
AuPair: Golden Example Pairs for Code Repair

Aditi Mavalankar 1 Hassan Mansoor 1 Zita Marinho 1 Masha Samsikova 1 Tom Schaul 1

Abstract

Scaling up inference-time compute has proven
to be a valuable strategy in improving the perfor-
mance of Large Language Models (LLMs) with-
out fine-tuning. An important task that can benefit
from additional inference-time compute is self-
repair; given an initial flawed response or guess,
the LLM corrects its own mistake and produces
an improved response or fix. We leverage the in-
context learning ability of LLMs to perform self-
repair in the coding domain. The key contribution
of our paper is an approach that synthesises and
selects an ordered set of golden example pairs,
or AuPairs, of these initial guesses and subse-
quent fixes for the corresponding problems. Each
such AuPair is provided as a single in-context
example at inference time to generate a repaired
solution. For an inference-time compute budget
of N LLM calls per problem, N AuPairs are used
to generate N repaired solutions, out of which
the highest-scoring solution is the final answer.
The underlying intuition is that if the LLM is
given a different example of fixing an incorrect
guess each time, it can subsequently generate a
diverse set of repaired solutions. Our algorithm
selects these AuPairs in a manner that maximises
complementarity and usefulness. We demonstrate
the results of our algorithm on 5 LLMs across 7
competitive programming datasets for the code
repair task. Our algorithm yields a significant
boost in performance compared to best-of-N and
self-repair, and also exhibits strong generalisa-
tion across datasets and models. Moreover, our
approach shows stronger scaling with inference-
time compute budget compared to baselines.

1Google DeepMind. Correspondence to: Aditi Mavalankar
<mavalankar@deepmind.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Recent progress in the field of Large Language Models
(LLMs) has resulted in models that keep getting better
at generating responses to user queries. When providing
these already powerful models with more inference-time
compute—increasing number of LLM calls—methods that
sample different responses and then select the best among
them, such as best-of-N (Stiennon et al., 2020) or self-
consistency (Wang et al., 2023b), have shown clear ben-
efits. While these approaches are more breadth-focused,
another way to leverage inference time compute is to im-
prove or repair the LLM’s initial guesses by generating
better fixes (Olausson et al., 2024). We propose combining
the benefits of both these approaches to generate a wide set
of repaired solutions for poor initial LLM responses, out of
which the highest-scoring solution is the final answer.

To generate a wide range of repaired solutions for each
initial LLM response, we exploit the in-context learning
capability exhibited by LLMs. The main contribution of our
paper is an algorithm that, given an inference-time compute
budget of N LLM calls, produces an ordered set of up to
N golden example pairs, or AuPairs1. Each such AuPair
contains the initial guess and consequent fix for the corre-
sponding coding problem, along with their respective unit
test scores. An example AuPair is illustrated in Fig. 1. At
inference time, the contents of an AuPair are concatenated
as described in § A.10, and provided as a 1-shot example to
generate a fix for the test problem. This is done for each of
the N AuPairs; of all the fixes generated, the one that gets
the highest score on the unit tests is selected.

A core ingredient of our proposed algorithm involves the
selection of these AuPairs. We propose a submodular ap-
proach that selects AuPairs based on the ability of each
pair to solve different problems in a held-out validation
set. Since the AuPairs are selected such that each subse-
quent AuPair solves a different set of problems than the
ones solved by its predecessor AuPairs, by design, we get
complementary AuPairs. Also, as the list of AuPairs is con-
structed by taking the greedy pair at each step, only those

1The name AuPair is a coupling of Au, the chemical symbol for
gold, and Pair, jointly referring to golden pairs that are produced
by our algorithm. The high-level interpretation is that like an "au
pair", the approach guides the LLM towards better behaviour.

1



AuPair: Golden Example Pairs for Code Repair

The Little Elephant loves numbers. He has a positive integer x. The Little Elephant 
wants to find the number of positive integers d, such that d is the divisor of x, and x 
and d have at least one common (the same) digit in their decimal representations. Help 
the Little Elephant to find the described number.

Input
A single line contains a single integer x (1 ≤ x ≤ 10^9).

Output
In a single line print an integer — the answer to the problem.

Examples

Input
1
Output
1

Input
10
Output
2

def solve(x: int):
  x = str(x)
  count = 0
  for i in range(1, x + 1):
    if x[0] in str(i) or str(i)[0] 
in x:
      count += 1
  print(count)

def solve(x: int):
  x = str(x)
  count = 0
  for i in range(1, int(x) + 1):
    if int(x) % i == 0:
      i = str(i)
      for digit in x:
        if digit in i:
          count += 1
          break
  print(count)

G
ue
ss Fix

score: 0.0

score: 1.0

Figure 1: An example AuPair : The LLM-generated
guess and fix, along with their respective scores for the
corresponding CodeForces problem (problem description at
the top). To provide this AuPair in context at inference time,
the problem description, guess, and fix, are concatenated as
described in Fig. 18.

pairs that lead to an increase in the fix scores are selected,
resulting in useful AuPairs.

In this paper, we address the code repair task: given a cod-
ing problem, an initial guess which is LLM-generated code,
and a set of test cases that are used only to evaluate the
correctness of the generated code, the LLM has to generate
an improved fix for the problem. We show that the fixes
generated by AuPair are significantly more useful and di-
verse than those generated using best-of-N (§3) for the same
inference-time compute budget. We also show that AuPair
outperforms self-repair (Olausson et al., 2024), which gener-
ates intermediate verbal feedback before generating repaired
solutions for a problem. The key contributions of our paper
are the following:

• An inference-time algorithm, which constructs a
golden set of code repair examples, or AuPairs, that
boost performance significantly when used as in-
context examples (§2).

• Reliably outperforming best-of-N (Stiennon et al.,
2020) and self-repair (Olausson et al., 2024) across
5 different models: Gemini-1.5-Pro, GPT-4o-mini,
Gemini-1.5-Flash, Gemma-27B, Gemma-9B (§3.1).

• Strong scaling performance with inference time com-
pute, with far less diminishing returns than best-of-N
and self-repair (§3.3).

• Robust out-of-distribution generalisation, across both
model sizes and datasets (§3.4).

2. Approach
The goal of our proposed approach in the coding domain
is to improve code repair performance on unit tests at in-
ference time by curating a list of pairs that can be provided
as in context examples. The code repair prompt includes
an in-context example, followed by a text description of
the problem to solve and the initial guess generated by the
LLM. The LLM then generates a revision, or a fix that im-
proves performance on the unit tests for that problem. In the
prompt, we include the scores achieved by the guess and fix
on the unit tests, but no other execution feedback.2

In order to disentangle repair performance from the quality
of initial guesses, we first curate composite datasets consist-
ing of initial guesses for all the coding problems. Given a
dataset consisting of problems and their corresponding tests,
we generate an initial guess for each problem and compute
its score on the unit tests. If the guess passes all the unit
tests for that problem correctly, no further improvement is
required and we discard that problem. If not, we add this
guess along with its corresponding score and problem as
a datapoint to our curated dataset. This dataset is then di-
vided into training, validation, and test datasets. We use the
training dataset Dtrain ≡ D for pair generation (Fig. 2), and
the validation dataset Dval for AuPair extraction. The test
dataset Dtest is used in the final testing phase.

Following the creation of these three datasets, we now dis-
cuss our approach, which consists of two main phases: 1)
Pair Generation (§2.1), and 2) AuPair Extraction (§2.2).

2.1. Phase 1: Pair Generation

In this phase, we generate a large set C of pairs that are
potential candidates for our final set of AuPairs. This is
done in the following manner: a problem along with its
initial guess is sampled from the training dataset D. The
LLM generates a fix for this guess. If this generated fix has
a higher score on the unit tests for that problem than the
initial guess, this guess-fix pair is added to C. Furthermore,
if this fix is imperfect, i.e. it does not pass all the unit
tests, it becomes a potential guess with further scope for
improvement, so it is added as a new guess to the training
datasetD. This is repeated several times to collect a large set
of such candidate pairs.3 A visual illustration of this phase
is provided in Fig. 2. While we include the pair generation
phase for completeness, it is important to note that in several

2The repair prompt is composed using the prompting strategy
shown in Fig. 18.

3Since the aim is to collect a large set of pairs, we want the
LLM to generate a wide variety of fixes. For this, we compose a
k-shot prompt for repair, in which the k in-context example pairs
are randomly sampled from the existing set C for each sampled
problem. As the LLM generates more fixes, C gets populated,
subsequently resulting in more diverse prompts.

2



AuPair: Golden Example Pairs for Code Repair

 train repair candidate 
pairs

k-shot
 prompts

sample
guess

fix

as

if 1 >     >

if     >

sample

Figure 2: Pair Generation: We collect a large set of guesses
for coding problems and their fixes yielding candi-
date pairs that will later be used to get AuPairs. A
problem with its guess is sampled from the training dataset,
with k randomly sampled few-shot pairs from the candidate
pair buffer. This k-shot prompt is passed through an LLM
to generate a fix, which is evaluated on the unit tests. If this
fix is better than the guess, this (guess, fix) pair is added to
the set of candidate pairs. Imperfect fixes are added as new
guesses to the training dataset (See §2.1).

other domains, paired data may already be available. In such
cases, the set of candidate pairs C that we curate in this step,
can simply be replaced by the given paired data.

