
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMA: OPTIMAL ONE-SHOT PRUNING FOR LLMS VIA
QUADRATIC PROGRAMMING RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training model pruning is a promising solution, yet it faces a trade-off: simple
heuristics that zero weights are fast but degrade accuracy, while principled joint
optimization methods recover accuracy but are computationally infeasible at modern
scale. One-shot methods such as SparseGPT offer a practical trade-off in optimality
by applying efficient, approximate heuristic weight updates. To close this gap, we
introduce OPTIMA, a practical one-shot post-training pruning method that balances
accuracy and scalability. OPTIMA casts layer-wise weight reconstruction after mask
selection as independent, row-wise Quadratic Programs (QPs) that share a common
layer Hessian. Solving these QPs yields the per-row globally optimal update with
respect to the reconstruction objective given the estimated Hessian. The shared-Hessian
structure makes the problem highly amenable to batching on accelerators. We
implement an accelerator-friendly QP solver that accumulates one Hessian per layer
and solves many small QPs in parallel, enabling one-shot post-training pruning at
scale on a single accelerator without fine-tuning. OPTIMA integrates with existing
mask selectors and consistently improves zero-shot performance across multiple LLM
families and sparsity regimes, yielding up to 2.53% absolute accuracy improvement.
On an NVIDIA H100, OPTIMA prunes a 8B-parameter transformer end-to-end in
40 hours with 60 GB peak memory. Together, these results set a new state-of-the-art
accuracy-efficiency trade-offs for one-shot post-training pruning.1

1 INTRODUCTION

Large language models (LLMs) deliver unprecedented capabilities across a wide array of natural language
tasks (Team et al., 2024a; Comanici et al., 2025; Touvron et al., 2023; Guo et al., 2025). However, their
rapidly growing parameter counts create severe compute and memory burdens that complicate deployment
and inference. Post-training one-shot pruning (Hoefler et al., 2021), which removes parameters from
a pretrained model with only a small calibration dataset, promises to reduce these costs, yet it faces a
fundamental trade-off: very fast, heuristic schemes that simply zero weights (e.g., Wanda (Sun et al., 2023)
and ProxSparse (Liu et al., 2025)) are cheap but often incur noticeable accuracy losses, while principled
second-order approaches (e.g., Optimal Brain Surgeon (Hassibi et al., 1993)) recover accuracy but are
computationally infeasible at modern LLM scales. One-shot approximations such as SparseGPT (Frantar
& Alistarh, 2023) and related heuristics (Ilin & Richtarik, 2025) try to navigate this middle ground, but
they sacrifice reconstruction optimality and therefore leave headroom in accuracy.2

In this paper we introduce OPTIMA, a practical one-shot post-training pruning framework that closes much
of this gap by combining principled optimality with accelerator-grade efficiency. The core idea is a precise
reformulation of the layer-wise reconstruction step that follows mask selection. That is, after fixing a binary
mask for a weight matrix, the reconstruction (least-squares) objective decomposes across rows and each
row’s update can be written as a small quadratic program (QP). Crucially, every row in the same layer shares
the same Hessian matrix H=X⊤X, while the linear constraints differ only according to which entries
the mask removes. This shared-Hessian, row-wise QP structure yields two immediate benefits: (1) per-row
global optimality for the reconstruction objective (given the estimated Hessian), and (2) uniform problem
structure that enables massive batching and parallelism on off-the-shelf ML accelerators (GPUs/TPUs).

1The code and data for OPTIMA is available at https://anonymous.4open.science/r/OPTIMA-ICLR2026
2For a more detailed discussion of the related work, see § B

1

https://anonymous.4open.science/r/OPTIMA-ICLR2026


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

...

Shared Hessian

...Prune QP 
Solver

Calibration Data

Figure 1: OPTIMA generates a shared Hessian among the different rows of the pruned weight using a small calibration
dataset. Then, the weights in different rows will be updated in parallel using a QP solver and the shared Hessian.

Realizing this formulation in practice requires careful numerical and systems engineering. We adopt a
first-order primal–dual QP solver (rAPDHG (Lu & Yang, 2023)) that is well-suited to our constrained
problems and whose critical operations reduce to matrix–vector products with the shared Hessian. This
makes the inner loops extremely efficient on accelerators. We further avoid explicit dense equality matrices
by enforcing fixed entries via tight bounds, accumulate layer Hessians incrementally from calibration
sequences to save memory, and solve rows in batches so thousands of small QPs are processed in parallel.
These implementation choices make OPTIMA not only theoretically principled but also practical to run
on a single accelerator.

We evaluate OPTIMA across multiple model families (LLaMA, Gemma, and others) and sparsity
regimes (unstructured and 2:4 semi-structured sparsity). OPTIMA is modular and plugs into existing
mask selectors (e.g., Wanda, SparseGPT, Thanos), consistently improving zero-shot performance. Across
eight zero-shot downstream benchmarks in Language Model Evaluation Harness, we observe up to 2.53
percentage-point absolute gains on downstream tasks without any post-pruning fine-tuning. In summary,
our contributions are:

• We present a row-wise QP reformulation of the post-training reconstruction problem that yields per-row
global optimality under a shared-Hessian model and is provably equivalent to the least-squares objective
after mask selection (§ 3).

• We design and implement an accelerator-friendly QP solver pipeline that accumulates a single
Hessian per layer, enforces mask constraints via bounds, batches thousands of row QPs, and leverages
rAPDHG/MPAX for efficient execution on GPUs/TPUs (detailed in Algorithm 1).

• We show the modularity of OPTIMA, which can be used as a drop-in weight-update step with common
mask selection algorithms (Wanda, SparseGPT, Thanos), consistently improving their accuracy without
fine-tuning (§ 4).

• We provide extensive empirical evidence and practical measurements. OPTIMA yields substantial
average accuracy gains across tasks and model sizes (up to 2.53%), demonstrates robustness at high
sparsity (up to 60%), and can prune billion-parameter models on a single H100 in less than 40 hours.

