured sparsity. In these
experiments, we applied pruning exclusively to the weight matrices in the multilayer perceptron (MLP)
components, leaving the self-attention layers dense. This approach yielded sparse models with an overall
sparsity of 38% to 41%. We adopted this selective pruning strategy to maintain model accuracy above
a practical threshold, as 2:4 sparsity significantly impacts performance, potentially rendering fully sparse
models ineffective. Our results demonstrate that our proposed OPTIMA update mechanism consistently
outperforms other methods under 2:4 sparsity, achieving superior accuracy.
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Model Mask. \lfj\/e(iight Perplexity Metrics (%)
Selection pdate MMLU PIQA Arc-E Arc-C~ Wino  OpenQA | Average
Dense - 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
Wanda - 9.64 47.79 75.68 72.56 40.70 70.09 27.40 55.70

Wanda ~ OPTIMA 937 4885 7671 7382 4232 7032 2820 | 56.70
LLaMA - qporseGPT SparseGPT 930 5132 76.19  73.02 4127 7088 2940 | 5701
318B  gpareGPT oPTIMA 933 4931 7661 7428 4283 7088 2820 | 57.02

Thanos Thanos 9.27 50.36  77.04 7492 4258 7096  30.00 57.64
Thanos OPTIMA 9.35 50.17 7650 7416  41.89 7024 28.40 56.89
Dense - 9.75 3692 7427 65.53 31.31 60.30  26.20 49.09
Wanda - 23.51 26.35 65.18 5210 2381 54.62 18.00 40.01

Wanda ~ OPTIMA 1884  27.69  67.08 5261 2474 5564 2020 | 41.33
LLaMA g0 eGPT SparseGPT 1884 2571  67.85 5429 2654 5770 2200 | 4235
321B  SparseGPT OPTIMA 1809 2695 6801 5459 2585 5691 2400 | 4272
Thanos  Thanos 1970 2537 6763 5299 2713 5438 2220 | 4162
Thanos ~ OPTIMA 1877 2599 6823 5349 2645 5588 2160 | 41.94

Dense - 781 5413 7655 7428 4275 6938  30.60 | 5795
Wanda - 1292 4079 7203 6545 3234 6369 2540 | 49.95
Wanda ~ OPTIMA 1224 4311 7247 6650 3353 6638 2620 | 5137
LLaMA  qorseGPT SparseGPT 1232 3796 7345 6519 3302 6638 2520 | 5020
323B  SparseGPT OPTIMA 1243 4054 7345 6637 3507 6669 2620 | 5139

Thanos Thanos 12.26 40.11 72.80 64.77 32.85 67.72 26.60 50.81
Thanos OPTIMA 12.40 41.51 73.23 65.07 34.39 67.25 27.00 51.41
Dense - 14.17 24.95 74.81 71.93 3541 58.72 28.80 49.10
Wanda - 32.96 2297 67.19 61.03 26.37 55.72 20.00 4221

Wanda ~ OPTIMA 2890 2396 6948 6284 2858 5683 2240 | 44.01
Gemma  gooreeGPT SparseGPT — 28.34  24.85 6888 6094 2662 5549 2140 | 43.03
31B  SparseGPT OPTIMA — 27.35 2573 6975 6090 2782 5635 2200 | 43.76
Thanos  Thanos 2865 2309 6975 6216 2799 5651 2380 | 4388
Thanos ~ OPTIMA  28.14 2470 6964 6343 2739 5596 2320 | 44.05

Dense 68.60 4933 7824 8022 4693 6882 3140 | 59.16
Wanda — — 32745 3417 7416 6978 3430 6283 2640 | 5027
Wanda ~ OPTIMA 21563 3486 7399 7138 3259 6196 2580 | 50.10
Gemma  §parseGPT SparseGPT  234.68 3559 7361 6999 3422 6582 2820 | 51.24
22B  SparseGPT OPTIMA  241.09 3759 7383 7062 3507 6472 2780 | 5160
Thanos  Thanos 27697 3062 7318 6172 3362 6322 2680 | 49.19
Thanos ~ OPTIMA  250.15 3272 7372 6881 3413 6385 2640 | 49.94

Table 1: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 50% unstructured sparsity.
OPTIMA consistently improves the accuracy of the models across different tasks.

