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Figure 1: RDDM, restoring directly from the sensor RAW data, demonstrates remarkable results
shown in (a), capitalizing on the unprocessed and detail-rich signal. Compared with the two-stage
baseline in (b), RDDM delivers markedly higher fidelity and perceptual quality.

ABSTRACT

We present the RAW domain diffusion model (RDDM), an end-to-end diffusion
model that restores photo-realistic images directly from the sensor RAW data.
While recent SRGB-domain diffusion methods achieve impressive results, they
are caught in a dilemma between high fidelity and realistic generation. As these
models process lossy sSRGB inputs and neglect the accessibility of the sensor RAW
images in many scenarios, e.g., in image and video capturing in edge devices, re-
sulting in sub-optimal performance. RDDM obviates this limitation by directly
restoring images in the RAW domain, replacing the conventional two-stage im-
age signal processing (ISP)—Image Restoration (IR) pipeline. However, a simple
adaptation of pre-trained diffusion models to the RAW domain confronts the out-
of-distribution (OOD) issues. To this end, we propose: (1) a RAW-domain VAE
(RVAE), encoding sensor RAW and decoding it into an enhanced linear domain
image, (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse
RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the defi-
ciency in the dataset, we develop a scalable data synthesis pipeline synthesizing
RAW LQ-HQ pairs from existing sSRGB datasets for large-scale training. Ex-
tensive experiments demonstrate RDDM’s superiority over state-of-the-art SRGB
diffusion methods, yielding higher fidelity results with fewer artifacts. Codes are
publicly available at|github.com/YanCHEN-{fr/RDDM.
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Figure 3: The performance comparison among
SD-based methods on test datasets DIV2K-Val
and RealSR, respectively.

Figure 2: Distribution gap between RAW and
sRGB images.

1 INTRODUCTION

Real-world Image Restoration (Real-IR) aims to restore high-quality (HQ) images from low-quality
(LQ) images containing complex degradations, e.g. noise, image compression and blur (Fan et al.,
2020; Jinjin et al., [2020; |Zhang et al., 2022;2019; 2018b}; |2017). Existing GAN-based (Ledig et al.,
2017; [Wang et al.l [2018]) methods employ a generator and a discriminator for adversarial training.
However, GAN-based methods suffer from pattern collapse, incurring unsatisfactory results (Liang
et al.| 2022a} (Chen et al.| 2022} Liang et al}2022b; Xie et al., [2023)). Benefiting from the powerful
generative priors granted by text-to-image (T2I) models, SUPIR (Yu et al.,2024) and its counterparts
(Zhang et al.,|2023}; |Lin et al., 2024; Wang et al., 2024} |Wu et al., 2024bj |Yu et al., |2024) integrate
pre-trained diffusion models into Real-IR and have attained remarkable performance, which prevails
Real-IR models process and enhance images in the sSRGB domain. Despite the success of T2I
methods in the SRGB domain, they still face the challenge on the dilemma between image fidelity
and realistic generation.

In edge-device imaging, the ISP processes the sensor RAW capture into an sSRGB image, compress-
ing dynamic range from 12-14 bit into an 8 bit and discarding details through operations like de-
mosaicing, AWB, and clipping, leading to sub-optimal restoration results (Nguyen & Brownl 2016
Xing et al., [2021)). This drives us to integrate T2I models, which possess extensive priors, into the
RAW domain to leverage the unprocessed native signal. However, this integration faces challenges:
the significant differences in luminance, mosaic patterns, and noise distribution between sRGB and
RAW images render sSRGB-pretrained models ineffective for RAW processing, as shown in Fig.
and a comprehensive RAW-domain Real-IR dataset for rigorous benchmarking is currently lacking.
Fig. 2] exhibits the RAW-sRGB distribution gap.

In this paper we propose a novel RAW Domain Diffusion Model (RDDM) that starts from sen-
sor RAW to fully exploit the image information lost during the ISP process (Sundararajanl [2017)),
thereby unlocking enhanced potential for visual restoration effects. To bridge the RAW-sRGB dis-
tribution gap, we firstly devise and train a RVAE by a divide-and-conquer strategy that accepts a
sensor RAW as the input and outputs a enhanced linear domain image. Additionally, we design a
CMB LoRA module for Bayer pattern adaptability. To further mitigate OOD issues, we design a
PTP module that enables joint RAW and sRGB space optimization, thereby improving model fi-
delity. Finally, to addressing data scarcity, we propose a RAW image synthesis method, allowing us
to synthesize abundant RAW-linear image pairs from publicly accessible SRGB datasets.

In summary, our main contributions are as follows:

* We propose RDDM, the first practical application of the raw domain diffusion model, es-
tablishing a novel paradigm for RAW image restoration.