Algorithm 1 Fix quality matrix computation

Require:


LLM large language model
C candidate pairs
Dval validation dataset
score code eval function

1: init fix quality matrix M ← 0|C|×|Dval|

2: for pair ci, problem xj ∈ C × Dval do
3: build 1-shot prompt: p← ci ∥ xj

4: generate fix: ŷ ← LLM(p)
5: evaluate fix: Mi,j ← score(ŷ)
6: end for
7: return M

2.2. Phase 2: AuPair Extraction

Now that we have a large set C of candidate pairs, the next
step is to determine which of these will actually help boost
performance, i.e., which of these are AuPairs. We do this
in a submodular fashion by making use of the validation
dataset Dval. For each pair-problem combination (ci, xj) ∈
C × Dval, we build a 1-shot prompt p using the prompting
strategy described in Fig. 18. This 1-shot prompt p is given
as input to the LLM, which generates a fix for the given
problem xj . The fix generated by the LLM is then evaluated
on the unit tests and stored in the fix quality matrix M ∈
R|C|×|Dval| at index (i, j). This part of AuPair extraction is
outlined in Algorithm 1.

 val

repair

1.
2.
3.
…

candidate 
pairs

submodular 
selection

fix-quality 
matrix1-shot

 prompts

AuPairs

Figure 3: AuPair Extraction: Given a large set of candidate
pairs , the next step is to extract AuPairs. Each pair
is provided as a 1-shot in-context example in the prompt for
each problem and its guess from the validation dataset.
These prompts are passed to the LLM which generates fixes
that are evaluated on unit tests to populate a fix-quality
matrix, as described in Algorithm 1. Next, a submodular
selection mechanism is applied on this fix-quality matrix to
obtain the list of AuPairs (Algorithm 2).

Next, we use this fix quality matrix M to extract the AuPairs
by taking the following steps: 1) Select the pair that gets
the highest mean score across all problems in Dval, say ck,
and add it to the list of AuPairs A : A ← A ∪ ck. This is
a greedy way of selecting the best pair given all previous
AuPairs and produces an ordered set of AuPairs. 2) Subtract
the row score Mk (i.e. score on all the problems in Dval)
of this newly added pair from all the rows in the fix quality
matrix with an update: M−Mk. This ensures that redundant
AuPairs are not produced by the approach. The updated fix
quality matrix is clipped to (0, 1) since any negative value in
the matrix M , say Mi,j , implies that the problem xj cannot
be improved further by pair ci. Without clipping, we would
not get an accurate estimate of the improvement in the next
step of submodular extraction. 3) Repeat this process until
improvement falls beyond a certain tolerance ϵ.

Algorithm 2 Submodular AuPair extraction

Require:

 M fix quality matrix
C candidate pairs
ϵ tolerance

1: initialise AuPairs A ← []
2: repeat
3: per-pair scores: m̄← row-mean(M)
4: get best pair: ck ← argmaxCm̄
5: append to AuPairs: A ← A+ ck
6: update M ← clip(M −Mk, 0, 1)
7: until max(m̄) < ϵ

return A

This process of iteratively constructing the set of AuPairs
ensures that they improve performance on disjoint parts of

3



AuPair: Golden Example Pairs for Code Repair

the problem space. The AuPairs that we obtain from this
phase are used in the same manner at inference time, as
1-shot examples, to improve code repair performance. The
compute budget N determines the number of AuPairs that
we can use at inference time. Since the AuPairs form an or-
dered set, the first N AuPairs are used for a compute budget
of N LLM calls. The final solution for each problem is the
one that passes the most test cases, among all generated so-
lutions. This submodular extraction of AuPairs is shown in
Algorithm 2. Fig. 3 has a joint diagram depicting fix quality
matrix computation and submodular AuPair extraction.

3. Experiments
Datasets: We use 7 datasets that contain problems and test
cases from competitive programming contests: 1) Code-
Forces (8.8k problems), 2) AtCoder (1.3k problems), 3)
HackerEarth (1.2k problems), 4) CodeChef (768 problems),
5) LiveCodeBench (400 problems), 6) CodeJam (180 prob-
lems), and 7) Aizu (2.2k problems) (Li et al., 2022b; Jain
et al., 2024). We choose CodeForces and AtCoder, sepa-
rately, for in-distribution testing, and use the rest exclusively
for out-of-distribution testing. Our training / validation / test
split proportions for the CodeForces and AtCoder datasets
are 37.5/12.5/50%. Some datasets have difficulty levels as
part of the problem; for those we maintain the same strati-
fied distribution of questions in the training, validation and
test datasets.

Models: We demonstrate the superior code repair capability
of AuPair on 5 different models: Gemini-1.5-Pro, GPT-4o-
mini, Gemini-1.5-Flash, Gemma-27B, and Gemma-9B. In
addition to using these models for dataset curation and pair
generation, we also look at the transfer capabilities of our
method with respect to different models in Section 3.5.

Evaluation: We conduct two types of evaluation: in-
distribution and out-of-distribution. For in-distribution eval-
uation, we use the test split from the same dataset as the
one used for pair generation and AuPair extraction. This
ensures that the format of questions and test cases in the test
questions matches that of the AuPairs. Out-of-distribution
evaluation uses a different coding dataset; this means that
the test samples have different format of questions, difficulty,
types of problems and test cases than the AuPairs. Another
axis of out-of-distribution evaluation is the model axis: we
report performance obtained using AuPairs produced by a
different model than the one used for inference.

Metrics: Our primary metric is the commonly used test
pass rate, also called test case average (Hendrycks et al.,
2021; Ouyang et al., 2024; Wu & Fard, 2024), which we
compute as the average percentage of test cases passed, as
done in prior work (Tang et al., 2024; Ding et al., 2024;
Chen et al., 2023). In our setting, since we choose the best

out of N responses generated by the LLM, the test pass rate
for a test dataset with P problems is calculated as:

1

P

P∑
p=1

max
i∈{1,...,N}

1

|Tp|

|Tp|∑
j=1

1{eval(codep,i, Tp,j) == 1}

(1)

where Tp refers to the unit tests for problem p, and codep,i
is the code generated by the LLM for problem p in the ith

LLM call. The innermost loop computes the percentage of
unit tests passed by the LLM output codep,i. Next, we select
the code output that has the highest value for percentage of
unit tests passed, indicated by the max operation over all
LLM calls i ∈ {1, . . . , N}. The outermost loop averages
this across all the problems in the test dataset.

We also report the results of strict accuracy (Hendrycks et al.,
2021), which is the percentage of generated solutions that
pass all test cases (definition and results in Appendix §A.2).
Note that we cannot provide fair results for the pass@k
metric because that involves making an assumption that all
k responses from the LLM are i.i.d. generated, whereas
our approach produces fixes in a specific order. In our case,
the first AuPair is more useful than the second, which is
more useful than the third, etc; so their success probabilities
monotonically decrease as a function of k.

Baselines: We compare the effectiveness of our proposed
approach with best-of-N (Stiennon et al., 2020) and self-
repair (Olausson et al., 2024). Best-of-N is a strong baseline
to improve model performance by allowing multiple LLM
calls at inference time. Of the N generated responses, the
highest-scoring response is selected. To ensure the sampling
of high-quality diverse responses in best-of-N , we set the
temperature to 1.0 (Renze & Guven, 2024). Self-repair, on
the other hand, uses the compute budget of N LLM calls
to either generate verbal feedback or repaired code. Our
compute budget is N = 32, of which 4 LLM calls are used
to generate verbal feedback and 7 LLM calls to generate
repaired code for each verbal feedback.

The remainder of this section will discuss a plethora of
empirical results, on overall and ablated performance (§3.1
and 3.2), scalability and generalisation (§3.3 to 3.6), and
diversity (§3.7 to 3.10).

3.1. Significantly Boosted Code Repair Performance

The first step to assess code repair performance is to measure
in-distribution performance; namely generating and select-
ing AuPairs on the training and validation sets that match
the test dataset, and using the same model for evaluation
as AuPair construction. We do this for 2 datasets (Code-
Forces and AtCoder) and all 5 models. Fig. 4 shows the

4



AuPair: Golden Example Pairs for Code Repair

Figure 4: In-distribution code repair performance: with N = 32 LLM calls at inference time and the same train / val /
test data distribution, we compute the test pass rate. The same model is used for generating the initial guesses and fixes and
the AuPair extraction. CodeForces (left, 8.8k problems) and AtCoder (right, 1.3k problems), see §3.1 for more details.

resulting comparison between the best-of-N and self-repair
baselines and AuPair, for a budget of N = 32 LLM calls
at inference time.4 AuPair is clearly superior to best-of-N
and self-repair (matching in a few cases) on all models and
datasets, sometimes by wide margins. This clearly estab-
lishes that our proposal of providing a different in-context
example of code repair in each LLM call can significantly
boost performance.