2 PRELIMINARIES

Post-training pruning (PTP) compresses pre-trained models without retraining, using a small calibration
dataset to produce a sparse model that preserves performance. To make PTP tractable, the problem is
decomposed into independent layer-wise subproblems. For layer l, the goal is to find a binary sparsity
mask Ml and updated weights Ŵl that minimize the output reconstruction error given original weights
Wl and input activations Xl. This task can be formulated as in Equation 1, where ⊙ denotes the Hadamard
product, and Ml is a binary tensor of the same shape as Wl with 0s for pruned weights and 1s for retained
ones. Equation 1 is solved sequentially across layers, with Xl as the pruned output from layer l− 1.
Finding the optimal Ml is NP-hard, motivating heuristics.

argmin
Ml,Ŵl

∥XlWl−Xl(Ml⊙Ŵl)∥2F (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A common heuristic decouples mask selection from weight updates. After selecting Ml (e.g., by
magnitude), the problem simplifies to Equation 2, which is a convex least-squares problem, but solving
it directly is computationally expensive for large LLM weights.

min
Ŵl

∥XlWl−Xl(Ml⊙Ŵl)∥2F (2)

Consequently, many methods employ strategies to circumvent the expensive weight update step. For
example, Wanda Sun et al. (2023) avoids weight updates altogether, simply setting the selected weights
to zero. However, other methods such as SparseGPT Frantar & Alistarh (2023) and Thanos (Ilin &
Richtarik, 2025) adopt a compromise, performing a more complex update but only on a small subset of
the weights. These heuristics trade off optimality for computational feasibility.

3 OPTIMA: OPTIMAL WEIGHT UPDATES VIA QUADRATIC PROGRAMMING

To overcome the challenges of weight update in LLM pruning, we propose OPTIMA, a novel approach
that enables the efficient and optimal update of all remaining weights once the pruning mask Ml has
been chosen. We achieve this by reformulating the least-squares problem as a set of independent Quadratic
Programs (QPs) that can be solved in parallel on hardware accelerators like GPUs or TPUs using
iterative methods. Specifically, we derive both a linearly constrained QP formulation and an equivalent
unconstrained formulation. While the unconstrained form can be useful for optimizers restricted to
such problems or in cases where it can be solved more efficiently, our implementation focuses on the
constrained QP formulation, which is more amenable to GPU/TPU acceleration.

3.1 REFORMULATION AS A QUADRATIC PROGRAM WITH LINEAR CONSTRAINTS

As discussed in § 2, our goal is to minimize the problem defined in Equation 2. The Frobenius norm
objective function in Equation 2 is separable by the rows of the weight matrix.3 We can therefore solve
the optimization problem for each row independently.

Let wj be the j-th row of the original weight matrix Wl, and let ŵj be the corresponding row in the
updated matrix Ŵl. The mask for this column is mj. The optimization for this single row can be
formulated as in Equation 3.

min
ŵj

∥Xlwj−Xl(mj⊙ŵj)∥22 (3)

By defining the change in the weight row as ∆wj=(mj⊙ŵj)−wj, the objective can then be rewritten
in terms of this change as in Equation 4 in standard quadratic form.

min
∆wj

∥−Xl∆wj∥22=min
∆wj

∆wT
j (X

T
l Xl)∆wj (4)

The constraints on ∆wj in Equation 4 are determined by the mask mj. Let Sj be the set of indices where
the mask is zero (i.e., weights to be pruned). For each index i∈Sj, the corresponding entry in the updated
weight vector, (ŵj)i, must be zero. This imposes a linear constraint on the change vector, as shown in
Equation 5.

(mj⊙ŵj)i=0=⇒ (∆wj)i=−(wj)i ∀i∈Sj (5)

The entries of ∆wj for the unpruned weights (where mij=1) remain as free variables to be optimized.

For each column j of the weight matrix, we have a QP of the form represented in Equation 6, where
H=XT

l Xl is the Hessian matrix, which is positive semi-definite and shared across all row-wise problems.
The fact that the Hessian is shared among all rows, and only the constraints change, makes it very easy
to parallelize on accelerators such as GPUs and TPUs.

3Once the mask has been chosen, the weight reconstruction is separable for each row

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

minimize
∆wj

∆wT
j H∆wj

subject to (∆wj)i=−(wj)i,∀i∈Sj

(6)

3.2 REFORMULATION AS AN UNCONSTRAINED QUADRATIC PROGRAM

As an alternative to the constrained formulation in Equation 6, we can reformulate each row-wise problem
as an unconstrained quadratic program. This can be useful in settings where solvers are optimized for
unconstrained problems or when eliminating constraints enables more efficient optimization. Although our
implementation adopts the constrained approach for reasons discussed below, we include the unconstrained
version for completeness.

The key idea is to eliminate the equality constraints in Equation 5 by substituting them directly into the
objective. For a given row j, define Ij as the set of indices where the mask is one (i.e., unpruned weights),
and let Sj denote the complement set (i.e., pruned weights, where the mask is zero).

We reorder the entries of the change vector ∆wj and the shared Hessian matrix H=XT
l Xl based on

this partitioning, as shown in Equation 7.

∆wj=

[
∆wIj
∆wSj

]
, H=

[
HIjIj HIjSj
HSjIj HSjSj

]
(7)

As established in Equation 5, the entries of ∆wj corresponding to Sj are fixed: (∆wj)i=−(wj)i for all
i∈Sj. Substituting these fixed values into the quadratic objective yields the expanded form in Equation 8.

∆wT
j H∆wj=∆wT

IjHIjIj∆wIj+2∆wT
IjHIjSj∆wSj+∆wT

SjHSjSj∆wSj (8)

Since ∆wSj =−wSj , we substitute this to obtain the unconstrained objective in Equation 9.

min
∆wIj

(
∆wT

IjHIjIj∆wIj−2∆wT
IjHIjSjwSj+wT

SjHSjSjwSj

)
(9)

The final term in Equation 9 is constant with respect to the optimization variable ∆wIj and can therefore
be omitted. This results in the unconstrained quadratic program in Equation 10.

minimize
∆wIj

∆wT
IjQj∆wIj+cTj ∆wIj (10)

where the problem-specific matrix and vector are defined as:
Qj=HIjIj , cj=−2HIjSjwSj (11)

This formulation eliminates the need for explicit constraints, but introduces row-dependent variation in
problem dimensions. Specifically, the size of Qj and cj varies with the number of unpruned weights
in each row. Consequently, the unconstrained QPs have heterogeneous shapes and objectives across rows,
making them more difficult to batch and parallelize efficiently on accelerators like GPUs or TPUs. This
motivates our choice to adopt the constrained formulation in Equation 6, where the problem structure
is uniform and well-suited for high-throughput parallel execution.