* We propose RVAE capable of encoding mosaicked, noised RAW images and subsequently
decoding the latent representations into linear HQ images, resolving the OOD issues. Ad-
ditionally, we design a RAW domain Real-IR data synthesis method and construct a RAW
Real-IR benchmark.

» Extensive experiments verify that RDDM demonstrates superior image fidelity and com-
parable generation capability to the state-of-the-art methods, as illustrated in Fig.



2 RELATED WORK

Real-world Image Restoration. Real-IR is becoming a trending field of research since the advent
of ESRGAN (Ledig et al., 2017). Early studies attempted various ways to combine generative
adversarial networks (GANSs) (Goodfellow et al.l 2014; [Karras et al., 2017; [2019; Radford et al.,
2015; Mirza & Osinderol [2014) with perceptual losses (Ding et al., 2020; Johnson et al., 2016;
Zhang et al.,[2018a) for training networks to predict images that follow the natural image distribution
(Ledig et al.l|2017; Wang et al.,[2018;|2021; Zhang et al.| 2021} Liang et al.,2022a; |Chen et al.,[2022;
Liang et al., 2022b; [Xie et al., |2023). However, since adversarial training of GANs can be unstable,
their discriminators are deficient in determining the quality of the diverse natural image contents,
giving rise to unnatural visual artifacts. As an alternative to GAN-based methods, diffusion-based
models (Podell et al.,[2023;Rombach et al.,[2022) is becoming increasingly popular in Real-IR tasks
(Kawar et al.[[2022; [Li et al., 2022; [Luo et al.,[2023alb} (Ozdenizci & Legenstein, 2023 [Saharia et al.,
2022) to generate realistic images with substantial texture, leveraging pre-trained Stable Diffusion
(SD) models as priors (Zhang et al., [2023} |Lin et al.,|2024; [Wang et al., [2024; [Wu et al.| 2024b; |Yu
et al.,2024; Sun et al., 2024; Menon et al., | 2020; |Karras et al., 2019) whereas they employ different
condition injection strategies and feature extraction. Nevertheless, all existing Real-IR methods
restore images in the SRGB domain in which rich information in the RAW domain might be lost
after ISP. However, directly adapting sSRGB Real-IR methods to the RAW domain encounters severe
domain mismatch and results in poor performance.

Image Processing in RAW Domain. Edge-devices capture sensor RAW data. The ISP pipeline re-
constructs SRGB images from sensor RAW through sequential hand-crafted modules, including de-
mosaicing (DM), denoising (DN), automated-white-balance (AWB), color correction matrix (CCM),
gamma compression (GC), and tone mapping (TM) (Sundararajanl 2017). After the demosaicing
module of ISP, a RAW domain image is transformed into a linear image, which is then converted
to an sRGB image after the subsequent post tone processing. One-stage RAW domain image pro-
cessing methods (Brooks et al., 2019; [Cao et al., [2024; [Li et al.| [2024; |Q1ian et al., [2019) typically
integrate denoising and demosaicing, which can result in image oversmoothing. The processed im-
ages are then converted to sSRGB images through the Post tone-mapping modules (AWB, CCM, GC,
TM), where operations such as AWB and clipping compress image information and further cause
detail loss in SRGB images. For two-stage methods (ISP—IR), performing image restoration on
these lossy sSRGB images often leads to artifacts.

3 METHODOLOGY

3.1 PROBLEM MODELING

In the SRGB domain, Real-IR model Ggg b, parameterized by 6, aims to estimate HQ sRGB image
X790 e RPwx3 given LQ sRGB image X% € R"*%*3, In RAW domain, we train a neural
network GEAW to transform LQ sensor RAW X FAW ¢ RAxwX1 (o HQ linear domain image
Xln ¢ RM*w*3_ The training task can be modeled as the following optimization problem:

0" = argmingExraw xun. g [L(GFY (XTI, €), X3 (1)

where S is the dataset consisting of (X FAW | X!in) pairs, and £ is the loss function, respectively.

A feed-forward ISP typically transforms RAW or linear domain images into the SRGB color space,
comprising a joint denoising and demosaicing module followed by a Post Tone Processing (PTP)
module. Fig. 5](a) presents an overview of a feed-forward ISP. We train a lightweight joint denoising
and demosaicing network Fpp(-) to produces a linear domain image X lin given a sensor RAW
X EAW, can be formulated as:

Xln — Fpp(XEAW) )
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Figure 4: (a) Illustration of RVAE training strategy. (b) With the adapted RVAE, we jointly train the
CMB-LoRA of RVAE encoder and pre-trained diffusion network using RAW-linear image pairs.

where Fpp is optimized by minimizing: Lppnet = |[(Fpp(XFAW), X1n)||3. Post Tone Pro-
cessing (PTP) module Fprp(-) including AWB, CCM, GC and TM, converts linear domain images
Xlin to sSRGB images X/ b which is defined as:

X" = Frrp(X4"), 3)

Since the on-device ISP pipeline is typically a black box, this simplified implementation is intro-
duced solely to validate the efficacy of the proposed Real-IR network. A detailed introduction of
ISP, as well as their mathematical derivations referenced in the Appendix

3.2 RAW DOMAIN DIFFUSION MODEL
Framework Overview. Our network GF4"W is composed of an RVAE encoder E}™, a diffusion
network €y, and an RVAE decoder Déi". Eém encodes the noisy, mosaicked sensor RAW into
a latent representation. ¢y refines this latent code to recover fine detail. D™ then decodes the
enhanced features to yield a linear, demosaiced and denoised image that is converted to SRGB by
the PTP module. We incorporate trainable LoRA layers (Hu et al., 2022) into the pre-trained E(lf”
and eg. To address the issue of extracting prompts from sensor RAW images, the feed-forward ISP
firstly processes the sensor RAW image to obtain an sSRGB image, from which the DAPE (Zheng
et al., 2024) prompt extractor extracts the textual information to activate priors. Fig. ] presents an
overview of the framework and the interplay between the various modules.

RAW Domain VAE. VAE plays a pivotal role in the quality of generated images. However, exist-
ing VAE in the SRGB domain are not capable of effectively encoding RAW images and decoding
linear domain images. Therefore, we train a RAW domain VAE that encodes RAW images and
subsequently decodes the latent representation into a linear domain image. (Rombach et al.| [2022)
employs a scaling factor to normalize the latent space distributions of different VAEs to the standard
Gaussian distribution, which is beneficial for diffusion network optimization. To obtain the statis-
tically accurate scaling factor, we calculate the parameter for training samples in the linear domain
according to the following formula:

1 1
2 b,c,h,w AN b,c,h,w
— G hw — Gyl 4
7 bchw Z (2 ), i bchw Z : @)
b,c,h,w b,c,h,w

s Gyl

where z%¢"% denotes the latent space of the training samples encoded by Eﬁf”. [vand o2 present
the mean and variance of the data distribution. The rescaled latent has unit standard deviation, i.e.,
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Figure 5: Feed-forward ISP and RAW data synthesis pipeline. IPTP transforms an SRGB image into
its linear domain counterpart. MNS converts a linear domain image into a sensor RAW image.

z < Z. The training strategy of RVAE is illustrated in Fig. {4{(a). We train the encoder and decoder
on the linear domain dataset degraded from DIV2K, Flickr2K, LSDIR, DIV8K and the first 10K
face images from FFHQ using our data synthesis pipeline, such that the linear domain input X %"
is encoded by RVAE encoder to obtain the latent feature z and the RVAE decoder decodes z into
the target linear domain image X1» = D(E(X%")). Furthermore, we devise a differentiable PTP
module that simultaneously supervises training in both the sSRGB and RAW domains. Similar to
LDM (Rombach et al.l [2022)), we use L loss, LPIPS loss, and GAN loss to train the VAE encoder
and decoder to generate realistic details of a linear image:

Lrvap = Leee(XE" XH") + AaLaan (X§", X" )
where L,.. = L1 + Lyprps and L, is calculated in both the RAW and sRGB domains. \g =
% and V[-] represents the gradient of the last layer in the decoder. In order to accom-
modate RAW images captured with arbitrary Bayer patterns, we propose a configurable multi-Bayer
(CMB) LoRA module that augments the RVAE encoder and the pre-trained diffusion network with
independent sets of LoRA, and we assign a distinct LoRA group to each Bayer pattern.

Training Framework. During training, the RVAE decoder is frozen and only the CMB LoRA
modules are optimized. We use VSD loss, LPIPS loss, and MSE loss to train our model in the RAW
domain and the SRGB domain:

L=Lysp(X§", X5") + MLpaw (X5, X5") + AaLrgy(Fprp(X5"), Fprp(XE"))  (6)

where A1, Ao are weighting scalars. Lraw = Lysg. Lrgy = Lyse+Lirprps. We transform both
the model predictions and the ground-truth into the SRGB domain via the proposed PTP module.