An interesting side-result is visible in initial performance,
i.e., the performance of the initial guesses, which have to be
repaired. Gemini-1.5-Pro, despite being a superior model to
Gemini-1.5-Flash, shows worse initial performance. Since
the code generated has certain conditions that allow suc-
cessful execution, we observe that many initial guesses of
generated code fail because they do not obey these con-
ditions (see Appendix §A.11). In such cases, code repair
with either best-of-N or self-repair is unlikely to give us
high boost in performance since the initial solution is badly
formatted. This is one clear case where having an AuPair
in context significantly improves performance. Thus, using
AuPairs in conjunction with high performing models leads
to large performance improvements despite poor initial per-
formance, as we can see for both CodeForces and AtCoder
with the Gemini-1.5-Pro model in Fig. 4. This also miti-
gates the need for more sophisticated prompt engineering to
a large extent.

4Since our algorithm yields a variable number of AuPairs, for
datasets with fewer generated pairs, this number can be less than
32. To have a fair comparison, we set the same compute budget
N for best-of-N and self-repair. This is the case for AtCoder
(Fig. 4, right), where our algorithm yields 14, 15, and 27 AuPairs
for Gemma-9B, GPT-4o-mini, and Gemma-27B respectively. So
the corresponding baselines also use the same compute budget.

3.2. Selection Matters: AuPairs are More Effective than
Random Pairs

We design an ablation to disentangle the two possible
sources of improvement that our approach demonstrates,
namely 1) in-context learning and 2) the choice of AuPairs.
It is not implausible for the boost in performance to re-
sult from the LLMs’ in-context learning ability, and that
the same result could be achieved by including any set of
pairs. On the other hand, our approach specifically targets
complementarity during construction of AuPairs in that sub-
sequent AuPairs are selected based on their ability to solve
problems that previous AuPairs were unable to solve. To
resolve this, we compare the full method to a random-pair
baseline that randomly selects pairs from the full candidate
set (the result of Phase 1), deduplicating the problems that
the random pairs solve (which makes it a stronger baseline).
Fig. 5(a) shows that AuPair significantly outperforms the
random-pair baseline for N = 1, ..., 32, saving 2.5 − 3×
more compute by achieving the same score with 12 AuPairs
as the random pair baseline gets with 32 AuPairs. Note that
for any fixed candidate set, as N grows toward the size of
the full set of pairs, the performance of the random-pair
baseline will equal that of AuPair.

3.3. Better Scaling with Inference-Time Compute

At a fixed budget of N = 32 LLM calls, our results look
promising. In this section, we investigate whether and how
performance scales with the compute budget N . Fig. 5(b)
plots the score as a function of N using Gemini-1.5-Pro
on the CodeForces dataset (additional scaling curves for
Gemini-1.5-Flash and strict accuracy metric in the Ap-
pendix, see Figs. 10 and 13). For each additional LLM
call, we use the next best AuPair produced by the algorithm

5



AuPair: Golden Example Pairs for Code Repair

Figure 5: (a) AuPairs vs. random pairs: AuPairs (green) are far (∼ 2.5− 3×) more compute-efficient than random pairs
(red); it takes only 12 AuPairs to reach the same performance as 32 random pairs; (b) Scaling inference-time compute: the
score increases with compute budget at a much steeper rate using AuPairs (CodeForces, Gemini-1.5-Pro).

and provide it in context to generate the LLM response.
Our algorithm produces 144 AuPairs for the CodeForces
dataset using Gemini-1.5-Pro, and achieves a test pass rate
of 51.32% and strict accuracy of 39.73% (see §A.3) at 144
LLM calls. The results shows a clear scaling trend with
a consistent log-linear performance increase as a function
of compute, without any sign of a plateau. More impor-
tantly, the increase is substantially steeper than best-of-N
and self-repair (which achieve test pass rate of 16.05% and
15.79% and strict accuracy 12.04% and 12.23% respec-
tively); in other words, prompting with in-context comple-
mentary AuPairs makes more efficient use of compute than
either repeated sampling given a fixed repair prompt, or
repair with model-generated verbal feedback.

3.4. Strong Generalisation to Out-of-distribution
Datasets

The aim of this experiment is to determine whether our
approach exhibits out-of-distribution generalisation, i.e.,
given AuPairs collected on a different dataset, see if we
can retain the performance improvements that we obtain in-
distribution. To test this, we evaluate the AuPairs collected
using Gemini-1.5-Pro on CodeForces on the other 6 datasets
and compare them with the corresponding baselines. Fig. 6
shows that across datasets, our approach outperforms base-
lines by a large margin, despite having out-of-distribution
AuPairs. This implies that the process of collecting AuPairs
may only be needed on one dataset and the benefits can be
reaped across a wide range of problems (from other datasets,
or users) at inference time.

3.5. Decent Cross-Model Transfer

Now that we have seen that our approach can exhibit very
good out-of-distribution generalisation along the data axis,
we evaluate it on its ability to generalise on the model axis,
i.e., we look at the performance of AuPairs collected using
a different model. We evaluate this cross-model transfer
capability for several model combinations on CodeForces.
The resulting 16 ablations are shown in Fig. 7(a), and help
disentangle the impact of the AuPairs versus the code re-
pair capabilities of the inference model. A key takeaway
is that the Gemma models exhibit worse performance, re-
gardless of the quality of AuPairs used at inference time,
indicating that they are inferior at the capability of code
repair. Gemini-1.5-Flash performs much better at code re-
pair, and its sensitivity to the source of AuPairs is negligible:
it is equally performant for each source. Gemini-1.5-Pro,
on the other hand, is sensitive to the source of AuPairs;
in particular, when Gemini-1.5-Pro uses AuPairs collected
by the same model, it achieves the best performance by
a large margin. With AuPairs selected using other mod-
els, Gemini-1.5-Pro achieves comparable performance to
Gemini-1.5-Flash. One reason for the standout performance
when using Gemini-1.5-Pro AuPairs seems that those ex-
amples result in substantially more diverse generations, as
shown in Section 3.7. However, Fig. 7(a) as a whole sug-
gests that there is an ordering in terms of performance: 1)
the model used at inference time has to have good code
repair capabilities, and 2) the stronger the model is at code
repair, the more improvement we can expect from it with a
higher quality of AuPairs. We also show additional results
for cross-model transfer on GPT-4o in §A.4.

6



AuPair: Golden Example Pairs for Code Repair

Figure 6: Out-of-distribution code repair performance: AuPairs extracted on the CodeForces dataset show strong
generalisation performance across the other six datasets (model: Gemini-1.5-Pro, metric: test pass rate).

Figure 7: Cross-model transfer: AuPair shows good cross-
model transfer capabilities on CodeForces.

3.6. Better scaling with validation data

We conduct experiments with smaller validation sets to cu-
rate AuPairs and report the results in Table 1. The takeaway
is that the larger the validation set, the more distinct com-
plementary improvements can be observed, and hence the
larger the maximal set of AuPairs that can be discovered. So,
larger validation sets make it possible to effectively scale
up to more inference compute. However, even just looking
at the top 32 AuPairs (which is a fair comparison for vary-
ing validation set sizes), we find that their quality increases
monotonically with the size of the validation set.

3.7. High Code-specific Diversity

We use Abstract Syntax Trees (ASTs) to study the fixes
generated using AuPairs. Since there are N fixes for each
problem (N = 32), we measure the diversity per problem as
the number of unique changes made to the guess over all N
fixes for that problem. The diversity score is calculated as
the average number of unique ASTs generated per problem.
We perform the set difference of all subtrees in the fix AST

Figure 8: Diversity-Score plot: AuPair (⋆) generates more
diverse responses than best-of-N (□) for Gemini-1.5-Flash
and -Pro; this trend is reversed for Gemma models. AuPair
always generates higher-scoring fixes than best-of-N .

and the guess AST, and normalise by the maximum number
of subtrees. We plot this diversity metric against the score to
gauge how diverse and useful the AuPairs are, compared to
best-of-N , in Fig. 8. §A.9 contains details on the diversity
score computation. The results show that while AuPairs
always increase performance, they yield more diverse fixes
when given to the more competent models (Gemini-1.5-Pro
and -Flash), and less diverse fixes for the Gemma models.
The superior performance of AuPairs produced by Gemini-
1.5-Pro corresponds to highly diverse fixes (Fig. 8, top right).

3.8. High Repair Diversity

In addition to code diversity, we also analyse the repair di-
versity of the solutions generated by AuPair compared to
the baselines. In this, we report the following values: 1)
percentage of problems in which the code was reformatted

7



AuPair: Golden Example Pairs for Code Repair

Validation set size # of AuPairs Test pass rate

Random N/A 0.383
10% 32 0.403
25% 52 0.418
100% 144 0.438

Table 1: Scaling with validation data: We see an increase
in 1) the number of AuPairs discovered, and 2) performance
using the top 32 AuPairs on scaling validation data.

Figure 9: Repair Diversity across models and approaches:
In most cases, AuPair outperforms baselines by performing
a diverse set of fixes like formatting, composite, logical
fixes. This diversity is also reflected in the lower number of
problems where the fix is equivalent to the guess.

to increase the score by obeying the formatting constraints
described before (higher is better), 2) percentage of prob-
lems in which the fix generated an improved solution by just
changing the logic (higher is better), and 3) percentage of
problems in which the fix score remained unchanged with
respect to the guess (lower is better). Note that fixes that
involve multiple changes, such as formatting changes and
logical changes, are counted under formatting fixes. Fig. 9
provides a visual illustration of these results.