3.3 SOLVING THE QUADRATIC PROGRAMS

With the constrained QP formulation established, we now select a solver, whose efficiency is crucial for
runtime and scalability on parallel hardware like GPUs and TPUs. Our QP, with its shared Hessian H
and simple bounds, suits specialized modern solvers. We adopt the state-of-the-art Restarted Accelerated
Primal-Dual Hybrid Gradient (rAPDHG) algorithm (Lu & Yang, 2023), a first-order method effective
here for three reasons: (1) its bottleneck—matrix-vector multiplications with H and its transpose—runs
efficiently on GPUs/TPUs; (2) it achieves provably optimal linear convergence; and (3) a high-performance,
open-source JAX-based implementation is available in MPAX (Lu et al., 2024), designed for GPU/TPU
execution. This enables parallel solving of thousands of row-wise QPs, leveraging the shared structure.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Layer-wise Pruning with Batched Row-wise Quadratic Programming
Input: Pre-trained LLMM, calibration data X, pruning masksMask, QP solver S, batch size B.
Output: Pruned and updated LLM M̂, updated masks M̂ask.

1 for each layer L in the LLMM do
2 Initialize Hessian estimate H←0. ▷ Initialize covariance matrix
3 for each calibration sample x∈X do
4 y←L(x) ▷ Forward pass for one sequence
5 H←H+yTy ▷ Accumulate covariance
6 end for
7 Store intermediate inputs {XW |W∈L} from a forward pass of L(X).
8 for each weight matrix W in layer L do
9 Retrieve corresponding mask M∈Mask.

10 Partition the rows of W into batches of size B.
11 for each batch of rows {wj}Bj=1 in parallel do
12 for each row wj in the batch do
13 Sj←{i|Mj,i=0} ▷ Indices of pruned entries
14 Define QP:

min
∆wj

∆w
T
j H∆wj

s.t. (∆wj)i=−(wj)i,∀i∈Sj
(12)

15 end for
16 {∆wj}Bj=1←S(H,{wj}Bj=1,{Sj}

B
j=1)

17 Update weights: wj←wj+∆wj, ∀j
18 end for
19 end for
20 X←L(X) ▷ Update activations for next layer
21 end for

Return: Updated model M̂, updated masks M̂ask.

3.4 EFFICIENT IMPLEMENTATION

Naively implementing the optimization problem in Equation 6 is computationally expensive and incurs
substantial memory overhead. These costs, however, can be greatly reduced through a series of optimization
techniques. In the following, we describe the strategies we employ to solve the QPs efficiently on a single
GPU, even for very large LLMs. Additionally, a detailed algorithm of our implementation is provided
in Algorithm 1.

Equality constraints. Directly encoding the constraints from Equation 5 into the standard quadratic
objective leads to a prohibitively large matrix of equalities, even though these constraints merely fix
individual variables to constant values. To avoid constructing such large matrices, we instead enforce
the constraints by setting upper and lower bounds on the corresponding variables. In particular, fixing
the bounds of (∆wj)i to −(wj)i effectively locks the variable to the desired value, without incurring the
overhead of explicit equality matrices.

Batching QP problems. In memory-limited scenarios, the optimization problems for all rows of the weight
matrices may not fit on a single GPU. To address this, we employ a batching strategy that solves a subset of
QP problems at a time. This approach reduces memory overhead while still leveraging the efficiency of solv-
ing multiple QPs in parallel. As a result, our method enables pruning of large LLMs even on a single GPU.

Hessian calculation. For each layer, the Hessian matrix can be estimated as the covariance of the dense
model’s outputs across multiple sequences. Suppose the output tensor is Y ∈Rb×s×d, where b is the
number of sequences, s is the sequence length, and d is the output dimension of the layer. To compute
the covariance directly, we would first reshape Y into Ŷ ∈Rbs×d, effectively stacking all tokens from
all sequences into a single matrix, and then evaluate Ŷ T Ŷ .

While this formulation is straightforward, it requires storing the full Y in accelerator memory, which
becomes prohibitively expensive for large b and s, often causing out-of-memory errors. To make the
computation feasible, we observe that the covariance can be accumulated incrementally. Specifically,
Y can be decomposed into b smaller matrices, yi∈Rs×d, each corresponding to the output of a single
sequence. Instead of materializing Ŷ , we compute yTi yi for each sequence separately and sum the results
as in H≈

∑b
i=1y

T
i yi. This decomposition yields the same result as computing Ŷ T Ŷ directly, but avoids

the need to store the entire Y at once, making the approach scalable to very large LLMs.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.5

1.0

Wanda

0.9

1.0

SparseGPT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.9

1.0

Thanos

Layer Number

E
rr

o
r

R
a
ti

o
(F

in
a
l

E
rr

o
r

/
In

it
ia

l
E

rr
o
r)

Layer Type

Q

K

V

O

Up

Gate

Down

Figure 2: Relative error reduction on OPTIMA in comparison to Wanda, SparseGPT, and Thanos for LLaMA-3.2 1B.

4 EXPERIMENTS

Model, datasets, and evaluation. We evaluate OPTIMA on LLaMA 3.1, LLaMA 3.2 (Dubey et al.,
2024), Gemma 2 (Team et al., 2024b), and Gemma 3 (Team et al., 2025) family of models. Model
accuracy is assessed on a range of zero-shot downstream tasks, including MMLU (Hendrycks et al., 2020),
Piqa (Bisk et al., 2020), Arc-Easy, Arc-Challenge (Clark et al., 2018), WinoGrande (Sakaguchi et al.,
2021), and OpenBookQA (Mihaylov et al., 2018), all of which are commonly used to evaluate LLM
compression (Mozaffari et al., 2025a; Sun et al., 2023). For zero-shot evaluations, we utilize the Language
Model Evaluation Harness (Gao et al., 2024) framework. In line with prior work (Sun et al., 2023; Frantar
& Alistarh, 2023; Mozaffari et al., 2025a), we also report the perplexity of the models on a language
modeling task on the WikiText2 (Merity et al., 2016) dataset.