3.3 DATA SYNTHESIS

Despite the abundance of existing datasets for Real-IR, such as LSDIR (Li et al., 2023), FFHQ
(Karras et al., 2019), and DIV2K (Agustsson & Timoftel [2017)), these datasets are all in the SRGB
domain. To the best of our knowledge, there is currently no dataset for Real-IR in the RAW domain.
Therefore, to provide a solid training foundation for Real-IR in the RAW domain, we synthesize
a RAW domain Real-IR dataset by degrading publicly available SRGB Real-IR datasets, as shown
in Fig. (b). In particular, we first degrade SRGB HQ images X;Igb to sSRGB LQ images ngb
via detail degradation method, following Real-ESRGAN (Wang et al., [2021) despite excluding the
degradation process of random noise, since the noise in the RAW domain is intrinsic in the sensor’s
physical features. We devise a inverse post tone processing module (IPTP) ]-'1;% p(+), transforming

sRGB domain image X;,gb to linear domain image Xlin and a mosaic noise synthesizer module
(MNS) FB})('), transforming X fy}” to RAW image X fAW, which is defined as:

Xit = Fprp(X"), XEW = Fpp (X5) @)

for the synthesis of the training dataset for RDDM, the sRGB LQ images are processed through
Fprp(-)and Fo b (+) to obtain degraded RAW images, while the SRGB HQ images are transformed
into linear domain GT X% through Fp1.p(-). For the synthesis of the training dataset for DDNet,

lin

linear HQ images X ;" are processed through ]-"5,13 (+) to produce detailed RAW images.



Table 1: Quantitative comparison with different methods on both synthetic benchmarks. The best,
second best and third results of each metric are highlighted by red , orange and yellow cells

respectively. | presents the smaller the better, T presents the bigger the better. Please note that we
denote the number of sampling steps for each diffusion-based method using the format “method-
steps”.

Dataset | Method | PSNRT SSIMt LPIPS| DISTS, FID| NIQE, MUSIQ? CLIPIQA 1
JDnDmSR 234565 06192 05347 02655 453706 7.0895  32.1252 0.1978
SwinIR 227983  0.6294 05345 02780 449270 7.1012  32.9053 0.2520
MambalRv2 23.6377 0.6009 05882 02749 428625 7.2673  31.6576 0.2010
ISP+StableSR-s200 | 23.6034  0.6133 04095 02092 356300 4.7840  43.8325 0.4284
ISP+DIffBIR-s50 | 22.4903  0.5284 04519 02176 42,0167 4.6040  52.9640 0.6503
DIV2K-Val | ISP+PASD-s20 | 233860 0.6150 03029  0.1385 [123158010 34392  64.3181 0.6197
ISP+SeeSR-s50 | 232836  0.6059  0.2880  0.1363 254424 3.5605 = 65.6650 0.6976
ISP+SUPIR-s50 | 224837 05935 03265  0.1462 274418 35376  62.7078 0.5570
ISP+OSEDIff-s1 | 22.5277  0.6069 | 02836  0.1351  38.0461 3.6427 | 662024 0.6818
Ours-s1 237416 0.6296 02540  0.1197 238028 33627 654202 0.6737
JDnDmSR 27.6972 107995 03610 02210  31.1697 7.9294 304728 0.2373
SwinIR 27.0657 | 08161 @ 03714 02305 30.5639 7.5234  30.2268 0.2972
MambalRv2 2855563 0.7655  0.4409 02359  27.8182 81602  29.1201 0.2595
ISP+StableSR-s200 | 27.1173 07613 03387  0.1978 258442 = 4.5959  49.2604 0.5991
ISP+DIffBIR-s50 | 282670 07606 04142 02702 259530 63725  38.1396 0.5284
DRealSR ISP+PASD-s20 | 28.3377 07845 | 02870  0.1670 [I6I7I4Y 4.6875  53.1539 0.5872
ISP+SeeSR-s50 | 27.6513 07765 02972  0.1816  19.2938 [ 42053 56.0800 0.6681
ISP+SUPIR-s50 | 269559  0.7359 03262  0.1799  26.1866 5.0892  48.5114 0.4839
ISP+OSEDIff-sI | 251101 07315 03396  0.1900 324002 4.7336 | 573375 0.7376
Ours-s! 283495 07892 [102719  0.649  17.4825 4.6852  57.0696 0.7035
JDnDmSR 25.6346 075320 03649 02119 665709 7.4103  38.6661 0.2062
SwinIR 254564 07477 03818 02283  67.1467 69218  38.5181 0.2637
MambalRv2 256781 0.6976 04686 02399 648715 74959 362515 0.2100
ISP+StableSR-s200 | 233339  0.6600 03505  0.1949  60.9322 [[3.9343 | 64.1478 0.6393
ISP+DIffBIR-s50 | 25.3643  0.6761 04086 02478 567401 5.6140  49.4878 0.5581
RealSR ISP+PASD-s20 | 24.8545 0.6886 03055 | 0.720  40.8756 4.1290  63.5759 0.6223
ISP+SeeSR-s50 | 24.8332  0.6957 = 0.2872  0.1807 [ 360702 4.2017 [ 66:3191 0.6977
ISP+SUPIR-s50 | 23.9782  0.6505 03412 0.1937 517890 4.9086  59.3107 0.4814
ISP+OSEDiff-sI | 23.8067 0.6872 02988  0.1768 520761 42011 655805 0.6793
Ours-s! 25.1264 07092 | 02546  0.1589  36.8671 4.1286  65.8881 0.6723
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Figure 6: Qualitative comparison between RDDM and RAW domain one-stage method and two-
stage ISP—IR methods on DRealSR dataset and DIV2K-val dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training and Testing Datasets. We train RDDM using the LSDIR dataset and the
first 10K face images from FFHQ (Karras et al.}[2019). We use the degradation pipeline discussed in
the Data Synthesis section to synthesize LQ and HQ pairs in the RAW domain. For testing, we use
in-the-wild DND (Plotz & Roth,[2017) dataset, consists of 50 real noisy images captured by different