Higher sparsity ratios. To assess the robustness of OPTIMA at more aggressive compression levels, we
extend our evaluation to 60% unstructured sparsity. Table 8] presents the perplexity and zero-shot accuracy
metrics across the same models and tasks. OPTIMA continues to deliver consistent improvements over
the baseline pruning methods, with average accuracy gains of up to 2.53% across the downstream tasks
(LLaMA-3.2-1B). These enhancements are particularly notable at higher sparsity ratios, where the error
induced by pruning a larger fraction of weights is more substantial. By optimally adjusting the remaining
weights through our QP formulation, OPTIMA better compensates for this increased reconstruction error,
resulting in lower perplexity and higher task performance compared to Wanda, SparseGPT, or Thanos
alone. For instance, on LLaMA 3.2 3B, OPTIMA boosts Wanda’s average accuracy from 38.77% to
42.74%, demonstrating its effectiveness in maintaining model utility under severe sparsity constraints.

Comparison with alternative optimizers. To test whether general-purpose optimizers could serve as
substitutes for our constrained QP solver, we compared it against ADAM (Kingma & Ba, [2014)), a widely
used first-order method. While ADAM occasionally achieves competitive results on larger models, it
often converges to suboptimal solutions and can even diverge on smaller models, underscoring its lack of
reliability. By contrast, our method guarantees convergence and consistently produces stable, high-quality
updates, making it a more robust choice for row-wise QPs. Further details are provided in §[A]
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Model Mask. \lfj\/e(iight Perplexity Metrics (%)
Selection pdate MMLU PIQA Arc-E Arc-C~ Wino  OpenQA | Average
Dense - 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
‘Wanda - 13.54 43.42 73.18 69.23 35.32 67.32 25.80 52.38

, Wanda ~ OPTIMA 1258 4545 7339 6957 3618 6890 2520 | 5312
LLaMA  qporseGPT SparseGPT 1237 4562 7383 69.15 3584 6922 2560 | 5321
318B  gpareGPT OPTIMA 1254 4604 7372 6995 3677 6961 27.00 | 5385

Thanos Thanos 12.66 4439 7394  69.57 36.18 68.90 2520 53.03
Thanos OPTIMA 12.80 4.4 7405 6995 3643  68.59 25.60 53.17
Dense - 9.75 3692 7427 65.53 31.31 60.30  26.20 49.09
Wanda - 3043 2332 63.55 4756  23.63 5525 15.00 38.05

Wanda ~ OPTIMA 4823 2480 6610 5804 2355 5525 1980 | 41.26
SparseGPT SparseGPT 2198 2305 6545 5215 2517 5762 1760 | 40.17
LLaMA  gpareGPT OPTIMA 2140 2340 6572 5278 2551 5706  18.60 | 40.51

321B Thanos  Thanos 2280 2409 6567 5168 2500 5296 17.60 | 39.50
Thanos ~ OPTIMA 2226 2341 6534 5222 2372 5596 1680 | 39.58
ProxSparse — 4195 2364 6121 4238 2253 5367 1600 | 3657
ProxSparse OPTIMA  28.53 2307 6338 4790 2253 5478 1640 | 38.01
Dense 781 5413 7655 7428 4275 6938 3060 | 57.95
Wanda - 1851 3430 7073 6069 3072 6117 2480 | 47.07

Wanda ~ OPTIMA 1664 3715 7078 6195 3114 6251 2460 | 48.02
SparseGPT SparseGPT 1619 36.13 7029 6301 3046 6472 2500 | 4827
LLaMA  qoareGPT OPTIMA 1636 3803 7084 6317 3217 6369 2560 | 48.92

323B  Thanos  Thanos 1624 3555 7035 6128 2978 6330 2420 | 4741
Thanos ~ OPTIMA 1649 3572 7062 6204 3097 6322 2560 | 48.03
ProxSparse — 1950 2466 68.12 5631 2782 5856 2000 | 4258
ProxSparse OPTIMA 1828 3176 6953 6027 2884 6030  20.60 | 4522
Dense - 1417 2495 7481 7193 3541 5872 2880 | 49.10
Wanda - 6074 2374 6551 5678 2235 5272 1980 | 40.15

Wanda OPTIMA 23.25 23.25 63.38 51.14 2406 5430 18.20 39.06
SparseGPT SparseGPT  44.87 24.83 66.76 57.70 23.29 55.96 19.40 41.32
Gemma SparseGPT OPTIMA 42.66 25.11 66.27 58.96  23.89 55.80  20.60 41.77