3.9. Improvement on All Difficulty Levels

Coding datasets have heterogeneous difficulty. We con-
duct additional analysis to determine which problem levels
are most helped by AuPair, compared to the quality of ini-
tial guesses. Table 2 shows the absolute improvement in

test pass rate, i.e., the increase in this score achieved by
AuPair on CodeForces. The two key observations are (a)
AuPair helps significantly at all difficulty levels across mod-
els, and (b) there are larger improvements on easier levels;
this trend is consistent across models. Note that the initial
performance of Gemini-1.5-Pro is low because the initial
guesses do not adhere to the instruction (elaborated in Ap-
pendix §A.11); however since this is the strongest model
and has the best overall performance, the increases in score
are significantly higher than other models.

3.10. Using AuPairs may lead to worse responses

While AuPairs have been shown to significantly boost perfor-
mance in a best-of-N setting, they can occasionally generate
a worse repaired response compared to the initial response in
some cases. Table 3 contains the percentage of CodeForces
problems in which some fixes were worse than their initial
guesses. Note that the performance gains shown earlier still
hold, since for measuring performance, the best scoring
response is selected. As we can see from Table 3, in most
cases, using AuPair results in an increase in the number
of problems for which a fix is worse than the initial guess.
This is to be expected since AuPair is an algorithm that in
addition to boosting performance also boosts diversity of
the generated responses.

4. Related Work
Automatic Program Repair (APR) has been a longstanding
area in machine learning (Devlin et al., 2017; Bhatia &
Singh, 2016; Chen et al., 2019; Feng et al., 2020; Berabi
et al., 2021; Chakraborty et al., 2022; Yuan et al., 2022).
Most methods rely on supervised fine-tuning (SFT) to adapt
LLMs to the task of code generation using labeled pairs
of broken / fixed code pairs, which is costly to obtain and
often task- and problem-specific (Hu et al., 2022; Jiang
et al., 2021; Xia & Zhang, 2022; Dinella et al., 2020). On
the other hand, unsupervised APR is challenging since it
requires syntactic and semantic understanding of code, and
most automatic code breaking approaches tend to be out-of-
distribution with real samples. Yasunaga & Liang (2021)
train a breaker and a fixer to learn to propose new code fixes
that are realistic, and use a compiler to verify correctness.
Our work uses model-generated partial or complete fixes on
initial broken code to perform repair.

More recently, a few unsupervised approaches have been
proposed based on the capability of LLMs to generate
code (Chen et al., 2021; Nijkamp et al., 2023; Chowdh-
ery et al., 2024; Li et al., 2022a; Fried et al., 2023; Li et al.,
2023). APR still remains challenging, even though models
are better at generating code (Olausson et al., 2024; Chen
et al., 2023). Zhao et al. (2024) use a step-by-step method
to repair code using a reward model as a critic, providing

8



AuPair: Golden Example Pairs for Code Repair

Difficulty level→ A (671) B (675) C (671) D (666) E (649) F+ (537)

Gemma-9B 0.34 (+0.16) 0.23 (+0.13) 0.19 (+0.12) 0.15 (+0.09) 0.14 (+0.08) 0.12 (+0.07)
Gemma-27B 0.28 (+0.1) 0.25 (+0.12) 0.20 (+0.12) 0.19 (+0.1) 0.17 (+0.1) 0.20 (+0.11)
Gemini-1.5-Flash 0.54 (+0.2) 0.39 (+0.18) 0.34 (+0.15) 0.18 (+0.11) 0.26 (+0.12) 0.28 (+0.11)
Gemini-1.5-Pro 0.62 (+0.42) 0.52 (+0.4) 0.43 (+0.35) 0.38 (+0.32) 0.32 (+0.28) 0.35 (+0.29)

Table 2: Difficulty-wise analysis: test pass rate using AuPairs, categorised by difficulty level from easy (A) to hard (F+),
accompanied by number of problems, absolute improvement in parentheses.

Model Approach % problems

Gemini-1.5-Pro Best-of-N 10.52
Self-repair 7.62

AuPair 11.63
GPT-4o-mini Best-of-N 20.09

Self-repair 11.87
AuPair 15.28

Gemini-1.5-Flash Best-of-N 9.47
Self-repair 22.28

AuPair 11.79
Gemma-27B Best-of-N 14.86

Self-repair 9.72
AuPair 15.21

Gemma-9B Best-of-N 13.16
Self-repair 9.38

AuPair 13.09

Table 3: Failure analysis: increase in the % of problems in
which using AuPairs resulted in a lower-scoring fix.

feedback to finetune an LLM. Shypula et al. (2024) propose
a retrieval based few-shot prompting approach with Chain-
of-Thought (CoT) reasoning traces, and use SFT to finetune
a model using self-play. The main disadvantage of using
SFT comes from the need to finetune the model to the task,
which becomes more costly with increasing model sizes. In
recent years, in-context learning (ICL) (Brown et al., 2020)
has emerged as a flexible and compute-efficient adaptation
approach to new tasks (Von Oswald et al., 2023; Akyürek
et al., 2023). Le et al. (2022) use an LLM to generate code
and a critic to predict functional correctness of the gener-
ated program with zero-shot transfer to new tasks. Gou et al.
(2024) employ tool use to provide feedback for the LLM to
self-correct via additional calls to evaluate its own output.
Wang et al. (2023a) also make use of external tools and use
an LLM in a learner / teacher role to provide a chain of
repairs to fix the code.

Yin et al. (2024) propose an automated self-repair approach
with few-shot prompting using CoT and execution feedback.
Agarwal et al. (2024) also use CoT rationales but remove
them from context when using few-shot prompting. Olaus-
son et al. (2024) show that using an LLM as a feedback
source for self repair has limitations when compared with
independent model calls for the same problem since the

ability to generated better code may be connected to the
ability to identify its faulty behaviour. Welleck et al. (2023)
decouple generation and correction by independently train-
ing a corrector with scalar and natural language feedback
to correct intermediate imperfect generations. Ding et al.
(2024) teach code-competent models to self-refine by factor-
ing in the execution results from previous incorrect code and
updating the pretrained model using this feedback. Tang
et al. (2024) provide a stochastic approach for choosing
which code node to expand by using a Thompson sampling
approach; they leverage an exploitation-exploration mecha-
nism for evolving the tree of code refinements.

Yuan & Banzhaf (2017) propose a multi-objective evolution-
ary algorithm to search over possible correct code patches;
Romera-Paredes et al. (2023) use an island-based evolution-
ary method to encourage exploration of diverse programs,
and perform iterative best-shot prompting to improve the
quality of the generated code. We use a generative approach;
closer to the work of Shirafuji et al. (2023), we make use of
ICL abilities of LLMs to generate improved code repairs,
but we provide an extra submodular process to select the
samples, encouraging diversity.

5. Conclusions and Future Work
We propose an algorithm, AuPair, which produces an or-
dered set of golden example pairs each of which can be
provided as an in-context example using 1-shot prompting
with an inference compute budget of N LLM calls to im-
prove code repair performance at inference time. AuPair
is highly scalable, showing significantly better outcomes
than best-of-N and self-repair, both of which are known to
improve performance as inference compute is scaled up. In
addition to this, the AuPairs generated using our algorithm
show strong out-of-distribution generalisation and thus can
be reused at inference time to solve a wide range of prob-
lems. While in this paper we have explored repair in the
coding domain, future work can look at using it in other
settings in which an initial solution generated by an LLM
can be improved via repair. Additionally, the choice of
coding implies that all our feedback is grounded, but us-
ing ungrounded feedback from reward models to build the
AuPairs might be another direction worth exploring.

9



AuPair: Golden Example Pairs for Code Repair

Acknowledgements
The authors would like to thank Dan Calian for valuable
feedback and suggestions on the paper; David Silver for
his sponsorship; Wojtek Czarnecki, Kate Baumli, Jakub
Sygnowski, Victor Cărbune, Volodymyr Mnih, Mina Khan,
Georg Ostrovski, Shantanu Thakoor, Lei Zhang, Disha Shri-
vastava, Feryal Behbahani, the RL team, and the wider
DeepMind community for helpful discussions.

Impact Statement
The goal of our paper is to advance capabilities of LLMs in
the domain of code repair. This work may have potential
societal consequences, which we do not feel the need to
highlight here.

References
Agarwal, R., Singh, A., Zhang, L. M., Bohnet, B., Rosias,

L., Chan, S., Zhang, B., Anand, A., Abbas, Z., Nova,
A., Co-Reyes, J. D., Chu, E., Behbahani, F., Faust, A.,
and Larochelle, H. Many-shot in-context learning, 2024.
URL https://arxiv.org/abs/2404.11018.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Berabi, B., He, J., Raychev, V., and Vechev, M. Tfix:
Learning to fix coding errors with a text-to-text trans-
former. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 780–791. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/berabi21a.html.

Bhatia, S. and Singh, R. Automated correction for syntax
errors in programming assignments using recurrent neural
networks. CoRR, abs/1603.06129, 2016. URL http:
//arxiv.org/abs/1603.06129.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/
abs/2005.14165.