Figure 7: Qualitative comparison between RDDM and RAW domain one-stage method and two-
stage ISP—IR methods on in-the-wild DND dataset.

DRealSR I SeeSR Table 2: Comparisons of Params and FLOPs be-
DRealSR O VS OSEDIff tween RDDM and its competing methods on in-
DIV2k-val Y S SeeSR put resolution of 512 x 512.
DIV2k-val SOV OSEDiff
RealSR [ O VI SeeSR
RealSR DD OSEDiff Method | Params(M) FLOPs(G)
0 20 40 60 80 100 JDnDmSR 782 54
SwinIR 11.6 760
: . : MambalRv2 314 8260
Figure 8: The user preference win rates of ISP+StableSR.5200 | 1413 430
RDDM, compared to OSEDiff and SeeSR based ISP+DiffBIR-s50 1673 1670
on RealSR, DRealSR, and DIV2K-val. We pro- ISP+PASD-520 1432 1590
de the 959 fid interval of the win rat ISP+SeeSR-550 1622 1230
vide the 95% confidence interval of the win rate ISP+SUPIR.s50 4805 4100
based on five independent annotation rounds. ISP+OSEDiff-s1 1298 250
Ours-sl1 1294 250

consumer cameras, including Sony A7R, Olympus OMD E-M10, Sony RX100 IV and Nexus 6P,
and synthetic dataset construct by degrading the HR images from the DIV2K-Val, consisting of 100
images, RealSR containing 100 images, and DRealSR containing 93 images, using our proposed
data synthesis method.

Compared Methods. We compare RDDM against best best-performing traditional one-stage
method and two-stage ISP—IR models methods, as shown in Table[T} For one-stage methods, we
re-train JDnDmSR (Xing & Egiazarian), SwinIR (Liang et al., 2021) and MambalRv2
on the same RAW domain training dataset as our baseline. For two-stage ISP—IR methods,
we choose PIPNet (A Sharif et al, 2021)) as the DN and DM module for ISP and diffusion-based

IR methods as our Real-IR baselines, including StableSR (Wang et al} [2024), DiffBIR
2024), PASD (Yang et al, 2024), SeeSR [2024b), SUPIR (Yu et al.| and OSEDiff
(Wu et al,[2024a). Comparison results regarding GAN-based Real-IR methods, including BSRGAN
Zhang et al.|(2021)), Real-ESRGAN Wang et al.| (2021), LDL [Liang et al.| (2022a)) and FeMaSR |Chen|
et al.| (2022), are provided in Appendix[A.2]

Evaluation Metrics. For a thorough assessment of the different methods, we utilize a variety of full-
reference and non-reference evaluation metrics to test each method’s image fidelity and generation
quality. PSNR and SSIM (calculated on 3 channels) measure image fidelity,
whereas LPIPS (Zhang et al., 2018a) and DISTS measure perceptual qualities
based on reference images. FID assesses the distributional distance between
the GT and the restored images. NIQE (Mittal et al.,[2012), MUSIQ 2021), and CLIPIQA
are non-reference image generation quality measurements.

Implementation Details. We train RDDM with the AdamW optimizer at a learning rate of 5e — 5.
The entire training process spans 150000 steps with a batch size of 16. The rank of LoRA in the




RVAE Encoder and the diffusion network is set to 4. We employ DAPE as the SRGB domain text

prompts extractor.

(a) Setting 1 (b) Setting 2 (c) Setting 3
Sensor RAW (LQ) (d) Setting 4 (e) Setting 5 (f) Setting 6

Figure 9: Qualitative comparison of different VAE settings on the RealSR benchmark. Setting 6
(ours) achieves the optimal performance.

Table 3: Quantitative reconstruction perfor-
mance of different VAE settings on RealSR.

Setting | PSNRT  SSIMT LPIPS|  FID|

252625  0.8017 0.1719  41.8118
27.1487  0.7035 0.3068  48.4675
27.6892  0.7176 02787  38.2007
26.3147  0.6703 0.3967  53.4004
25.4509  0.6277 04533  64.2444
32.5424  0.9082 0.0533 11.6156

e =Y =
(a) SRGB VAE (b) RVAE (c) HQ

Figure 10: Qualitative comparison of sRGB
VAE and RVAE on the RealSR benchmark.