Baselines. We compare OPTIMA against state-of-the-art one-shot pruning methods, including Wanda
(Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023), Thanos (Ilin & Richtarik, 2025), and ProxSparse
(Liu et al., 2025) and show how OPTIMA can improve the performance of all these pruning methods
across different models and datasets. Additional details about the hyperparameters used in OPTIMA is
provided in §C, and the sensitivity of OPTIMA to the calibration dataset size can be found in §D. In terms
of memory reductions and speedup, our method is guaranteed to achieve the same performance as other
pruning methods such as Wanda and SparseGPT, since the sparsity pattern in these methods stays intact.

Model quality. We evaluate the accuracy of OPTIMA and other state-of-the-art pruning methods
across 2:4 and unstructured sparsity benchmarks. Wanda is a mask selection algorithm, that does not
provide any weight update mechanism for the weights. SparseGPT and Thanos, on the other hand, update
the weight values in addition to searching for the best mask. We couple OPTIMA weight update with
the masks generated using each of these methods and compare the resulting performance of the models.

Table 1 summarizes the the performance metrics for Wanda, SparseGPT, and Thanos with and without
the OPTIMA update mechanism for 50% unstructured sparsity. It can be seen that models pruned with
OPTIMA weight update scheme consistently outperform the methods using weight update methods,
providing up to 1.80% average accuracy improvement across six downstream tasks (Gemma-3-1B).

Table 2 presents the results of pruning transformer models using 2:4 semi-structured sparsity. In these
experiments, we applied pruning exclusively to the weight matrices in the multilayer perceptron (MLP)
components, leaving the self-attention layers dense. This approach yielded sparse models with an overall
sparsity of 38% to 41%. We adopted this selective pruning strategy to maintain model accuracy above
a practical threshold, as 2:4 sparsity significantly impacts performance, potentially rendering fully sparse
models ineffective. Our results demonstrate that our proposed OPTIMA update mechanism consistently
outperforms other methods under 2:4 sparsity, achieving superior accuracy.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Mask
Selection

Weight
Update

Perplexity Metrics (%)

MMLU PIQA Arc-E Arc-C Wino OpenQA Average

LLaMA
3.1 8B

Dense - 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
Wanda – 9.64 47.79 75.68 72.56 40.70 70.09 27.40 55.70
Wanda OPTIMA 9.37 48.85 76.71 73.82 42.32 70.32 28.20 56.70
SparseGPT SparseGPT 9.30 51.32 76.19 73.02 41.27 70.88 29.40 57.01
SparseGPT OPTIMA 9.33 49.31 76.61 74.28 42.83 70.88 28.20 57.02
Thanos Thanos 9.27 50.36 77.04 74.92 42.58 70.96 30.00 57.64
Thanos OPTIMA 9.35 50.17 76.50 74.16 41.89 70.24 28.40 56.89

LLaMA
3.2 1B

Dense – 9.75 36.92 74.27 65.53 31.31 60.30 26.20 49.09
Wanda – 23.51 26.35 65.18 52.10 23.81 54.62 18.00 40.01
Wanda OPTIMA 18.84 27.69 67.08 52.61 24.74 55.64 20.20 41.33
SparseGPT SparseGPT 18.84 25.71 67.85 54.29 26.54 57.70 22.00 42.35
SparseGPT OPTIMA 18.09 26.95 68.01 54.59 25.85 56.91 24.00 42.72
Thanos Thanos 19.70 25.37 67.63 52.99 27.13 54.38 22.20 41.62
Thanos OPTIMA 18.77 25.99 68.23 53.49 26.45 55.88 21.60 41.94

LLaMA
3.2 3B

Dense – 7.81 54.13 76.55 74.28 42.75 69.38 30.60 57.95
Wanda – 12.92 40.79 72.03 65.45 32.34 63.69 25.40 49.95
Wanda OPTIMA 12.24 43.11 72.47 66.50 33.53 66.38 26.20 51.37
SparseGPT SparseGPT 12.32 37.96 73.45 65.19 33.02 66.38 25.20 50.20
SparseGPT OPTIMA 12.43 40.54 73.45 66.37 35.07 66.69 26.20 51.39
Thanos Thanos 12.26 40.11 72.80 64.77 32.85 67.72 26.60 50.81
Thanos OPTIMA 12.40 41.51 73.23 65.07 34.39 67.25 27.00 51.41

Gemma
3 1B

Dense – 14.17 24.95 74.81 71.93 35.41 58.72 28.80 49.10
Wanda – 32.96 22.97 67.19 61.03 26.37 55.72 20.00 42.21
Wanda OPTIMA 28.90 23.96 69.48 62.84 28.58 56.83 22.40 44.01
SparseGPT SparseGPT 28.34 24.85 68.88 60.94 26.62 55.49 21.40 43.03
SparseGPT OPTIMA 27.35 25.73 69.75 60.90 27.82 56.35 22.00 43.76
Thanos Thanos 28.65 23.09 69.75 62.16 27.99 56.51 23.80 43.88
Thanos OPTIMA 28.14 24.70 69.64 63.43 27.39 55.96 23.20 44.05

Gemma
2 2B

Dense – 68.69 49.33 78.24 80.22 46.93 68.82 31.40 59.16
Wanda – 327.45 34.17 74.16 69.78 34.30 62.83 26.40 50.27
Wanda OPTIMA 215.63 34.86 73.99 71.38 32.59 61.96 25.80 50.10
SparseGPT SparseGPT 234.68 35.59 73.61 69.99 34.22 65.82 28.20 51.24
SparseGPT OPTIMA 241.09 37.59 73.83 70.62 35.07 64.72 27.80 51.60
Thanos Thanos 276.97 30.62 73.18 67.72 33.62 63.22 26.80 49.19
Thanos OPTIMA 250.15 32.72 73.72 68.81 34.13 63.85 26.40 49.94

Table 1: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 50% unstructured sparsity.
OPTIMA consistently improves the accuracy of the models across different tasks.