31B' Thanos  Thanos 4850 2523 6589 5930 2312 5359 2080 | 4132
Thanos ~ OPTIMA 4491 2583 6600 5863 2329 5470 2000 | 4141
ProxSparse — 4102 2301 6600 5434 2244 5588 2020 | 4031
ProxSparse OPTIMA 5299 2413 6474 5370 2261 5225 1700 | 39.07
Dense - 68.60 4933 7824 8022 4693 6882 3140 | 59.16
Wanda - 42101 3434 7133 68.10 3097 6140 2640 | 4876

Wanda ~ OPTIMA  229.69 3444 7187 6890 3387 6227 2500 | 49.39
SparseGPT SparseGPT 251.71 3284 7176  68.73 3242  61.88 23.40 48.51

Gemma  guareGPT OPTIMA — 227.99 3277 7176 6747 3217 6338 2440 | 48.66
22B  Thanos  Thanos 25658 3102 7073 6772 3208 6251 2480 | 48.14
Thanos  OPTIMA 23920 3258 7116 6747 3225 6085 2520 | 48.25
ProxSparse — 17603 3719 7198 6755 3447 6148 2500 | 4961
ProxSparse OPTIMA 25403 3827 7127 68.60 3353 6188 2460 | 49.69

Table 2: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 2:4 sparsity. In this
experiment, only the layers in the MLP part of the transformer are pruned, and the self-attention layers are dense,
resulting in an end-to-end sparsity ratio of 38% to 41%. OPTIMA consistently improves the accuracy of the models
across different tasks. Please note that ProxSparse pruning is limited to 2:4 sparsity, and hence our unstructured
sparsity experiments do not include it.

Layer-wise error improvement. To provide a deeper insight into how OPTIMA improves the accuracy
of the models, we compare the layer-wise error of different layers in LLaMA-3.2 1B during pruning with
and without OPTIMA. Figure|2shows the relative output error improvement of all the pruned layers in the

MSE(Yoprmun,Yaense S
model, defined as w, where M SE denotes the mean squared error across the calibration
MSE(%\henmense)

dataset. Figure 2] shows that OPTIMA consistently improves the layer-wise error of other methods,
resulting in superior accuracy on the downstream tasks.

Pruning time analysis. To evaluate the computational efficiency of OPTIMA, we measured the time
required to prune various language models. The pruning process was conducted on a single NVIDIA
H100 GPU with 80GB of memory. Our measurements show that pruning times vary with model size:
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Model Mask. \S/e(iight Perplexity Metrics (%)
Selection pdate MMLU PIQA Arc-E Arc-C~ Wino  OpenQA | Average
Dense - 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
Wanda - 21.65 31.98 69.53 61.11 27.30 61.09 21.40 45.40

Wanda ~ OPTIMA  17.56 3396 7160 6376 2935 6606 2260 | 47.89
LLaMA  qorseGPT SparseGPT 1544 3532 7155 6288 3166  68.19 2420 | 48.96
318B  gparseGPT OPTIMA 1564 3244 7187 6397 3311  67.56  24.60 | 4893
Thanos  Thanos 1591 3522 7209 6528 3319 6740 2340 | 49.43
Thanos ~ OPTIMA 1609 3448 7203 6469 3302 6851 2280 | 49.25

Dense - 975 3692 7427 6553 3131 6030 2620 | 49.09
Wanda - 7153 2295  59.68 3948 1877 5043 1220 | 33.92
Wanda ~ OPTIMA 4150 2352 6262 4453 2065 5257 1480 | 3645
LLaMA  gooeGPT SparseGPT — 48.00  23.02 6208 4348 2176 5209 1740 | 36.64
321B  gparseGPT OPTIMA 3805 2295 6338 4352 2048 5328  19.60 | 3720
Thanos  Thanos 4678 2325 6257 4449 2159 5320 1660 | 3695
Thanos ~ OPTIMA 4054 2302 6295 4453 2167 5391 1740 | 3725