AN B W =

Table 4: Quantitative performance of RDDM with different VAE settings on the RealSR dataset.

Setting | PSNRT  SSIM? LPIPS| DISTS,  FID| NIQE, MUSIQT CLIPIQAT

1 20.5609 0.5797 0.3930 0.2071 73.5659 4.0762 62.7875 0.6431
2 22.3752 0.6484 0.4785 0.3307 138.43 6.5993 47.2304 0.4233
3 21.0398 0.6115 0.5710 0.4235 143.3710 10.5422 37.3569 0.3745
4 21.3850 0.6080 0.4250 0.2901 108.3618 7.5271 52.8636 0.2931
5 21.3886 0.5732 0.4911 0.3166 135.6228 7.5537 38.7119 0.1483
6 25.1264 0.7092 0.2546 0.1589 36.8671 4.1286 65.8881 0.6723

Table 5: Comparison of different domain losses on the DIV2K benchmark.

RAW Loss sRGB Loss | PSNRT SSIMt LPIPS| DISTS| FID, NIQEl MUSIQ? CLIPIQAT

v X 229510  0.6096 0.2794 0.1337  36.3172  3.4637 66.1391 0.7298
X v 233129  0.6237 0.2635 0.1216 ~ 29.5131  3.3352 64.7748 0.6637
v v 23.7416  0.6296 0.2540 0.1197  23.8028  3.3627 65.4202 0.6737

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

Quantitative Comparisons. Table [T| presents the quantitative comparisons on three test datasets.
RDDM ranks in the top 3 for all metrics, including PSNR, SSIM, LPIPS, DISTS, NIQE, MUSIQ,
CLIPIQA, and FID, across DIV2K-Val, DRealSR, and RealSR, except for PSNR on RealSR. JD-
nDmSR and SwinlR achieve slightly higher PSNR and SSIM on RealSR but significantly underper-
form on other metrics, particularly NIQE, MUSIQ, CLIPIQA, and FID, indicating weaker generative
capabilities. RDDM matches diffusion-based methods in generative performance while outperform-
ing them in image fidelity metrics like PSNR and SSIM. Additionally, RDDM has the lowest Params



and FLOPs among diffusion-based models, as shown in Table 2] More quantitative comparison re-
sults with GAN-based method are in the Appendix [A.2]

Qualitative Comparison. Fig. [0 presents visual comparisons of RDDM on RealSR, DIV2K-val,
and DRealSR versus RAW domain one-stage and two-stage methods. In the first example, JD-
nDmSR, SwinlIR, DiffBIR and SUPIR generate blurry wall textures with JDnDmSR showing sig-
nificant color deviation. PASD, SeeSR, StableSR, and OSED:iff produce more textures but lack fine
details. RDDM produces realistic, high-clarity wall textures. The second example reinforces this
conclusion, highlighting that RDDM utilizes detailed signal in sensor RAW resulting in mitigating
artifacts in diffusion-based methods. More visualization comparison results are in the Appendix[A.3]
To further investigate the user preferences about these results, we conduct a user study on RealSR,
DRealSR, and DIV2K-val test datasets, with 5 participants involved. For each set of comparison
images, users select their preferred result. As shown in Fig. [8] the results demonstrate that our
method significantly outperforms state-of-the-art methods in terms of perceptual quality. Addition-
ally, experiments on in-the-wild camera dataset validate that our method outperforms other methods
in terms of restoration capability under high-noise conditions, as shown in Fig. [7]

Table 6: Comparison of different text prompt extractors on the RealSR benchmark.

| PSNRT SSIM? LPIPS| DISTS| FID| NIQEl MUSIQ? CLIPIQAT

sRGBPE | 24.7811  0.7201 0.2495 0.1601 38.1092  4.2538 65.4506 0.6579
ISPPE 247816 0.7201 0.2495 0.1600  38.0969  4.2539 65.4526 0.6579
RPE 25.1264  0.7092 0.2546 0.1589  36.8671  4.1286 65.8881 0.6723

Figure 11: Qualitative comparison of RAW, sRGB and dual domain loss on the DIV2K-Val.