Higher sparsity ratios. To assess the robustness of OPTIMA at more aggressive compression levels, we
extend our evaluation to 60% unstructured sparsity. Table 3 presents the perplexity and zero-shot accuracy
metrics across the same models and tasks. OPTIMA continues to deliver consistent improvements over
the baseline pruning methods, with average accuracy gains of up to 2.53% across the downstream tasks
(LLaMA-3.2-1B). These enhancements are particularly notable at higher sparsity ratios, where the error
induced by pruning a larger fraction of weights is more substantial. By optimally adjusting the remaining
weights through our QP formulation, OPTIMA better compensates for this increased reconstruction error,
resulting in lower perplexity and higher task performance compared to Wanda, SparseGPT, or Thanos
alone. For instance, on LLaMA 3.2 3B, OPTIMA boosts Wanda’s average accuracy from 38.77% to
42.74%, demonstrating its effectiveness in maintaining model utility under severe sparsity constraints.

Comparison with alternative optimizers. To test whether general-purpose optimizers could serve as
substitutes for our constrained QP solver, we compared it against ADAM (Kingma & Ba, 2014), a widely
used first-order method. While ADAM occasionally achieves competitive results on larger models, it
often converges to suboptimal solutions and can even diverge on smaller models, underscoring its lack of
reliability. By contrast, our method guarantees convergence and consistently produces stable, high-quality
updates, making it a more robust choice for row-wise QPs. Further details are provided in § A.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Mask
Selection

Weight
Update

Perplexity Metrics (%)

MMLU PIQA Arc-E Arc-C Wino OpenQA Average

LLaMA
3.1 8B

Dense – 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
Wanda – 13.54 43.42 73.18 69.23 35.32 67.32 25.80 52.38
Wanda OPTIMA 12.58 45.45 73.39 69.57 36.18 68.90 25.20 53.12
SparseGPT SparseGPT 12.37 45.62 73.83 69.15 35.84 69.22 25.60 53.21
SparseGPT OPTIMA 12.54 46.04 73.72 69.95 36.77 69.61 27.00 53.85
Thanos Thanos 12.66 44.39 73.94 69.57 36.18 68.90 25.20 53.03
Thanos OPTIMA 12.80 44.41 74.05 69.95 36.43 68.59 25.60 53.17

LLaMA
3.2 1B

Dense – 9.75 36.92 74.27 65.53 31.31 60.30 26.20 49.09
Wanda – 30.43 23.32 63.55 47.56 23.63 55.25 15.00 38.05
Wanda OPTIMA 48.23 24.80 66.10 58.04 23.55 55.25 19.80 41.26
SparseGPT SparseGPT 21.98 23.05 65.45 52.15 25.17 57.62 17.60 40.17
SparseGPT OPTIMA 21.40 23.40 65.72 52.78 25.51 57.06 18.60 40.51
Thanos Thanos 22.80 24.09 65.67 51.68 25.00 52.96 17.60 39.50
Thanos OPTIMA 22.26 23.41 65.34 52.22 23.72 55.96 16.80 39.58
ProxSparse – 41.95 23.64 61.21 42.38 22.53 53.67 16.00 36.57
ProxSparse OPTIMA 28.53 23.07 63.38 47.90 22.53 54.78 16.40 38.01

LLaMA
3.2 3B

Dense – 7.81 54.13 76.55 74.28 42.75 69.38 30.60 57.95
Wanda – 18.51 34.30 70.73 60.69 30.72 61.17 24.80 47.07
Wanda OPTIMA 16.64 37.15 70.78 61.95 31.14 62.51 24.60 48.02
SparseGPT SparseGPT 16.19 36.13 70.29 63.01 30.46 64.72 25.00 48.27
SparseGPT OPTIMA 16.36 38.03 70.84 63.17 32.17 63.69 25.60 48.92
Thanos Thanos 16.24 35.55 70.35 61.28 29.78 63.30 24.20 47.41
Thanos OPTIMA 16.49 35.72 70.62 62.04 30.97 63.22 25.60 48.03
ProxSparse – 19.50 24.66 68.12 56.31 27.82 58.56 20.00 42.58
ProxSparse OPTIMA 18.28 31.76 69.53 60.27 28.84 60.30 20.60 45.22

Gemma
3 1B

Dense – 14.17 24.95 74.81 71.93 35.41 58.72 28.80 49.10
Wanda – 60.74 23.74 65.51 56.78 22.35 52.72 19.80 40.15
Wanda OPTIMA 23.25 23.25 63.38 51.14 24.06 54.30 18.20 39.06
SparseGPT SparseGPT 44.87 24.83 66.76 57.70 23.29 55.96 19.40 41.32
SparseGPT OPTIMA 42.66 25.11 66.27 58.96 23.89 55.80 20.60 41.77
Thanos Thanos 48.50 25.23 65.89 59.30 23.12 53.59 20.80 41.32
Thanos OPTIMA 44.91 25.83 66.00 58.63 23.29 54.70 20.00 41.41
ProxSparse – 41.02 23.01 66.00 54.34 22.44 55.88 20.20 40.31
ProxSparse OPTIMA 52.99 24.13 64.74 53.70 22.61 52.25 17.00 39.07

Gemma
2 2B

Dense – 68.69 49.33 78.24 80.22 46.93 68.82 31.40 59.16
Wanda – 421.01 34.34 71.33 68.10 30.97 61.40 26.40 48.76
Wanda OPTIMA 229.69 34.44 71.87 68.90 33.87 62.27 25.00 49.39
SparseGPT SparseGPT 251.71 32.84 71.76 68.73 32.42 61.88 23.40 48.51
SparseGPT OPTIMA 227.99 32.77 71.76 67.47 32.17 63.38 24.40 48.66
Thanos Thanos 256.58 31.02 70.73 67.72 32.08 62.51 24.80 48.14
Thanos OPTIMA 239.20 32.58 71.16 67.47 32.25 60.85 25.20 48.25
ProxSparse – 176.03 37.19 71.98 67.55 34.47 61.48 25.00 49.61
ProxSparse OPTIMA 254.03 38.27 71.27 68.60 33.53 61.88 24.60 49.69

Table 2: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 2:4 sparsity. In this
experiment, only the layers in the MLP part of the transformer are pruned, and the self-attention layers are dense,
resulting in an end-to-end sparsity ratio of 38% to 41%. OPTIMA consistently improves the accuracy of the models
across different tasks. Please note that ProxSparse pruning is limited to 2:4 sparsity, and hence our unstructured
sparsity experiments do not include it.