Dense - 781 5413 7655 7428 4275 6938  30.60 | 5795
Wanda - 3113 2553 6523 4790 2270 5525 1600 | 38.77
Wanda ~ OPTIMA 2356 3120 6741 5396 2457 5951 1980 | 4274
LLaMA  qorseGPT SparseGPT  22.00 3127 6937 5366 2602 6133 2100 | 43.78
323B  QparseGPT OPTIMA 2267 2958 6877 5480 2474 6235 2060 | 4347
Thanos  Thanos 248 2923 6763 5501 2602 5785 1920 | 4249
Thanos ~ OPTIMA 2228 3143 6790 5526 2491  59.67 2060 | 4330

Dense - 1417 2495 7481 7193 3541 5872 2880 | 49.10
Wanda - 9048 2304 6219 4975 1860 5099 1520 | 36.63
Wanda ~ OPTIMA 6479 2334 6409 5286 2048 5193 1640 | 3818
Gemma  gooreeGPT SparseGPT 6091 2458 6534 5198 2193 5114 1660 | 38.60
31B  SparseGPT OPTIMA 5627 2372 6621 5244 2253 5296  17.60 | 39.4

Thanos Thanos 62.22 24.62 64.53 52.86 20.65 52.17 18.80 38.94
Thanos OPTIMA 56.78 24.44 64.85 5518  22.01 54.85 19.80 40.19
Dense - 68.69 49.33 78.24 80.22 46.93 68.82 31.40 59.16
Wanda - 75747 2336 65.78 56.10 21.59 52.64 19.80 39.88

Wanda ~ OPTIMA 43510 2437 6659 5850 2193 5738 2000 | 41.46
Gemma  §parseGPT SparseGPT 48825 2449 6850 5745 2500 5896 2500 | 4323
22B  SparseGPT OPTIMA 45146 2589 6888 5850 2628 5801 2420 | 43.63
Thanos  Thanos 52361 2369 6823 5812 2389 5833 2120 | 42.24
Thanos ~ OPTIMA 49775 2312 6774 5707 2338 5927 2060 | 41.86

Table 3: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 60% unstructured sparsity.
OPTIMA consistently improves the accuracy of the models across different tasks.

smaller models like LLaMA 3.2 1B and Gemma 3 1B each required approximately 2.5 h, Gemma 2 2B
took 5.5 h, LLaMA 3.2 3B needed 7.0 h, and the larger LLaMA 3.1 8B model required up to 40.0 h.

The results indicate that pruning time scales with model size, reflecting the computational complexity
of OPTIMA’s pruning algorithm, which adapts to the architectural differences across models. The
consistency in pruning times for models of similar size (e.g., LLaMA 3.2 1B and Gemma 3 1B) highlights
the robustness of OPTIMA in handling diverse model architectures efficiently.

5 CONCLUSION

OPTIMA reformulates post-training weight reconstruction as batched, row-wise Quadratic Programs (QPs)
that share a layer Hessian. This yields per-row optimal updates for the reconstruction (least-squares)
objective given the estimated Hessian, and the shared-Hessian structure enables massive GPU/TPU
parallelism. We implement OPTIMA using an accelerator-friendly primal—-dual solver and batched solves
of many small per-row QPs (i.e., parallel per-row optimization). OPTIMA functions as a practical, drop-
in weight-update step for common mask selectors (Wanda, SparseGPT, Thanos). In our experiments
on a single NVIDIA H100, OPTIMA improves zero-shot accuracy across LLM families by up to 2.53
percentage points. These gains hold at high sparsity levels (> 60%) and require no post-pruning fine-tuning.
Together, these results deliver a principled and scalable approach to accurate one-shot post-training pruning.
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Model Mask. \S/e(iight Perplexity Metrics (%)
Selection pdate MMLU PIQA Arc-E Arc-C~ Wino  OpenQA | Average
Dense - 14.17 24.95 74.81 71.93 3541 58.72 28.80 49.10
Wanda - 32.96 22.97 67.19 61.03 26.37 55.72 20.00 4221

Wanda ADAM 29.25 23.16 69.04 62.71 27.73 57.46 22.20 43.72

Gemma  yyandy OPTIMA 28.90 23.96 69.48 62.84  28.58 56.83 22.40 44.01
31B SparseGPT SparseGPT ~ 28.34 24.85 68.88 60.94 26.62 55.49 21.40 43.03
SparseGPT ADAM 27.12 24.74 69.53 61.36 27.05 54.78 22.20 43.28
SparseGPT OPTIMA 27.35 25.73 69.75 60.90 27.82 56.35 22.00 43.76