4.3 ABLATION STUDY

The Importance of RVAE. We evaluate six strategies for adapting VAEs to RAW domain recon-
struction: (1) using a pre-trained SRGB VAE fails to reconstruct RAW data, producing poor linear
domain images, as depicted in Fig. Ofa). (2) end-to-end VAE training with RAW-linear pairs re-
sults in mosaic textures, as illustrated in Fig. [P[b). (3) pre-training the encoder and decoder on
linear images, then fine-tuning the encoder with LoRA on RAW-linear pairs, still produces mosaic
textures, as displayed in Fig. [9(c). (4) replacing encoder LoRA with decoder LoRA in (3) retains
mosaic textures, as shown in é%l). (5) adding LoRA to both encoder and decoder in (3) still retains
mosaic patterns, as presented in Fig. D[e). (6) freezing the pre-trained decoder and jointly training
the encoder and diffusion network with LoRA successfully recovers fine details and reduces color
deviation, as demonstrated in Fig. [0(f). Table 3]shows that our method achieves the best reconstruc-
tion metrics, while Fig. confirms that RVAE effectively reduces color deviation. Additionally,
Table [4] demonstrate the end-to-end effect of different settings of RVAE within the RDDM frame-
work and the result reinforces the optimality of our method in Setting 6. An ablation study on the
CMB LoRA module reveals that a single LoRA shared across multiple Bayer patterns results in a
slight performance degradation, as shown in Table[7]

The Effectiveness of Dual Domain Loss. We evaluate the impact of different domain losses in
Table 5} Training RDDM solely in the RAW domain results in great image generation metrics but
poor fidelity and perceptual quality, with localized color deviations. Conversely, training exclusively
in the sSRGB domain yields sub-optimal performance across all metrics but reduces color deviations.
Training with supervision in both RAW and sRGB domains significantly enhances fidelity and per-



Table 7: Comparison of CMB LoRA and All-in-One LoRA on RealSR benchmark.

| PSNRT SSIMT LPIPS| DISTS, FID, NIQE, MUSIQt CLIPIQAT

All-in-One LoRA | 24.5355  0.7003 0.2550 0.1555  40.6767  4.1165 65.0143 0.6660
CMB-LORA 25.1264  0.7092 0.2546 0.1589  36.8671  4.1286 65.8881 0.6723

ceptual quality, though some image generation metrics like MUSIQ and CLIPIQA slightly decline,
while visual quality markedly improves. Fig. [[T|demonstrates the visual performance.

The Comparison of Text Prompt Extractors. Table [ compares three RAW prompt-extraction
strategies: (1) direct sSRGB-extractor use; (2) ISP-based conversion; (3) the proposed RPE with
DDNet denoising-demosaicing and PTP. RPE achieves the best PSNR, DISTS, FID, NIQE, MUSIQ,
and CLIPIQA by providing accurate prompts that effectively activate diffusion priors.

5 CONCLUSION

We propose RDDM starting from sensor RAW, a novel paradigm for Real-IR, empowered by RVAE,
CMB LoRA module, and RAW data synthesis IR dataset. RDDM mitigates sub-optimal IR results in
lossy sSRGB domains by incorporating detail-rich information on RAW images. Although generating
more realistic details, its fidelity is presently limited by the 8x RVAE down-sampling inherited from
SD 2.1; a mosaic-aware down-sampling strategy will be pursued in future work.
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A APPENDIX

In the appendix, we provide the following materials:

* Additional demonstrations regarding ISP and inverse ISP (referring to Section [3.1]in the
main paper).

* Comparisons against GAN-based methods (referring to Section[4.T]in the main paper).
* More qualitative comparisons (referring to[4.2]in the main paper).

A.1 APPENDIX: ISP AND INVERSE ISP

ISP and Inverse ISP. The RAW sensor data obtained by a camera is fundamentally different from
the SRGB images which closely resemble human visual perception. Indeed, it is necessary to process
RAW images through an ISP to obtain the final SRGB images. Fig. [ illustrates the processing
pipelines of ISP and InverseISP. We modify the InverseISP of |Brooks et al.| (2019) and propose a
differentiable ISP approach that can map the model’s output to the SRGB domain for optimization.
During the ISP process, denoising and demosaicing are ill-posed problems, and we optimize these
two tasks jointly with Real-IR task. Above all, in the ISP process, the Automatic White Balance
(AWB) algorithm multiplies the red and blue channels by gains to produce an image that appears to
be lit under “neutral” illumination, which can be formulated as Equation @

1
Mgain

®)

awb nm nm awb
‘/'EL :XL ®Mgain; :CL :XL ®

where x4, X"™ and Myqin are the linear-domain image processed by AWB, the linear image
processed by denoising and demosaicing, and the pixel-wise channel gain, respectively.

Secondly, the color correction algorithm converts its own “camera space” SRGB color measurements
to SRGB values by a color correction matrix as shown in Equation [0

2i = 2P X M, a0 = af™ x M ©)

where 27", M, are the linear-domain image processed by CCM algorithm and color correction
matrix, respectively.

Thirdly, since humans are more sensitive to gradations in the dark areas of images, gamma com-
pression is typically used to allocate more bits of dynamic range to low-intensity pixels as stated in

Equation [T0}

X99mmE — mag (x5, €)Y X5 = max(x97" €)% (10)
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Note that we set e = 1078 to prevent numerical instability during training.