Chakraborty, S., Ding, Y., Allamanis, M., and Ray, B.
Codit: Code editing with tree-based neural models. IEEE
Transactions on Software Engineering, 48(4):1385–1399,
April 2022. ISSN 2326-3881. doi: 10.1109/tse.2020.
3020502. URL http://dx.doi.org/10.1109/
TSE.2020.3020502.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. In arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L., Poshy-
vanyk, D., and Monperrus, M. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. CoRR,
abs/1901.01808, 2019. URL http://arxiv.org/
abs/1901.01808.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: scaling
language modeling with pathways. J. Mach. Learn. Res.,
24(1), March 2024. ISSN 1532-4435.

Devlin, J., Uesato, J., Singh, R., and Kohli, P. Seman-
tic code repair using neuro-symbolic transformation net-
works. CoRR, abs/1710.11054, 2017. URL http:
//arxiv.org/abs/1710.11054.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang,
K. Hoppity: Learning graph transformations to ddetect
and fix bugs in programs. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=SJeqs6EFvB.

10

https://arxiv.org/abs/2404.11018
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://dx.doi.org/10.1109/TSE.2020.3020502
http://dx.doi.org/10.1109/TSE.2020.3020502
http://arxiv.org/abs/1901.01808
http://arxiv.org/abs/1901.01808
http://arxiv.org/abs/1710.11054
http://arxiv.org/abs/1710.11054
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB


AuPair: Golden Example Pairs for Code Repair

Ding, Y., Min, M. J., Kaiser, G., and Ray, B. Cycle:
Learning to self-refine the code generation, 2024. URL
https://arxiv.org/abs/2403.18746.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou,
M. CodeBERT: A pre-trained model for programming
and natural languages. In Cohn, T., He, Y., and Liu,
Y. (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 1536–1547, On-
line, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
139. URL https://aclanthology.org/2020.
findings-emnlp.139.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. In International Conference on Learning Rep-
resentations, 2023.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, M., and Wang, H. Retrieval-augmented
generation for large language models: A survey, 2024.
URL https://arxiv.org/abs/2312.10997.

Gou, Z., Shao, Z., Gong, Y., yelong shen, Yang, Y., Duan,
N., and Chen, W. CRITIC: Large language models
can self-correct with tool-interactive critiquing. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Sx038qxjek.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps. In Advances in Neural Information Processing
Systems, 2021.

Hu, Y., Shi, X., Zhou, Q., and Pike, L. Fix bugs with trans-
former through a neural-symbolic edit grammar, 2022.
URL https://arxiv.org/abs/2204.06643.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Jiang, N., Lutellier, T., and Tan, L. Cure: Code-aware neural
machine translation for automatic program repair. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, May 2021. doi: 10.1109/
icse43902.2021.00107. URL http://dx.doi.org/
10.1109/ICSE43902.2021.00107.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. H. Coderl: Mastering code generation through pre-
trained models and deep reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2022.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rock-
täschel, T., Riedel, S., and Kiela, D. Retrieval-augmented
generation for knowledge-intensive nlp tasks, 2021. URL
https://arxiv.org/abs/2005.11401.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023. URL
https://arxiv.org/abs/2305.06161.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., Hubert, T., Choy, P., de Masson d’Autume, C.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Suther-
land Robson, E., Kohli, P., de Freitas, N., Kavukcuoglu,
K., and Vinyals, O. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, Decem-
ber 2022a. ISSN 1095-9203. URL http://dx.doi.
org/10.1126/science.abq1158.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrit-
twieser, J., Leblond, R., Eccles, T., Keeling, J., Gi-
meno, F., Lago, A. D., Hubert, T., Choy, P., de Mas-
son d’Autume, C., Babuschkin, I., Chen, X., Huang,
P.-S., Welbl, J., Gowal, S., Cherepanov, A., Mol-
loy, J., Mankowitz, D. J., Robson, E. S., Kohli, P.,
de Freitas, N., Kavukcuoglu, K., and Vinyals, O.
Competition-level code generation with alphacode. Sci-
ence, 378(6624):1092–1097, 2022b. doi: 10.1126/
science.abq1158. URL https://www.science.
org/doi/abs/10.1126/science.abq1158.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-

11

https://arxiv.org/abs/2403.18746
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://arxiv.org/abs/2312.10997
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://arxiv.org/abs/2204.06643
http://dx.doi.org/10.1109/ICSE43902.2021.00107
http://dx.doi.org/10.1109/ICSE43902.2021.00107
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.06161
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158


AuPair: Golden Example Pairs for Code Repair

sis. In International Conference on Learning Representa-
tions, 2023.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and Solar-
Lezama, A. Is self-repair a silver bullet for code genera-
tion? In International Conference on Learning Represen-
tations, 2024.

Ouyang, S., Zhang, J. M., Harman, M., and Wang, M. An
empirical study of the non-determinism of chatgpt in code
generation. ACM Trans. Softw. Eng. Methodol., Septem-
ber 2024. ISSN 1049-331X. doi: 10.1145/3697010. URL
https://doi.org/10.1145/3697010. Just Ac-
cepted.

Renze, M. and Guven, E. The effect of sampling tempera-
ture on problem solving in large language models, 2024.
URL https://arxiv.org/abs/2402.05201.

Romera-Paredes, B., Barekatain, M., Novikov, A., Ba-
log, M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., El-
lenberg, J. S., Wang, P., Fawzi, O., Kohli, P., Fawzi,
A., Grochow, J., Lodi, A., Mouret, J.-B., Ringer, T.,
and Yu, T. Mathematical discoveries from program
search with large language models. Nature, 625:468
– 475, 2023. URL https://www.nature.com/
articles/s41586-023-06924-6.

Shirafuji, A., Oda, Y., Suzuki, J., Morishita, M., and
Watanobe, Y. Refactoring programs using large lan-
guage models with few-shot examples. In 2023 30th
Asia-Pacific Software Engineering Conference (APSEC).
IEEE, December 2023. doi: 10.1109/apsec60848.2023.
00025. URL http://dx.doi.org/10.1109/
APSEC60848.2023.00025.

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J.,
Hashemi, M., Neubig, G., Ranganathan, P., Bastani, O.,
and Yazdanbakhsh, A. Learning performance-improving
code edits, 2024. URL https://arxiv.org/abs/
2302.07867.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize from human feedback. CoRR,
abs/2009.01325, 2020. URL https://arxiv.org/
abs/2009.01325.

Tang, H., Hu, K., Zhou, J. P., Zhong, S., Zheng, W.-L.,
Si, X., and Ellis, K. Code repair with llms gives an
exploration-exploitation tradeoff, 2024. URL https:
//arxiv.org/abs/2405.17503.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J. a., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR, 2023.

Wang, H., Liu, Z., Wang, S., Cui, G., Ding, N., Liu,
Z., and Yu, G. Intervenor: Prompt the coding ability
of large language models with the interactive chain
of repairing. CoRR, abs/2311.09868, 2023a. URL
http://dblp.uni-trier.de/db/journals/
corr/corr2311.html#abs-2311-09868.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language mod-
els, 2023b. URL https://arxiv.org/abs/2203.
11171.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences
by learning to self-correct. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

Wu, J. J. and Fard, F. H. Benchmarking the communication
competence of code generation for llms and llm agent.
arXiv preprint arXiv:2406.00215, 2024.

Xia, C. S. and Zhang, L. Less training, more repairing
please: revisiting automated program repair via zero-shot
learning. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022,
pp. 959–971, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450394130. doi: 10.
1145/3540250.3549101. URL https://doi.org/
10.1145/3540250.3549101.

Yasunaga, M. and Liang, P. Break-it-fix-it: Unsupervised
learning for program repair. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 11941–11952. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/yasunaga21a.html.

Yin, X., Ni, C., Wang, S., Li, Z., Zeng, L., and Yang, X.
Thinkrepair: Self-directed automated program repair. In
Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2024, pp. 1274–1286, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. ISBN 9798400706127.
doi: 10.1145/3650212.3680359. URL https://doi.
org/10.1145/3650212.3680359.

Yuan, W., Zhang, Q., He, T., Fang, C., Hung, N. Q. V.,
Hao, X., and Yin, H. Circle: continual repair across
programming languages. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2022, pp. 678–690, New
York, NY, USA, 2022. Association for Computing

12

https://doi.org/10.1145/3697010
https://arxiv.org/abs/2402.05201
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
http://dx.doi.org/10.1109/APSEC60848.2023.00025
http://dx.doi.org/10.1109/APSEC60848.2023.00025
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2405.17503
https://arxiv.org/abs/2405.17503
http://dblp.uni-trier.de/db/journals/corr/corr2311.html#abs-2311-09868
http://dblp.uni-trier.de/db/journals/corr/corr2311.html#abs-2311-09868
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://proceedings.mlr.press/v139/yasunaga21a.html
https://proceedings.mlr.press/v139/yasunaga21a.html
https://doi.org/10.1145/3650212.3680359
https://doi.org/10.1145/3650212.3680359


AuPair: Golden Example Pairs for Code Repair

Machinery. ISBN 9781450393799. doi: 10.1145/
3533767.3534219. URL https://doi.org/10.
1145/3533767.3534219.

Yuan, Y. and Banzhaf, W. Arja: Automated repair of java
programs via multi-objective genetic programming. IEEE
Transactions on Software Engineering, 46:1040–1067,
2017. URL https://api.semanticscholar.
org/CorpusID:25222219.