Layer-wise error improvement. To provide a deeper insight into how OPTIMA improves the accuracy
of the models, we compare the layer-wise error of different layers in LLaMA-3.2 1B during pruning with
and without OPTIMA. Figure 2 shows the relative output error improvement of all the pruned layers in the
model, defined as MSE(YOPTIMA,Ydense)

MSE(Yother,Ydense)
, where MSE denotes the mean squared error across the calibration

dataset. Figure 2 shows that OPTIMA consistently improves the layer-wise error of other methods,
resulting in superior accuracy on the downstream tasks.

Pruning time analysis. To evaluate the computational efficiency of OPTIMA, we measured the time
required to prune various language models. The pruning process was conducted on a single NVIDIA
H100 GPU with 80GB of memory. Our measurements show that pruning times vary with model size:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Mask
Selection

Weight
Update

Perplexity Metrics (%)

MMLU PIQA Arc-E Arc-C Wino OpenQA Average

LLaMA
3.1 8B

Dense – 5.84 63.57 80.09 81.44 51.37 73.48 33.40 63.89
Wanda – 21.65 31.98 69.53 61.11 27.30 61.09 21.40 45.40
Wanda OPTIMA 17.56 33.96 71.60 63.76 29.35 66.06 22.60 47.89
SparseGPT SparseGPT 15.44 35.32 71.55 62.88 31.66 68.19 24.20 48.96
SparseGPT OPTIMA 15.64 32.44 71.87 63.97 33.11 67.56 24.60 48.93
Thanos Thanos 15.91 35.22 72.09 65.28 33.19 67.40 23.40 49.43
Thanos OPTIMA 16.09 34.48 72.03 64.69 33.02 68.51 22.80 49.25

LLaMA
3.2 1B

Dense – 9.75 36.92 74.27 65.53 31.31 60.30 26.20 49.09
Wanda – 71.53 22.95 59.68 39.48 18.77 50.43 12.20 33.92
Wanda OPTIMA 41.50 23.52 62.62 44.53 20.65 52.57 14.80 36.45
SparseGPT SparseGPT 48.00 23.02 62.08 43.48 21.76 52.09 17.40 36.64
SparseGPT OPTIMA 38.05 22.95 63.38 43.52 20.48 53.28 19.60 37.20
Thanos Thanos 46.78 23.25 62.57 44.49 21.59 53.20 16.60 36.95
Thanos OPTIMA 40.54 23.02 62.95 44.53 21.67 53.91 17.40 37.25

LLaMA
3.2 3B

Dense – 7.81 54.13 76.55 74.28 42.75 69.38 30.60 57.95
Wanda – 31.13 25.53 65.23 47.90 22.70 55.25 16.00 38.77
Wanda OPTIMA 23.56 31.20 67.41 53.96 24.57 59.51 19.80 42.74
SparseGPT SparseGPT 22.00 31.27 69.37 53.66 26.02 61.33 21.00 43.78
SparseGPT OPTIMA 22.67 29.58 68.77 54.80 24.74 62.35 20.60 43.47
Thanos Thanos 22.48 29.23 67.63 55.01 26.02 57.85 19.20 42.49
Thanos OPTIMA 22.28 31.43 67.90 55.26 24.91 59.67 20.60 43.30

Gemma
3 1B

Dense – 14.17 24.95 74.81 71.93 35.41 58.72 28.80 49.10
Wanda – 90.48 23.04 62.19 49.75 18.60 50.99 15.20 36.63
Wanda OPTIMA 64.79 23.34 64.09 52.86 20.48 51.93 16.40 38.18
SparseGPT SparseGPT 60.91 24.58 65.34 51.98 21.93 51.14 16.60 38.60
SparseGPT OPTIMA 56.27 23.72 66.21 52.44 22.53 52.96 17.60 39.24
Thanos Thanos 62.22 24.62 64.53 52.86 20.65 52.17 18.80 38.94
Thanos OPTIMA 56.78 24.44 64.85 55.18 22.01 54.85 19.80 40.19

Gemma
2 2B

Dense – 68.69 49.33 78.24 80.22 46.93 68.82 31.40 59.16
Wanda – 757.47 23.36 65.78 56.10 21.59 52.64 19.80 39.88
Wanda OPTIMA 435.10 24.37 66.59 58.50 21.93 57.38 20.00 41.46
SparseGPT SparseGPT 488.25 24.49 68.50 57.45 25.00 58.96 25.00 43.23
SparseGPT OPTIMA 451.46 25.89 68.88 58.50 26.28 58.01 24.20 43.63
Thanos Thanos 523.61 23.69 68.23 58.12 23.89 58.33 21.20 42.24
Thanos OPTIMA 497.75 23.12 67.74 57.07 23.38 59.27 20.60 41.86

Table 3: Model perplexity on WikiText2 and accuracy on zero-shot downstream tasks for 60% unstructured sparsity.
OPTIMA consistently improves the accuracy of the models across different tasks.

smaller models like LLaMA 3.2 1B and Gemma 3 1B each required approximately 2.5h, Gemma 2 2B
took 5.5h, LLaMA 3.2 3B needed 7.0h, and the larger LLaMA 3.1 8B model required up to 40.0h.

The results indicate that pruning time scales with model size, reflecting the computational complexity
of OPTIMA’s pruning algorithm, which adapts to the architectural differences across models. The
consistency in pruning times for models of similar size (e.g., LLaMA 3.2 1B and Gemma 3 1B) highlights
the robustness of OPTIMA in handling diverse model architectures efficiently.

5 CONCLUSION

OPTIMA reformulates post-training weight reconstruction as batched, row-wise Quadratic Programs (QPs)
that share a layer Hessian. This yields per-row optimal updates for the reconstruction (least-squares)
objective given the estimated Hessian, and the shared-Hessian structure enables massive GPU/TPU
parallelism. We implement OPTIMA using an accelerator-friendly primal–dual solver and batched solves
of many small per-row QPs (i.e., parallel per-row optimization). OPTIMA functions as a practical, drop-
in weight-update step for common mask selectors (Wanda, SparseGPT, Thanos). In our experiments
on a single NVIDIA H100, OPTIMA improves zero-shot accuracy across LLM families by up to 2.53
percentage points. These gains hold at high sparsity levels (≥60%) and require no post-pruning fine-tuning.
Together, these results deliver a principled and scalable approach to accurate one-shot post-training pruning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Aaai, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, et al. Think you have solved question answering?
try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv
preprint arXiv:2507.06261, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, et al. Maskllm: Learnable
semi-structured sparsity for large language models. arXiv preprint arXiv:2409.17481, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. NeurIPS, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In Icml, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, et al. A framework for few-shot language model
evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, et al. A survey of quantization methods for
efficient neural network inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 2022.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International journal of computer vision, 129(6):1789–1819, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. LQ-LoRA: Low-rank Plus Quantized Matrix
Decomposition for Efficient Language Model Finetuning. arXiv preprint arXiv:2311.12023, 2023.