InverselSP is the inverse process of ISP, where the mosaicing algorithm acquires the RAW image
X BAW ¢ REXWX1 yith a CFA by extracting the corresponding pixel values from the three chan-
nels. The noise in RAW images mainly comes from two sources: photon arrival statistics (shot
noise) and imprecision in the readout circuitry (read noise). We can approximate these two types of
noise as a single heteroscedastic Gaussian distribution defined in Equation [T T}

Yy~ N(M = inosaic’ 02 = Ashot)(‘[ﬁ,losaic + )\7'ead) (11)

The linear-domain image is obtained by Equation 12}

Xizn _ Xinosaic + y (12)

where X 7'05%4¢ jg the RAW image processed by mosaic algorithm and y is the noise intensity added
onto szs“ic to obtain the Sensor RAW X EAW. Ashot and Apeqq are the function of ISO light
sensitivity level.

A.2 APPENDIX: QUANTITATIVE COMPARISONS WITH GAN-BASED METHODS

We compare RDDM against four two-stage ISP—-GAN-based-IR methods. For the first ISP stage,
we again use PIPNet (A Sharif et al.,[2021) as the DN and DM module; for the second IR stage, we
use BSRGAN |Zhang et al.|(2021), Real-ESRGAN |Wang et al.| (2021), LDL |Liang et al.|(2022a) and
FeMaSR |Chen et al.| (2022) as our baselines. The results are shown in Table @ Admittedly, two-
stage methods involving GAN-based IR models demonstrate better fidelity results as expected, i.e.
higher PSNR and SSIM metrics. However, their image generation capability is far behind RDDM.
Visualization comparisons are shown in Fig. [12]

Table 8: Quantitative comparison with different methods on both synthetic benchmark. | presents
the smaller the better, T presents the bigger the better. Our method RDDM exceeds its competing
models in terms of image fidelity, whereas maintaining a satisfactory image generation ability ap-
proximately equivalent to the other baselines.

Dataset | Method | PSNRT SSIM? LPIPS| DISTS, FID| NIQE, MUSIQ? CLIPIQA 1
ISP+BSRGAN | 24.4124 0.6500 0.4174 02173 33.8937 5.1222  44.2923 0.4580
DIVIK.Val | ISP#REA-ESRGAN | 242373 06426 03888 02007 353941 48658  48.6062 0.5157
ISP+LDL 242922 0.6243 04684 02540 34.9855 5.5153  29.8086 0.3714
ISP+FeMaSR | 23.5880 0.6066 0.4347 02273 34.9390 5.7403  43.3786 0.5187
Ours 237416 0.6296 0.2540 01197 23.8028 3.3627  65.4202 0.6737
ISP+BSRGAN | 30.1134 0.8282 03196 0.1982 20.5962 5.6748  42.4667 0.5105
DRealsR | ISP#REal-ESRGAN [ 29,1309 0.8055 03361 0.2042 235094 55440  46.0976 0.5548
ISP+LDL 299312 07967 03640 02173 209155 59973  29.3485 0.4047
ISP+FeMaSR | 28.1176 0.7460 0.4007 0.2356 243254 63530 41.3755 0.5844
Ours 28.3495 07892 02719 01649 17.4825 4.6852 57.0696 0.7035
ISP+BSRGAN | 27.0999 0.7648 03190 0.1984 50.7266 5.0958  50.2340 0.5052
Realsg | ISP+Real-ESRGAN | 263844 07474 03332 0.1995  49.3939 45754 557670 0.5498
ISP+LDL 265426 07186 03871 02141 53.1533 52573  33.9660 0.3656
ISP+FeMaSR | 25.5820 0.6898 0.3891 0.2278 53.7582 5.8086  51.1097 0.5917
Ours 251264 0.7092 0.2546 01589 36.8671 4.1286  65.8881 0.6723
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A.3 APPENDIX: MORE QUALITATIVE COMPARISONS

Figure 12: Qualitative comparison between RDDM and GAN-based methods on DIV2K-val,
DRealSR and RealSR dataset.
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Figure 13: Qualitative comparison between RDDM and RAW domain one-stage method and two-
stage ISP—IR methods on DRealSR dataset and DIV2K-val dataset.

A.4 APPENDIX: EXAMPLES OF SYNTHETIC RAW DATA

Synthetic RAW

Synthetic RAW

Figure 14: Examples of synthetic RAW data produced by our data synthesis pipeline. From top
to bottom, each row represents the RAW data from DIV2K, the corresponding sSRGB data from
DIV2K, the RAW data from DRealSR, the corresponding sSRGB data from DRealSR, the RAW data
from RealSR and the corresponding sSRGB data from RealSR.
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