Zhao, Y., Huang, Z., Ma, Y., Li, R., Zhang, K., Jiang, H.,
Liu, Q., Zhu, L., and Su, Y. RePair: Automated pro-
gram repair with process-based feedback. In Findings
of the Association for Computational Linguistics ACL
2024. Association for Computational Linguistics, August
2024. URL https://aclanthology.org/2024.
findings-acl.973.

13

https://doi.org/10.1145/3533767.3534219
https://doi.org/10.1145/3533767.3534219
https://api.semanticscholar.org/CorpusID:25222219
https://api.semanticscholar.org/CorpusID:25222219
https://aclanthology.org/2024.findings-acl.973
https://aclanthology.org/2024.findings-acl.973


AuPair: Golden Example Pairs for Code Repair

A. Appendix
A.1. Pair Generation

In this section, we discuss the specifics of the pair genera-
tion phase and provide results pertaining to this phase. The
approach that we use for pair generation is provided in Al-
gorithm 3. Note that this is one way to generate pairs; they
can be generated in other ways, or be available beforehand.
Studying the impact of using pre-generated pairs for ex-
tracting AuPairs could be an interesting avenue for future
work.

We set k = 32 in this algorithm. The reason for this is
that during pair generation, we want diverse pairs to be
generated, and using a different set of k examples with the
same problem could give us different fixes.

For the AtCoder dataset, we set a budget of 10,000 LLM
calls for pair generation. Since the CodeForces dataset is
larger, we set a budget of 35,000 LLM calls to maintain a
good balance between having enough LLM calls per prob-
lem and maintaining the affordability of the overall approach
in terms of computational resources. We report the number
of pairs generated on both of these datasets across all 5
models: Gemini-1.5-Pro, GPT-4o-mini, Gemini-1.5-Flash,
Gemma-27B, and Gemma-9B in Table 4. Here we provide
some additional results that we were unable to include in
the main text.

CodeForces # Pairs # AuPairs

Gemini-1.5-Pro 1560 144
GPT-4o-mini 1192 94
Gemini-1.5-Flash 1327 110
Gemma-27B 509 77
Gemma-9B 556 122

AtCoder # Pairs # AuPairs

Gemini-1.5-Pro 927 64
GPT-4o-mini 378 15
Gemini-1.5-Flash 397 64
Gemma-27B 295 27
Gemma-9B 147 14

Table 4: Number of pairs collected during phase 1 of the
algorithm (# of pairs) and number of AuPairs extracted in
phase 2 (# AuPairs): CodeForces (left) and AtCoder (right)
for all 5 models.

A.2. Measuring correctness in terms of solved problems

In addition to pass rate of unit tests, we also report the
percentage of fully solved problems, for which the generated
code passes all test cases. This is the strict accuracy metric:

Figure 10: Scaling up inference compute on the CodeForces
dataset with Gemini-1.5-Flash. Scores correspond to aver-
age pass test rate on all the test problems.

1

P

P∑
p=1

max
i∈{1,...,N}

|Tp|∏
j=1

1{eval(codep,i, Tp,j) == pass}

where Tp refers to the unit tests for problem p, and codep,i
is the code generated by the LLM for problem p in the ith

LLM call. Here, the innermost loop, like test pass rate,
computes the percentage of unit tests passed by the LLM
output codep,i. Following this, we select the code output
that passes all tests (max over binary values yields 1 if
any such output exists, otherwise 0). The outermost loop
averages this across all the problems in the test dataset.

We see that AuPair outperforms all other baselines on all
models across the board, with results for CodeForces and
AtCoder shown in Fig. 11.

We also show the results for out-of-distribution generali-
sation on this strict accuracy metric in Fig. 12; again, the
results clearly indicate that AuPair outperforms all baselines
on this metric as well across all datasets.

A.3. Scaling Inference Compute

In addition to the scaling experiment we performed using
Gemini-1.5-Pro (results in Fig. 5(b)), we also perform the
same scaling experiment using Gemini-1.5-Flash and show
the results in Fig. 10. Moreover, we report the results of
the same scaling experiment on the strict accuracy metric
in Fig. 13. The trend is similar to what we observed before:
best-of-N plateaus after a certain number of LLM calls,
while our approach scales as the compute budget increases,
delivering an improvement in performance for each newly
included AuPair. The self-repair baseline performs better

14



AuPair: Golden Example Pairs for Code Repair

Algorithm 3 Pair Generation

Require:


LLM large language model
Dtrain training dataset
k number of few-shot examples
N total number of LLM calls
score code eval function

1: init candidate pairs C ← {}
2: for i = 1, . . . , N do
3: sample problem from dataset: x ∼ Dtrain
4: sample k pairs to use in-context: c1, . . . , ck ∼ C
5: build k-shot prompt: p← c1 ∥ . . . ∥ ck ∥ x
6: generate fix: ŷ ← LLM(p)
7: evaluate fix: sŷ ← score(ŷ)
8: if sŷ > sx then
9: create new pair: c← ⟨x, ŷ⟩

10: add to candidate pairs: C ← C ∪ c
11: if sŷ < 1 then
12: create new problem x̂ with guess ŷ
13: add new problem to dataset: Dtrain ← Dtrain ∪ x̂
14: else
15: remove all instances of problem from dataset: Dtrain ← Dtrain − {x}
16: end if
17: end if
18: end for

return C

Figure 11: In-distribution code repair performance for the strict accuracy metric with N = 32 LLM calls at inference
time. CodeForces (left) and AtCoder (right).

15



AuPair: Golden Example Pairs for Code Repair

Figure 12: Out-of-distribution code repair performance for the strict accuracy metric: AuPairs extracted on the
CodeForces dataset show strong generalisation performance across the other six datasets (the above results are obtained
using Gemini-1.5-Pro)

with the Gemini-1.5-Flash model than with the Pro model;
our hypothesis is that since the initial guesses for the Pro
model were worse because of formatting issues, self-repair
did not yield significant improvements. However, when the
initial guesses are better, the self-repair baseline shows a
stronger scaling result. Our algorithm yields 110 AuPairs
and achieves a final test pass rate of 37.83% and strict ac-
curacy 24.14%. Best-of-N , on the other hand, given the
same budget of 110 LLM calls, has a test pass rate of 21.8%
and strict accuracy 11.93%. Self-repair with the same com-
pute budget has a final test pass rate of 34.1% and strict
accuracy 22.39%. Since our AuPairs are selected submodu-
larly, the initial pairs yield high returns in performance and
these returns start diminishing slowly, but notably, perfor-
mance does not plateau yet. Thus, it is abundantly clear
that using AuPairs has a distinct advantage over currently
used approaches like best-of-N and self-repair in improving
performance at inference time as compute budget increases.

A.4. Cross-model Transfer to GPT-4o

In this section, we study the ability of the model to gener-
alise to GPT-4o. We report results using AuPairs collected
on GPT-4o-mini, since it is a weaker model than GPT-4o
but from the same model family, and Gemini-1.5-Pro, since
it is the strongest model from a different model family. The
results in Table 5 validate our previous finding that in spite
of using AuPairs from other models, there are significant
performance gains (11% and 20% absolute performance
gains) over the strongest baseline.

Approach Test pass rate

Initial 0.244
Best-of-N 0.100
Self-repair 0.374

Gemini-1.5-Pro AuPairs 0.486
GPT-4o-mini AuPairs 0.573

Table 5: Transfer to GPT-4o: We see strong cross-model
transfer using GPT-4o-mini and Gemini-1.5-Pro AuPairs
with GPT-4o, with 11% and 20% absolute performance
improvement respectively over the strongest baseline.

A.5. AuPair v/s RAG

Our approach yields a fixed ordered set of examples, of
which the first N examples are used at inference time, de-
pending on the inference compute budget N . Retrieval-
Augmented Generation (RAG) techniques (Lewis et al.,
2021; Gao et al., 2024), on the other hand, retrieve examples
that are in closest proximity to a particular test problem in
the embedding space. As a result, for each test problem, a
different set of N examples is retrieved. Table 6 shows a
comparison between RAG and AuPair for an inference com-
pute budget N = 32 on the CodeForces dataset. The RAG
baseline retrieves the top N examples from the candidate
set of all pairs (cardinality of each set of candidate pairs
per model is given in Table 4). We use BERT (Devlin et al.,
2019) embeddings to retrieve the top N pairs.

16



AuPair: Golden Example Pairs for Code Repair

Figure 13: Strict accuracy when scaling inference-time compute: with N = 144 for Gemini-1.5-Pro and N = 110 for
Gemini-1.5-Flash

Model RAG score AuPair score

Gemini-1.5-Pro 0.379 0.438
GPT-4o-mini 0.361 0.378

Gemini-1.5-Flash 0.318 0.352
Gemma-27B 0.178 0.214
Gemma-9B 0.156 0.198

Table 6: Comparison with RAG: We do an apples-to-
apples comparison between AuPair and RAG on the Code-
Forces dataset, and the results conclusively show that AuPair
outperforms RAG across models.

A.6. Code Repair with LiveCodeBench

Generalisation of AuPair prompting is important to improve
code repair of smaller datasets. We posit that the AuPairs
contain diverse code changes that transfer meaningfully
across datasets, which may be important to those with scarce
data, since out-of-distribution generalisation becomes espe-
cially relevant when we have small datasets, on which it can
be quite difficult to obtain many different AuPairs.