Babak Hassibi, David Stork, and Gregory Wolff. Optimal brain surgeon: Extensions and performance
comparisons. NeurIPS, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, et al. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of Machine
Learning Research, 22(241):1–124, 2021.

Ivan Ilin and Peter Richtarik. Thanos: A block-wise pruning algorithm for efficient large language model
compression. arXiv preprint arXiv:2504.05346, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. NeurIPS, 1989.

Hongyi Liu, Rajarshi Saha, Zhen Jia, Youngsuk Park, et al. Proxsparse: Regularized learning of
semi-structured sparsity masks for pretrained llms. arXiv preprint arXiv:2502.00258, 2025.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Haihao Lu and Jinwen Yang. A practical and optimal first-order method for large-scale convex quadratic
programming. arXiv preprint arXiv:2311.07710, 2023.

10

https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haihao Lu, Zedong Peng, and Jinwen Yang. Mpax: Mathematical programming in jax. arXiv preprint
arXiv:2412.09734, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

Mohammad Mozaffari, Sikan Li, Zhao Zhang, and Maryam Mehri Dehnavi. MKOR: Momentum-Enabled
Kronecker-Factor-Based Optimizer Using Rank-1 Updates. In NeurIPS, 2023.

Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. SLiM: One-
shot Quantized Sparse Plus Low-rank Approximation of LLMs, 2025a. URL https:
//openreview.net/forum?id=4UfRP8MopP.

Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. Slope:
Double-pruned sparse plus lazy low-rank adapter pretraining of llms, 2025b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, et al. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv e-prints, 2019.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model quantization
for deep neural networks in image classification. ACM Transactions on Intelligent Systems and
Technology, 14(6):1–50, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural network
compression. NeurIPS, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024a.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint arXiv:2408.00118, 2024b.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

11

https://openreview.net/forum?id=4UfRP8MopP
https://openreview.net/forum?id=4UfRP8MopP


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Model Mask
Selection

Weight
Update

Perplexity Metrics (%)

MMLU PIQA Arc-E Arc-C Wino OpenQA Average

Gemma
3 1B

Dense – 14.17 24.95 74.81 71.93 35.41 58.72 28.80 49.10
Wanda – 32.96 22.97 67.19 61.03 26.37 55.72 20.00 42.21
Wanda ADAM 29.25 23.16 69.04 62.71 27.73 57.46 22.20 43.72
Wanda OPTIMA 28.90 23.96 69.48 62.84 28.58 56.83 22.40 44.01
SparseGPT SparseGPT 28.34 24.85 68.88 60.94 26.62 55.49 21.40 43.03
SparseGPT ADAM 27.12 24.74 69.53 61.36 27.05 54.78 22.20 43.28
SparseGPT OPTIMA 27.35 25.73 69.75 60.90 27.82 56.35 22.00 43.76

OPT
125M

Dense – 27.67 22.85 62.84 43.56 19.45 49.88 16.40 35.83
Wanda – 39.50 22.92 61.15 39.94 19.88 52.17 14.00 35.01
Wanda ADAM 205.82 25.63 57.02 34.13 17.66 50.51 13.00 32.99
Wanda OPTIMA 35.44 23.02 61.66 42.93 19.11 50.12 14.60 35.24
SparseGPT SparseGPT 36.88 23.00 61.97 40.99 19.71 53.59 14.60 35.64
SparseGPT ADAM 224.34 23.15 56.75 35.65 17.49 47.36 12.20 32.10
SparseGPT OPTIMA 35.61 23.85 62.37 42.28 19.97 52.25 15.40 36.02

Table 4: Comparison of OPTIMA with other optimizers without convergence guarantees (ADAM). ADAM can
lead to suboptimal solutions (Gemma 3 1B) or divergence of the model (OPT 125M).

A COMPARISON WITH ALTERNATIVE OPTIMIZERS

While our constrained QP solver leverages theoretical guarantees for convergence and optimality, we also
compare it against ADAM (Kingma & Ba, 2014), a popular first-order optimizer without such assurances
for quadratic problems. We reformulate the weight update as a mean squared error (MSE) minimization
problem and use ADAM for solving it. Optimizers such as ADAM do not guarantee convergence, and are
sensitive to their hyperparameters. For each layer, we do an exhaustive search with 4 different learning rates
ranging from 10−2 to 10−5, each with a linear learning rate scheduler and choose the best configuration
for final weight update.

Table 4 illustrates this on Gemma 3 1B and OPT 125M (Zhang et al., 2022) under 50% unstructured sparsity.
We show two examples in Table 4, showing that ADAM results to suboptimal solutions. To further test
the limitations of optimizers without convergence guarantees, we test ADAM on OPT-125M, and observe
that it leads to divergence of the model. On Gemma 3 1B, ADAM yields competitive results in some cases
(e.g., slightly lower perplexity for SparseGPT+ADAM at 27.12 versus OPTIMA’s 27.35), but OPTIMA
achieves higher overall accuracy (e.g., 44.01% for Wanda+OPTIMA versus 43.72% for Wanda+ADAM).
However, on smaller models like OPT 125M, ADAM exhibits instability, leading to divergence and
dramatically higher perplexity (e.g., 205.82 for Wanda+ADAM versus 35.44 for Wanda+OPTIMA). This
underscores the risks of using non-specialized optimizers for our row-wise QPs, where suboptimal or un-
stable solutions can degrade model quality. OPTIMA’s use of provably convergent methods like rAPDHG
ensures reliable and superior weight updates, making it a more robust choice for post-training pruning.