Dense - 2767 2285 6284 4356 1945 4988 1640 | 3583
Wanda - 39050 2292 6115 3994 1988 5217 1400 | 3501
Wanda ~ ADAM 20582 2563 5702 3413 1766 5051 1300 | 32.99
OPT  Wanda ~ OPTIMA 3544 2302 6166 4293 1911 5012 1460 | 3524
I25M  SparseGPT SparseGPT 3688 2300 6197 4099 1971 5359 1460 | 3564
SparseGPT ADAM 22434 23.15 5675 3565 1749 4736 1220 | 32.10
SparseGPT OPTIMA 3561 2385 6237 4228 1997 5225 1540 | 36.02

Table 4: Comparison of OPTIMA with other optimizers without convergence guarantees (ADAM). ADAM can
lead to suboptimal solutions (Gemma 3 1B) or divergence of the model (OPT 125M).

A COMPARISON WITH ALTERNATIVE OPTIMIZERS

While our constrained QP solver leverages theoretical guarantees for convergence and optimality, we also
compare it against ADAM (Kingma & Ba, 2014), a popular first-order optimizer without such assurances
for quadratic problems. We reformulate the weight update as a mean squared error (MSE) minimization
problem and use ADAM for solving it. Optimizers such as ADAM do not guarantee convergence, and are
sensitive to their hyperparameters. For each layer, we do an exhaustive search with 4 different learning rates
ranging from 10~2 to 10~°, each with a linear learning rate scheduler and choose the best configuration
for final weight update.

Table[illustrates this on Gemma 3 1B and OPT 125M (Zhang et al.| 2022) under 50% unstructured sparsity.
We show two examples in Table ] showing that ADAM results to suboptimal solutions. To further test
the limitations of optimizers without convergence guarantees, we test ADAM on OPT-125M, and observe
that it leads to divergence of the model. On Gemma 3 1B, ADAM yields competitive results in some cases
(e.g., slightly lower perplexity for SparseGPT+ADAM at 27.12 versus OPTIMA’s 27.35), but OPTIMA
achieves higher overall accuracy (e.g., 44.01% for Wanda+OPTIMA versus 43.72% for Wanda+ADAM).
However, on smaller models like OPT 125M, ADAM exhibits instability, leading to divergence and
dramatically higher perplexity (e.g., 205.82 for Wanda+ADAM versus 35.44 for Wanda+OPTIMA). This
underscores the risks of using non-specialized optimizers for our row-wise QPs, where suboptimal or un-
stable solutions can degrade model quality. OPTIMA’s use of provably convergent methods like rAPDHG
ensures reliable and superior weight updates, making it a more robust choice for post-training pruning.

B RELATED WORK

Model pruning compresses trained neural networks by eliminating redundant weights, thereby lowering
computational and memory requirements during deployment. The field primarily divides into two
categories: layer-wise pruning, exemplified by Optimal Brain Surgeon (OBS) (Frantar & Alistarh [2022),
and end-to-end pruning, represented by Optimal Brain Damage (OBD) (LeCun et al.l|1989). We review
these approaches in the following subsections, beginning with layer-wise methods.

Layer-wise model pruning. Layer-wise pruning optimizes models by targeting redundancies within individ-
ual layers, assuming that local error reductions aggregate to minimize overall model degradation. Optimal
Brain Surgeon (OBS) (Hassibi et al., |1993) formalizes this by identifying the least salient weight per layer
and adjusting remaining weights to offset its removal (Frantar & Alistarh, 2022). However, OBS’s computa-
tional intensity hinders its application to billion-parameter LLMs, necessitating approximations. SparseGPT
(Frantar & Alistarh| [2023) pioneered scaling OBS to LLMs by framing pruning as sparse regression prob-
lems solved approximately, trading some accuracy for efficiency. Thanos (Ilin & Richtarik] 2025) refines
this with multi-column pruning to cut approximation errors. In contrast, Wanda (Sun et al., 2023) employs
a saliency metric combining weight magnitudes and activation data from calibration sets, yielding strong
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Table 5: Key hyperparameters used in OPTIMA.