We now show some the results obtained for a smaller dataset
(400 problems) LiveCodeBench (LCB) (Jain et al., 2024).
We generate the same train/val/test split (37.5/12.5/50%)
over 400 problems and apply our AuPair approach to obtain
in distribution AuPairs for LCB.

Fig. 14 shows that even with smaller number of selected
AuPairs we still obtain a gain over best-of-N prompting.
We obtained 5 AuPairs with the submodular extraction in
Algorithm 2 for all the models except Gemma-9B which ob-
tained only 3 AuPairs. The results indicate that performance
with CodeForces AuPairs matches or exceeds that of us-
ing in-distribution AuPairs from LiveCodeBench. We also
observe similar performance for in-distribution AtCoder

AuPairs and out-of-distribution CodeForces AuPairs on the
AtCoder dataset.

Another interesting result in Fig. 14 is that both metrics,
the test pass rate and strict accuracy, are comparable when
using in-distribution AuPairs from LiveCodeBench and out-
of-distribution AuPairs from CodeForces. This reinforces
the insight mentioned earlier that extracting AuPairs on
one dataset could lead to significant improvements over
baselines even on other datasets.

A.7. Coverage of Problem Categories is Preserved

The CodeForces dataset is richly annotated with category
labels for each problem. A problem may have multiple tags,
for instance, strings and two pointers. We use these
fine-grained tags to study how the problem distribution is
affected by Phase 1 and Phase 2 of our method separately.
Fig. 16 shows the proportions of these categories observed in
the initial dataset, the full set of pairs generated during Phase
1, and the final AuPairs. The high-level result is encouraging,
namely that the starting diversity is approximately preserved.
Phase 1 yields pairs for every single category, even those
that lie at the tail. Furthermore, the (sparser) distribution
over categories for the AuPairs after Phase 2 still shows
several problems from rare categories. This additional result
consolidates our insight that AuPairs are highly diverse in
the types of problems they contain.

A.8. Lineage

Here we look at the lineage of each pair generated during
phase 1 of our algorithm, pair generation. The key idea
here is to see if the set of all pairs collected during the pair
generation phase are deeper i.e., they generate iteratively
better solutions for a smaller set of problems, or broader
i.e., they generate solutions for a larger set of problems but

17



AuPair: Golden Example Pairs for Code Repair

Figure 14: LiveCodeBench results: using AuPairs from the CodeForces dataset matches or outperforms in-distribution
AuPairs from LiveCodeBench (left: test pass rate, right: strict accuracy).

Figure 15: Visualising the lineage of the set of all pairs as the first phase of the algorithm, pair generation, progresses.

18



AuPair: Golden Example Pairs for Code Repair

Figure 16: Category-wise analysis: analysing the distribution of AuPairs across different categories and comparing it with
the distribution of problems in the dataset.

those solutions may not necessarily be perfect. The last plot
in Fig. 15 (pairs generated on the CodeForces dataset us-
ing Gemini-Pro-1.5) indicates that the pairs collected have
shallow lineage: a large proportion of guesses that had a
score of 0 had corresponding fixes with perfect score at
depth 1. We also see that the number of fixes decreases as
depth increases (as seen from the size of the circles), indi-
cating that several problems could not be improved beyond
a certain point, or that they were not resampled during the
pair generation phase. In both these cases, one solution is to
allow more LLM calls during phase 1 to allow each problem
to be sampled for repair more times. The takeaway here is
that more sophisticated fixes for difficult problems can be
discovered as we increase the budget of LLM calls during
the pair generation phase. The entire evolution of this lin-
eage at different points during pair generation is illustrated
in Fig. 15.

A.9. Code Diversity

We compute the code diversity score in Fig. 7(b) based on
the number of different abstract syntax subtrees that each
code instance produces. Algorithm 4 describes how this
diversity score is computed. As a first step, for each guess
in the test dataset and its corresponding fix generated by the
LLM, we compute the respective abstract syntax subtrees.
Next, we compute their corresponding set difference to get
the unique subtrees for each code diff. This is done N
times for a compute budget of N and the number of code
diff subtrees across pairs and problems is averaged and
normalised in the following manner to yield the diversity
score δ:

Figure 17: Ablations over repair prompt

δ =
1

N |Dtest||Smax|

|Dtest|∑
i=1

|Sdiff
i | (2)

where Sdiff
i is the set of all code diff subtrees generated with

compute budget N for problem i, and the normalising factor
Smax corresponds to the highest number of subtrees that are
present in any such set of code diff subtrees.

A.10. Prompting

There are 2 types of prompts that we use: 1) guess gener-
ation prompt, and 2) repair prompt. The guess generation
prompt is used during dataset creation, for obtaining the
initial guesses for all problems in the dataset. The repair
prompt is used throughout the rest of the paper: in the Pair

19



AuPair: Golden Example Pairs for Code Repair

Algorithm 4 Diversity score computation

Require:


N inference compute budget
Dtest test dataset
Ŷ fixes for test problems
fAST abstract syntax subtree computation function

1: init set of code diff subtrees: Sdiff ← []
2: for problem x ∈ Dtest and its corresponding fixes ŷ ∈ Ŷ do
3: compute abstract syntax subtrees for guess: Sguess ← fAST(x

guess)
4: init code diff subtrees for this problem: s← ∅
5: for j ∈ {1, . . . , N} do
6: compute abstract syntax subtrees for fix: Sfix

j ← fAST(ŷj)

7: update code diff subtrees: s← s ∪ {Sfix
j \ Sguess}

8: end for
9: append to code diff subtrees: Sdiff ← Sdiff + s

10: end for
11: compute normalising factor: Smax ← argmaxiS

diff
i

12: compute diversity score: δ ← 1
N |Dtest||Smax|

|Dtest|∑
i=1

|Sdiff
i |

return δ

Generation (Phase 1, §2.1 with k = 32 random examples)
and in the AuPair Extraction (Phase 2, §2.2) and during
inference, with k = 1. The function signature indicates that
the function expects a string as an input. The instruction
specifies that the final answer is meant to be printed inside
the function, and that the main function is not meant to be
written.

The structure of our repair prompt is as follows: there is an
instruction at the top, followed by the few-shot examples
in the format: question, guess, fix. We also add the score
achieved by the guess and the fix for the in-context example
pairs. Following this, we add the text and initial guess for
the problem and the LLM then has to generate a better fix.
Note that we do not provide any extra execution feedback
in the form of execution traces; this could potentially be
explored by future work.

Our aim is clear: the pairs indicate a certain type of change
and we provide these pairs in context to aid the LLM in gen-
erating an improved solution for the given problem. Some
different prompting strategies that we tried out were the
following:

Naïve prompting: only include the problem, guess and fix
for the pairs, followed by the problem and guess for the test
problem.

Prompting with instruction only: include the header instruc-
tion followed by the components of the naïve prompting
strategy.

Prompting with instruction and score: include the elements
of 2 above, but in addition, also include the score that each
guess and fix received on the corresponding problem’s test

cases. This is the prompt that we finally use and the one that
gives us better results when compared using the same set
of pairs with the previous 2 strategies. An important thing
to note here is that we prompt the model with a desired fix
score of 100 for the test problem.

We test the three strategies described above on a subset
of the CodeForces dataset and report their performance in
terms of number of problems solved, in the figure on the
right. The results clearly indicate that the final prompting
strategy that includes the instruction and score is the best
strategy and so we choose it to compose the repair prompt.

A.11. Code Execution

When the LLM generates a fix for any problem, we call the
solve() function for each test case associated with that
problem. We then compare the output with the ground truth
and give a partial score corresponding to the proportion of
test cases passed by this fix.

An important point to note is that the solve() function has
to take as input a string, which is then parsed into the correct
variables. This formatting requirement is a key reason for
the poor initial performance of Gemini-1.5-Pro in Fig. 4.
Since the instruction for generating the initial guess is not
correctly followed by the model, a lot of guesses end up
invariably having incorrect parsing of the input, leading to
low scores. A lot of AuPairs extracted using these models,
as a result, contain this formatting fix, as we will see in
Section A.12.

20



AuPair: Golden Example Pairs for Code Repair

Guess Generation Prompt

<problem text>
Complete the function definition below. Print the final answer in the function. Do not write main. Do not write
anything outside the solve() function.

def solve(s: str):
...

Repair Prompt

You are an experienced software developer.
Look at the question (Q) and solutions below (A).
The main objective is to improve the solve() function to answer the question.

Example 1:

(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this code is score(A(bad)) = <example_guess_score>.

Good solution code A(good):
The score of this code is score(A(good)) = <example_fix_score>.

def solve(s: str):
...

...

====================================

The main objective is to improve the solve() function to answer the question.
(Q): ...
Bad solution code A(bad):

def solve(s: str):
...

The score of this solution is score(A(bad)) = <guess_score>

Good solution code A(good):
The score of this solution is score(A(good)) = 100

Figure 18: Composing the repair prompt.

21



AuPair: Golden Example Pairs for Code Repair

A.12. Types of Fixes in AuPairs

We now show some examples of AuPairs and highlight the
differences between the guess and fix for each pair. These
are a mix of CodeForces pairs collected using different
models. The scores achieved by the guess and fix on the
corresponding problem’s test cases are specified at the top
right corner for each example in Fig. 18. We also provide
a short description for each type of fix in the caption for
ease of understanding. The types of pairs discovered using
our algorithm cover a large area of potential fixes that can
be made to an initial buggy piece of code: from smaller
ones like parsing, fixing logical bugs pertaining to indexing
errors, variable initialisations, etc., to larger changes like
rewriting parts of the code, or even suggesting alternate
routes to solve the same problem.