B RELATED WORK

Model pruning compresses trained neural networks by eliminating redundant weights, thereby lowering
computational and memory requirements during deployment. The field primarily divides into two
categories: layer-wise pruning, exemplified by Optimal Brain Surgeon (OBS) (Frantar & Alistarh, 2022),
and end-to-end pruning, represented by Optimal Brain Damage (OBD) (LeCun et al., 1989). We review
these approaches in the following subsections, beginning with layer-wise methods.

Layer-wise model pruning. Layer-wise pruning optimizes models by targeting redundancies within individ-
ual layers, assuming that local error reductions aggregate to minimize overall model degradation. Optimal
Brain Surgeon (OBS) (Hassibi et al., 1993) formalizes this by identifying the least salient weight per layer
and adjusting remaining weights to offset its removal (Frantar & Alistarh, 2022). However, OBS’s computa-
tional intensity hinders its application to billion-parameter LLMs, necessitating approximations. SparseGPT
(Frantar & Alistarh, 2023) pioneered scaling OBS to LLMs by framing pruning as sparse regression prob-
lems solved approximately, trading some accuracy for efficiency. Thanos (Ilin & Richtarik, 2025) refines
this with multi-column pruning to cut approximation errors. In contrast, Wanda (Sun et al., 2023) employs
a saliency metric combining weight magnitudes and activation data from calibration sets, yielding strong

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Key hyperparameters used in OPTIMA.

Hyperparameter Value
Calibration Samples 128
Tokens per Sample 2048
Dataset for Calibration C4
Relative Tolerance (rAPDHG) 0.01
Absolute Tolerance (rAPDHG) 0.01
Maximum Iterations (rAPDHG) 100,000
ADAM Learning Rate {10−2,10−3,10−4,10−5}
ADAM Weight Decay 0

results with minimal pruning time. Nonetheless, Wanda lacks mechanisms to update weights post-pruning,
opening avenues for enhancements—particularly in end-to-end methods that consider global interactions.

End-to-end model pruning. Unlike layer-wise methods, end-to-end pruning—exemplified by Optimal
Brain Damage (OBD) (LeCun et al., 1989)—identifies least-important weights globally by leveraging
second-order derivatives of the loss function, yielding higher accuracy than OBS. However, computing
these derivatives is resource-intensive, demanding approximations (Mozaffari et al., 2023). WoodFisher
(Singh & Alistarh, 2020) employs Kronecker factorization to approximate the Hessian, easing computation
but still faltering at LLM scales. More recently, MaskLLM (Fang et al., 2024) sidesteps second-order
information by recasting pruning as a classification problem solved via standard optimizers like AdamW
(Loshchilov, 2017), achieving top performance at 2:4 sparsity. ProxSparse (Liu et al., 2025) reduces the
costs of MaskLLM by using regularizers instead of training the model on a classification task, trading
accuracy with speed. Yet, its optimization demands far exceed those of one-shot pruning, constraining
real-world use and highlighting the value of integrating with other compression strategies.

Other model compression methods. In addition to pruning, several orthogonal techniques enable model
compression and can be integrated with pruning for compounded benefits. Quantization reduces parameter
precision to lower-bit representations, as surveyed in (Gholami et al., 2022; Rokh et al., 2023), minimizing
memory footprint without severe accuracy loss.

Low-rank adapters, such as those in (Mozaffari et al., 2025a; Guo et al., 2023; Mozaffari et al., 2025b),
decompose weight matrices into lower-dimensional factors, while knowledge distillation (Gou et al.,
2021) transfers knowledge from larger teacher models to compact students. These methods complement
pruning by addressing different aspects of redundancy, paving the way for hybrid frameworks in advanced
compression research.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In this section, we discuss additional details and hyperparameters used in OPTIMA. Instructions to
reproduce the results of our experiments are available in our publicly available repository. Following
previous work (Frantar & Alistarh, 2023; Sun et al., 2023; Mozaffari et al., 2025a; Ilin & Richtarik, 2025),
we use 128 samples, each with 2048 tokens from the C4 dataset (Raffel et al., 2019) for calibration.

We set the relative and absolute tolerance of the rAPDHG QP solver in MPAX to 0.01 and the maximum
number of iterations is set to 100,000. If the optimizer does not converge within these number of steps
for most of the problems, or the final error of the layer is larger than the initial error, OPTIMA skips
updating that layer. Table 5 summarizes the key hyperparameters employed in our method.

For all other baselines used in our work, we either use their publicly available checkpoint or use their
repositories to reproduce their results with their default hyperparameters.

D CALIBRATION DATASET SIZE SENSITIVITY

Similar to previous work (SparseGPT, Wanda, Thanos), OPTIMA leverages a set of calibration data from
the C4 dataset to prune the models. Figure 3 shows the perplexity of LLaMA-3.2-1B on WikiText2 dataset
when pruning the models with various number of calibration samples.Our results indicate that unlike the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

32 64 128 256

Number of Calibration Samples

10

12

14

16

18

20

22

24

L
L

a
M

A
-3

.2
-1

B
P

er
p

le
x
it

y

Calibration Data Sensitivity Analysis

Wanda+OPTIMA

Wanda

SparseGPT

Dense

Figure 3: Sensitivity analysis for the number of calibration samples for different pruning methods.

other methods (Wanda and SparseGPT) that have stochastic behavior as the number of samples increases,
OPTIMA shows consistent improvement in model quality. But the improvements are not significant,
suggesting robustness to dataset size.

E LANGUAGE MODEL USAGE IN PAPER

Language models were employed to improve the clarity of writing, address grammatical errors and
typographical issues, and verify adherence to the ICLR author guidelines. With the exception of their
use in benchmark evaluations and experimental analyses, they were not applied to any other component
of this work.

F REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. The source code and scripts
for reproducing all experiments are provided in the anonymous repository linked in the abstract footnote.
The main text (§ 3 and §4) describes our method and experimental setup in detail, while § C specifies
implementation details, hyperparameters, and model configurations. Together, these resources ensure
that independent researchers can reproduce our findings with minimal effort.

14


	Introduction
	Preliminaries
	OPTIMA: Optimal weight updates via quadratic programming
	Reformulation as a quadratic program with linear constraints
	Reformulation as an unconstrained quadratic program
	Solving the quadratic programs
	Efficient implementation

	Experiments
	Conclusion
	Comparison with alternative optimizers
	Related work
	Implementation details and hyperparameters
	Calibration dataset size sensitivity
	Language model usage in paper
	Reproducibility statement