Hyperparameter Value
Calibration Samples 128

Tokens per Sample 2048

Dataset for Calibration 4

Relative Tolerance (rAPDHG) 0.01

Absolute Tolerance (rAPDHG) 0.01
Maximum Iterations (rAPDHG) 100,000

ADAM Learning Rate {1072,1073,107%,10~°}
ADAM Weight Decay 0

results with minimal pruning time. Nonetheless, Wanda lacks mechanisms to update weights post-pruning,
opening avenues for enhancements—particularly in end-to-end methods that consider global interactions.

End-to-end model pruning. Unlike layer-wise methods, end-to-end pruning—exemplified by Optimal
Brain Damage (OBD) (LeCun et al., [1989)—identifies least-important weights globally by leveraging
second-order derivatives of the loss function, yielding higher accuracy than OBS. However, computing
these derivatives is resource-intensive, demanding approximations (Mozaffari et al., 2023). WoodFisher
(Singh & Alistarh| 2020) employs Kronecker factorization to approximate the Hessian, easing computation
but still faltering at LLM scales. More recently, MaskLLLM (Fang et al., 2024)) sidesteps second-order
information by recasting pruning as a classification problem solved via standard optimizers like AdamW
(Loshchilov, 2017), achieving top performance at 2:4 sparsity. ProxSparse (Liu et al., 2025)) reduces the
costs of MaskLLLM by using regularizers instead of training the model on a classification task, trading
accuracy with speed. Yet, its optimization demands far exceed those of one-shot pruning, constraining
real-world use and highlighting the value of integrating with other compression strategies.

Other model compression methods. In addition to pruning, several orthogonal techniques enable model
compression and can be integrated with pruning for compounded benefits. Quantization reduces parameter
precision to lower-bit representations, as surveyed in (Gholami et al.,|2022; Rokh et al.| 2023), minimizing
memory footprint without severe accuracy loss.

Low-rank adapters, such as those in (Mozaffari et al., 2025a};|Guo et al.| 2023} Mozaffari et al., 2025b),
decompose weight matrices into lower-dimensional factors, while knowledge distillation (Gou et al.|
2021) transfers knowledge from larger teacher models to compact students. These methods complement
pruning by addressing different aspects of redundancy, paving the way for hybrid frameworks in advanced
compression research.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In this section, we discuss additional details and hyperparameters used in OPTIMA. Instructions to
reproduce the results of our experiments are available in our publicly available repository. Following
previous work (Frantar & Alistarh| 2023} |Sun et al.| 2023; [Mozaffari et al., 2025a; Ilin & Richtarik} 2025),
we use 128 samples, each with 2048 tokens from the C4 dataset (Raffel et al., |2019) for calibration.

We set the relative and absolute tolerance of the rAPDHG QP solver in MPAX to 0.01 and the maximum
number of iterations is set to 100,000. If the optimizer does not converge within these number of steps
for most of the problems, or the final error of the layer is larger than the initial error, OPTIMA skips
updating that layer. Table[5|summarizes the key hyperparameters employed in our method.

For all other baselines used in our work, we either use their publicly available checkpoint or use their
repositories to reproduce their results with their default hyperparameters.

D CALIBRATION DATASET SIZE SENSITIVITY

Similar to previous work (SparseGPT, Wanda, Thanos), OPTIMA leverages a set of calibration data from
the C4 dataset to prune the models. Figure [3]shows the perplexity of LLaMA-3.2-1B on WikiText2 dataset
when pruning the models with various number of calibration samples.Our results indicate that unlike the
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Calibration Data Sensitivity Analysis
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Figure 3: Sensitivity analysis for the number of calibration samples for different pruning methods.

other methods (Wanda and SparseGPT) that have stochastic behavior as the number of samples increases,
OPTIMA shows consistent improvement in model quality. But the improvements are not significant,
suggesting robustness to dataset size.

E LANGUAGE MODEL USAGE IN PAPER

Language models were employed to improve the clarity of writing, address grammatical errors and
typographical issues, and verify adherence to the ICLR author guidelines. With the exception of their
use in benchmark evaluations and experimental analyses, they were not applied to any other component
of this work.

F REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. The source code and scripts
for reproducing all experiments are provided in the anonymous repository linked in the abstract footnote.
The main text (§ 3] and §4) describes our method and experimental setup in detail, while § [C] specifies
implementation details, hyperparameters, and model configurations. Together, these resources ensure
that independent researchers can reproduce our findings with minimal effort.
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