22



AuPair: Golden Example Pairs for Code Repair

def solve(n: str):
  n = int(n)
  dp = [0] * (n + 1)
  dp[0] = 1
  for i in range(1, n + 1):
    dp[i] = dp[i - 1] * 4
  print(dp[n])

def solve(n: str):
  n = int(n)
  dp = [[0 for _ in range(4)] for _ in range(n + 1)]
  dp[0][0] = 1
  for i in range(1, n + 1):
    for j in range(4):
      for k in range(j, 4):
        dp[i][k] = (dp[i][k] + dp[i - 1][j]) % 
1000000007
  print(sum(dp[n]))

score: 0.33 score: 0.67

Fix: converts a 1-D dynamic programming solution to 2-D.

def solve(s: str, t: str, k: int):
  n = len(s)
  m = len(t)
  count = 0
  for i in range(n - m + 1):
    match = True
    for j in range(m):
      if abs(i + j - s.find(t[j], i, i + m)) > k:
        match = False
        break
    if match:
      count += 1
  print(count)

def solve(s: str):
  n, m, k = map(int, s.split('\n')[0].split())
  S = s.split('\n')[1]
  T = s.split('\n')[2]
  count = 0
  for i in range(n - m + 1):
    match = True
    for j in range(m):
      found = False
      for p in range(max(1, i + j - k), min(n, i + j 
+ k) + 1):
        if S[p - 1] == T[j]:
          found = True
          break
      if not found:
        match = False
        break
    if match:
      count += 1
  print(count)

score: 0.0 score: 1.0

Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(s: str):
  n, a, b, c = map(int, s.split())
  if a <= b:
    print(n // a)
  else:
    glass_bottles = n // b
    remaining_money = n - glass_bottles * b
    plastic_bottles = remaining_money // a
    print(glass_bottles + plastic_bottles)

def solve(s: str):
  n, a, b, c = map(int, s.split())
  if a <= b:
    print(n // a)
  else:
    glass_bottles = n // b
    remaining_money = n - glass_bottles * b
    plastic_bottles = remaining_money // a
    if remaining_money >= b - c:
      glass_bottles += 1
      remaining_money -= b - c
      plastic_bottles = remaining_money // a
    print(glass_bottles + plastic_bottles)

score: 0.5 score: 1.0

Fix: add an extra condition for edge cases.

23



AuPair: Golden Example Pairs for Code Repair

def solve(s: str):
  n = int(s.split('\n')[0])
  a = list(map(int, s.split('\n')[1].split()))
  count = 0
  for i in range(n):
    sum = 0
    for j in range(i, n):
      sum += a[j]
      if sum != 0:
        count += 1
  print(count)

def solve(s: str):
  n = int(s.split('\n')[0])
  a = list(map(int, s.split('\n')[1].split()))
  count = 0
  for i in range(n):
    sum = 0
    for j in range(i, n):
      sum += a[j]
      if sum != 0:
        count += 1
      else:
        break
  print(count)

score: 0.5 score: 1.0

Fix: add loop exit condition.

def solve(s: str):
    n = int(input())
    a = list(map(int, input().split()))
    if sum(a) == 0:
        print("NO")
        return
    print("YES")
    if a[0] != 0:
        print(1)
        print(1, n)
    else:
        print(n)
        for i in range(1, n + 1):
            print(i, i)

def solve(s: str):
    n = int(s.split('\n')[0])
    a = list(map(int, s.split('\n')[1].split()))
    if sum(a) == 0:
        print("NO")
    else:
        print("YES")
        print(n)
        for i in range(n):
            print(i + 1, i + 1)

score: 0.0 score: 0.25

Fix: composition of 1) input parsing correction, and 2) logical bug fix.

def solve(n: int, d: int, a: list[int]):
    balance = 0
    bank_visits = 0
    for i in range(n):
        balance += a[i]
        if balance < 0:
            if balance + d < 0:
                print(-1)
                return
            bank_visits += 1
            balance = d + balance
        if balance > d:
            print(-1)
            return
    print(bank_visits)
if __name__ == "__main__":
    n, d = map(int, input().split())
    a = list(map(int, input().split()))
    solve(n, d, a)

def solve(s: str):
    n, d = map(int, s.split('\n')[0].split())
    a = list(map(int, s.split('\n')[1].split()))
    balance = 0
    bank_visits = 0
    for i in range(n):
        balance += a[i]
        if balance > d:
            print(-1)
            return
        if a[i] == 0 and balance < 0:
            bank_visits += 1
            balance = d
    print(bank_visits)

score: 0.0 score: 0.67

Fix: composition of 1) function signature correction, 2) input parsing correction, and 3) logical bug fix.

24



AuPair: Golden Example Pairs for Code Repair

def solve(s: str):
    n = int(input())
    s = input().split()
    p = [int(x) for x in s]
    ans = 1
    for i in range(n):
        ans = ans * p[i] % (10**9 + 7)
    print(ans)

def solve(s: str):
    n = int(s.split('\n')[0])
    p = list(map(int, s.split('\n')[1].split()))
    ans = 1
    for i in range(n):
        ans = ans * p[i] % (10**9 + 7)
    print(ans)

score: 0.0 score: 0.5

Fix: input parsing correction.

def solve(s: str):
  n, p = map(int, s.split())
  dp = [float('inf')] * (n + 1)
  dp[0] = 0
  for i in range(1, n + 1):
    for j in range(32):
      if (1 << j) <= i:
        dp[i] = min(dp[i], dp[i - (1 << j)] + 1)
    if i - p >= 0:
      dp[i] = min(dp[i], dp[i - p] + 1)
  if dp[n] == float('inf'):
    print(-1)
  else:
    print(dp[n])

def solve(s: str):
  n, p = map(int, s.split())
  cnt = 0
  while n > 0:
    if n & 1:
      cnt += 1
    n >>= 1
  if p != 0:
    cnt += (n + p - 1) // p
  print(cnt)

score: 0.2 score: 0.6

Fix: solve problem using bit manipulation instead of dynamic programming.

def solve(s: str):
  n = int(s.split('\n')[0])
  graph = [[] for _ in range(n + 1)]
  for i in range(1, n):
    u, v = map(int, s.split('\n')[i].split())
    graph[u].append(v)
  visited = [False] * (n + 1)
  count = 0
  for i in range(1, n + 1):
    if not visited[i]:
      count += 1
      dfs(i, graph, visited)
  print(count - 1)
  res = []
  for i in range(1, n + 1):
    if not visited[i]:
      res.append(i)
  print(*res)
def dfs(node, graph, visited):
  visited[node] = True
  for neighbor in graph[node]:
    if not visited[neighbor]:
      dfs(neighbor, graph, visited)

def solve(s: str):
  n = int(s.split('\n')[0])
  graph = [[] for _ in range(n + 1)]
  for i in range(1, n):
    u, v = map(int, s.split('\n')[i].split())
    graph[u].append(v)
  def dfs(node, visited):
    visited[node] = True
    for neighbor in graph[node]:
      if not visited[neighbor]:
        dfs(neighbor, visited)
  count = 0
  visited = [False] * (n + 1)
  for i in range(1, n + 1):
    if not visited[i]:
      count += 1
      dfs(i, visited)
  print(count - 1)
  res = []
  visited = [False] * (n + 1)
  for i in range(1, n + 1):
    if not visited[i]:
      dfs(i, visited)
      res.append(i)
  print(*res)

score: 0.0 score: 0.5

Fix: partial correction to depth-first search graph algorithm.

25



AuPair: Golden Example Pairs for Code Repair

def solve(s: str):
  n, p, k = map(int, s.split()[0:3])
  a = list(map(int, s.split()[3:3+n]))
  s = [list(map(int, 
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
  people = sorted(enumerate(a), key=lambda x: x[1], 
reverse=True)
  max_strength = 0
  for i, (person_index, audience_strength) in 
enumerate(people):
    if i == k:
      break
    max_strength += audience_strength
    for j in range(p):
      max_strength_for_position = 
max(max_strength_for_position, s[person_index][j])
    max_strength += max_strength_for_position
  print(max_strength)

def solve(s: str):
  n, p, k = map(int, s.split()[0:3])
  a = list(map(int, s.split()[3:3+n]))
  s = [list(map(int, 
s.split()[3+n+i*p:3+n+(i+1)*p])) for i in range(n)]
  people = sorted(enumerate(a), key=lambda x: x[1], 
reverse=True)
  max_strength = 0
  for i in range(k):
    person_index = people[i][0]
    max_strength += a[person_index]
  for j in range(p):
    best_player_index = -1
    best_player_strength = -1
    for i in range(n):
      if i not in [person[0] for person in 
people[:k]]:  
        if best_player_strength < s[i][j]:
          best_player_strength = s[i][j]
          best_player_index = i
    max_strength += best_player_strength
  print(max_strength)

score: 0.0 score: 1.0

Fix: rewrite partial solution to pass all test cases.

Figure 18: Examples of AuPairs produced by our algorithm (multiple models represented above)

26


